
Noname manuscript No.
(will be inserted by the editor)

KHE14: An Algorithm for High School Timetabling

Jeffrey H. Kingston

Received: date / Accepted: date

Abstract This paper presents an algorithm called KHE14 for solving the high
school timetabling problem. KHE14 builds its timetables one student form at
a time, and repairs them using ejection chains. Many of its components have
been published previously, and so are described here only briefly. A few of
its components, notably most of the augment functions called by the ejection
chain algorithm, are new, so are described in detail. Experiments using the
XHSTT-2014 data set, conducted in August 2014, are included.

Keywords High school timetabling · Ejection chains

1 Introduction

High school timetabling is one of the three major timetabling problems found
in academic institutions, the others being university course timetabling and
examination timetabling. Automated methods for solving it have been studied
from the early days of computers [20] to the present day [16].

An XML format called XHSTT was introduced recently to represent real
instances and solutions of the high school problem [8,18]. XHSTT was used in
the Third International Timetabling Competition [19], the first competition
to include high school timetabling. An XHSTT data set called XHSTT-2014
is currently being promoted as a benchmarking standard [17]. It contains 25
instances taken from real high schools in 12 countries around the world.

This paper presents KHE14, an algorithm for high school timetabling, with
experiments using XHSTT-2014 conducted in August 2014.

KHE14 is built on the author’s KHE high school timetabling platform [12],
and distributed with it. It has many parts, developed by the author in a series
of papers over the last ten years [6,7,9–11]. All this cannot be repeated here.

J. Kingston
School of Information Technologies, The University of Sydney, Australia
E-mail: jeff@it.usyd.edu.au



Table 1 The 16 constraints, with informal definitions, grouped by what they apply to.

Event constraints

Split Events constraint Split event into limited number of meets
Distribute Split Events constraint Split event into meets of limited durations
Assign Time constraint Assign time to event
Prefer Times constraint Assign time from given set
Spread Events constraint Spread events evenly through the cycle
Link Events constraint Assign same time to several events
Order Events constraint Assign times in chronological order

Event resource constraints

Assign Resource constraint Assign resource to event resource
Prefer Resources constraint Assign resource from given set
Avoid Split Assignments constraint Assign same resource to several event resources

Resource constraints

Avoid Clashes constraint Avoid clashes involving resource
Avoid Unavailable Times constraint Make resource free at given times
Limit Idle Times constraint Limit resource’s idle times
Cluster Busy Times constraint Limit resource’s busy days
Limit Busy Times constraint Limit resource’s busy times each day
Limit Workload constraint Limit resource’s total workload

So although this paper describes KHE14 completely, it does so only at a high
level. Details are explained only when they are new and significant; otherwise
they are just mentioned, with a reference to the papers just cited, or to the
KHE documentation [12], which has full details. The main innovations are in
Sect. 7, where new repairs for several types of defects are given.

Sect. 2 gives a brief specification of the problem. Sects. 3–7 present the
components of KHE14, with experiments related to the components. Sect. 8
brings the components together into the full KHE14 algorithm and contains
experiments that evaluate it generally.

All experiments use the XHSTT-2014 data set [17], as downloaded on 18
August 2014, and were performed on the author’s desktop machine, an Intel
i5 quad-core running Linux. Each individual solution is produced on a single
processor; tests that produce multiple solutions utilize all four processors.

2 Problem specification

The XHSTT specification of the high school timetabling problem is used here.
An XHSTT instance contains four parts: the cycle, which is the chronological
sequence of times that may be assigned to events; a set of resources, which are
entities that attend events (usually either teachers, rooms, students, or classes,
where a class is a group of students who mostly attend the same events); a
set of events, which are meetings, each of fixed duration (number of times),
and containing any number of event resources, each specifying one resource
that attends the event; and a set of constraints, which specify conditions that
solutions should satisfy, and the penalty costs to impose when they don’t.



Table 2 The number of times, teachers, rooms, classes (groups of students), individual
students, and events in the instances of XHSTT-2014. There are 25 instances altogether.

Instance Times Teachers Rooms Classes Students Events

AU-BG-98 40 56 45 30 387
AU-SA-96 60 43 36 20 296
AU-TE-99 30 37 26 13 308
BR-SA-00 25 14 6 63
BR-SM-00 25 23 12 127
BR-SN-00 25 30 14 140
DK-FG-12 50 90 69 279 1077
DK-HG-12 50 100 71 523 1235
DK-VG-09 60 46 53 163 918
UK-SP-06 25 68 67 67 1227
FI-PB-98 40 46 34 31 387
FI-WP-06 35 18 13 10 172
FI-MP-06 35 25 25 14 280
GR-H1-97 35 29 66 372
GR-P3-10 35 29 84 178
GR-PA-08 35 19 12 262
IT-I4-96 36 61 38 748
KS-PR-11 62 101 63 809
NL-KP-03 38 75 41 18 453 1156
NL-KP-05 37 78 42 26 498 1235
NL-KP-09 38 93 53 48 1148
ZA-LW-09 148 19 2 16 185
ZA-WD-09 42 40 30 278
ES-SS-08 35 66 4 21 225
US-WS-09 100 134 108 628

XHSTT currently offers 16 constraint types (Table 1), specifying preferred
times for events, unavailable times for resources, and so on. Whatever its type,
each constraint may be marked required, in which case it is called a required
or hard constraint, and its cost (a non-negative integer) contributes to a total
called the infeasibility value in XHSTT, and the hard cost here. Otherwise the
constraint is called non-required or soft, and its cost contributes to a different
total called the objective value in XHSTT and the soft cost here.

A solver assigns starting times to events, except for preassigned events
(events whose starting time is given by the instance), trying to minimize first
hard cost and then soft cost. It may also be required to split events of long
duration into smaller events, called sub-events in XHSTT and meets in KHE
and in this paper. (Sect. 3 has more on this.) And it may be required to assign
resources to unpreassigned event resources: often rooms, occasionally teachers,
never (in practice) classes or students. A full specification appears online [8];
further details are given as needed throughout this paper.

Table 2 gives some idea of the instances of the XHSTT-2014 data set. They
vary greatly in difficulty, in ways that such a table cannot fully capture. The
five instances with resources representing individual students seem particularly
challenging, because there are hundreds of these resources, each with its own
timetable and constraints.



3 Timetabling structures

KHE evaluates constraints continuously as the solution changes during solving,
using efficient incremental methods, and makes the resulting costs available to
solvers, which use them to guide the solve as usual. If requested, KHE can also
add structures to the solution which ensure that violations of some constraints
cannot occur, and it can add other structures which encourage regularity:
patterns of assignment that make timetables more uniform. Regularity has no
direct effect on cost, but it may make good solutions easier to find [10].

KHE14’s first, structural phase, is mainly devoted to adding the structures
explained in this section. These are all optional as far as the KHE platform is
concerned; KHE14 chooses to use them, but other algorithms need not.

KHE14 does not use any information that could be called metadata. For
example, sets of times may be identified in XHSTT as days, but KHE14 does
not use that information. Nor does it treat student resources (say) differently
merely because they are called students. Instead, it examines which resources
are preassigned, which sets of times and resources appear in constraints, and
so on, taking its cues from the structure alone.

Many elements of the instance influence KHE14’s structures: preassigned
resources with avoid clashes constraints (constraining events to be disjoint in
time), time preassignments, link events constraints, split events and distribute
split events constraints, spread events constraints (influencing how many meets
events split into), prefer times and prefer resources constraints, and avoid split
assignments constraints. These are taken in decreasing cost order; each either
influences the structures, or is ignored if inconsistent with previous elements.
The KHE documentation [12] explains their effects in detail. It would take
too long to repeat all that here. Instead, what follows is a description of the
structures that emerge.

Courses are sets of events during which the same students meet the same
teacher to study the same subject. Spread events constraints may be present
to encourage a course’s meets to spread evenly through the cycle, and avoid
split assignments constraints may be present to encourage those meets to be
assigned the same teacher (if not preassigned) or room.

XHSTT offers a spectrum of ways to define courses. At one extreme, the
exact set of events required is given. For example, if a Science course needs to
occur five times per week in events of durations 2, 1, 1, 1, and 1, then five events
with these durations would be given, along with split events constraints which
ensure that each event produces one meet. At the other extreme, a single event
of the total duration required is given, along with split events and distribute
split events constraints which say how that total may be split into meets. In
the Science example, a single event of duration 6 would be given, along with
constraints which place limits on the number and duration of the meets it is
to be split into. This handles a situation often found in real instances, where
the total duration is fixed, but how it is to be split up is more flexible.

The structural phase splits events into meets whose durations depend on
the parts of the instance listed above, and groups the meets into sets that KHE



calls nodes. One node contains the meets of one course, at least to begin with.
The structural phase creates nodes heuristically, as follows. Meets derived
from the same event go into the same node. When two events contain the
same preassigned resources and are connected by a spread events or avoid
split assignments constraint, they are taken to belong to the same course, so
their meets also go into the same node. Grouping meets into nodes does not
constrain their assignments, but it acts as a hint to solvers that the meets
should be assigned times together, and opens the door to various methods of
promoting regularity, which work with nodes, not meets.

Link events constraints, specifying that certain events should be assigned
the same times, give rise to a different structure. KHE allows one meet to be
assigned to another instead of to a time, meaning that any time assigned to the
other meet is in fact assigned to both. The structural phase makes assignments
of meets to other meets which ensure that link events constraints cannot be
violated. Meets assigned to other meets are not included in nodes, which (by
convention) tells solvers that their assignments should not be changed.

Assigning one meet to another supports hierarchical timetabling, in which
a timetable for a few meets is built and later incorporated into a larger one.
This promotes regularity, so the structural phase spends time searching for
useful hierarchical structures, as described in [6,7].

Each meet contains a set of times called its domain. Only times from this
set may be assigned to a meet, either directly, or indirectly via an assignment
to another meet. KHE14 chooses domains based on prefer times constraints.
The duration of a meet also affects its domain: a meet of duration 2 cannot
be assigned the last time in the cycle as its starting time, and so on. KHE
represents domains both as bit sets, for efficient assignability testing, and as
lists of times, for efficient iteration over all legal assignments.

A meet contains one task for each event resource in the event that it is
derived from. Each task is a demand for one resource at each of the times
the meet is running, either preassigned (the usual case for student and class
tasks) or not (the usual case for room tasks). Unpreassigned tasks specify the
type of resource required (teacher, room, etc.), and prefer resources constraints
are usually present which encourage the solution to assign a specific kind of
resource, such as a Mathematics teacher or a Science laboratory.

Each task contains a set of resources called its domain. Only resources from
this set may be assigned to a task. KHE14 chooses domains based on prefer
resources constraints.

Avoid split assignments constraints, which specify that certain tasks should
be assigned the same resources, are handled structurally by KHE14, at least to
begin with. One of the tasks is chosen to be the leader task, and the others are
assigned it instead of a resource, meaning that whatever resource is assigned
to the leader task is to be considered as assigned to them too.

The XHSTT specification says that violations of hard constraints, while
permitted, should be few in good solutions, but soft constraint violations are
normal and to be expected [8]. So additional structures must be used with
caution, especially when derived from soft constraints. KHE14 uses a heuristic



Table 3 Encouraging regularity between forms: -RF and +RF denote without it and with
it. KHE14 uses +RF. In all tables in this paper, columns headed C: contain solution costs.
Hard costs appear to the left of the decimal point; soft costs appear as five-digit integers to
the right of the point. The minimum costs in each row are highlighted. Columns headed T:
contain run times in seconds. All tables and graphs (including captions) were generated by
KHE and incorporated unchanged. They can be regenerated by any user of KHE.

Instance C:-RF C:+RF T:-RF T:+RF
AU-BG-98 12.00764 13.00520 24.1 14.3
AU-SA-96 2.00011 4.00022 39.3 91.4
AU-TE-99 2.00134 5.00152 1.6 2.5
BR-SA-00 0.00042 0.00044 0.9 0.7
BR-SM-00 8.00131 12.00128 2.9 2.4
BR-SN-00 0.00134 0.00145 2.9 2.5
DK-FG-12 0.03336 0.03391 368.0 350.6
DK-HG-12 13.05467 14.05094 734.0 805.1
DK-VG-09 2.04393 3.04433 927.2 948.2
UK-SP-06 29.00926 33.01108 374.0 377.3
FI-PB-98 0.00025 3.00031 6.9 9.5
FI-WP-06 0.00024 0.00024 3.5 8.4
FI-MP-06 0.00123 0.00147 3.5 4.6
GR-H1-97 0.00000 0.00000 0.6 5.9
GR-P3-10 0.00011 0.00011 2.7 7.8
GR-PA-08 0.00012 0.00016 10.4 13.6
IT-I4-96 0.00145 0.00054 7.7 14.9
KS-PR-11 0.00025 0.00020 195.1 194.6
NL-KP-03 0.01229 0.01487 440.0 416.9
NL-KP-05 21.07252 15.07401 396.5 373.6
NL-KP-09 16.09330 16.07930 95.8 85.3
ZA-LW-09 19.00022 20.00018 4.5 9.7
ZA-WD-09 13.00000 26.00000 4.3 13.6
ES-SS-08 0.01142 0.01117 26.4 27.1
US-WS-09 0.00651 0.00758 30.5 48.7
Average 5.01413 6.01362 148.1 153.2

strategy: it includes them at first, but removes them towards the end, so that
later repair operations are not limited by them. The original constraints are
not forgotten: even when violations are allowed, they are still penalized.

This structural phase is similar to previous structural phases described by
the author [6,7]. It is more robust than its predecessors: it resolves conflicting
requirements using priorities as explained above, and it takes full account of
all interactions between requirements.

Testing the effectiveness of adding structures that encourage regularity is
complicated by the presence of several kinds of regularity and several ways
to encourage it [10], not all of which can be disabled at present. Table 3
examines regularity between forms. For example, if the classes of the Year 11
form attend English 6 times per week in meets of durations 2, 1, 1, 1, and 1,
and the classes of the Year 12 form attend Science 6 times per week in meets
of the same durations, then encouraging regularity between forms encourages
these two courses (or others with the same meet durations) to be simultaneous.
The author is not ready to abandon regularity between forms, but the evidence
of Table 3 is tending against it, at least as currently implemented (Sect. 8).



4 The global tixel matching

A timetabling problem is a market in which resources are demanded by events
and supplied to them. The unit of supply is one resource at one time, called a
supply tixel. The term ‘tixel’ has been coined by the author by analogy with
the ‘pixel’, one cell of a graphical display.

Each event demands a number of tixels of certain types. For example, a
typical event called 7A-English, in which class 7A studies English for 6 times
per cycle, demands 18 tixels: six tixels of class resource 7A, six tixels of teachers
qualified to teach English, and six of ordinary classrooms. This event is said
to contain 18 demand tixels.

The market is represented by an unweighted bipartite graph. Each demand
tixel is a node; each supply tixel is a node. An edge joins demand tixel d to
supply tixel s when s may be assigned to d. For example, a demand tixel de-
manding class resource 7A would be connected to the supply tixels for resource
7A (one for each time in the cycle). A demand tixel demanding an English
teacher would be connected to each supply tixel of each English teacher.

Each demand tixel requires only one supply tixel. Each supply tixel can be
assigned to only one demand tixel, otherwise there would be a timetable clash.
Accordingly, a set of assignments is a matching in this graph: a set of edges
such that no two edges share an endpoint. There is an efficient algorithm for
finding a maximum matching (one with as many edges as possible) [15].

There may be many maximum matchings, but they all fail to assign supply
tixels to the same number of demand tixels, and since that number is the
important thing, it is convenient to pretend that there is just one maximum
matching. The author calls it the global tixel matching. The important number
is a lower bound on the number of unassigned demand tixels in any solution,
given the decisions already made. The matching defines an assignment which
maximises the number of tixels assigned, but it is not useable directly, because
it violates many constraints.

When a meet is assigned, the sets of edges connected to its demand tixels
(their domains) shrink. For example, the six tixels demanding resource 7A in
the meets of event 7A-English are initially connected to all the supply tixels for
7A (one for each time of the cycle), but after times are assigned, each becomes
associated with a particular time, and is connected to just one supply tixel:
the one for 7A at that time. Tixel domains also change when the domain of a
meet or task is changed. KHE keeps them up to date automatically.

Use of the global tixel matching is optional. KHE14 installs it during its
structural phase and retains it until the end. Additional demand tixels are
added based on hard unavailable times, limit busy times, and limit workload
constraints. For example, if teacher Smith is limited to at most 7 busy times
out of the 8 times on Monday, then one demand tixel demanding Smith at a
Monday time is added.

This section is adapted from [9], which has much more detail: how to define
the additional tixels, how to implement the matching efficiently, and so on.



5 Polymorphic ejection chains

Like most timetabling solvers, KHE14 first constructs, then repairs. The repair
work is mostly done by ejection chains. An ejection chain is a sequence of one
or more repair operations (also called repairs), which are small changes to the
solution. The first repair removes one defect (a specific fault in the solution) but
may introduce another; the next repair removes that defect but may introduce
another; and so on. Importantly, the defects that appear as a chain grows are
not known to have resisted attack before. It might be possible to repair one of
them without introducing another, bringing the chain to a successful end.

Ejection chains are not new. They are the augmenting paths of matching
algorithms, and they occur naturally to anyone who tries to repair a timetable
by hand. They were brought into focus and named by Glover [3], in work on
the travelling salesman problem. In timetabling, they have been applied to
nurse rostering [2], resource assignment [9], and time repair [4,5,10].

A key insight of [10] is that ejection chains are naturally polymorphic: each
defect along one chain can have a different type from the others, calling for a
correspondingly different type of repair. Thus, any number of types of defects,
and any number of types of repairs, can be handled together. In KHE, there is
one defect type for each constraint type, representing one specific point in the
solution where a constraint of that type is not satisfied, plus one defect type
representing one specific unmatched demand tixel in the global tixel matching.

An ejection chain algorithm incorporates a set of functions, one for each
defect type, called augment functions after the function for finding augmenting
paths in bipartite matching [15]. An augment function is passed a defect of the
type it handles. It tries a set of alternative repairs on it. Each repair removes
the defect, but may create new defects. If no significant new defects appear,
the function terminates successfully, having reduced the solution cost. If one
significant new defect appears (one whose removal would reduce the solution
cost below its value when the chain began; it may cost more than the removed
defect), it calls the appropriate augment function for that defect. In this way
a chain of coordinated repairs is built up. If that call does not succeed, or was
not tried because two or more significant new defects appeared, the function
undoes the repair and continues with alternative repairs.

Alternatively, if two or more new defects appear, the algorithm could try
to remove them all by finding a whole set of ejection chains, one for each new
defect. This ejection tree approach seldom succeeds, so the author only uses it
in a few cases, described in Sect. 7, where there seems to be nothing better.

The algorithm’s main loop repeatedly iterates over the solution’s defects,
or over a subset of them that it is expedient to target, calling the appropriate
augment function on each. It terminates when one pass over all these defects
yields no reduction in solution cost. A main loop defect is a defect iterated
over by the main loop; a main loop repair is a repair of a main loop defect.

After each pass over the main loop defects, the wall clock time since the
solution was created is compared with a soft time limit. If the soft time limit
has been reached, repair is terminated as though no improvement was found on



Table 4 Effectiveness of variants of KHE14’s ejection chain algorithm. Each pair of char-
acters represents one complete restart of the algorithm: a digit denotes a maximum chain
length (u means unlimited); + denotes allowing entities to be revisited along one chain, and
- denotes not allowing it. KHE14 uses 1+,u-. Other details as previously.

Instance C:u- C:1+,u- C:1+,2+,u- T:u- T:1+,u- T:1+,2+,u-
AU-BG-98 4.00752 13.00520 13.00431 19.7 14.4 72.0
AU-SA-96 5.00009 4.00022 2.00021 47.2 87.8 111.5
AU-TE-99 6.00151 5.00152 5.00105 2.9 2.5 3.0
BR-SA-00 0.00045 0.00044 0.00049 0.5 0.7 1.0
BR-SM-00 11.00102 12.00128 10.00097 2.6 2.5 3.7
BR-SN-00 0.00128 0.00145 0.00135 2.1 2.4 2.7
DK-FG-12 0.06727 0.03391 0.02546 365.3 350.2 433.7
DK-HG-12 14.09212 14.05094 12.03956 722.0 810.3 1296.3
DK-VG-09 7.07526 3.04433 2.03506 685.9 951.4 1716.7
UK-SP-06 35.01096 33.01108 29.01062 313.1 376.3 489.8
FI-PB-98 0.00018 3.00031 1.00038 7.0 9.4 13.5
FI-WP-06 0.00021 0.00024 0.00025 8.2 8.4 11.3
FI-MP-06 0.00101 0.00147 0.00120 5.5 4.6 6.1
GR-H1-97 0.00000 0.00000 0.00000 6.0 5.9 6.0
GR-P3-10 2.00019 0.00011 2.00019 9.6 7.8 7.3
GR-PA-08 0.00014 0.00016 0.00015 11.8 13.6 17.6
IT-I4-96 0.00048 0.00054 1.00054 14.6 14.9 13.9
KS-PR-11 0.00021 0.00020 0.00034 266.7 201.5 142.2
NL-KP-03 0.01818 0.01487 0.01469 362.7 417.2 480.7
NL-KP-05 38.09413 15.07401 18.04507 385.1 373.3 412.9
NL-KP-09 12.14925 16.07930 9.10155 136.2 86.6 85.1
ZA-LW-09 20.00020 20.00018 22.00022 10.2 9.7 9.9
ZA-WD-09 27.00000 26.00000 24.00000 14.0 13.5 16.1
ES-SS-08 0.00582 0.01117 0.01106 28.5 27.5 23.0
US-WS-09 0.00675 0.00758 0.00748 58.4 49.1 70.6
Average 7.02136 6.01362 6.01208 139.4 153.7 217.9

the pass just ended. Since this allows each run of the ejection chain algorithm
after the soft time limit one pass over its defects, and places no limit on other
code, it does not enforce a hard time limit; but, since ejection chains consume
most of KHE14’s running time, it does cap running time in practice.

KHE offers two methods for preventing the tree of repairs searched by an
augment function from growing to exponential size: either the length of the
chains is limited to at most some fixed constant, or else it is unlimited, but
entities visited while searching for one chain are marked, and revisiting them
is prohibited, limiting the size of one search to the size of the solution.

Table 4 investigates these two methods. KHE14’s choice trades off cost
and running time quite well, but there is no simple signal. KHE14 also limits
the number of calls on augment functions per search to 120, because tests not
reported here in detail show that successes after that are very rare.

Another way to vary the scope of the search is to reopen the whole solution
for visiting, not just before each main loop defect, but before each main loop
repair. KHE14 does this. Yet another way, worth trying in practice only for
teacher assignment, is to allow repairs of resource assignments to alter time
assignments. KHE14 as presented here does not do this, since it can increase
run time by a factor of 4 or more; but it is available as an option.



0 10 20 30 40
0

2000

4000

6000

8000

10000

Number of repairs

Fig. 1 For each number of repairs, the number of improvements (successful chains or trees)
with that number of repairs found during time repair, over all instances of archive XHSTT-
2014. There were 13880 improvements altogether, and their average number of repairs was
2.7. All improvements with more than 39 repairs are shown as having 39 repairs. The longest
improvement had 49 repairs.

0 10 20 30 40
0

10

20

30

40

50

Number of repairs

Fig. 2 For each number of repairs, the number of improvements (successful chains or trees)
with that number of repairs found during resource repair, over all instances of archive
XHSTT-2014. There were 170 improvements altogether, and their average number of re-
pairs was 6.5.

KHE14 makes two kinds of calls to the ejection chain algorithm: time repair
calls, which repair time assignments, and resource repair calls, which repair
resource assignments. Fig. 1 shows how long successful time repair chains are,
and Fig. 2 does the same for resource repair. Most are short, but some are
quite long. It was shown in [10] that chain lengths tend to increase as the
algorithm progresses.

The text of this section is adapted from [10], which also describes the
extensive support for ejection chains provided by KHE. The user writes one
augment function for each defect type, which iterates over the alternative
repairs, applying each in turn. KHE supplies the main loop, chaining together
of individual repairs, testing for success, unapplying, and dynamic dispatch by
defect type. It also offers many options for varying the behaviour. For example,
for each repair independently it allows the caller to choose to continue with
either an ejection chain or an ejection tree.



6 Repair operations

A repair operation, or just repair, is a change intended to remove a defect.
This section gives an overview of the repairs used by KHE14’s ejection chain
algorithm. Sect. 7 explains how they are used to repair defects.

Let a variable be a meet or a task, considered as an entity requiring a time
or resource to be assigned to it. An assignment is a change to a variable from
unassigned to assigned. A move is a change from one assignment to a different
assignment. An unassignment is a change from assigned to unassigned.

When the change is an assignment or move, the new value of the variable
is likely to create conflicts (timetable clashes) with other variables. There are
at least four ways to handle these conflicts. The basic way is to do nothing,
leaving it to the ejection chain algorithm to notice the resulting defects and try
to repair them. The ejecting way is to unassign conflicting variables. This will
be better than the basic way if it produces a single defect (an assign time or
assign resource defect) rather than several defects whose common cause may
not be clear to the ejection chain algorithm. The swap way, applicable only to
moves, is to move the conflicting variables in the opposite direction.

The fourth way, also applicable only to moves, is the Kempe way. For
example, a Kempe meet move begins with the move of a meet from its current
time t1 to some other time t2. If that causes clashes between preassigned
resources at t2, the other meets involved in the clashes are moved to t1, any
clashes produced by those moves cause more meets to be moved to t2, and so
on until there are no new clashes and no more moves.

This makes 7 repairs on variables: unassignment, basic assignment, basic
move, ejecting assignment, ejecting move, swap, and Kempe move. Applying
them to both meets and tasks gives 14 operations. KHE14 uses most of them.

When a Kempe meet move succeeds, the result is usually a simple move or
swap. A single operation that could be either allows a solver to try moving a
meet to each t2, whether its resources are free then or not. Tests not reported
here in detail show that the median number of meets moved by one Kempe
meet move is 2, although 20 or more meets move in rare cases.

Kempe meet moves are useful because instances often contain preassigned
class resources which are busy for all or most of the cycle. Moving a meet
containing such a resource practically forces another meet to move the other
way, so it makes sense to get on and do it. Kempe task moves are less useful
because they apply to unpreassigned resources, such as teachers and rooms,
which are less constrained. Ejecting moves seem more appropriate for them.

An ejecting move is a Kempe move that ends early, as soon as the variables
to be moved in the opposite direction are unassigned. It often makes sense to
first try a Kempe move, then fall back on an ejecting move; this is similar to
trying a particular reassignment of the unassigned variables first. The term
Kempe/ejecting move refers to a sequence of one or two repairs, first a Kempe
move, then an ejecting move with the same parameters, the ejecting move
being omitted when the Kempe move (successful or not) does not try to move
anything in the opposite direction, since the two repairs are identical then.



Table 5 Kempe, ejecting, and basic moves during time assignment. Where the main text
states that Kempe meet moves are tried, K means to try them and X means to omit them.
Where it states that ejecting meet moves are tried, E means to try them and B means to
try basic meet moves instead. KHE14 uses KE. Other details as previously.

Instance C:KE C:KB C:XE C:XB T:KE T:KB T:XE T:XB
AU-BG-98 13.00551 11.00626 10.00758 12.00580 14.6 44.0 23.3 72.5
AU-SA-96 4.00022 1.00024 15.00103 26.00081 76.2 319.2 135.3 132.1
AU-TE-99 5.00152 5.00101 9.00209 12.00172 2.1 11.3 8.3 6.8
BR-SA-00 0.00044 1.00063 0.00039 1.00068 0.7 1.1 1.0 0.6
BR-SM-00 12.00128 16.00088 3.00123 18.00072 2.2 4.3 7.4 1.9
BR-SN-00 0.00145 2.00175 0.00118 4.00193 2.3 4.5 3.7 2.9
DK-FG-12 0.03132 0.03039 0.03513 0.03835 366.0 583.3 353.6 325.8
DK-HG-12 12.05069 12.04959 12.04866 12.05460 724.0 1445.9 605.7 772.1
DK-VG-09 3.04709 2.04271 2.04954 2.05395 874.6 1213.1 503.6 524.2
UK-SP-06 32.01188 31.00918 49.01156 41.00734 420.9 910.2 335.8 353.3
FI-PB-98 4.00028 3.00053 1.00023 3.00042 10.2 23.5 8.2 9.7
FI-WP-06 0.00024 0.00045 0.00027 1.00027 8.4 29.7 6.6 8.2
FI-MP-06 0.00110 0.00118 0.00127 5.00124 6.8 12.3 5.6 6.2
GR-H1-97 0.00000 0.00000 0.00000 0.00000 5.9 5.7 5.7 5.6
GR-P3-10 0.00011 0.00032 6.00046 0.00033 7.8 12.3 12.4 8.8
GR-PA-08 0.00016 0.00014 0.00013 0.00017 13.6 16.9 7.2 6.8
IT-I4-96 0.00150 0.00067 0.00056 0.00068 13.0 16.3 11.9 15.3
KS-PR-11 0.00020 0.00022 0.00018 0.00028 131.4 156.7 170.3 136.3
NL-KP-03 0.01792 0.01641 0.01954 0.01414 444.0 1102.9 427.2 523.5
NL-KP-05 16.07919 15.04026 16.07289 14.05057 375.0 638.5 354.5 325.1
NL-KP-09 33.07335 8.10415 41.15690 18.08255 74.3 215.8 127.0 89.7
ZA-LW-09 16.00004 19.00014 21.00018 17.00016 9.4 11.9 9.8 9.2
ZA-WD-09 26.00000 19.00000 21.00000 38.00000 13.5 28.9 22.1 12.0
ES-SS-08 0.01117 0.01167 0.01731 0.02407 27.2 88.0 21.9 20.5
US-WS-09 0.00784 0.00746 0.00738 0.00718 41.3 47.8 38.6 41.9
Average 7.01378 5.01304 8.01742 8.01391 146.6 277.8 128.3 136.4

Kempe meet moves are implemented more generally than described here.
They support hierarchical timetabling and preserving regularity, and swap
meets of different durations in some cases. For these details, see [10] and [12].

Table 5 compares Kempe, ejecting, and basic meet moves. The data are
noisy, but Kempe/ejecting meet moves seem best when both cost and running
time are taken into account. When evaluating alternatives the author prefers
not to reduce noise by averaging several runs, since what is needed are ideas
powerful enough to make themselves heard above the noise. Table 5 shows
that Kempe/ejecting meet moves are marginal by this standard.

KHE also uses combined repairs which are sets of repairs treated as a unit:
for a combined repair to succeed, all the repairs that make it up must succeed.

For example, suppose two nodes (Sect. 3) have meets of the same durations
(one of duration 2 and four of duration 1, say). A node swap is a combined
repair which swaps the starting times of corresponding meets in those nodes.
Swappable nodes are common, since courses of equal duration are common and
often split into meets of equal durations. Nodes are only swapped when they
have the same preassigned resources, so swapping avoids introducing clashes
involving those resources. Swapping nodes also preserves regularity and tends
to not create new spread events defects.



Meet splitting and merging are mostly done during the structural phase,
but they are occasionally useful during repair. A meet split splits a meet in two.
A split move combines a meet split with a Kempe meet move of one fragment.
Split moves are tried after Kempe meet moves in some cases. A meet merge
merges two meets. Mergeable meets are rarely adjacent in time, so the merge
move is more useful in practice. It combines a Kempe meet move of a meet to
alongside a meet it can merge with, with a merge of the two meets.

Most of these repairs are not new. The author has used Kempe meet moves,
node swaps, and ejecting task moves before [9,10]. Others have used ejecting
meet moves ([14], for example). Split and merge moves, and the ‘unassign and
reduce’ repairs described in Sect. 7, seem to be new.

7 Repairing defects

This section explains how the ejection chain algorithm repairs defects using
the repair operations of Sect. 6. For each type of defect, this section defines a
set of repairs. The augment function for that type of defect applies the first of
these repairs, calls a KHE function to test for success and recurse, then either
returns ‘success’ immediately or unapplies that repair and tries the next, and
so on, returning ‘no success’ when all repairs have been tried without success.

One lesson that the author has learned is the importance of precision in
augment functions: ensuring that they include only repairs that reduce the
cost of the defects they are supposed to target, and that all repairs that do
this are included, subject to reasonable limits on the number and complexity
of the repairs, and to common-sense assessments of their likelihood of success.
In the course of this work, improving the precision of an augment function has
usually led to improved solution cost and running time.

The repairs tried by an augment function are basically unordered, but
some attention to order can be helpful. One reason for this is diversity. For
example, when each repair assigns one resource from a list to a task, KHE14
chooses the starting point in the list randomly. Another reason is to try first
those repairs which seem most likely to succeed. For example, when repairing
limit idle times defects, KHE14 tries meet moves in order of increasing meet
duration, since meets of small duration are more likely to fit into idle times.

KHE has objects called monitors, each monitoring one point of application
of one constraint, or one demand tixel in the global tixel matching. Each mon-
itor contains a cost. When some part of the solution changes, KHE notifies the
monitors affected by that part, and they revise their evaluation and perhaps
change their cost. Any cost changes are reported and cause the overall solution
cost to change. For example, when a time is assigned to a meet, any affected
assign time and prefer times monitors are notified, and they change their cost
accordingly. Concretely, a defect is a monitor whose cost is non-zero.

Monitors may be grouped: joined into sets treated as single monitors whose
cost is the sum of the individual costs. KHE14 groups monitors when they have
the same type and monitor the same thing in reality (examples appear below),



and repairs a group by repairing any one of its members. Monitors may also be
detached: fixed to cost 0 regardless of their true cost. Grouping and detaching
are used to prevent the algorithm from being confused by apparently distinct
defects which really point to the same problem. Such defects could cause a
chain to end when there is a worthwhile repair to continue with.

(One application of ejection chains to timetabling [4] groups all defects
related to one resource. The elements of such a group may have different
types, so repairs specific to one type are not used. Instead, all moves of a meet
to which the resource is assigned, to a time when the resource is free, are tried.
From those moves which introduce at most one new conflict, the 20 best are
selected and used as the set of repairs for the group.)

Calls on the ejection chain algorithm are either time repair calls, which
repair assignments of times to meets, or resource repair calls, which repair
assignments of resources to tasks. These differ very little. The set of defects
targeted by the main loop is different. The augment functions are the same,
although options passed to them change their behaviour. For example, KHE14
uses options which prevent changes to resource assignments during time repair
and to time assignments during resource repair. This needs to be kept in mind
when reading the descriptions of augment functions below.

Here now is the full list of defect types and how KHE14 repairs them.
The author has tried some quite complex repairs, including resource repairs
that also change time assignments, but KHE14 mostly uses only the simplest
repairs that remove the defects they are given, possibly extended to increase
their chance of success (as meet moves are extended into Kempe meet moves,
for example). One reason for this is that complex repairs have proved to be slow
and subject to diminishing returns. Another is a desire to build a relatively
simple and coherent foundation for future work.

Demand defects. These are cases of unmatched demand tixels in the global
tixel matching (Sect. 4), usually indicating that the demand for some set of
resources at some time exceeds their supply then. The defect is not really the
one unmatched tixel, but rather the whole set of demand tixels that contribute
to the excess demand. Given the nondeterminism of the global tixel matching,
any one of these could be reported as the defect. Repair operations use KHE
functions to visit them all, and, in effect, repair the set, not the individual.

Demand monitors lying within tasks of the same meet are grouped, so that
multiple demand defects that can be repaired by moving that meet are taken
to be a single defect. Defects are handled by trying all repairs that move any
of the meets contributing to the excess demand away from the problem time.
Kempe/ejecting meet moves are tried first, then swaps of nodes with the same
preassigned resources. For example, 6 Science meets running simultaneously
when there are only 5 Science laboratories will produce one demand defect,
causing all repairs to be tried that move any of the 6 meets away from the
problem time, even before any room assignments are made. Simple clashes
also produce demand defects, and are repaired in the same way.

Demand monitors derived from avoid unavailable times, limit busy times,
and limit workload monitors are not grouped. If any of those are involved in a



demand defect (if they contribute to the excess demand), then the repairs just
given are not well targeted, because they could move a contributing meet to a
different time within the times whose limit has been exceeded, or swap a meet
back into those times. So different repairs are tried: those described below for
avoid unavailable times, limit busy times, and limit workload monitors.

Split events defects and distribute split events defects. These are cases of
events split into too few or too many meets, or meets of unwanted durations.
Event splitting is handled by the structural phase (Sect. 3), making these
defects rare during repair. Nevertheless, they occur in some instances, so they
are carefully analysed and all single meet splits and merge moves that remove
them are tried. Split events and distribute split events monitors whose events
are joined by link events constraints handled structurally are grouped.

Assign time defects. These are cases of meets not assigned a time. There
are usually none when time repair begins, because the initial time assignment
usually assigns a time to every meet; but ejecting meet moves create them.
They are handled by trying all ejecting meet assignments to times in the
meet’s domain. Assign time monitors whose events are joined by link events
constraints handled structurally are grouped.

It is important to assign a time to every meet, so, although ejection chains
may unassign meets temporarily as they go, no chain or tree is accepted which,
in the end, increases the total cost of assign time defects.

Prefer times defects. These are cases of meets assigned unwanted times:
for example, a Sport meet that prefers afternoons but is assigned a morning
time. They are handled by trying all Kempe/ejecting moves of the meet to
preferred times. Prefer times monitors whose events are joined by link events
constraints handled structurally are grouped if they request the same times.

Spread events defects. These are cases where too few or too many meets
derived from a given set of events begin in a given set of times, usually one day.
They are handled by trying all Kempe/ejecting meet moves of the meets from
outside the set of times to inside it, or vice versa, depending on whether the
problem is too few meets or too many. Spread events monitors whose events
are joined by link events constraints handled structurally are grouped.

Link events defects. These are cases where events which should occur at
the same time do not. Event linking is handled structurally (Sect. 3), and link
events defects are ignored during repair.

Order events defects. These are cases where one event should appear earlier
in the cycle than another, but it doesn’t. KHE14 does not repair them, because
the XHSTT-2014 data set has no order events constraints. In future, it will be
easy to add meet move repairs for them. Order events monitors whose events
are joined by link events constraints handled structurally are grouped.

Assign resource defects. These are cases of unassigned tasks, handled by
trying all ejecting task assignments to resources in the task’s domain. Assign
resource monitors whose tasks are joined by avoid split assignments constraints
handled structurally are grouped while those structures are present.

Prefer resources defects. These are cases where a task is assigned a resource
it does not prefer: an ordinary classroom instead of a Science laboratory, for



Table 6 Effectiveness of augment functions during time repair. For each augment function,
the number of calls to the function during time repair, the number of successful calls, and the
ratio of the two as a percentage, over all instances of archive XHSTT-2014. Only non-zero
rows are shown.

Augment function Total Successful Percent
Ordinary demand 440330 1974 0.4
Split events 104 31 29.8
Assign time 5317024 22922 0.4
Spread events 4975247 8850 0.2
Avoid unavailable times 42369 227 0.5
Limit idle times 3645128 16599 0.5
Cluster busy times 119048 884 0.7
Limit busy times 381587 1996 0.5

Table 7 Effectiveness of augment functions during resource repair. For each augment func-
tion, the number of calls to the function during resource repair, the number of successful
calls, and the ratio of the two as a percentage, over all instances of archive XHSTT-2014.
Only non-zero rows are shown.

Augment function Total Successful Percent
Ordinary demand 3711 53 1.4
Assign resource 173270 4805 2.8
Prefer resources 6487 0 0.0
Avoid split assts 5008 189 3.8
Limit busy times 17062 106 0.6
Limit workload 10596 711 6.7

example. They are handled by trying all ejecting task moves of the task to its
preferred resources. Prefer resources monitors whose tasks are joined by avoid
split assignments constraints handled structurally are grouped while those
structures remain in place, if they request the same resources.

Avoid split assignments defects. These are cases where tasks are assigned
different resources, when they want the same resource. For example, a Music
event split into five meets, three taught by Smith and two taught by Brown,
creates an avoid split assignments defect, also called a split assignment.

Most defects can be repaired by assigning or moving one meet or task, but
several tasks may need to be moved in order to reduce the cost of an avoid split
assignments defect, making repair difficult in general. Accordingly, structures
that prohibit split assignments are present for most of KHE14. Near the end of
the solve the prohibitions are removed and split assignments are constructed,
since they are usually better than nothing.

Given one of these split assignments, the ejection chain algorithm tries one
repair for each distinct resource assigned to the tasks involved. The repair
attempts to remove that resource from the split assignment without adding
any new resources, as follows. All involved tasks assigned that resource are
unassigned, all involved tasks’ domains are reduced to the other participating
resources only, and a whole set of ejection chains is tried, each aiming to
reassign one of the unassigned tasks, making an ejection tree (Sect. 5) rather
than an ejection chain. The repair succeeds only if all the chains succeed. We
call this general idea unassign and reduce.



Ejection tree repairs (including others described below) are expensive and
unlikely to work, so are only tried on main loop defects or when only one task
or meet needs to be unassigned. It is important to give them every chance,
since there is often nothing better to try; so when the defect is a main loop
defect the whole solution is reopened for visiting before each sub-chain.

Avoid clashes defects. These are cases where a resource attends two meets
at the same time. Avoid clashes monitors are detached, since demand monitors
do their job and more; so there are no avoid clashes defects.

Avoid unavailable times defects. These are cases where a resource attends a
meet at a time when it is unavailable. An avoid unavailable times constraint is
the same as a limit busy times constraint whose set of times is the unavailable
times, with an upper limit of 0 on the number of those times that the resource
may be busy. So these defects are handled as described below for limit busy
times defects, including grouping.

Limit idle times defects. These are cases where a resource’s timetable has
an idle time: a time when the resource is not busy (attending an event), but
such that it is busy both earlier that day and later. They are handled by trying
each ejecting move of a meet assigned the resource at the start or end of a day
to a time that reduces idle times.

Limit idle times monitors for resources of the same type are grouped when
they are derived from the same constraint, all the event resources of their
type are preassigned, and the resources are preassigned to the same events,
so follow the same timetable. The saving can be significant: the NL-KP-03
instance, for example, has 453 resources representing individual students, but
only 297 groups, or 285 when event linking is taken into account.

Cluster busy times defects. These are cases where a resource is busy on
too few or too many days. When the problem is too few days, all ejecting
moves are tried which move a meet to an empty day. When the problem is
too many days, an unassign and reduce repair is tried, like the one for avoid
split assignments defects except that, instead of encouraging a set of tasks to
be assigned one less resource, a set of meets is encouraged to be assigned one
less day. For each busy day there is one repair. It unassigns all the resource’s
meets on that day, reduces all the resource’s meets’ domains to exclude that
day and all other empty days, and tries a whole set of ejection chains, each
aiming to reassign one of the unassigned meets. Cluster busy times monitors
are grouped in the same way as limit idle times monitors.

Limit busy times defects. These are cases where a resource is underloaded
or overloaded during some set of times, typically one day. For example, teacher
Jones might expect to be busy for between 3 and 7 of the 8 times on any day;
if not, that is a limit busy times defect. When the problem is an underload,
first, all ejecting meet moves of one of the resource’s meets which increase the
meet’s overlap with the day are tried; and second, since a completely empty
day is by definition not a defect, an ejection tree repair similar to the one for
cluster busy times defects is tried, to remove all meets from the day. When the
problem is an overload, first, all ejecting task moves of unpreassigned tasks
contributing to the overload are tried, to other resources in their domains; and



Table 8 Effectiveness of repair operations during time repair. For each augment function
and repair operation, the number of calls on that repair operation made by that augment
function during time repair, the number of successful calls, and the ratio of the two as a
percentage, over all instances of archive XHSTT-2014. Only non-zero rows are shown.

Augment function : Repair operation Total Successful Percent
Ordinary demand : Kempe meet move 120254 1702 1.4
Ordinary demand : Ejecting meet move 307619 238 0.1
Ordinary demand : Basic meet move 76 2 2.6
Ordinary demand : Node swap 1524 8 0.5
Ordinary demand : Split move 10857 24 0.2
Split events : Merge move 104 31 29.8
Assign time : Ejecting meet assignment 5317024 22922 0.4
Spread events : Kempe meet move 1372346 5959 0.4
Spread events : Ejecting meet move 3602641 2890 0.1
Spread events : Split move 260 1 0.4
Avoid unavailable times : Ejecting meet move 42369 227 0.5
Limit idle times : Kempe meet move 1289812 14985 1.2
Limit idle times : Ejecting meet move 2350474 1586 0.1
Limit idle times : Split move 4842 28 0.6
Cluster busy times : Kempe meet move 28270 540 1.9
Cluster busy times : Ejecting meet move 50327 18 0.0
Cluster busy times : Cluster unassign and reduce 40451 326 0.8
Limit busy times : Kempe meet move 105867 1705 1.6
Limit busy times : Ejecting meet move 269390 260 0.1
Limit busy times : Split move 47 1 2.1
Limit busy times : Limit busy unassign and reduce 6283 30 0.5

Table 9 Effectiveness of repair operations during resource repair. For each augment func-
tion and repair operation, the number of calls on that repair operation made by that augment
function during resource repair, the number of successful calls, and the ratio of the two as
a percentage, over all instances of archive XHSTT-2014. Only non-zero rows are shown.

Augment function : Repair operation Total Successful Percent
Ordinary demand : Ejecting task move 3711 53 1.4
Assign resource : Ejecting task assignment 173270 4805 2.8
Prefer resources : Ejecting task move 6487 0 0.0
Avoid split assts : Split tasks unassign and reduce 5008 189 3.8
Limit busy times : Ejecting task move 17062 106 0.6
Limit workload : Ejecting task move 10596 711 6.7

second, all ejecting meet moves of one of the resource’s meets which decrease
the meet’s overlap with the day are tried. A form of partial detachment ensures
that only defects not detected as demand defects are handled. Limit busy times
monitors are grouped in the same way as limit idle times monitors.

Limit workload defects. These are similar to limit busy times defects whose
times are the whole cycle, and are handled in the same way, including grouping.

Which augment functions are most effective? Measuring effectiveness is not
easy. For example, virtually any defect can be removed if enough mayhem is
visited on its surroundings, so success in removing defects, taken in isolation, is
a poor measure. One simple approach, not claimed to be perfect, is to say that
a call on an augment function is effective when it lies on a chain that improved



the solution, and ineffective otherwise. The ratio of effective to effective plus
ineffective calls, given as a percentage, measures the function’s effectiveness.

Table 6 presents the number of calls on each time repair augment function
when solving the instances of XHSTT-2014, and their effectiveness, measured
as just described. Table 7 does the same for resource repair. Interpretation is
problematical, but all the augment functions seem to be making a reasonable
contribution. The apparently poor results on prefer resources defects may be
due to anomalous data in instance US-WS-09.

Which repairs are most effective? Again, finding a good measure is not
easy. For example, on any given defect one type must be tried first, and this
gives it more opportunities to both succeed and fail than the others. Again, a
simple approach is used: the successful calls on a given augment function are
attributed to the repairs that caused the successes.

Tables 8 and 9 are like Tables 6 and 7 except that they contain one row
for each type of repair of each type of defect. Some of the results are quite
suggestive: the tiny number of successful node swaps, for example.

Repairs targeted at specific defects are rare in the timetabling literature.
The above is partly old [9,10] and partly new. Disentangling new from old
would be tedious, but the ejection tree repairs are new, and this paper is the
first to repair a large set of defect types with polymorphic ejection chains.

8 The algorithm

This section describes the KHE14 algorithm at a high level. An implementation
is available online (function KheGeneralSolve2014 of [12]).

KHE14 proceeds in phases (major steps). First comes the structural phase.
It constructs an initial solution with no time or resource assignments, converts
resource preassignments (in the instance) into resource assignments (in the
solution), adds additional structure as described in Sect. 3, and adds the global
tixel matching as described in Sect. 4.

Next comes the time assignment phase, which assigns a time to each meet.
It has been described fully elsewhere [6,7,10]; here is an overview. For each
resource to which a hard avoid clashes constraint applies it builds a layer,
the set of nodes containing meets preassigned that resource. After merging
layers wherever one’s nodes are a subset of the other’s, and sorting so that
(heuristically) the most difficult layers come first, it assigns times to the meets
of each layer in turn. The algorithm for assigning times to the meets of one
layer is heuristic and complex. It tries for regularity with previously assigned
layers, and exploits the fact that the meets of one layer should not overlap in
time, by maintaining a minimum-cost matching of meets to times.

The minimum-cost matching approach to meet assignment assumes that
the cost of each meet assignment in one layer is independent of the others. This
is true for most kinds of constraints, but false for a few, notably cluster busy
times, limit idle times, and limit busy times constraints. So monitors for these
constraints are detached while finding minimum-cost matchings. Recently, the



Table 10 Effectiveness of KHE14 and KHE14x8. Details as previously. Different solutions
to one instance vary in run time, so finding eight solutions on a quad-core machine often
takes more than twice as long as finding one. The anomalous result for DK-VG-09 (where
the best of 8 is worse than one) may be due to nondeterminism in imposing the time limit.

Instance C:KHE14 C:KHE14x8 T:KHE14 T:KHE14x8
AU-BG-98 13.00520 3.00608 13.2 41.3
AU-SA-96 4.00022 2.00016 75.6 189.1
AU-TE-99 5.00152 2.00152 2.2 6.3
BR-SA-00 0.00044 0.00031 0.7 2.1
BR-SM-00 12.00128 6.00112 2.4 5.1
BR-SN-00 0.00145 0.00113 2.3 6.1
DK-FG-12 0.03317 0.03310 345.8 737.8
DK-HG-12 12.05364 12.04759 712.5 1744.3
DK-VG-09 2.04097 2.04600 987.7 1853.2
UK-SP-06 33.01100 28.01140 366.5 775.6
FI-PB-98 3.00031 0.00015 9.4 20.7
FI-WP-06 0.00024 0.00016 8.7 17.7
FI-MP-06 0.00147 0.00093 4.5 12.3
GR-H1-97 0.00000 0.00000 5.8 14.4
GR-P3-10 0.00011 0.00002 7.7 18.5
GR-PA-08 0.00016 0.00009 14.1 26.8
IT-I4-96 0.00054 0.00046 14.3 31.5
KS-PR-11 0.00020 0.00012 194.0 382.1
NL-KP-03 0.01439 0.01286 426.0 1005.3
NL-KP-05 18.05189 8.06250 400.5 787.5
NL-KP-09 16.07930 10.05125 89.1 224.4
ZA-LW-09 20.00018 13.00016 10.8 23.9
ZA-WD-09 26.00000 16.00000 13.6 36.7
ES-SS-08 0.01117 0.00616 26.2 55.0
US-WS-09 0.00758 0.00677 50.0 111.2
Average 6.01265 4.01160 151.3 325.2

author has tried several ideas for taking these constraints into account during
the initial time assignment [12]. In KHE14 as presented here, some reductions
of meet domains before time assignment begins are used to prevent some
cluster busy times defects. Other plausible reductions (removing the first or
last time of a day of a limit idle times constraint, for example) are tried while
assigning one layer. This produces multiple minimum-cost matchings. Each is
evaluated with the troublesome monitors re-attached, and the best is chosen.

A node may lie in several layers, if its meets contain several preassigned
resources. Such a node is handled with the first layer it lies in, and the result
is not changed when assigning subsequent layers. So when a layer’s turn comes
to be assigned, all its nodes may be already assigned. Such layers are still said
to have been assigned, but the assignment algorithm does nothing.

After each layer is assigned, a call is made to the ejection chain time repair
algorithm (Sect. 5). Its main loop is targeted at the event defects of the layer
and the resource defects of the layer’s preassigned resources, but its recursive
calls may spread into earlier layers. After all layers have been assigned and
repaired, another ejection chain time repair call is made, targeted at all layers.
Then the structures that encourage regularity in time are removed, and a
second all-layers time repair call is made.



Table 11 Event defects in the solutions produced by KHE14x8. Each column shows the
number of defects of one kind of event constraint. A dash indicates that the instance contains
no constraints of that type. The columns appear in the same order as the rows of Table 1.

Instance SS DS AT PT SE LE OE
AU-BG-98 0 0 0 0 4 0 -
AU-SA-96 0 0 0 0 13 0 -
AU-TE-99 0 0 0 - 8 0 -
BR-SA-00 0 4 0 0 0 - -
BR-SM-00 0 21 3 0 0 - -
BR-SN-00 0 13 0 0 0 - -
DK-FG-12 - - 0 - 85 - -
DK-HG-12 - - 3 - 115 - -
DK-VG-09 - - 1 - 108 - -
UK-SP-06 - - 2 - 7 0 -
FI-PB-98 0 - 0 0 0 - -
FI-WP-06 0 - 0 0 0 - -
FI-MP-06 0 - 0 0 0 - -
GR-H1-97 - - 0 - 0 0 -
GR-P3-10 0 - 0 0 0 0 -
GR-PA-08 - - 0 - 2 0 -
IT-I4-96 0 - 0 0 0 - -
KS-PR-11 0 0 0 0 0 - -
NL-KP-03 0 - 0 0 0 0 -
NL-KP-05 0 - 1 0 4 0 -
NL-KP-09 0 - 0 0 4 0 -
ZA-LW-09 3 - 2 0 - 0 -
ZA-WD-09 - - 1 0 0 0 -
ES-SS-08 0 - 0 - 74 - -
US-WS-09 0 - 0 0 57 - -
Total 3 38 13 0 481 0

Next come the resource assignment phases, one for each type of resource
(teacher, room, etc.). These phases are sorted heuristically so that the most
difficult come first. In practice, teachers are assigned first (if needed), then
rooms; students and classes are not assigned, since they are all preassigned,
and so were assigned during the structural phase.

During resource assignment (including repair), changes which reduce the
number of demand defects are almost impossible to find. Resource assignments
cannot do it, since they reduce the domains of demand nodes, reducing the
choice of matchings. Even when resource repairs change meet assignments (not
done in KHE14 as presented here), reductions are not likely, because similar
changes were tried during time repair, when fewer resources were assigned so
more choices were open. Since reductions are almost impossible and demand
defects lead to real problems in the end (unassigned meets or tasks, or clashes,
and so on), changes during resource assignment that increase the number of
demand defects are rejected, except at the end, when a last-ditch attempt is
made to assign all unassigned tasks. This idea comes from [9].

Each resource assignment phase has three parts. In the first part, which
assigns most tasks in practice, violations of avoid split assignments and prefer
resources constraints are prohibited structurally, and assignments that increase



Table 12 Event resource and resource defects produced by KHE14x8. Details as previously.

Instance AR PR AS AC AU LI CB LB LW
AU-BG-98 2 0 52 0 1 - - 21 0
AU-SA-96 1 0 0 1 0 - - 1 0
AU-TE-99 0 0 14 2 0 - - 2 0
BR-SA-00 - - - 0 0 6 0 - -
BR-SM-00 - - - 1 1 5 8 - -
BR-SN-00 - - - 0 0 10 6 - -
DK-FG-12 0 0 - 0 0 105 122 88 -
DK-HG-12 5 0 - 1 - 153 154 95 -
DK-VG-09 0 0 - 0 - 92 47 37 -
UK-SP-06 0 - - 13 - 76 - - -
FI-PB-98 - - - 0 0 9 - 0 -
FI-WP-06 - - - 0 - 7 - 6 -
FI-MP-06 - - - 0 11 12 - 5 -
GR-H1-97 - - - 0 0 - - - -
GR-P3-10 - - - 0 0 0 - 1 -
GR-PA-08 - - - 0 0 3 - 0 -
IT-I4-96 - - - 0 4 12 0 2 -
KS-PR-11 - - - 0 0 6 - 0 -
NL-KP-03 0 0 - 0 0 174 3 48 -
NL-KP-05 0 0 - 2 45 100 8 77 -
NL-KP-09 1 0 - 2 24 20 8 - -
ZA-LW-09 - - - 3 - - - - -
ZA-WD-09 - - - 4 0 - - - -
ES-SS-08 0 0 - 0 0 - 0 0 -
US-WS-09 0 168 - 0 - - - - -
Total 9 168 66 29 86 790 356 383 0

the number of demand defects are rejected as just described. An algorithm
is called that tries to assign a resource to each unpreassigned task of the
current type. If avoid split assignments constraints are present, a resource
packing algorithm which follows a bin packing paradigm is used. In other cases
a constructive heuristic is used, more effectively than usual because of the
guidance provided by the global tixel matching. Both these algorithms come
from [9], where resource packing was found to be the best of three algorithms
for teacher assignment. This first part ends with a call on the ejection chain
resource repair algorithm, targeted at the event resource and resource defects
of the current type.

The second part of the phase is only carried out for types of resources whose
event resources have avoid split assignments constraints. It removes structures
that prevent split assignments, finds split assignments for unassigned tasks
using a specialized construction heuristic, and calls ejection chain repair again.
Then it tries two VLSN search algorithms [1,13] which sometimes find small
improvements. One rearranges the resource assignments within a given set
of times using min-cost flow; the other reassigns pairs of resources [11]. The
details are in [12] as usual; they are omitted here because they are peripheral
to the main ideas of this paper, and it is already overlong.

The third part is a last-ditch attempt to assign as many of the remaining
unassigned tasks as possible. It removes all prohibitions and calls ejection chain



repair yet again. The third part for each resource type is delayed until after
the first and second parts are complete for all resource types.

The final cleanup phase carries out some minor tidying up. Whenever two
meets derived from the same event have ended up adjacent in time, this phase
merges them into one when that is possible and reduces cost. It also unassigns
tasks and meets when that reduces cost.

As described in Sect. 5, ejection chain repair offers the option of a soft
time limit which helps to cap running time, without enforcing any hard limit.
KHE14 as presented here has a soft time limit of 300 seconds. The author
would prefer ejection chain repair to proceed to its natural end, but at present
that leads to run times of several hours on some of the larger instances. A
glance at Table 10 reveals which solves are affected by the soft time limit.

Table 10 shows the overall performance of KHE14 and its variant KHE14x8,
which runs KHE14 8 times in parallel and keeps a best solution. Instead of
using random numbers, each run is given a different diversifier, which is a
small fixed integer. It is used in several places, to vary the starting point of
list traversals, and to break ties. For example, ejection chain algorithms sort
their initial defects by decreasing cost; the diversifier influences the order of
defects of equal cost. These solutions are available from the KHE web page
[12]. A listing of the remaining defects appears in Tables 11 and 12.

9 Conclusion

KHE14 is the first timetabling solver to apply polymorphic ejection chains to a
wide variety of types of defects. It has also pioneered several repair operations,
including three ejection tree repairs.

As of the time of writing (August 2014), slower variants of KHE14 have
produced best known solutions for several XHSTT-2014 instances, as reported
by [17]. These include solutions for AU-BG-96 with cost 1.00386, for IT-I4-96
with cost 0.00040, and for NL-KP-03 with cost 0.00617. The solutions reported
in Table 10 for DK-FG-12, DK-VG-09, and US-WS-09 are also new bests.

The author’s main goal has always been to build a robust solver: one that
finds very good solutions to a wide range of instances quickly—say, within ten
seconds, or sixty seconds for instances with hundreds of student resources.

KHE14x8 is not at this standard yet. With respect to solution quality the
situation is not clear, in part because solutions to the full set of XHSTT-2014
instances by other solvers were not available at the time of writing. It would be
easy to compare KHE14x8 with the best known solutions, as reported by [17],
but that would not be fair, because those solutions were found by a variety of
solvers, including very slow solvers and solvers that run to optimality on small
instances and produce nothing useful on large ones. The remaining defects
(Tables 11 and 12) define the agenda for future work here.

In running time, KHE14 is dominated by the ejection chain algorithm,
which can be slow and has had to be artificially limited in this paper. Better
repairs can dramatically improve its running time, but they are becoming hard



to find. Construction of initial solutions with fewer defects, and faster computer
hardware, produce more modest improvements, but seem more practicable at
this point. Hand analyses, aimed, for example, at understanding the remaining
spread events defects in the Danish (DK) instances, are also needed.

References

1. R. Ahuja, Ö. Ergun, James B. Orlin, and A. Punnen, A survey of very large-scale neigh-
bourhood search techniques, Discrete Applied Mathematics, 123, 75–102 (2002)

2. Kathryn A. Dowsland, Nurse scheduling with tabu search and strategic oscillation, Eu-
ropean Journal of Operational Research, 106, 393–407 (1998)

3. Fred Glover, Ejection chains, reference structures and alternating path methods for trav-
eling salesman problems, Discrete Applied Mathematics, 65, 223–253 (1996)

4. Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar, A case study for
timetabling in a Dutch secondary school, Practice and Theory of Automated Timetabling
VI (Springer Lecture Notes in Computer Science 3867), 267–279, (2007)

5. Myoung-Jae Kim and Tae-Choong Chung, Development of automatic course timetabler
for university, Proceedings of the 2nd International Conference on the Practice and Theory
of Automated Timetabling (PATAT’97), 182–186 (1997)

6. Jeffrey H. Kingston, A tiling algorithm for high school timetabling, Practice and Theory
of Automated Timetabling V (Springer Lecture Notes in Computer Science 3616), 208–225
(2005)

7. Jeffrey H. Kingston, Hierarchical timetable construction, Practice and Theory of Au-
tomated Timetabling VI (Springer Lecture Notes in Computer Science 3867), 294–307
(2007)

8. Jeffrey H. Kingston, The HSEval High School Timetable Evaluator, URL
http://www.it.usyd.edu.au/~jeff/hseval.cgi (2010)

9. Jeffrey H. Kingston, Resource assignment in high school timetabling, Annals of Opera-
tions Research, 194, 241–254 (2012)

10. Jeffrey H. Kingston, Repairing high school timetables with polymorphic ejection chains,
Annals of Operations Research, DOI 10.1007/s10479-013-1504-3

11. Jeffrey H. Kingston, Timetable construction: the algorithms and complexity perspective,
Annals of Operations Research, 218, 249–259 (2014) DOI 10.1007/s10479-012-1160-z

12. Jeffrey H. Kingston, KHE web site, http://www.it.usyd.edu.au/~jeff/khe (2014)
13. Carol Meyers and James B. Orlin, Very large-scale neighbourhood search techniques

in timetabling problems, Practice and Theory of Automated Timetabling VI (Springer
Lecture Notes in Computer Science 3867), 24–39 (2007)

14. Keith Murray, Tomás Müller, and Hana Rudová Modeling and solution of a complex
university course timetabling problem, Practice and Theory of Automated Timetabling
VI (Springer Lecture Notes in Computer Science 3867), 189–209 (2007)

15. Christos. H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity, Prentice-Hall (1982)

16. Nelishia Pillay, An overview of school timetabling research, PATAT10 (Eighth interna-
tional conference on the Practice and Theory of Automated Timetabling, Belfast, August
2010), 321–335 (2010)

17. Gerhard Post, XHSTT web site, http://www.utwente.nl/ctit/hstt/ (2011)
18. Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngäs, Cimmo Nurmi,

Gerhard Post, David Ranson, and Henri Ruizenaar, An XML format for benchmarks in
high school timetabling, Annals of Operations Research, 194, 385–397 (2012)

19. Gerhard Post, Luca Di Gaspero, Jeffrey H. Kingston, Barry McCollum, and Andrea
Schaerf, The Third International Timetabling Competition, PATAT 2012 (Ninth interna-
tional conference on the Practice and Theory of Automated Timetabling, Son, Norway,
August 2012), 479–484 (2012)

20. G. Schmidt and T. Ströhlein, Timetable construction—an annotated bibliography, The
Computer Journal, 23, 307–316, (1980)


