Noname manuscript No.
(will be inserted by the editor)

KHE14: An Algorithm for High School Timetabling

Jeffrey H. Kingston

Received: date / Accepted: date

Abstract This paper presents an algorithm called KHE14 for solving the high
school timetabling problem. KHE14 builds its timetables one student form at
a time, and repairs them using ejection chains. Many of its components have
been published previously, and so are described here only briefly. A few of
its components, notably most of the augment functions called by the ejection
chain algorithm, are new, so are described in detail. Experiments using the
XHSTT-2014 data set, conducted in August 2014, are included.

Keywords High school timetabling - Ejection chains

1 Introduction

High school timetabling is one of the three major timetabling problems found
in academic institutions, the others being university course timetabling and
examination timetabling. Automated methods for solving it have been studied
from the early days of computers [20] to the present day [16].

An XML format called XHSTT was introduced recently to represent real
instances and solutions of the high school problem [8,18]. XHSTT was used in
the Third International Timetabling Competition [19], the first competition
to include high school timetabling. An XHSTT data set called XHSTT-2014
is currently being promoted as a benchmarking standard [17]. It contains 25
instances taken from real high schools in 12 countries around the world.

This paper presents KHE14, an algorithm for high school timetabling, with
experiments using XHSTT-2014 conducted in August 2014.

KHE14 is built on the author’s KHE high school timetabling platform [12],
and distributed with it. It has many parts, developed by the author in a series
of papers over the last ten years [6,7,9-11]. All this cannot be repeated here.

J. Kingston
School of Information Technologies, The University of Sydney, Australia
E-mail: jeff@it.usyd.edu.au

Table 1 The 16 constraints, with informal definitions, grouped by what they apply to.

FEvent constraints

Split Events constraint Split event into limited number of meets
Distribute Split Events constraint Split event into meets of limited durations
Assign Time constraint Assign time to event
Prefer Times constraint Assign time from given set
Spread Events constraint Spread events evenly through the cycle
Link Events constraint Assign same time to several events
Order Events constraint Assign times in chronological order

Event resource constraints
Assign Resource constraint Assign resource to event resource
Prefer Resources constraint Assign resource from given set

Avoid Split Assignments constraint Assign same resource to several event resources
Resource constraints

Avoid Clashes constraint Avoid clashes involving resource
Avoid Unavailable Times constraint ~Make resource free at given times
Limit Idle Times constraint Limit resource’s idle times

Cluster Busy Times constraint Limit resource’s busy days

Limit Busy Times constraint Limit resource’s busy times each day
Limit Workload constraint Limit resource’s total workload

So although this paper describes KHE14 completely, it does so only at a high
level. Details are explained only when they are new and significant; otherwise
they are just mentioned, with a reference to the papers just cited, or to the
KHE documentation [12], which has full details. The main innovations are in
Sect. 7, where new repairs for several types of defects are given.

Sect. 2 gives a brief specification of the problem. Sects. 3-7 present the
components of KHE14, with experiments related to the components. Sect. 8
brings the components together into the full KHE14 algorithm and contains
experiments that evaluate it generally.

All experiments use the XHSTT-2014 data set [17], as downloaded on 18
August 2014, and were performed on the author’s desktop machine, an Intel
i5 quad-core running Linux. Each individual solution is produced on a single
processor; tests that produce multiple solutions utilize all four processors.

2 Problem specification

The XHSTT specification of the high school timetabling problem is used here.
An XHSTT instance contains four parts: the cycle, which is the chronological
sequence of times that may be assigned to events; a set of resources, which are
entities that attend events (usually either teachers, rooms, students, or classes,
where a class is a group of students who mostly attend the same events); a
set of events, which are meetings, each of fixed duration (number of times),
and containing any number of event resources, each specifying one resource
that attends the event; and a set of constraints, which specify conditions that
solutions should satisfy, and the penalty costs to impose when they don’t.

Table 2 The number of times, teachers, rooms, classes (groups of students), individual
students, and events in the instances of XHSTT-2014. There are 25 instances altogether.

Instance Times Teachers Rooms Classes Students Events
AU-BG-98 40 56 45 30 387
AU-SA-96 60 43 36 20 296
AU-TE-99 30 37 26 13 308
BR-SA-00 25 14 6 63
BR-SM-00 25 23 12 127
BR-SN-00 25 30 14 140
DK-FG-12 50 90 69 279 1077
DK-HG-12 50 100 71 523 1235
DK-VG-09 60 46 53 163 918
UK-SP-06 25 68 67 67 1227
FI-PB-98 40 46 34 31 387
FI-WP-06 35 18 13 10 172
FI-MP-06 35 25 25 14 280
GR-H1-97 35 29 66 372
GR-P3-10 35 29 84 178
GR-PA-08 35 19 12 262
1T-14-96 36 61 38 748
KS-PR-11 62 101 63 809
NL-KP-03 38 75 41 18 453 1156
NL-KP-05 37 78 42 26 498 1235
NL-KP-09 38 93 53 48 1148
ZA-LW-09 148 19 2 16 185
ZA-WD-09 42 40 30 278
ES-SS-08 35 66 4 21 225
US-WS-09 100 134 108 628

XHSTT currently offers 16 constraint types (Table 1), specifying preferred
times for events, unavailable times for resources, and so on. Whatever its type,
each constraint may be marked required, in which case it is called a required
or hard constraint, and its cost (a non-negative integer) contributes to a total
called the infeasibility value in XHSTT, and the hard cost here. Otherwise the
constraint is called non-required or soft, and its cost contributes to a different
total called the objective value in XHSTT and the soft cost here.

A solver assigns starting times to events, except for preassigned events
(events whose starting time is given by the instance), trying to minimize first
hard cost and then soft cost. It may also be required to split events of long
duration into smaller events, called sub-events in XHSTT and meets in KHE
and in this paper. (Sect. 3 has more on this.) And it may be required to assign
resources to unpreassigned event resources: often rooms, occasionally teachers,
never (in practice) classes or students. A full specification appears online [§];
further details are given as needed throughout this paper.

Table 2 gives some idea of the instances of the XHSTT-2014 data set. They
vary greatly in difficulty, in ways that such a table cannot fully capture. The
five instances with resources representing individual students seem particularly
challenging, because there are hundreds of these resources, each with its own
timetable and constraints.

3 Timetabling structures

KHE evaluates constraints continuously as the solution changes during solving,
using efficient incremental methods, and makes the resulting costs available to
solvers, which use them to guide the solve as usual. If requested, KHE can also
add structures to the solution which ensure that violations of some constraints
cannot occur, and it can add other structures which encourage regularity:
patterns of assignment that make timetables more uniform. Regularity has no
direct effect on cost, but it may make good solutions easier to find [10].

KHE14’s first, structural phase, is mainly devoted to adding the structures
explained in this section. These are all optional as far as the KHE platform is
concerned; KHE14 chooses to use them, but other algorithms need not.

KHE14 does not use any information that could be called metadata. For
example, sets of times may be identified in XHSTT as days, but KHE14 does
not use that information. Nor does it treat student resources (say) differently
merely because they are called students. Instead, it examines which resources
are preassigned, which sets of times and resources appear in constraints, and
so on, taking its cues from the structure alone.

Many elements of the instance influence KHE14’s structures: preassigned
resources with avoid clashes constraints (constraining events to be disjoint in
time), time preassignments, link events constraints, split events and distribute
split events constraints, spread events constraints (influencing how many meets
events split into), prefer times and prefer resources constraints, and avoid split
assignments constraints. These are taken in decreasing cost order; each either
influences the structures, or is ignored if inconsistent with previous elements.
The KHE documentation [12] explains their effects in detail. It would take
too long to repeat all that here. Instead, what follows is a description of the
structures that emerge.

Courses are sets of events during which the same students meet the same
teacher to study the same subject. Spread events constraints may be present
to encourage a course’s meets to spread evenly through the cycle, and avoid
split assignments constraints may be present to encourage those meets to be
assigned the same teacher (if not preassigned) or room.

XHSTT offers a spectrum of ways to define courses. At one extreme, the
exact set of events required is given. For example, if a Science course needs to
occur five times per week in events of durations 2, 1, 1, 1, and 1, then five events
with these durations would be given, along with split events constraints which
ensure that each event produces one meet. At the other extreme, a single event
of the total duration required is given, along with split events and distribute
split events constraints which say how that total may be split into meets. In
the Science example, a single event of duration 6 would be given, along with
constraints which place limits on the number and duration of the meets it is
to be split into. This handles a situation often found in real instances, where
the total duration is fixed, but how it is to be split up is more flexible.

The structural phase splits events into meets whose durations depend on
the parts of the instance listed above, and groups the meets into sets that KHE

calls nodes. One node contains the meets of one course, at least to begin with.
The structural phase creates nodes heuristically, as follows. Meets derived
from the same event go into the same node. When two events contain the
same preassigned resources and are connected by a spread events or avoid
split assignments constraint, they are taken to belong to the same course, so
their meets also go into the same node. Grouping meets into nodes does not
constrain their assignments, but it acts as a hint to solvers that the meets
should be assigned times together, and opens the door to various methods of
promoting regularity, which work with nodes, not meets.

Link events constraints, specifying that certain events should be assigned
the same times, give rise to a different structure. KHE allows one meet to be
assigned to another instead of to a time, meaning that any time assigned to the
other meet is in fact assigned to both. The structural phase makes assignments
of meets to other meets which ensure that link events constraints cannot be
violated. Meets assigned to other meets are not included in nodes, which (by
convention) tells solvers that their assignments should not be changed.

Assigning one meet to another supports hierarchical timetabling, in which
a timetable for a few meets is built and later incorporated into a larger one.
This promotes regularity, so the structural phase spends time searching for
useful hierarchical structures, as described in [6,7].

Each meet contains a set of times called its domain. Only times from this
set may be assigned to a meet, either directly, or indirectly via an assignment
to another meet. KHE14 chooses domains based on prefer times constraints.
The duration of a meet also affects its domain: a meet of duration 2 cannot
be assigned the last time in the cycle as its starting time, and so on. KHE
represents domains both as bit sets, for efficient assignability testing, and as
lists of times, for efficient iteration over all legal assignments.

A meet contains one task for each event resource in the event that it is
derived from. Each task is a demand for one resource at each of the times
the meet is running, either preassigned (the usual case for student and class
tasks) or not (the usual case for room tasks). Unpreassigned tasks specify the
type of resource required (teacher, room, etc.), and prefer resources constraints
are usually present which encourage the solution to assign a specific kind of
resource, such as a Mathematics teacher or a Science laboratory.

Each task contains a set of resources called its domain. Only resources from
this set may be assigned to a task. KHE14 chooses domains based on prefer
resources constraints.

Avoid split assignments constraints, which specify that certain tasks should
be assigned the same resources, are handled structurally by KHE14, at least to
begin with. One of the tasks is chosen to be the leader task, and the others are
assigned it instead of a resource, meaning that whatever resource is assigned
to the leader task is to be considered as assigned to them too.

The XHSTT specification says that violations of hard constraints, while
permitted, should be few in good solutions, but soft constraint violations are
normal and to be expected [8]. So additional structures must be used with
caution, especially when derived from soft constraints. KHE14 uses a heuristic

Table 3 Encouraging regularity between forms: -RF and +RF denote without it and with
it. KHE14 uses +RF. In all tables in this paper, columns headed C: contain solution costs.
Hard costs appear to the left of the decimal point; soft costs appear as five-digit integers to
the right of the point. The minimum costs in each row are highlighted. Columns headed T:
contain run times in seconds. All tables and graphs (including captions) were generated by
KHE and incorporated unchanged. They can be regenerated by any user of KHE.

Instance C:-RF C:+RF | T:--RF T:+RF
AU-BG-98 12.00764 13.00520 24.1 14.3
AU-SA-96 2.00011 4.00022 39.3 91.4
AU-TE-99 2.00134 5.00152 1.6 2.5
BR-SA-00 0.00042 0.00044 0.9 0.7
BR-SM-00 8.00131 12.00128 2.9 2.4
BR-SN-00 0.00134 0.00145 2.9 2.5

DK-FG-12 0.03336 0.03391 368.0 350.6
DK-HG-12 13.05467 14.05094 734.0 805.1
DK-VG-09 2.04393 3.04433 927.2 948.2
UK-SP-06 29.00926 33.01108 374.0 377.3

FI-PB-98 0.00025 3.00031 6.9 9.5
FI-WP-06 0.00024 0.00024 3.5 8.4
FI-MP-06 0.00123 0.00147 3.5 4.6
GR-H1-97 0.00000 0.00000 0.6 5.9
GR-P3-10 0.00011 0.00011 2.7 7.8
GR-PA-08 0.00012 0.00016 10.4 13.6
IT-14-96 0.00145 0.00054 7.7 14.9
KS-PR-11 0.00025 0.00020 195.1 194.6

NL-KP-03 0.01229 0.01487 440.0 416.9
NL-KP-05 21.07252 15.07401 396.5 373.6

NL-KP-09 16.09330 16.07930 95.8 85.3
ZA-LW-09 19.00022 20.00018 4.5 9.7
ZA-WD-09 13.00000 26.00000 4.3 13.6
ES-5S-08 0.01142 0.01117 26.4 27.1
US-WS-09 0.00651 0.00758 30.5 48.7
Average 5.01413 6.01362 148.1 153.2

strategy: it includes them at first, but removes them towards the end, so that
later repair operations are not limited by them. The original constraints are
not forgotten: even when violations are allowed, they are still penalized.

This structural phase is similar to previous structural phases described by
the author [6,7]. It is more robust than its predecessors: it resolves conflicting
requirements using priorities as explained above, and it takes full account of
all interactions between requirements.

Testing the effectiveness of adding structures that encourage regularity is
complicated by the presence of several kinds of regularity and several ways
to encourage it [10], not all of which can be disabled at present. Table 3
examines regularity between forms. For example, if the classes of the Year 11
form attend English 6 times per week in meets of durations 2, 1, 1, 1, and 1,
and the classes of the Year 12 form attend Science 6 times per week in meets
of the same durations, then encouraging regularity between forms encourages
these two courses (or others with the same meet durations) to be simultaneous.
The author is not ready to abandon regularity between forms, but the evidence
of Table 3 is tending against it, at least as currently implemented (Sect. 8).

4 The global tixel matching

A timetabling problem is a market in which resources are demanded by events
and supplied to them. The unit of supply is one resource at one time, called a
supply tizel. The term ‘tixel’ has been coined by the author by analogy with
the ‘pixel’, one cell of a graphical display.

Each event demands a number of tixels of certain types. For example, a
typical event called 7A-FEnglish, in which class 7A studies English for 6 times
per cycle, demands 18 tixels: six tixels of class resource 74, six tixels of teachers
qualified to teach English, and six of ordinary classrooms. This event is said
to contain 18 demand tizels.

The market is represented by an unweighted bipartite graph. Each demand
tixel is a node; each supply tixel is a node. An edge joins demand tixel d to
supply tixel s when s may be assigned to d. For example, a demand tixel de-
manding class resource 74 would be connected to the supply tixels for resource
7A (one for each time in the cycle). A demand tixel demanding an English
teacher would be connected to each supply tixel of each English teacher.

Each demand tixel requires only one supply tixel. Each supply tixel can be
assigned to only one demand tixel, otherwise there would be a timetable clash.
Accordingly, a set of assignments is a matching in this graph: a set of edges
such that no two edges share an endpoint. There is an efficient algorithm for
finding a maximum matching (one with as many edges as possible) [15].

There may be many maximum matchings, but they all fail to assign supply
tixels to the same number of demand tixels, and since that number is the
important thing, it is convenient to pretend that there is just one maximum
matching. The author calls it the global tizel matching. The important number
is a lower bound on the number of unassigned demand tixels in any solution,
given the decisions already made. The matching defines an assignment which
maximises the number of tixels assigned, but it is not useable directly, because
it violates many constraints.

When a meet is assigned, the sets of edges connected to its demand tixels
(their domains) shrink. For example, the six tixels demanding resource 74 in
the meets of event 7A-FEnglish are initially connected to all the supply tixels for
7A (one for each time of the cycle), but after times are assigned, each becomes
associated with a particular time, and is connected to just one supply tixel:
the one for 74 at that time. Tixel domains also change when the domain of a
meet or task is changed. KHE keeps them up to date automatically.

Use of the global tixel matching is optional. KHE14 installs it during its
structural phase and retains it until the end. Additional demand tixels are
added based on hard unavailable times, limit busy times, and limit workload
constraints. For example, if teacher Smith is limited to at most 7 busy times
out of the 8 times on Monday, then one demand tixel demanding Smith at a
Monday time is added.

This section is adapted from [9], which has much more detail: how to define
the additional tixels, how to implement the matching efficiently, and so on.

5 Polymorphic ejection chains

Like most timetabling solvers, KHE14 first constructs, then repairs. The repair
work is mostly done by ejection chains. An ejection chain is a sequence of one
or more repair operations (also called repairs), which are small changes to the
solution. The first repair removes one defect (a specific fault in the solution) but
may introduce another; the next repair removes that defect but may introduce
another; and so on. Importantly, the defects that appear as a chain grows are
not known to have resisted attack before. It might be possible to repair one of
them without introducing another, bringing the chain to a successful end.

Ejection chains are not new. They are the augmenting paths of matching
algorithms, and they occur naturally to anyone who tries to repair a timetable
by hand. They were brought into focus and named by Glover [3], in work on
the travelling salesman problem. In timetabling, they have been applied to
nurse rostering [2], resource assignment [9], and time repair [4,5,10].

A key insight of [10] is that ejection chains are naturally polymorphic: each
defect along one chain can have a different type from the others, calling for a
correspondingly different type of repair. Thus, any number of types of defects,
and any number of types of repairs, can be handled together. In KHE, there is
one defect type for each constraint type, representing one specific point in the
solution where a constraint of that type is not satisfied, plus one defect type
representing one specific unmatched demand tixel in the global tixel matching.

An ejection chain algorithm incorporates a set of functions, one for each
defect type, called augment functions after the function for finding augmenting
paths in bipartite matching [15]. An augment function is passed a defect of the
type it handles. It tries a set of alternative repairs on it. Each repair removes
the defect, but may create new defects. If no significant new defects appear,
the function terminates successfully, having reduced the solution cost. If one
significant new defect appears (one whose removal would reduce the solution
cost below its value when the chain began; it may cost more than the removed
defect), it calls the appropriate augment function for that defect. In this way
a chain of coordinated repairs is built up. If that call does not succeed, or was
not tried because two or more significant new defects appeared, the function
undoes the repair and continues with alternative repairs.

Alternatively, if two or more new defects appear, the algorithm could try
to remove them all by finding a whole set of ejection chains, one for each new
defect. This ejection tree approach seldom succeeds, so the author only uses it
in a few cases, described in Sect. 7, where there seems to be nothing better.

The algorithm’s main loop repeatedly iterates over the solution’s defects,
or over a subset of them that it is expedient to target, calling the appropriate
augment function on each. It terminates when one pass over all these defects
yields no reduction in solution cost. A main loop defect is a defect iterated
over by the main loop; a main loop repair is a repair of a main loop defect.

After each pass over the main loop defects, the wall clock time since the
solution was created is compared with a soft time limit. If the soft time limit
has been reached, repair is terminated as though no improvement was found on

Table 4 Effectiveness of variants of KHE14’s ejection chain algorithm. Each pair of char-
acters represents one complete restart of the algorithm: a digit denotes a maximum chain
length (u means unlimited); + denotes allowing entities to be revisited along one chain, and
- denotes not allowing it. KHE14 uses 1+,u-. Other details as previously.

Instance C:u- C:l1+,u- C:14,24,u- Tww- T:il4u- T:14,24,u-
AU-BG-98 4.00752 13.00520 13.00431 19.7 14.4 72.0
AU-SA-96 5.00009 4.00022 2.00021 47.2 87.8 111.5
AU-TE-99 6.00151 5.00152 5.00105 2.9 2.5 3.0
BR-~SA-00 0.00045 0.00044 0.00049 0.5 0.7 1.0
BR-SM-00 11.00102 12.00128 10.00097 2.6 2.5 3.7
BR-SN-00 0.00128 0.00145 0.00135 2.1 2.4 2.7
DK-FG-12 0.06727 0.03391 0.02546 | 365.3 350.2 433.7
DK-HG-12 14.09212 14.05094 12.03956 | 722.0 810.3 1296.3
DK-VG-09 7.07526 3.04433 2.03506 | 685.9 951.4 1716.7
UK-SP-06 35.01096 33.01108 29.01062 | 313.1 376.3 489.8
FI-PB-98 0.00018 3.00031 1.00038 7.0 9.4 13.5
FI-WP-06 0.00021 0.00024 0.00025 8.2 8.4 11.3
FI-MP-06 0.00101 0.00147 0.00120 5.5 4.6 6.1
GR-H1-97 0.00000 0.00000 0.00000 6.0 5.9 6.0
GR-P3-10 2.00019 0.00011 2.00019 9.6 7.8 7.3
GR-PA-08 0.00014 0.00016 0.00015 11.8 13.6 17.6
IT-14-96 0.00048 0.00054 1.00054 14.6 14.9 13.9
KS-PR-11 0.00021 0.00020 0.00034 | 266.7 201.5 142.2
NL-KP-03 0.01818 0.01487 0.01469 | 362.7 417.2 480.7
NL-KP-05 38.09413 15.07401 18.04507 | 385.1 373.3 412.9
NL-KP-09 12.14925 16.07930 9.10155 | 136.2 86.6 85.1
ZA-LW-09 20.00020 20.00018 22.00022 10.2 9.7 9.9
ZA-WD-09 27.00000 26.00000 24.00000 14.0 13.5 16.1
ES-SS-08 0.00582 0.01117 0.01106 28.5 27.5 23.0
US-WS-09 0.00675 0.00758 0.00748 58.4 49.1 70.6
Average 7.02136 6.01362 6.01208 | 139.4 153.7 217.9

the pass just ended. Since this allows each run of the ejection chain algorithm
after the soft time limit one pass over its defects, and places no limit on other
code, it does not enforce a hard time limit; but, since ejection chains consume
most of KHE14’s running time, it does cap running time in practice.

KHE offers two methods for preventing the tree of repairs searched by an
augment function from growing to exponential size: either the length of the
chains is limited to at most some fixed constant, or else it is unlimited, but
entities visited while searching for one chain are marked, and revisiting them
is prohibited, limiting the size of one search to the size of the solution.

Table 4 investigates these two methods. KHE14’s choice trades off cost
and running time quite well, but there is no simple signal. KHE14 also limits
the number of calls on augment functions per search to 120, because tests not
reported here in detail show that successes after that are very rare.

Another way to vary the scope of the search is to reopen the whole solution
for visiting, not just before each main loop defect, but before each main loop
repair. KHE14 does this. Yet another way, worth trying in practice only for
teacher assignment, is to allow repairs of resource assignments to alter time
assignments. KHE14 as presented here does not do this, since it can increase
run time by a factor of 4 or more; but it is available as an option.

10000

8000

6000 —

4000

2000

0 T T T
10 20 30 40

Number of repairs

o

Fig. 1 For each number of repairs, the number of improvements (successful chains or trees)
with that number of repairs found during time repair, over all instances of archive XHSTT-
2014. There were 13880 improvements altogether, and their average number of repairs was
2.7. All improvements with more than 39 repairs are shown as having 39 repairs. The longest
improvement had 49 repairs.

50

40

30

20

10

o

10 20 30 40

Number of repairs
Fig. 2 For each number of repairs, the number of improvements (successful chains or trees)
with that number of repairs found during resource repair, over all instances of archive

XHSTT-2014. There were 170 improvements altogether, and their average number of re-
pairs was 6.5.

KHE14 makes two kinds of calls to the ejection chain algorithm: time repair
calls, which repair time assignments, and resource repair calls, which repair
resource assignments. Fig. 1 shows how long successful time repair chains are,
and Fig. 2 does the same for resource repair. Most are short, but some are
quite long. It was shown in [10] that chain lengths tend to increase as the
algorithm progresses.

The text of this section is adapted from [10], which also describes the
extensive support for ejection chains provided by KHE. The user writes one
augment function for each defect type, which iterates over the alternative
repairs, applying each in turn. KHE supplies the main loop, chaining together
of individual repairs, testing for success, unapplying, and dynamic dispatch by
defect type. It also offers many options for varying the behaviour. For example,
for each repair independently it allows the caller to choose to continue with
either an ejection chain or an ejection tree.

6 Repair operations

A repair operation, or just repair, is a change intended to remove a defect.
This section gives an overview of the repairs used by KHE14’s ejection chain
algorithm. Sect. 7 explains how they are used to repair defects.

Let a variable be a meet or a task, considered as an entity requiring a time
or resource to be assigned to it. An assignment is a change to a variable from
unassigned to assigned. A move is a change from one assignment to a different
assignment. An unassignment is a change from assigned to unassigned.

When the change is an assignment or move, the new value of the variable
is likely to create conflicts (timetable clashes) with other variables. There are
at least four ways to handle these conflicts. The basic way is to do nothing,
leaving it to the ejection chain algorithm to notice the resulting defects and try
to repair them. The ejecting way is to unassign conflicting variables. This will
be better than the basic way if it produces a single defect (an assign time or
assign resource defect) rather than several defects whose common cause may
not be clear to the ejection chain algorithm. The swap way, applicable only to
moves, is to move the conflicting variables in the opposite direction.

The fourth way, also applicable only to moves, is the Kempe way. For
example, a Kempe meet move begins with the move of a meet from its current
time ¢; to some other time ty. If that causes clashes between preassigned
resources at to, the other meets involved in the clashes are moved to t;, any
clashes produced by those moves cause more meets to be moved to to, and so
on until there are no new clashes and no more moves.

This makes 7 repairs on variables: unassignment, basic assignment, basic
move, ejecting assignment, ejecting move, swap, and Kempe move. Applying
them to both meets and tasks gives 14 operations. KHE14 uses most of them.

When a Kempe meet move succeeds, the result is usually a simple move or
swap. A single operation that could be either allows a solver to try moving a
meet to each to, whether its resources are free then or not. Tests not reported
here in detail show that the median number of meets moved by one Kempe
meet move is 2, although 20 or more meets move in rare cases.

Kempe meet moves are useful because instances often contain preassigned
class resources which are busy for all or most of the cycle. Moving a meet
containing such a resource practically forces another meet to move the other
way, so it makes sense to get on and do it. Kempe task moves are less useful
because they apply to unpreassigned resources, such as teachers and rooms,
which are less constrained. Ejecting moves seem more appropriate for them.

An ejecting move is a Kempe move that ends early, as soon as the variables
to be moved in the opposite direction are unassigned. It often makes sense to
first try a Kempe move, then fall back on an ejecting move; this is similar to
trying a particular reassignment of the unassigned variables first. The term
Kempe/ejecting move refers to a sequence of one or two repairs, first a Kempe
move, then an ejecting move with the same parameters, the ejecting move
being omitted when the Kempe move (successful or not) does not try to move
anything in the opposite direction, since the two repairs are identical then.

Table 5 Kempe, ejecting, and basic moves during time assignment. Where the main text
states that Kempe meet moves are tried, K means to try them and X means to omit them.
Where it states that ejecting meet moves are tried, E means to try them and B means to
try basic meet moves instead. KHE14 uses KE. Other details as previously.

Instance C:KE C:KB C:XE C:XB T:KE T:KB T:XE T:XB
AU-BG-98 13.00551 11.00626 10.00758 12.00580 14.6 44.0 233 725
AU-SA-96 4.00022 1.00024 15.00103 26.00081 76.2 319.2 135.3 132.1

AU-TE-99 5.00152 5.00101 9.00209 12.00172 2.1 11.3 8.3 6.8
BR-SA-00 0.00044 1.00063 0.00039 1.00068 0.7 1.1 1.0 0.6
BR-SM-00 12.00128 16.00088 3.00123 18.00072 2.2 4.3 7.4 1.9
BR-SN-00 0.00145 2.00175 0.00118 4.00193 2.3 4.5 3.7 2.9

DK-FG-12 0.03132 0.03039 0.03513 0.03835 366.0 583.3 353.6 325.8
DK-HG-12 12.05069 12.04959 12.04866 12.05460 724.0 14459 605.7 772.1
DK-VG-09 3.04709 2.04271 2.04954 2.05395 874.6 1213.1 503.6 524.2
UK-SP-06 32.01188 31.00918 49.01156 41.00734 420.9 910.2 335.8 353.3

FI-PB-98 4.00028 3.00053 1.00023 3.00042 10.2 23.5 8.2 9.7
FI-WP-06 0.00024 0.00045 0.00027 1.00027 8.4 29.7 6.6 8.2
FI-MP-06 0.00110 0.00118 0.00127 5.00124 6.8 12.3 5.6 6.2
GR-H1-97 0.00000 0.00000 0.00000 0.00000 5.9 5.7 5.7 5.6
GR-P3-10 0.00011 0.00032 6.00046 0.00033 7.8 12.3 124 8.8
GR-PA-08 0.00016 0.00014 0.00013 0.00017 13.6 16.9 7.2 6.8
IT-14-96 0.00150 0.00067 0.00056 0.00068 13.0 16.3 119 153

KS-PR-11 0.00020 0.00022 0.00018 0.00028 131.4 156.7 170.3 136.3
NL-KP-03 0.01792 0.01641 0.01954 0.01414 444.0 1102.9 427.2 523.5
NL-KP-05 16.07919 15.04026 16.07289 14.05057 375.0 638.5 354.5 325.1
NL-KP-09 33.07335 8.10415 41.15690 18.08255 74.3 215.8 127.0 89.7
ZA-LW-09 16.00004 19.00014 21.00018 17.00016 9.4 11.9 9.8 9.2
ZA-WD-09 26.00000 19.00000 21.00000 38.00000 13.5 28.9 221 120
ES-5S-08 0.01117 0.01167 0.01731 0.02407 27.2 88.0 219 205
US-WS-09 0.00784 0.00746 0.00738 0.00718 41.3 478 38.6 419
Average 7.01378 5.01304 8.01742 8.01391 146.6 277.8 128.3 136.4

Kempe meet moves are implemented more generally than described here.
They support hierarchical timetabling and preserving regularity, and swap
meets of different durations in some cases. For these details, see [10] and [12