
The KHE High School Timetabling
Engine

Jeffrey H. Kingston
jeff@it.usyd.edu.au

Version of 9 December 2015

Contents

Part A: The Platform

Chapter 1. Introduction 2

1.1. Installation and use 2

1.2. The data types of KHE 3

1.3. Common operations 4

Chapter 2. Archives and Solution Groups 6

2.1. Archives 6

2.2. Solution groups 7

2.3. Reading archives 8

2.4. Reading archives incrementally 9

2.5. Writing archives and solution groups 11

Chapter 3. Instances 12

3.1. Creating instances 12

3.2. Visiting and retrieving the components of instances 13

3.3. Constraint density 15

3.4. Times 15

3.4.1. Time groups 15

3.4.2. Times 17

3.5. Resources 19

3.5.1. Resource types 19

3.5.2. Resource groups 21

3.5.3. Resources 22

3.5.4. Resource layers 24

3.5.5. Resource similarity and inferring resource partitions 25

3.6. Events 26

3.6.1. Event groups 26

3.6.2. Events 27

3.6.3. Event resources 30

3.6.4. Event resource groups 31

3.7. Constraints 32

3.7.1. Assign resource constraints 36

3.7.2. Assign time constraints 38

3.7.3. Split events constraints 38

3.7.4. Distribute split events constraints 39

3.7.5. Prefer resources constraints 40

3.7.6. Prefer times constraints 42

3.7.7. Avoid split assignments constraints 43

3.7.8. Spread events constraints 45

3.7.9. Link events constraints 46

3.7.10. Order events constraints 46

3.7.11. Avoid clashes constraints 47

3.7.12. Avoid unavailable times constraints 48

3.7.13. Limit idle times constraints 49

3.7.14. Cluster busy times constraints 50

3.7.15. Limit busy times constraints 51

3.7.16. Limit workload constraints 52

Chapter 4. Solutions 54

4.1. Overview 54

4.2. Solution objects 55

4.3. Complete representation and preassignment conversion 57

4.4. Solution time, resource, and event groups 59

4.5. Diversification 60

4.6. Visit numbers 63

4.7. Running times and time limits 64

4.8. Meets 65

4.8.1. Splitting and merging 67

4.8.2. Assignment 69

4.8.3. Cycle meets and time assignment 72

4.8.4. Meet domains and bounds 74

4.8.5. Automatic domains 77

4.9. Tasks 78

4.9.1. Assignment 80

4.9.2. Cycle tasks and resource assignment 82

4.9.3. Task domains and bounds 83

4.10. Marks and paths 84

4.11. Placeholder and invalid solutions 87

4.12. The solution invariant 88

Chapter 5. Extra Types for Solving 89

5.1. Layer trees 89

5.2. Nodes 90

iii

5.3. Layers 94

5.4. Zones 97

5.5. Taskings 99

Chapter 6. Solution Monitoring 101

6.1. Measuring cost 101

6.2. Monitors 102

6.3. Attaching, detaching, and provably zero fixed cost 104

6.4. Event monitors 105

6.4.1. Split events monitors 106

6.4.2. Distribute split events monitors 106

6.4.3. Assign time monitors 106

6.4.4. Prefer times monitors 107

6.4.5. Spread events monitors 107

6.4.6. Link events monitors 107

6.4.7. Order events monitors 108

6.5. Event resource monitors 108

6.5.1. Assign resource monitors 109

6.5.2. Prefer resources monitors 109

6.5.3. Avoid split assignments monitors 109

6.6. Resource monitors 110

6.6.1. Avoid clashes monitors 111

6.6.2. Avoid unavailable times monitors 111

6.6.3. Limit idle times monitors 111

6.6.4. Cluster busy times monitors 112

6.6.5. Limit busy times monitors 112

6.6.6. Limit workload monitors 113

6.7. Timetable monitors 114

6.8. Time group monitors 116

6.9. Group monitors 116

6.9.1. Basic operations on group monitors 117

6.9.2. Defects 119

6.9.3. Tracing 121

Chapter 7. Matchings and Evenness 122

7.1. The bipartite matching problem 122

7.2. Setting up 124

7.3. Ordinary supply and demand nodes 126

7.4. Workload demand nodes 128

iv

7.4.1. Constructing workload requirements 129

7.4.2. From workload requirements to workload demand nodes 130

7.5. Diagnosing failure to match 131

7.5.1. Visiting unmatched demand nodes 131

7.5.2. Hall sets 131

7.5.3. Finding competitors 132

7.6. Evenness monitoring 134

Part B: Solving

Chapter 8. Introducing Solving 137

8.1. General solving 137

8.2. Parallel solving 138

8.3. Benchmarking 138

8.4. Options 139

8.4.1. General options 140

8.4.2. Structural solver options 140

8.4.3. Time solver options 141

8.4.4. Resource solver options 142

8.4.5. Ejection chain options 143

8.5. Gathering statistics 146

8.5.1. Running time and date 146

8.5.2. Files of tables and graphs 147

8.5.3. Tables 147

8.5.4. Graphs 149

8.6. Exponential backoff 150

Chapter 9. Structural Solvers 153

9.1. Layer tree construction 153

9.1.1. Overview 154

9.1.2. Linking 156

9.1.3. Splitting 157

9.1.4. Layering 158

9.1.5. Merging 159

9.2. Time-equivalence 160

9.3. Layers 161

9.3.1. Layer construction 161

9.3.2. Layer coordination 162

9.4. Runarounds 164

9.4.1. Minimum runaround duration 164

v

9.4.2. Building runarounds 165

9.5. Rearranging nodes 167

9.5.1. Node merging 167

9.5.2. Node meet splitting and merging 167

9.5.3. Node moving 168

9.5.4. Vizier nodes 168

9.5.5. Flattening 170

9.6. Adding zones 170

9.7. Meet splitting and merging 171

9.7.1. Analysing split defects 171

9.7.2. Merging adjacent meets 172

9.8. Monitor attachment and grouping 172

Chapter 10. Time Solvers 176

10.1. Specification 176

10.2. Helper functions 177

10.2.1. Node assignment functions 177

10.2.2. Kempe and ejecting meet moves 178

10.3. Meet bound groups and domain reduction 184

10.3.1. Meet bound groups 184

10.3.2. Exposing resource unavailability 184

10.3.3. Preventing cluster busy times and limit idle times defects 185

10.4. Some basic time solvers 189

10.5. A time solver for runarounds 190

10.6. Extended layer matching with Elm 191

10.6.1. Introducing layer matching 192

10.6.2. The core module 194

10.6.3. Splitting supplies 199

10.6.4. Improving node regularity 200

10.6.5. Handling irregular monitors 201

10.7. Time repair 203

10.7.1. Node-regular time repair using layer node matching 203

10.7.2. Ejection chain time repair 204

10.7.3. Tree search layer time repair 204

10.7.4. Meet set time repair and the fuzzy meet move 206

10.8. Layered time assignment 207

10.8.1. Layer assignments 207

10.8.2. A solver for layered time assignment 208

10.8.3. A complete time solver 211

vi

Chapter 11. Resource Solvers 212

11.1. Specification 212

11.2. The resource assignment invariant 212

11.3. Resource-structural solvers 214

11.3.1. Task bound groups 214

11.3.2. Task trees 214

11.3.3. Task tree construction 215

11.3.4. Other task tree solvers 218

11.3.5. Task groups 219

11.4. Most-constrained-first assignment 221

11.5. Resource packing 222

11.6. Split assignments 222

11.7. Kempe and ejecting task moves 223

11.8. Ejection chain repair 223

11.9. Resource pair repair 224

11.9.1. The basic function 224

11.9.2. A resource pair solver 224

11.9.3. Partition graphs 225

11.9.4. The implementation of resource pair reassignment 227

11.10. Resource rematching 230

11.11. Trying unassignments 230

11.12. Putting it all together 230

Chapter 12. Ejection Chains 233

12.1. Introduction 233

12.2. Ejector construction 235

12.3. Ejector solving 238

12.4. How to write an augment function 239

12.5. Variants of the ejection chains idea 241

12.5.1. Defect promotion 241

12.5.2. Fresh visit numbers for sub-defects 242

12.5.3. Ejection trees 242

12.5.4. Sorting repairs 246

12.5.5. Adjustment on success 246

12.6. Gathering statistics 247

12.6.1. Options for choosing ejectors and schedules 247

12.6.2. Statistics for analysing Kempe meet moves 248

12.6.3. Statistics describing a single solve 248

vii

12.6.4. Statistics describing multiple solves 249

12.6.5. Organizing augment and repair types 250

12.7. Ejection chain time and resource repair functions 251

12.7.1. Limiting the scope of changes 252

12.7.2. Correlation problems involving demand defects 254

12.7.3. Primary grouping and detaching 256

12.7.4. Secondary groupings 258

12.7.5. Augment functions 259

Appendix A. Modules Packaged with KHE 264

A.1. The M module 264

A.1.1. Memory allocation 264

A.1.2. Assertions 265

A.1.3. Variable-length arrays 265

A.1.4. String factories 268

A.1.5. Symbol tables 269

A.2. Variable-length bitsets 271

A.3. Priority queues 273

A.4. XML handling with KML 275

A.4.1. Representing XML in memory 276

A.4.2. Error handling and format checking 277

A.4.3. Reading XML files 278

A.4.4. Writing XML files 280

Appendix B. Implementation Notes 282

B.1. Source file organization 282

B.2. Relations between objects 283

B.3. Kernel operations 284

B.4. Monitor updating 287

References .. 293

viii

Part A

The Platform

1

Chapter 1. Introduction
Some instances of high school timetabling problems, taken from institutions in several countries
and specified formally in an XML format called XHSTT, have recently become available [11].
For the first time, the high school timetabling problem can be studied in its full generality.

KHE is an open-source ANSI C library, released under the GNU public licence, which aims
to provide a fast and robust foundation for solving instances of high school timetabling problems
expressed in the XHSTT format. Users of KHE may read and write XML files, create solutions,
and add and change time and resource assignments using any algorithms they wish. The cost of
the current solution is always available, kept up to date by a hand-coded constraint propagation
network. KHE also offers features inherited from the author’s KTS system [6, 8], notably layer
trees and matchings, and solvers for several major sub-tasks.

KHE is intended for production use, but it is also a research vehicle, so new versions will
not be constrained by backward compatibility. Please report bugs to me atjeff@it.usyd.edu.au. I
will release a corrected version within a few days of receiving a bug report, wherever possible.

This introductory chapter explains how to install and use KHE, surveys its data types, and
describes some operations common to many types.

1.1. Installation and use

KHE has a home page, at

http://www.it.usyd.edu.au/~jeff/khe/

The current version of KHE is a gzipped tar file in that directory. The current version of this
documentation (a PDF file) is also stored there. The names of these files change with each
release; they are most easily downloaded using links on the home page.

The version number of a KHE release is its date of release, in the formatyyyy_mm_dd. For
example, the first release was on 9 August 2010, so its version number is 2010_08_09. Its files’
names arekhe-2010_08_09.tar.gz and khe_guide-2010_08_09.pdf. The version
number also appears in a preprocessor definition in filekhe.h, like this for example:

#define KHE_VERSION "2010_08_09"

To install KHE, download a release and unpack it usinggunzip and tar xf as usual. The
resulting directory,khe, contains the source files of KHE, a makefile, and adoc subdirectory
containing the source files of this documentation. Typingmake in directorykhe compiles KHE,
producing a set of.o files and an executable calledkhe which may be used for testing.

Runkhe with no command line arguments to get a usage message. It is capable of reading
an XML archive, solving each of its instances, and writing out the archive with the solutions
added as a new solution group.

More commonly, it is desired to use KHE within a larger program. A simple way to

2

1.1. Installation and use 3

incorporate KHE into a larger C program is as follows. Runmake as before, then move directory
khe to be subdirectorykhe of the main source code directory of the larger C program. Add

#include "khe.h"

at the top of each source file of the larger program that requires access to KHE. To ensure that
the C compiler can find filekhe.h, add-I khe to the command which invokes the C compiler.
Add khe/*.o to the list of files that are to be linked together to form the executable. Remove
executablekhe, and also remove object filekhe_main.o, since it contains an unwantedmain().

It is necessary to add-lm to the main linker command, to gain access to the mathematical
functions, and also-lexpat, because KHE relies on the well-known Expat library for reading
XML. Expat offers a choice of encodings for the characters it reads. However, this choice must
be made at compile time, and since the precompiled version of Expat on the author’s computer
returns UTF-8 characters, UTF-8 is used uniformly throughout KHE, represented by the Cchar

type. Users who want other encodings will have to convert to and from UTF-8.

You may already have Expat on your system, since a lot of software that reads XML uses it.
If not, you can get it from SourceForge. The author’s experience was that his system’s package
installer did not install the requiredexpat.h include file, but downloading from SourceForge
and following the basic install procedure described in the distribution worked fine.

KHE uses Posix threads to implement solving in parallel (functionKheParallelSolve

from Section 8.2), so the compiler and linker commands need the-pthread flag. If you don’t
have Posix threads, the makefile documents a workaround. The only difference will be that
parallel solvers will do their solving sequentially rather than in parallel.

Another possible porting problem arises in those parts of KHE which consult the system to
find out how much time has been consumed while solving. Again, there is a workaround for this
in the makefile, which if taken will cause all time measurements to be 0.

1.2. The data types of KHE

This section is an overview of KHE’s data types. The following chapters have the details.

TypeKHE_ARCHIVE represents one archive, that is, a collection of instances plus a collection
of solution groups. TypeKHE_SOLN_GROUP represents one solution group, that is, a set of
solutions of the instances of the archive it lies in. The word ‘solution’ is abbreviated to ‘soln’
wherever it appears in the KHE interface. Use of these types is optional: instances do not have
to lie in archives, and solutions do not have to lie in solution groups.

Type KHE_INSTANCE represents one instance of the high school timetabling problem.
KHE_TIME_GROUP represents a set of times;KHE_TIME represents one time.KHE_RESOURCE_TYPE
represents a resource type (typicallyTeacher, Room, Class, or Student); KHE_RESOURCE_GROUP
represents a set of resources of one type; andKHE_RESOURCE represents one resource.

Type KHE_EVENT_GROUP represents a set of events;KHE_EVENT represents one event,
including all information about its time. TypeKHE_EVENT_RESOURCE represents one resource
element within an event. TypeKHE_CONSTRAINT represents one constraint. This could have any
of the constraint types of the XML format (it is their abstract supertype).

TypeKHE_SOLN represents one solution, complete or partial, of a given instance, optionally

4 Chapter 1. Introduction

lying within a solution group. TypeKHE_MEET represents one meet (KHE’s commendably brief
name for what the XML format calls a solution event, split event, or sub-event: one event as it
appears in a solution), including all information about its time. TypeKHE_TASK represents one
piece of work for a resource to do: one resource element within a meet.

KHE supports multi-threading by ensuring that each instance and its components (of
typeKHE_INSTANCE, KHE_TIME_GROUP, and so on) is immutable after loading of the instance is
completed, and that operations applied to one solution object do not interfere with operations
applied simultaneously to another.1 Thus, after instance loading is completed, it is safe to create
multiple threadswith differentKHE_SOLN objects in each thread,all referring to the same instance,
and operate on those solutions in parallel. No such guarantees are given for operating on the
same solution from different threads.

1.3. Common operations

This section describes some miscellaneous operations that are common to many data types.

Use of KHE often involves creating objects that contain references to KHE entities (objects
of types defined by KHE) alongside other information. Sometimes it is necessary to go back-
wards, from a KHE entity to a user-defined object. Accordingly,each KHE entity containsaback
pointerwhich the user is free to set and retrieve, using calls which look generically like this:

void KheEntitySetBack(KHE_ENTITY entity, void *back);
void *KheEntityBack(KHE_ENTITY entity);

All back pointers are initialized toNULL. In general, KHE itself does not set back pointers. The
exception is that some solvers packaged with KHE set the back pointers of the solution entities
they deal with. This is documented where it occurs.

Timetables often contain symmetries of various kinds. In high school timetabling, the
student group resources of one form are often symmmetrical: they attend the same kinds of
events over the course of the cycle.

Knowledge of similarity can be useful when solving. For example, it might be useful to
timetable similar events attended by student group resources of the same form at the same time.
Accordingly, several KHE entities offer an operation of the form

bool KheEntitySimilar(KHE_ENTITY e1, KHE_ENTITY e2);

which returnstrue if KHE considers that the two entities are similar. If they are the exact same
entity, they are always considered similar. In other cases, the definition of similarity varies with
the kind of entity, although it follows a common pattern: evidence both in favour of similarity
and against it is accumulated, and there needs to be a significant amount of evidence in favour,
and more evidence in favour than against. For example, an event containing no event resources
will never be considered similar to any event except itself, since positive evidence, such as
requests for the same kinds of teachers, is lacking.

1Assuming that KHE is linked to an implementation ofmalloc() suited to multiple threads, such as the Linuxglibc

implementation by Doug Lea and W. Gloger. KHE does not leak memory, although, since garbage collection is not
standard in C, the user must indicate when major objects, such as instances and solutions, are no longer required.

1.3. Common operations 5

Similarity is not a transitive relation in general. In other words, ife1 ande2 are similar, and
e2 ande3 are similar, that does not imply thate1 ande3 are similar. There is a heuristic aspect
to it that seems inevitable,although the intention is to stay on the safe side: to declare two entities
to be similar only when they clearly are similar.

Another operation that applies to many entities, albeit a humble one, is printing the current
state of the entity as an aid to debugging. The KHE operations for this mostly take the form

void KheEntityDebug(KHE_ENTITY entity, int verbosity,
int indent, FILE *fp);

They produce a debug print ofentity ontofp.

Theverbosity parameter controls how much detail is printed. Any value is acceptable. A
zero or negative value always prints nothing. Every positive value prints something, and as the
value increases, more detail is printed, depending, naturally, on the kind of entity. Value 1 tries
to print the minimum amount of information needed to identify the entity, often just its name.

If indent is non-negative, a multi-line format is used in which each line begins with at least
indent spaces. Ifindent is negative, the print appears on one line with no indent and no con-
cluding newline. Since space is limited, verbosity may be reduced whenindent is negative.

Many entities are organized hierarchically. Depending on the verbosity, printing an entity
may include printing its descendants. Their debug functions are passed a value forindent which
is 2 larger than the value received (when non-negative), so that the hierarchy is represented in the
debug output by indenting. The debug print of one entity usually begins with[and ends with a
matching], making it easy to move around the printed hierarchy using a text editor.

Chapter 2. Archives and Solution Groups

This chapter describes theKHE_ARCHIVE andKHE_SOLN_GROUP data types, representing archives
and solution groups as in the XML format. Their use is optional, since instances are not required
to lie in archives, and solutions are not required to lie in solution groups.

2.1. Archives

An archive is defined in the XML format to be a collection of instances together with groups
of solutions to those instances. There may be any number of instances and solution groups. To
create a new, empty archive, call

KHE_ARCHIVE KheArchiveMake(char *id, KHE_ARCHIVE_METADATA md);

Both parametersare optional (may beNULL);id is an identifier for the archive,andmd is metadata,
which can be created byKheArchiveMetaDataMake below. Functions

char *KheArchiveId(KHE_ARCHIVE archive);
KHE_ARCHIVE_METADATA KheArchiveMetaData(KHE_ARCHIVE archive);

return these two attributes. To set and retrieve the back pointer (Section 1.3), call

void KheArchiveSetBack(KHE_ARCHIVE archive, void *back);
void *KheArchiveBack(KHE_ARCHIVE archive);

Archive metadata may be created by calling

KHE_ARCHIVE_METADATA KheArchiveMetaDataMake(char *name,
char *contributor, char *date, char *description, char *remarks);

whereremarks, being optional, may beNULL. The attributes may be retrieved by calling

char *KheArchiveMetaDataName(KHE_ARCHIVE_METADATA md);
char *KheArchiveMetaDataContributor(KHE_ARCHIVE_METADATA md);
char *KheArchiveMetaDataDate(KHE_ARCHIVE_METADATA md);
char *KheArchiveMetaDataDescription(KHE_ARCHIVE_METADATA md);
char *KheArchiveMetaDataRemarks(KHE_ARCHIVE_METADATA md);

Initially an archive contains no instances and no solution groups. Solution groups are added
automatically as they are created, because every solution group lies in exactly one archive. An
instance may be added to an archive by calling

bool KheArchiveAddInstance(KHE_ARCHIVE archive, KHE_INSTANCE ins);

KheArchiveAddInstance returnstrue if it succeeds in addingins to archive, andfalse

otherwise, which can only be becausearchive already contains an instance with the same Id as

6

2.1. Archives 7

ins. The instance will appear after any instances already present. An instance may be deleted
from an archive (but not destroyed) by calling

void KheArchiveDeleteInstance(KHE_ARCHIVE archive, KHE_INSTANCE ins);

KheArchiveDeleteInstance aborts if ins is not in archive. If there are any solutions for
ins in archive, they are deleted too. The gap left by deleting the instance is filled by shuffling
subsequent instances up one place.

To visit the instances of an archive, call

int KheArchiveInstanceCount(KHE_ARCHIVE archive);
KHE_INSTANCE KheArchiveInstance(KHE_ARCHIVE archive, int i);

The first returns the number of instances inarchive, and the second returns thei’th of those
instances, counting from 0 as usual in C. There is also

bool KheArchiveRetrieveInstance(KHE_ARCHIVE archive, char *id,
KHE_INSTANCE *ins);

If archive contains an instance with the givenid, this function setsins to that instance and
returnstrue; otherwise it leaves*ins untouched and returnsfalse. In the same way,

int KheArchiveSolnGroupCount(KHE_ARCHIVE archive);
KHE_SOLN_GROUP KheArchiveSolnGroup(KHE_ARCHIVE archive, int i);
bool KheArchiveRetrieveSolnGroup(KHE_ARCHIVE archive, char *id,
KHE_SOLN_GROUP *soln_group);

visit the solution groups of an archive, and retrieve a solution group byid.

2.2. Solution groups

A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool KheSolnGroupMake(KHE_ARCHIVE archive, char *id,
KHE_SOLN_GROUP_METADATA md, KHE_SOLN_GROUP *soln_group);

Parameterarchive is compulsory. The solution group will be added to the archive. Parameters
id andmd are the Id and MetaData attributes from the XML file; both are optional, withNULL

meaning absent, although they are compulsory ifarchive is to be written later. If the operation
is successful, thentrue is returned with*soln_group set to the new solution group; if it is
unsuccessful (which can only be becauseid is already the Id of a solution group ofarchive),
thenfalse is returned with*soln_group set toNULL.

To set and retrieve the back pointer (Section 1.3) of a solution group, call

void KheSolnGroupSetBack(KHE_SOLN_GROUP soln_group, void *back);
void *KheSolnGroupBack(KHE_SOLN_GROUP soln_group);

as usual. To retrieve the other attributes, call

8 Chapter 2. Archives and Solution Groups

KHE_ARCHIVE KheSolnGroupArchive(KHE_SOLN_GROUP soln_group);
char *KheSolnGroupId(KHE_SOLN_GROUP soln_group);
KHE_SOLN_GROUP_METADATA KheSolnGroupMetaData(KHE_SOLN_GROUP soln_group);

Solution group metadata may be created by calling

KHE_SOLN_GROUP_METADATA KheSolnGroupMetaDataMake(char *contributor,
char *date, char *description, char *publication, char *remarks);

wherepublication andremarks, being optional, may beNULL. The attributes may be retrieved
by calling

char *KheSolnGroupMetaDataContributor(KHE_SOLN_GROUP_METADATA md);
char *KheSolnGroupMetaDataDate(KHE_SOLN_GROUP_METADATA md);
char *KheSolnGroupMetaDataDescription(KHE_SOLN_GROUP_METADATA md);
char *KheSolnGroupMetaDataPublication(KHE_SOLN_GROUP_METADATA md);
char *KheSolnGroupMetaDataRemarks(KHE_SOLN_GROUP_METADATA md);

Initially a solution group has no solutions. These are added and deleted by calling

void KheSolnGroupAddSoln(KHE_SOLN_GROUP soln_group, KHE_SOLN soln);
void KheSolnGroupDeleteSoln(KHE_SOLN_GROUP soln_group, KHE_SOLN soln);

A solution can only be added when its instance lies in the solution group’s archive.

To visit the solutions of a solution group, call

int KheSolnGroupSolnCount(KHE_SOLN_GROUP soln_group);
KHE_SOLN KheSolnGroupSoln(KHE_SOLN_GROUP soln_group, int i);

as usual. Solutions have no Id attributes, so there is noKheSolnGroupRetrieveSoln function.
When solutioni is deleted,KheSolnGroupSolnCount decreases by 1, solutioni + 1 becomes
solutioni, and so on.

2.3. Reading archives

KHE reads and writes archives in a standard XML format [11]. To read an archive, call

bool KheArchiveRead(FILE *fp, KHE_ARCHIVE *archive, KML_ERROR *ke,
bool infer_resource_partitions, bool allow_invalid_solns,
char **leftover, int *leftover_len, FILE *echo_fp);

File fp must be open for reading UTF-8, and it remains open after the call returns. If, starting
from its current position,fp contains a legal XML archive, thenKheArchiveRead sets*archive
to that archive and*ke to NULL and returnstrue with the current position offp moved to after
the archive. If there was a problem reading the file, then it sets*archive to NULL and*ke to an
error object and returnsfalse. Any reports in the archive are discarded without checking.

TypeKML_ERROR is from the KML module packaged with KHE. A full description of the
KML module appears in Appendix A.4. Given an object of typeKML_ERROR, operations

2.3. Reading archives 9

int KmlErrorLineNum(KML_ERROR ke);
int KmlErrorColNum(KML_ERROR ke);
char *KmlErrorString(KML_ERROR ke);

return the line number, the column number, and a string description of the error.

KheArchiveRead builds the archive object by calling only functions described in this guide;
there is nothing special about the archive it makes. Parameterinfer_resource_partitions is
passed on to the calls toKheInstanceMakeEnd (Section 3.1).KheArchiveRead builds complete
representations of the solutions it reads, by callingKheSolnMakeCompleteRepresentation,
KheSolnAssignPreassignedTimes, and KheSolnAssignPreassignedResources (Section
4.3); but it does not callKheSolnMatchingBegin or KheSolnEvennessBegin (Chapter 7).

Usually, if there are errors in the file,KheArchiveRead returnsfalse and sets*ke to the
first error. But ifallow_invalid_solns istrue, then some errors lying in solutions are handled
differently: the erroneous solutions are converted to invalid placeholders (Section 4.11). Each
invalid placeholder solution contains its first error, and none of its errors causefalse to be
returned or*ke to be set. Not all errors, not even all errors lying in solutions, can be handled in
this way; those that cannot causeKheArchiveRead to returnfalse and set*ke as usual.

KheArchiveRead callsKmlRead (Appendix A.4.3), passingleftover, leftover_len, and
echo_fp to it, and setting itsend_label parameter to"</HighSchoolTimetableArchive>"
if leftover is non-NULL, and toNULL if leftover is NULL. Appendix A.4.3 has the details, but
just briefly,leftover andleftover_len should beNULL when the archive occupiesfp from its
current position to the end, and non-NULL when other material may follow the archive infp; and
echo_fp would normally beNULL.

To create an archive by reading an XML string, call

bool KheArchiveReadFromString(char *str, KHE_ARCHIVE *archive,
KML_ERROR *ke, bool infer_resource_partitions, bool allow_invalid_solns);

This is just likeKheArchiveRead except that the archive lies instr instead offp, and is expected
to occupy the entire string.

2.4. Reading archives incrementally

A large archive may have to be read one solution at a time. For this, call

bool KheArchiveReadIncremental(FILE *fp, KHE_ARCHIVE *archive,
KML_ERROR *ke, bool infer_resource_partitions, bool allow_invalid_solns,
char **leftover, int *leftover_len, FILE *echo_fp,
KHE_ARCHIVE_FN archive_begin_fn, KHE_ARCHIVE_FN archive_end_fn,
KHE_SOLN_GROUP_FN soln_group_begin_fn,
KHE_SOLN_GROUP_FN soln_group_end_fn, KHE_SOLN_FN soln_fn, void *impl);

The return value and the first eight parameters, toecho_fp inclusive,are as forKheArchiveRead.
The next five parameters are callback functions,and the last parameter,impl, is not used by KHE
but is instead passed through to the calls on the callback functions. Any or all of the callback
functions may beNULL, in which case the corresponding callbacks are not made.

10 Chapter 2. Archives and Solution Groups

Callback functionarchive_begin_fn is called byKheArchiveReadIncremental at the
start of the archive. It must be written by the user like this:

void archive_begin_fn(KHE_ARCHIVE archive, void *impl)
{
...

}

Its archive parameter is set to the archive thatKheArchiveReadIncremental will eventually
build, the one it returns in its*archive parameter; itsimpl parameter contains the value of the
impl parameter ofKheArchiveReadIncremental. At the time of this call,archive contains its
Id and metadata attributes, but no instances and no solution groups.

Callback functionarchive_end_fn is called at the end of the archive, just before
KheArchiveReadIncremental itself returns:

void archive_end_fn(KHE_ARCHIVE archive, void *impl)
{
...

}

When this function is called,archive contains all of its instances and solution groups. If
KheArchiveReadIncremental returnstrue, there has been one callback toarchive_begin_fn

and one toarchive_end_fn, if non-NULL.

Callback functionsoln_group_begin_fn is called at the start of each solution group:

void soln_group_begin_fn(KHE_SOLN_GROUP soln_group, void *impl)
{
...

}

Itssoln_group parameter is set to one of the solution groups that the final archive will eventually
contain, and itsimpl parameter is as before. At the time of this call,soln_group contains its
Id and MetaData, andKheSolnGroupArchive(soln_group) returns the enclosing archive, but
there are no solutions insoln_group.

Callback functionsoln_group_end_fn is called at the end of each solution group:

void soln_group_end_fn(KHE_SOLN_GROUP soln_group, void *impl)
{
...

}

At the time of this call,soln_group contains all its solutions.

Finally, callback functionsoln_fn is called after each solution is read:

void soln_fn(KHE_SOLN soln, void *impl)
{
...

}

2.4. Reading archives incrementally 11

The solution is complete, andKheSolnSolnGroup(soln) returns the enclosing solution group.

The purpose of incremental reading is to process the solutions as they are read, so that
they can be discarded and their memory reclaimed. One way to save memory is to replace each
solution by a placeholder. This can be done by passingNULL for all callbacks exceptsoln_fn,
which would be defined like this:

void soln_fn(KHE_SOLN soln, void *impl)
{
if(!KheSolnIsPlaceholder(soln))
KheSolnReduceToPlaceholder(soln);

}

The test is needed only ifallow_invalid_solns is true. As Section 4.11 explains,
KheSolnReduceToPlaceholder reclaims most of the memory ofsoln, leaving just thesoln
object itself and a few key attributes, including its cost. This memory will then be recycled for
holding other solutions. In this way, the total memory cost is reduced to not much more than the
memory needed to hold the instances, but enough information is retained to support operations
which (for example) print tables of solutions and their costs.

Other applications might processsoln in some way (print timetables, for example) before
finishing with a call toKheSolnReduceToPlaceholder, or evenKheSolnDelete.

2.5. Writing archives and solution groups

To write an archive to a file, call

void KheArchiveWrite(KHE_ARCHIVE archive, bool with_reports, FILE *fp);

If with_reports is true, each solution written to the file contains aReport section evaluating
the solution. Filefp must be open for writing UTF-8 characters, and it remains open after the
call returns. Ids, names, and meta-data are optional in KHE but compulsory when writing XML.
If any are missing,KheArchiveWrite will write an incomplete file, print an error message, and
abort. It will always return whenarchivewas produced by a successful call toKheArchiveRead,
since then all the necessary elements are present.

When writing solutions,KheArchiveWrite writes as little as possible. It does not write an
unassigned or preassigned task. It does not write a meet if its duration equals the duration of the
corresponding event, its time is unassigned or preassigned,and its tasks are not written according
to the rule just given (see also Section 4.3).

A similar function is

void KheArchiveWriteSolnGroup(KHE_ARCHIVE archive,
KHE_SOLN_GROUP soln_group, bool with_reports, FILE *fp);

It also writesarchive, but the only solution group fromarchive it writes issoln_group.

Chapter 3. Instances

An instanceis a particular case of the high school timetabling problem, for a particular term
or semester of a particular school. This chapter describes theKHE_INSTANCE data type, which
represents instances as defined in the XML format.

3.1. Creating instances

To make a new, empty instance, call

KHE_INSTANCE KheInstanceMakeBegin(char *id, KHE_INSTANCE_METADATA md);

Parametersid andmd are the Id and MetaData attributes from the XML file; both are optional,
with NULL meaning absent. Functions

char *KheInstanceId(KHE_INSTANCE ins);
char *KheInstanceName(KHE_INSTANCE ins);
KHE_INSTANCE_METADATA KheInstanceMetaData(KHE_INSTANCE ins);

may be called to retrieve these attributes.KheInstanceName is a convenience function that calls
KheInstanceMetaDataName below.

For the convenience of functions that reorganize archives, an instance may lie in any
number of archives. To add an instance to an archive and delete it from an archive, call functions
KheArchiveAddInstance and KheArchiveDeleteInstance from Section 2.1. To visit the
archives containing a given instance, call

int KheInstanceArchiveCount(KHE_INSTANCE ins);
KHE_ARCHIVE KheInstanceArchive(KHE_INSTANCE ins, int i);

in the usual way.

To set and retrieve the back pointer ofins, call

void KheInstanceSetBack(KHE_INSTANCE ins, void *back);
void *KheInstanceBack(KHE_INSTANCE ins);

as usual.

After the instance has been completed, using functions still to be defined, call

void KheInstanceMakeEnd(KHE_INSTANCE ins, bool infer_resource_partitions);

This must be done, single-threaded, before any solution is created. It checks the instance
and initializes various constant data structures used to speed the solution process. Parameter
infer_resource_partitions is the subject of Section 3.5.5.

Instance metadata may be created by calling

12

3.1. Creating instances 13

KHE_INSTANCE_METADATA KheInstanceMetaDataMake(char *name,
char *contributor, char *date, char *country,
char *description, char *remarks);

whereremarks, being optional, may beNULL. The attributes may be retrieved by calling

char *KheInstanceMetaDataName(KHE_INSTANCE_METADATA md);
char *KheInstanceMetaDataContributor(KHE_INSTANCE_METADATA md);
char *KheInstanceMetaDataDate(KHE_INSTANCE_METADATA md);
char *KheInstanceMetaDataCountry(KHE_INSTANCE_METADATA md);
char *KheInstanceMetaDataDescription(KHE_INSTANCE_METADATA md);
char *KheInstanceMetaDataRemarks(KHE_INSTANCE_METADATA md);

KheInstanceMetaDataRemarks may returnNULL.

An instance may contain any number of time groups, times, resource types, event groups,
events, and constraints. These are added by the functions that create them, to be given later.

3.2. Visiting and retrieving the components of instances

To visit all the time groups of an instance, or retrieve a time group byid, call

int KheInstanceTimeGroupCount(KHE_INSTANCE ins);
KHE_TIME_GROUP KheInstanceTimeGroup(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveTimeGroup(KHE_INSTANCE ins, char *id,
KHE_TIME_GROUP *tg);

The first returns the number of time groups inins. The second returns thei’th time group,
counting from 0 as usual in C. The third searches for a time group ofins with the givenid; if
found, it sets*tg to it and returnstrue, otherwise it leaves*tg unchanged and returnsfalse.

Only time groups created by calls toKheTimeGroupMake (Section 3.4.1) made by the user
may be accessed by callingKheInstanceTimeGroupCount, KheInstanceTimeGroup, and
KheInstanceRetrieveTimeGroup. Some other time groups are created automatically by KHE,
but they are accessed in other ways. They include one time group for each time, holding just that
time; a time group holding the full set of times of the instance; and an empty time group. These
last two are returned by

KHE_TIME_GROUP KheInstanceFullTimeGroup(KHE_INSTANCE ins);
KHE_TIME_GROUP KheInstanceEmptyTimeGroup(KHE_INSTANCE ins);

Time groups may also be created during solving (Section 4.4). Those too are not accessible via
KheInstanceTimeGroupCount, KheInstanceTimeGroup, or KheInstanceRetrieveTimeGroup.

To visit all the times of an instance, or retrieve a time by Id, call

int KheInstanceTimeCount(KHE_INSTANCE ins);
KHE_TIME KheInstanceTime(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveTime(KHE_INSTANCE ins, char *id, KHE_TIME *t);

These work in the same way as the functions above for visiting and retrieving time groups.

14 Chapter 3. Instances

To visit all the resource types of an instance, or retrieve a resource type byid, call

int KheInstanceResourceTypeCount(KHE_INSTANCE ins);
KHE_RESOURCE_TYPE KheInstanceResourceType(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveResourceType(KHE_INSTANCE ins, char *id,
KHE_RESOURCE_TYPE *rt);

These work in the same way as the corresponding functions for visiting and retrieving time
groups and times. Resource types have operations which give access to their resource groups and
resources. For convenience there are also operations

bool KheInstanceRetrieveResourceGroup(KHE_INSTANCE ins, char *id,
KHE_RESOURCE_GROUP *rg);

bool KheInstanceRetrieveResource(KHE_INSTANCE ins, char *id,
KHE_RESOURCE *r);

which search all the resource types ofins for a resource group or resource with the givenid. It
is also possible to bypass resource types and visit all resources directly, by calling

int KheInstanceResourceCount(KHE_INSTANCE ins);
KHE_RESOURCE KheInstanceResource(KHE_INSTANCE ins, int i);

in the usual way. The resources will be visited in the order they were created.

To visit all the event groups of an instance, or to retrieve an event group byid, call

int KheInstanceEventGroupCount(KHE_INSTANCE ins);
KHE_EVENT_GROUP KheInstanceEventGroup(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveEventGroup(KHE_INSTANCE ins, char *id,

KHE_EVENT_GROUP *eg);

These work in the usual way. Some event groups are created automatically by KHE, including
one event group for each event, holding just that event; an event group holding the full set of
events of the instance; and an empty event group. These last two are returned by

KHE_EVENT_GROUP KheInstanceFullEventGroup(KHE_INSTANCE ins);
KHE_EVENT_GROUP KheInstanceEmptyEventGroup(KHE_INSTANCE ins);

Automatically defined event groups are not visited byKheInstanceEventGroupCount and
KheInstanceEventGroup. Even more event groups may be created during solving. Those also
do not appear in the list of event groups of the original instance.

To visit the events of an instance, or to retrieve an event byid, call

int KheInstanceEventCount(KHE_INSTANCE ins);
KHE_EVENT KheInstanceEvent(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveEvent(KHE_INSTANCE ins, char *id, KHE_EVENT *e);

To visit the event resources of an instance, call

int KheInstanceEventResourceCount(KHE_INSTANCE ins);
KHE_EVENT_RESOURCE KheInstanceEventResource(KHE_INSTANCE ins, int i);

3.2. Visiting and retrieving the components of instances 15

The event resources may also be visited via their events.

To visit all the constraints of an instance, or to retrieve a constraint byid, call

int KheInstanceConstraintCount(KHE_INSTANCE ins);
KHE_CONSTRAINT KheInstanceConstraint(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveConstraint(KHE_INSTANCE ins, char *id,

KHE_CONSTRAINT *c);

These operations work in the usual way.

3.3. Constraint density

Within a given instance, thedensityof a given kind of constraint is the number of applications
of constraints of that kind, divided by the number of places where constraints of that kind could
apply. The density is a floating-point number, usually between 0 and 1, although it can exceed
1, since nothing prevents several constraints of the same kind from applying at one place.

In support of this concept KHE offers functions

int KheInstanceConstraintDensityCount(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

int KheInstanceConstraintDensityTotal(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

returning the number of applications of constraints of kindconstraint_tag in ins (thedensity
count), and the number of places where constraints of that kind could apply inins (thedensity
total). The density is the quotient of these two quantities, unless the density total is 0, in which
case the density is undefined, although it may be reported as 0.0 in that case. Precise definitions
of the density count and density total are given for each kind of constraint in Section 3.7.

The first time either of these functions is called for any value ofconstraint_tag, the
results of both functions are calculated for all values ofconstraint_tag and stored inins. So
multi-threaded calls on these functions are only safe if one single-threaded call is made first.

3.4. Times

3.4.1. Time groups

A time group, representing a set of times, is created and added to an instance by calling

bool KheTimeGroupMake(KHE_INSTANCE ins, KHE_TIME_GROUP_KIND kind,
char *id, char *name, KHE_TIME_GROUP *tg);

This works like all creations of named objects do in KHE: ifid is non-NULL andins already
contains a time group with thisid, it returnsfalse and creates nothing; otherwise it creates a
new time group, sets*tg to point to it, and returnstrue.

Parameterkind has type

16 Chapter 3. Instances

typedef enum {
KHE_TIME_GROUP_KIND_ORDINARY,
KHE_TIME_GROUP_KIND_WEEK,
KHE_TIME_GROUP_KIND_DAY

} KHE_TIME_GROUP_KIND;

KHE_TIME_GROUP_KIND_ORDINARY is the usual kind. The XML format allows some time groups
to be referred to as Weeks and Days, although they do not differ from other time groups in any
other way. ValuesKHE_TIME_GROUP_KIND_WEEK andKHE_TIME_GROUP_KIND_DAY record this
usage; they matter only when reading and writing XML files, not when solving.

Theid andname parameters may beNULL; they are used only when writing XML, when
they represent the compulsory Id and Name attributesof the time group. Irrespective of the order
time groups are created in, to conform with the XML rules,when writing time groups KHE writes
days first, then weeks, then ordinary time groups; it does not write predefined time groups.

To set and retrieve the back pointer oftg, call

void KheTimeGroupSetBack(KHE_TIME_GROUP tg, void *back);
void *KheTimeGroupBack(KHE_TIME_GROUP tg);

in the usual way. The other attributes may be retrieved by calling

KHE_INSTANCE KheTimeGroupInstance(KHE_TIME_GROUP tg);
KHE_TIME_GROUP_KIND KheTimeGroupKind(KHE_TIME_GROUP tg);
char *KheTimeGroupId(KHE_TIME_GROUP tg);
char *KheTimeGroupName(KHE_TIME_GROUP tg);

Initially the time group is empty. There are several operations for changing its set of times:

void KheTimeGroupAddTime(KHE_TIME_GROUP tg, KHE_TIME t);
void KheTimeGroupSubTime(KHE_TIME_GROUP tg, KHE_TIME t);
void KheTimeGroupUnion(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);
void KheTimeGroupIntersect(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);
void KheTimeGroupDifference(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);

These add a time totg, remove a time, replacetg’s set of times with its union or intersecton
with the set of times oftg2, and with the difference oftg’s times andtg2’s times. The first two
operations are treated as set operations, soKheTimeGroupAddTime does nothing ift is already
present, andKheTimeGroupSubTime does nothing ift is not already present.

Changes to the time groups of an instance are not allowed afterKheInstanceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct time
groups for their own use (Section 4.4).

There are also predefined time groups, for the full set of times of the instance and for the
empty set of times (Section 3.2), and one for each time of the instance, containing just that time
(Section 3.4). These time groups haveKHE_TIME_GROUP_KIND_ORDINARY for kind andNULL for
Id and Name. Their times may not be changed. They are never read or written; if time groups
with their values are wanted in an instance, the user must define them.

The times of any time group are visited by

3.4. Times 17

int KheTimeGroupTimeCount(KHE_TIME_GROUP tg);
KHE_TIME KheTimeGroupTime(KHE_TIME_GROUP tg, int i);

These work in the same way as the visit functions for instances above. And

bool TimeGroupContains(KHE_TIME_GROUP tg, KHE_TIME t);
bool KheTimeGroupEqual(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
bool KheTimeGroupSubset(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
bool KheTimeGroupDisjoint(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);

returntrue if tg containst, if tg1 andtg2 contain the same times, if the times oftg1 are a
subset of the timesoftg2, and if the timesoftg1 andtg2 are disjoint. These testsuse bit vectors,
so are quite fast. There is nothing to prevent two distinct time groups from containing the same
times, so the C equality operator should never be applied to time groups.

Here are some miscellaneous time group functions. Function

bool KheTimeGroupIsCompact(KHE_TIME_GROUP tg);

returnstrue whentg is compact: when it is empty or there are no gaps in its times, taken in
chronological order. Function

int KheTimeGroupOverlap(KHE_TIME_GROUP tg, KHE_TIME time, int durn);

returns the number of times that a meet starting attime with durationdurn would overlap with
tg. And function

KHE_TIME_GROUP KheTimeGroupNeighbour(KHE_TIME_GROUP tg, int delta);

returns a predefined time group containingtg’s times shifteddelta places, wheredelta may be
any integer. The time group will be empty ifdelta is such a large (positive or negative) number
that all the times are shifted off the cycle. For example,KheTimeGroupNeighbour(tg, 0) is
tg, andKheTimeGroupNeighbour(tg, -1) holds the times that immediately precedetg’s.

As an aid to debugging, function

void KheTimeGroupDebug(KHE_TIME_GROUP tg, int verbosity,
int indent, FILE *fp);

printstg ontofp with the given verbosity and indent, as described for debug functions in general
in Section 1.3. Verbosity 1 prints the Id of the time group in some cases, and the first and last
time (at most) enclosed in braces in others.

3.4.2. Times

A time is created and added to an instance by calling

bool KheTimeMake(KHE_INSTANCE ins, char *id, char *name,
bool break_after, KHE_TIME *t);

As usual, afalse return value is only possible whenid is non-NULL and already in use by another
time object. Parametersid andname may beNULL, and are used only when writing XML.

18 Chapter 3. Instances

Parameterbreak_after says that a break occurs after this time, so that, for example,
an event of duration 2 could not begin here. This is not an XML feature; when representing
XML this parameter should always befalse. Within KHE itself it is used only by function
KheSolnSplitCycleMeet and its associated operations (Section 4.8.3).

To set and retrieve the back pointer of a time, call functions

void KheTimeSetBack(KHE_TIME t, void *back);
void *KheTimeBack(KHE_TIME t);

as usual. The other attributes are retrieved by

KHE_INSTANCE KheTimeInstance(KHE_TIME t);
char *KheTimeId(KHE_TIME t);
char *KheTimeName(KHE_TIME t);
bool KheTimeBreakAfter(KHE_TIME t);
int KheTimeIndex(KHE_TIME t);

KheTimeIndex returns an automatically generated index number fortime: 0 for the first time
created,1for the second,and so on. The times of an instance form a sequence,not a set, and must
be created in chronological order. This is unlike resources, events, etc., whose order of creation
does not matter. The XML format requires times to appear in this same order. Function

bool KheTimeHasNeighbour(KHE_TIME t, int delta);

returnstrue when there is a time whose index is the index oft plusdelta, wheredelta may be
any integer, negative, zero, or positive. Function

KHE_TIME KheTimeNeighbour(KHE_TIME t, int delta);

returns this time when it exists, and aborts when it does not.

When calculating with the chronological ordering of time—deciding whether two meets
are adjacent, and so on—it is often best to callKheTimeIndex to obtain the indexes of the times
involved and work with them. However, these functions may help to avoid time indexes:

bool KheTimeLE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeLT(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeGT(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeGE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeEQ(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeNE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);

They returntrue whenKheTimeNeighbour(time1, delta1)’s time index is less than or equal
to KheTimeNeighbour(time2, delta2)’s, and so on. The neighbours need not exist; the func-
tions simply convert times into indexes and perform the indicated integer operations. Also,

int KheTimeIntervalsOverlap(KHE_TIME time1, int durn1,
KHE_TIME time2, int durn2);

takes two time intervals, one beginning attime1 with durationdurn1, the other beginning at

3.4. Times 19

time2 with durationdurn2, and returns the number of times lying in both intervals. For example,
the result will be 0 when either interval ends before the other begins. Similarly,

bool KheTimeIntervalsOverlapInterval(KHE_TIME time1, int durn1,
KHE_TIME time2, int durn2, KHE_TIME *overlap_time, int *overlap_durn);

returnstrue when KheTimeIntervalsOverlap is non-zero, and sets*overlap_time and
*overlap_durn to the starting time and duration of the overlap; otherwise it returnsfalse.

For convenience, a time group is created for each time, holding just that time. Function

KHE_TIME_GROUP KheTimeSingletonTimeGroup(KHE_TIME t);

returns this predefined time group. It cannot be changed.

3.5. Resources

3.5.1. Resource types

A resource type, representing one broad category of resources, such as the teachers or rooms, is
created and added to an instance in the usual way by the call

bool KheResourceTypeMake(KHE_INSTANCE ins, char *id, char *name,
bool has_partitions, KHE_RESOURCE_TYPE *rt);

Attributesid andname represent the optional XML Id and Name attributes as usual. Its back
pointer may be set and retrieved by

void KheResourceTypeSetBack(KHE_RESOURCE_TYPE rt, void *back);
void *KheResourceTypeBack(KHE_RESOURCE_TYPE rt);

as usual, and its other attributes may be retrieved by

KHE_INSTANCE KheResourceTypeInstance(KHE_RESOURCE_TYPE rt);
int KheResourceTypeIndex(KHE_RESOURCE_TYPE rt);
char *KheResourceTypeId(KHE_RESOURCE_TYPE rt);
char *KheResourceTypeName(KHE_RESOURCE_TYPE rt);
bool KheResourceTypeHasPartitions(KHE_RESOURCE_TYPE rt);

KheResourceTypeIndex(rt) returns the index ofrt in the enclosing instance, that is, the value
of i for whichKheInstanceResourceType returnsrt.

Attributehas_partitions is not an XML feature, and should be given valuefalse when
reading an XML instance. It indicates that there is a unique partitioning of the resources of this
resource type, defined by a collection of specially marked resource groups calledpartitions. For
example, the resources of a student groups resource type might be partitioned into forms, or the
resources of a teachers resource type might be partitioned into faculties. When a resource type
has partitions, each of its resources must lie in exactly one partition.

Each resource type contains an arbitrary number of resource groups, representing sets
of resources of its type. Resource groups are added to a resource type automatically by the

20 Chapter 3. Instances

functions that create them. To visit all the resource groups of a given resource type, or to retrieve
a resource group with a givenid from a given resource type, call

int KheResourceTypeResourceGroupCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypeResourceGroup(KHE_RESOURCE_TYPE rt,
int i);

bool KheResourceTypeRetrieveResourceGroup(KHE_RESOURCE_TYPE rt,
char *id, KHE_RESOURCE_GROUP *rg);

These work in the usual way. The partitions of a resource type may be visited by

int KheResourceTypePartitionCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypePartition(KHE_RESOURCE_TYPE rt, int i);

KheResourceTypePartitionCount returns 0 whenrt does not have partitions.

Some resource groups are made automatically by KHE, including one resource group for
each resource, holding just that resource; a resource group holding the full set of resources of
the resource type; and an empty resource group. These last two are returned by

KHE_RESOURCE_GROUP KheResourceTypeFullResourceGroup(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypeEmptyResourceGroup(KHE_RESOURCE_TYPE rt);

Automatically made resource groups are not visited byKheResourceTypeResourceGroupCount

and KheResourceTypeResourceGroup. Even more resource groups may be created during
solving, but those do not appear in the list of resource groups of the original instance.

To visit all the resources of a given resource type, or to retrieve a resource of a given
resource type byid, call

int KheResourceTypeResourceCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE KheResourceTypeResource(KHE_RESOURCE_TYPE rt, int i);
bool KheResourceTypeRetrieveResource(KHE_RESOURCE_TYPE rt,
char *id, KHE_RESOURCE *r);

in the usual way.

Two functions, which should be called only after the instance is complete, are offered for
summarising how complex the task of assigning resources of a given type is. The values of
both functions are calculated as the instance is built and kept, so one call on either function costs
practically nothing. The first is

bool KheResourceTypeDemandIsAllPreassigned(KHE_RESOURCE_TYPE rt);

It returnstrue if every event resource of typert is preassigned. In practice this is always true
for student group resource types, and often for teachers, but rarely for rooms. The second is

int KheResourceTypeAvoidSplitAssignmentsCount(KHE_RESOURCE_TYPE rt);

It returns the number of points of application of avoid split assignmentsconstraints that constrain
event resources of this type. The larger this number is, the more difficult the resource assignment
problem for resources of this type is likely to be.

3.5. Resources 21

3.5.2. Resource groups

A resource group is created and added to a resource type by the call

bool KheResourceGroupMake(KHE_RESOURCE_TYPE rt, char *id, char *name,
bool is_partition, KHE_RESOURCE_GROUP *rg)

This function returnsfalse only whenid is non-NULL and some other resource group of type
rt has thisid. The resource group lies in resource typert with the usualid andname attributes.
Attributeis_partition is not an XML feature, and should be given valuefalse when reading
an XML instance. It may betrue only if attributehas_partitions of the resource group’s
resource type istrue, in which case it indicates that this resource group is a partition, that is, one
of those resource groups which define the unique partitioning of the resources of that type.

To set and retrieve the back pointer of a resource group, call

void KheResourceGroupSetBack(KHE_RESOURCE_GROUP rg, void *back);
void *KheResourceGroupBack(KHE_RESOURCE_GROUP rg);

as usual. The other attributes may be retrieved by calling

KHE_RESOURCE_TYPE KheResourceGroupResourceType(KHE_RESOURCE_GROUP rg);
KHE_INSTANCE KheResourceGroupInstance(KHE_RESOURCE_GROUP rg);
char *KheResourceGroupId(KHE_RESOURCE_GROUP rg);
char *KheResourceGroupName(KHE_RESOURCE_GROUP rg);
bool KheResourceGroupIsPartition(KHE_RESOURCE_GROUP rg);

KheResourceGroupInstance returns the resource group’s resource type’s instance.

Initially the resource group is empty. Several operations change its resources:

void KheResourceGroupAddResource(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
void KheResourceGroupSubResource(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
void KheResourceGroupUnion(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

void KheResourceGroupIntersect(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

void KheResourceGroupDifference(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

These addr to rg, remover, replacerg’s set of resources with its union or intersecton with
the set of resources ofrg2, and with the difference ofrg’s resources andrg2’s resources. All
the resources and resource groups involved must be of the same type. The first two operations
are treated as set operations, soKheResourceGroupAddResource does nothing ifr is already
present, andKheResourceGroupSubResource does nothing ifr is not already present.

These functions may not be used to alter resource groups which define partitions. When a
resource type has partitions, each of its resources is added to its partition when it is created.

Changes to the resource groups of an instance are not allowed afterKheInstanceMakeEnd

is called, since instances are immutable after that point. However, solutions may construct
resource groups for their own use (Section 4.4).

22 Chapter 3. Instances

There are also predefined resource groups, for the complete set of resources of each
resource type and the empty set of resources of each type (see Section 3.5.1 for those), and one
for each resource of the instance, containing just that resource (Section 3.5). The resources in
predefined resource groups may not be changed.

The resources of any resource group are visited by

int KheResourceGroupResourceCount(KHE_RESOURCE_GROUP rg);
KHE_RESOURCE KheResourceGroupResource(KHE_RESOURCE_GROUP rg, int i);

These work in the usual way. And

bool KheResourceGroupContains(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
bool KheResourceGroupEqual(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

bool KheResourceGroupSubset(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

bool KheResourceGroupDisjoint(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

returntrue if rg containsr, if rg1 andrg2 contain the same resources, if the resources ofrg1

form a subset of the resourcesofrg2, and if the resourcesofrg1 andrg2 are disjoint. These tests
use bit vectors, so are quite fast. Two distinct resource groups may contain the same resources,
so it is best not to apply the C equality operator to resource groups.

After a resource group is finalized, function

KHE_RESOURCE_GROUP KheResourceGroupPartition(KHE_RESOURCE_GROUP rg);

may be called. Ifrg is non-empty and its resources share a partition, the result is that partition,
otherwise the result isNULL. SinceKheResourceGroupPartition is called when monitoring
evenness, for efficiency the result is precomputed and stored inrg when it is finalized.

As an aid to debugging, function

void KheResourceGroupDebug(KHE_RESOURCE_GROUP rg, int verbosity,
int indent, FILE *fp);

printsrg ontofp with the given verbosity and indent, as described for debug functions in general
in Section 1.3. Verbosity 1prints the Id of the resource group in some cases, and the first and last
resource (at most) enclosed in braces in others.

3.5.3. Resources

A resource is created and added to its resource type by the call

bool KheResourceMake(KHE_RESOURCE_TYPE rt, char *id, char *name,
KHE_RESOURCE_GROUP partition, KHE_RESOURCE *r);

A resource type is compulsory;id andname are the usual optional XML Id and Name.

Unlike KheResourceGroupMake, which returnsfalse when itsid parameter is non-NULL

3.5. Resources 23

and some other resource group of the same resource type already has that Id,KheResourceMake

returnsfalse and sets*r toNULL when itsid parameter is non-NULL and some other resourceof
any resource typealready has its Id. This is because predefined event resources are permitted to
identify a resource by its Id alone, and so resource Ids must be unique among all the resources of
the instance, not merely among resources of a given type.

The partition attribute is not an XML feature, and should be given valueNULL when
reading an XML instance. It must be non-NULL if and only if rt’s has_partitions attribute is
true, in which case its value must be a resource group of typert whoseis_partition attribute
istrue, and it indicates that the new resource lies in the specified partition. The new resource will
be added to the partition by this function, and no separate call toResourceGroupAddResource

to do this is necessary or even permitted.

To set and retrieve the back pointer of a resource, call

void KheResourceSetBack(KHE_RESOURCE r, void *back);
void *KheResourceBack(KHE_RESOURCE r);

as usual. The other attributes may be retrieved by the calls

KHE_INSTANCE KheResourceInstance(KHE_RESOURCE r);
int KheResourceInstanceIndex(KHE_RESOURCE r);
KHE_RESOURCE_TYPE KheResourceResourceType(KHE_RESOURCE r);
int KheResourceResourceTypeIndex(KHE_RESOURCE r);
char *KheResourceId(KHE_RESOURCE r);
char *KheResourceName(KHE_RESOURCE r);
KHE_RESOURCE_GROUP KheResourcePartition(KHE_RESOURCE r);

KheResourceInstance returns the enclosing instance, andKheResourceInstanceIndex
returnsr’s index in that instance (the value ofi for which KheInstanceResource(ins, i)

returns r). KheResourceResourceType returns the resource type ofr, and
KheResourceResourceTypeIndex returnsr’s index in that resource type (the value ofi for
which KheResourceTypeResource(rt, i) returnsr). Unlike the index numbers of times,
which indicate chronological order, the index numbers of resources have no significance to the
specification of the instance. They are made available only for convenience.

A resource group is created automatically for each resourcer, holding justr. Function

KHE_RESOURCE_GROUP KheResourceSingletonResourceGroup(KHE_RESOURCE r);

returns this resource group. This resource group may not be changed.

The event resources thatr is preassigned to are made available by calling

int KheResourcePreassignedEventResourceCount(KHE_RESOURCE r);
KHE_EVENT_RESOURCE KheResourcePreassignedEventResource(KHE_RESOURCE r,
int i);

Naturally, the entire instance has to be loaded for these to work correctly. At present there is no
way to visit events containing event resource groups containing a given resource.

Some constraints apply to resources. When these constraints are created, they are added to

24 Chapter 3. Instances

the resources they apply to. To visit all the constraints applicable to a given resource, call

int KheResourceConstraintCount(KHE_RESOURCE r);
KHE_CONSTRAINT KheResourceConstraint(KHE_RESOURCE r, int i);

There may be any number of avoid clashes constraints, avoid unavailable times constraints,
limit idle times constraints, cluster busy times constraints, limit busy times constraints, and limit
workload constraints, in any order. There are also

KHE_TIME_GROUP KheResourceHardUnavailableTimeGroup(KHE_RESOURCE r);
KHE_TIME_GROUP KheResourceHardAndSoftUnavailableTimeGroup(
KHE_RESOURCE r);

KheResourceHardUnavailableTimeGroup returns the union of the domains of the required
unavailable timesconstraintsofr. KheResourceHardAndSoftUnavailableTimeGroup does the
same, except that the domains of all unavailable times constraints are included. Both functions
return the empty time group when there are no applicable constraints.

These two public functions are used by KHE when calculating lower bounds:

bool KheResourceHasAvoidClashesConstraint(KHE_RESOURCE r, KHE_COST cost);
int KheResourcePreassignedEventsDuration(KHE_RESOURCE r, KHE_COST cost);

KheResourceHasAvoidClashesConstraint returnstrue if some avoid clashes constraint of
combined weight greater thancost applies tor; KheResourcePreassignedEventsDuration
returns the total duration of events which are both preassignedr and either preassigned a time
or subject to an assign time constraint of combined cost greater thancost.

As an aid to debugging, function

void KheResourceDebug(KHE_RESOURCE r, int verbosity,
int indent, FILE *fp)

produces a debug print of resourcer onto filefp with the given verbosity and indent,as described
for debug functions in general in Section 1.3.

3.5.4. Resource layers

A resource layeris the set of events containing a preassignment of a given resourcer which is
the subject of a hard avoid clashes constraint. A resource layer’s events may not overlap in time:
they must spread horizontally across the timetable, hence the term ‘layer’. Within a solution, the
meets derived from the events of one resource layer form asolution layer, or justlayer.

Layers are important in high school timetabling, at least for student group resources, since
the total duration of their events is often close to the total duration of the cycle, and hence these
events strongly constrain each other. The following operations are available on the layer ofr:

int KheResourceLayerEventCount(KHE_RESOURCE r);
KHE_EVENT KheResourceLayerEvent(KHE_RESOURCE r, int i);
int KheResourceLayerDuration(KHE_RESOURCE r);

The first two work together in the usual way to return the events of the resource layer. They

3.5. Resources 25

are sorted by increasing event index. If the resource is not preassigned to any events, or
has no required avoid clashes constraint, thenKheResourceLayerEventCount returns 0.
KheResourceLayerDuration returns the total duration of the events of the layer. In the unlike-
ly case thatr is assigned to the same event twice, the event still appears only once in the list of
events of the layer, and contributes its duration only once to the layer duration.

3.5.5. Resource similarity and inferring resource partitions

Following the general approach introduced in Section 1.3, KHE offers function

bool KheResourceSimilar(KHE_RESOURCE r1, KHE_RESOURCE r2);

which returnstrue when resourcesr1 andr2 are similar: when they lie in similar resource
groups and are preassigned to similar events. The exact definition is given below.

KheResourceSimilar often succeeds in recognising that student group resources from the
same form are similar, and that teacher resources from the same faculty are similar. However, it
needs positive evidence to work with. For example,when there are no student or teacher resource
groups, and each event contains one preassigned student group resource,one preassigned teacher
resource, and a request for one ordinary classroom, there is no basis for grouping the resources
and each will be considered similar only to itself.

Resource partitions (Section 3.5.1) are not part of the XML format. But they are useful
when solving, soKheInstanceMakeEnd has aninfer_resource_partitions parameter which,
whentrue, causes partitions to be added to each resource typert that lacks them. Afterwards,
KheResourceTypeHasPartitions(rt) will be true, KheResourceGroupIsPartition(rg)

will be true for some of the resource groups ofrt, and KheResourcePartition(r) will
return a non-NULL partition for each resourcer. All this is exactly as though the partitions had
been entered explicitly, except that any specially created resource groups will not be visited by
KheResourceTypeResourceGroupCount andKheResourceTypeResourceGroup.

The algorithm for inferring resource partitions is a simple application of resource similarity.
Build a graph in which each node corresponds to one resource,and an edge joins two nodes when
their resources are similar. The partitions are the connected components of this graph.

The details of howKheResourceSimilar works are not very important, but, for the record,
here they are. To decide whether two resources are similar or not, two non-negative integers,
the positive evidenceand thenegative evidence, are calculated as explained below. The two
resources are similar if the positive evidence exceeds the negative evidence by at least two.

Evidence comes from two sources: the resource groups that the resources lie in, and the
events that the resources are preassigned to. A resource group isadmissible(i.e. admissible
as evidence) if its number of resources is at least two and at most one third of the number
of resources of its resource type. Inadmissible resource groups are considered to contain no
useful information and are ignored. Each case of an admissible resource group containing both
resources counts as two units of positive evidence,and each case of an admissible resource group
containing one resource but not the other counts as one unit of negative evidence.

A definition of what it means for two events to be similar appears in Section 3.6.2. Each
case of an event preassigned one resource being similar to an event preassigned the other counts
as two units of positive evidence. Each case of an event preassigned one resource for which there

26 Chapter 3. Instances

is no similar event preassigned the other counts as one unit of negative evidence. The cases are
distinct, in the sense that each event participates in at most one case.

3.6. Events

3.6.1. Event groups

An event group, representing a set of events, is created and added to an instance by calling

bool KheEventGroupMake(KHE_INSTANCE ins, KHE_EVENT_GROUP_KIND kind,
char *id, char *name, KHE_EVENT_GROUP *eg);

As usual, it returnsfalse only whenid is non-NULL andins already contains an event group
with thisid. To set and retrieve the back pointer, call

void KheEventGroupSetBack(KHE_EVENT_GROUP eg, void *back);
void *KheEventGroupBack(KHE_EVENT_GROUP eg);

as usual. The other attributes may be retrieved by the calls

KHE_INSTANCE KheEventGroupInstance(KHE_EVENT_GROUP eg);
KHE_EVENT_GROUP_KIND KheEventGroupKind(KHE_EVENT_GROUP eg);
char *KheEventGroupId(KHE_EVENT_GROUP eg);
char *KheEventGroupName(KHE_EVENT_GROUP eg);

The event group kind is a value of type

typedef enum {
KHE_EVENT_GROUP_KIND_COURSE,
KHE_EVENT_GROUP_KIND_ORDINARY

} KHE_EVENT_GROUP_KIND;

The XML format allows some event groups to be referred to as Courses, although they do not
differ from other event groups in any other way. Thekind attribute records this distinction; it is
only used by KHE when reading and writing XML files, not when solving.

Irrespective of the order event groups are created in, to conform with the XML rules, when
writing event groups KHE writes courses first, then ordinary event groups.

Initially the event group is empty. There are several operations for changing its events:

void KheEventGroupAddEvent(KHE_EVENT_GROUP eg, KHE_EVENT e);
void KheEventGroupSubEvent(KHE_EVENT_GROUP eg, KHE_EVENT e);
void KheEventGroupUnion(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);
void KheEventGroupIntersect(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);
void KheEventGroupDifference(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);

These add an event toeg, remove an event, replaceeg’s set of events with its union or intersecton
with the set of events ofeg2, and with the difference ofeg’s events andeg2’s events. The first
two operations are treated as set operations, soKheEventGroupAddEvent does nothing ife is

3.6. Events 27

already present, andKheEventGroupSubEvent does nothing ife is not already present.

Changes to the event groups of an instance are not allowed afterKheInstanceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct event
groups for their own use (Section 4.4).

There are also predefined event groups, for the complete set of events of the instance and
for the empty set of events (Section 3), and one for each event of the instance, containing just
that event (Section 3.6). The events in predefined event groups may not be changed.

To visit the events of an event group, functions

int KheEventGroupEventCount(KHE_EVENT_GROUP eg);
KHE_EVENT KheEventGroupEvent(KHE_EVENT_GROUP eg, int i);

are used in the usual way. And

bool KheEventGroupContains(KHE_EVENT_GROUP eg, KHE_EVENT e);
bool KheEventGroupEqual(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);
bool KheEventGroupSubset(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);
bool KheEventGroupDisjoint(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);

returntrue if eg containse, if eg1 andeg2 contain the same events, if the events ofeg1 are
a subset of the events ofeg2, and if the events ofeg1 andeg2 are disjoint. These tests use bit
vectors, so are quite fast. There is nothing to prevent two distinct event groups from containing
the same events, so the C equality operator should never be applied to event groups.

Some constraints apply to event groups. When these are created, they are added to the event
groups they apply to. To visit all the constraints that apply to a given event group, call

int KheEventGroupConstraintCount(KHE_EVENT_GROUP eg);
KHE_CONSTRAINT KheEventGroupConstraint(KHE_EVENT_GROUP eg, int i);

There may be any number of avoid split assignments constraints, spread events constraints, and
link events constraints, in any order.

Function

void KheEventGroupDebug(KHE_EVENT_GROUP eg, int verbosity,
int indent, FILE *fp);

produces a debug print ofeg ontofp with the given verbosity and indent, in the usual way.

3.6.2. Events

An event is created and added to an instance by calling

bool KheEventMake(KHE_INSTANCE ins, char *id, char *name, char *color,
int duration, int workload, KHE_TIME preassigned_time, KHE_EVENT *e);

This works in the usual way, returningfalse only if id is non-NULL and is already used by an
existing event ofins. Parametercolor is an optional color to be used when printing the event
in timetables. If non-NULL, its value must be a legal Web colour ("#7CFC00" for example, or a

28 Chapter 3. Instances

colour name). A duration and workload are compulsory (the XML specification states that a
missing workload is taken to be equal to the duration), but the preassigned time may beNULL.
The back pointer may be set and retrieved by

void KheEventSetBack(KHE_EVENT e, void *back);
void *KheEventBack(KHE_EVENT e);

as usual, and the other attributes may be retrieved by

KHE_INSTANCE KheEventInstance(KHE_EVENT e);
char *KheEventId(KHE_EVENT e);
char *KheEventName(KHE_EVENT e);
char *KheEventColor(KHE_EVENT e);
int KheEventDuration(KHE_EVENT e);
int KheEventWorkload(KHE_EVENT e);
KHE_TIME KheEventPreassignedTime(KHE_EVENT e);

There are two other useful query functions. First,

int KheEventIndex(KHE_EVENT e);

returns the index number ofe (0 for the first event inserted, 1 for the next, etc.). This number has
no timetabling significance; it is included merely for convenience. Second,

int KheEventDemand(KHE_EVENT e);

returns thedemandof e, defined to be its duration multiplied by the number of its event resources
(in matching terms, the number of demand tixels). This is included as a measure of the overall
bulk of an event, useful for sorting events by estimated difficulty of timetabling.

Each event also contains any number of event resources. These are added to their events as
they are created. To visit them, call

int KheEventResourceCount(KHE_EVENT e);
KHE_EVENT_RESOURCE KheEventResource(KHE_EVENT e, int i);

in the usual way. There is also

bool KheEventRetrieveEventResource(KHE_EVENT e, char *role,
KHE_EVENT_RESOURCE *er);

which attempts to retrieve an event resource frome with the givenrole. If there is such an event
resource, the function sets*er to that event resource and returnstrue. If not,*er is not changed
andfalse is returned.

Each event also contains any number of event resource groups. These are added to their
events as they are created. To visit them, call

int KheEventResourceGroupCount(KHE_EVENT e);
KHE_EVENT_RESOURCE_GROUP KheEventResourceGroup(KHE_EVENT e, int i);

as usual.

3.6. Events 29

For convenience, an event group is created for each event, holding just that event. Call

KHE_EVENT_GROUP KheEventSingletonEventGroup(KHE_EVENT event);

to retrieve this event group. Other events may not be added to it.

Some constraints apply to events. When these constraints are created, they are added to the
events they apply to. To visit all the constraints applicable to a given event, call

int KheEventConstraintCount(KHE_EVENT e);
KHE_CONSTRAINT KheEventConstraint(KHE_EVENT e, int i);

There may be any number of assign time constraints, prefer times constraints, split events
constraints, and distribute split events constraints, in any order, except that an event with a
preassigned time cannot have assign time constraints and prefer times constraints.

Following the general pattern given in Section 1.3, function

bool KheEventSimilar(KHE_EVENT e1, KHE_EVENT e2);

returnstrue if e1 ande2 are similar: if they have the same duration and similar event resources.
The exact definition is as follows. An event isadmissibleif it has one or more admissible event
resources. An event resource is admissible if its hard domain (reflecting its prefer resources con-
straints and any preassignment) is an admissible resource group, as defined in Section 3.5.5. An
event is always similar to itself. Two distinct events are similar if they are admissible, have equal
durations, and their admissible event resources (taken in any order) have equal hard domains.

There is also

bool KheEventMergeable(KHE_EVENT e1, KHE_EVENT e2, int slack);

which returnstrue if e1 ande2 could reasonably be considered to be split fragments of a single
larger event: if their event resources correspond, ignoring differences in the order in which they
appear in the two events. Ifslack is non-zero,KheEventMergeable returnstrue even if up
to slack event resources ine1 do not correspond with any event resource ine2 and vice versa.
Two event resources correspond when they have the same resource type, the same preassigned
resource, equal hard domains as returned byKheEventResourceHardDomain, and equal
hard-and-soft domains as returned byKheEventResourceHardAndSoftDomain. Like those two
functions,KheEventMergeable can only be called after the instance is complete.

A reasonable way to decide whether two events must be disjoint in time is to call

bool KheEventSharePreassignedResource(KHE_EVENT e1, KHE_EVENT e2,
KHE_RESOURCE *r);

If e1 ande2 share a preassigned resource which has a required avoid clashes constraint, this
function returnstrue and setsr to one such resource; otherwise it returnsfalse and setsr to
NULL. It should only be called after the instance is complete.

Function

void KheEventDebug(KHE_EVENT e, int verbosity, int indent, FILE *fp);

produces a debug print ofe ontofp with the given verbosity and indent, in the usual way.

30 Chapter 3. Instances

3.6.3. Event resources

An event resource is created and added to an event by the call

bool KheEventResourceMake(KHE_EVENT event, KHE_RESOURCE_TYPE rt,
KHE_RESOURCE preassigned_resource, char *role, int workload,
KHE_EVENT_RESOURCE *er);

This returnsfalse only when the optionalrole parameter (used only when writing XML) is
non-NULL and there is already an event resource withinevent with this value forrole. Parameter
preassigned_resource is an optional resource preassignment and may beNULL.

To set and retrieve the back pointer of an event resource, call

void KheEventResourceSetBack(KHE_EVENT_RESOURCE er, void *back);
void *KheEventResourceBack(KHE_EVENT_RESOURCE er);

as usual. The other attributes may be retrieved by

KHE_INSTANCE KheEventResourceInstance(KHE_EVENT_RESOURCE er);
int KheEventResourceInstanceIndex(KHE_EVENT_RESOURCE er);
KHE_EVENT KheEventResourceEvent(KHE_EVENT_RESOURCE er);
int KheEventResourceEventIndex(KHE_EVENT_RESOURCE er);
KHE_RESOURCE_TYPE KheEventResourceResourceType(KHE_EVENT_RESOURCE er);
KHE_RESOURCE KheEventResourcePreassignedResource(KHE_EVENT_RESOURCE er);
char *KheEventResourceRole(KHE_EVENT_RESOURCE er);
int KheEventResourceWorkload(KHE_EVENT_RESOURCE er);

KheEventResourceInstance returns the enclosing instance, and
KheEventResourceInstanceIndex is the index number ofer in that instance (the numberi for
which KheInstanceEventResource(ins, i) returnser). KheEventResourceEvent returns
the enclosing event, andKheEventResourceEventIndex is the index number ofer in that event
(the numberi such thatKheEventResource(e, i) returnser).

Some constraints apply to event resources. When these are created, they are added to the
event resources they apply to. To visit the constraints that apply to a given event resource, call

int KheEventResourceConstraintCount(KHE_EVENT_RESOURCE er);
KHE_CONSTRAINT KheEventResourceConstraint(KHE_EVENT_RESOURCE er, int i);

There may be any number of assign resources constraints,prefer resources constraints,and avoid
split assignments constraints, in any order, except that an event resource with a preassigned
resource cannot have assign resource constraints and prefer resources constraints. If thei’th
constraint is an avoid split assignments constraint, function

int KheEventResourceConstraintEventGroupIndex(KHE_EVENT_RESOURCE er, int i);

may be called to find the event group index within that constraint that containser. (It returns-1
if the i’th constraint is not an avoid split assignments constraint.)

After the instance is complete but not before, functions

3.6. Events 31

KHE_RESOURCE_GROUP KheEventResourceHardDomain(KHE_EVENT_RESOURCE er);
KHE_RESOURCE_GROUP KheEventResourceHardAndSoftDomain(KHE_EVENT_RESOURCE er);

return domains suited toer. The resource group returned byKheEventResourceHardDomain is
the intersection of the domains of the required prefer resources constraints, with weight greater
than 0, ofer and other event resources that share a required avoid split assignments constraint of
weight greater than 0 wither, either directly or indirectly via any number of intermediate event
resources. If any of these event resources is preassigned, then the singleton resource groups
containing the preassigned resources are intersected along with the other groups. The same is
true ofKheEventResourceHardAndSoftDomain, except that both hard and soft prefer resources
and avoid split assignments constraints are used, producing smaller domains in general.

These functions are not recommended for use when solving, sinceKheTaskTreeMake offers
a more sophisticated way of initializing the domains of tasks.KheEventResourceHardDomain

is used when deciding whether events are similar.

Function

void KheEventResourceDebug(KHE_EVENT_RESOURCE er, int verbosity,
int indent, FILE *fp);

produces a debug print ofer ontofp with the given verbosity and indent, in the usual way.

3.6.4. Event resource groups

An event resource group is created and added to an event by the call

KHE_EVENT_RESOURCE_GROUP KheEventResourceGroupMake(KHE_EVENT event,
KHE_RESOURCE_GROUP rg);

Its attributes may be retrieved by calling

KHE_EVENT KheEventResourceGroupEvent(KHE_EVENT_RESOURCE_GROUP erg);
KHE_RESOURCE_GROUP KheEventResourceGroupResourceGroup(
KHE_EVENT_RESOURCE_GROUP erg);

In addition to making a new event resource group object,KheEventResourceGroupMake

calls KheEventResourceMake once for each resource ofrg, with the resource for its
preassigned_resource parameter and the obviousvalues for itsother parameters. Thissatisfies
the semantic requirement that adding a resource group should be just like adding its resources
individually. These added event resources appear on the list of event resources of the event just
like other event resources; they can be distinguished from them only by calling

KHE_EVENT_RESOURCE_GROUP KheEventResourceEventResourceGroup(
KHE_EVENT_RESOURCE er);

which returns the event resource group that causeder to be created when there is one, andNULL

whener was created directly. For example, when printing XML files, KHE calls this function
once for each event resource, to decide whether it should be printed explicitly or omitted because
it is part of an event resource group. Function

32 Chapter 3. Instances

void KheEventResourceGroupDebug(KHE_EVENT_RESOURCE_GROUP erg,
int verbosity, int indent, FILE *fp);

produces a debug print oferg ontofp with the given verbosity and indent, in the usual way.

3.7. Constraints

Some attributes of constraints are common to all kinds of constraints; others vary from one kind
of constraint to another. Accordingly, KHE offers typeKHE_CONSTRAINT, which is the abstract
supertype of all kinds of constraints, and one subtype of this type for each kind of constraint.

To set and retrieve the back pointer of a constraint object, call

void KheConstraintSetBack(KHE_CONSTRAINT c, void *back);
void *KheConstraintBack(KHE_CONSTRAINT c);

as usual. To retrieve the other attributes common to all kinds of constraints, use functions

KHE_INSTANCE KheConstraintInstance(KHE_CONSTRAINT c);
char *KheConstraintId(KHE_CONSTRAINT c);
char *KheConstraintName(KHE_CONSTRAINT c);
bool KheConstraintRequired(KHE_CONSTRAINT c);
int KheConstraintWeight(KHE_CONSTRAINT c);
KHE_COST KheConstraintCombinedWeight(KHE_CONSTRAINT c);
KHE_COST_FUNCTION KheConstraintCostFunction(KHE_CONSTRAINT c);
int KheConstraintIndex(KHE_CONSTRAINT c);
KHE_CONSTRAINT_TAG KheConstraintTag(KHE_CONSTRAINT c);

KheConstraintInstance returns the instance;KheConstraintId and KheConstraintName

return the constraint’s Id and Name (as usual, these are optional in KHE, needed only when
writing XML). KheConstraintRequired is true when the Required attribute is true.

KheConstraintWeight is the weight given to violations of the constraint. As explained
in Section 6.1,KheConstraintCombinedWeight is similar, except that hard constraints are
weighted more heavily;KHE_COST is also defined there.KheConstraintCostFunction is the
cost function used when calculating the cost of deviations, of type

typedef enum {
KHE_SUM_STEPS_COST_FUNCTION,
KHE_STEP_SUM_COST_FUNCTION,
KHE_SUM_COST_FUNCTION,
KHE_SUM_SQUARES_COST_FUNCTION,
KHE_SQUARE_SUM_COST_FUNCTION

} KHE_COST_FUNCTION;

KheConstraintIndex returns an automatically generated index number forc: 0 for the first
constraint created, 1 for the second, and so on.KheConstraintTag is the type tag which
determines which concrete kind of constraint this is, with type

3.7. Constraints 33

typedef enum {
KHE_ASSIGN_RESOURCE_CONSTRAINT_TAG,
KHE_ASSIGN_TIME_CONSTRAINT_TAG,
KHE_SPLIT_EVENTS_CONSTRAINT_TAG,
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT_TAG,
KHE_PREFER_RESOURCES_CONSTRAINT_TAG,
KHE_PREFER_TIMES_CONSTRAINT_TAG,
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT_TAG,
KHE_SPREAD_EVENTS_CONSTRAINT_TAG,
KHE_LINK_EVENTS_CONSTRAINT_TAG,
KHE_ORDER_EVENTS_CONSTRAINT_TAG,
KHE_AVOID_CLASHES_CONSTRAINT_TAG,
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_IDLE_TIMES_CONSTRAINT_TAG,
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_BUSY_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_WORKLOAD_CONSTRAINT_TAG,
KHE_CONSTRAINT_TAG_COUNT

} KHE_CONSTRAINT_TAG;

The last value is not a valid tag; it counts the number of constraints, allowing code of the form

for(tag = 0; tag < KHE_CONSTRAINT_TAG_COUNT; tag++)
...

to be written which visits every tag, now and in the future.

The number of points of application of a constraint is returned by

int KheConstraintAppliesToCount(KHE_CONSTRAINT c);

For an assign resource constraint this is the total number of event resources; for a split events
constraint it is the total number of events plus the sizes of the event groups; and so on.

Given a tag, one can obtain a string representation of the constraint name by calling

char *KheConstraintTagShow(KHE_CONSTRAINT_TAG tag);
char *KheConstraintTagShowSpaced(KHE_CONSTRAINT_TAG tag);

The first returns an unspaced form ("AssignResourceConstraint" and so on), the second
returns a spaced form ("Assign Resource Constraint" and so on). There is also

KHE_CONSTRAINT_TAG KheStringToConstraintTag(char *str);

which implements the inverse function, from unspaced constraint names to constraint tags, and

char *KheCostFunctionShow(KHE_COST_FUNCTION cf);

which returns a cost function’s string representation, and

void KheConstraintDebug(KHE_CONSTRAINT c, int verbosity,
int indent, FILE *fp);

34 Chapter 3. Instances

which produces a debug print ofc ontofp with the given verbosity and indent.

The names of the concrete subtypes themselves are

KHE_ASSIGN_RESOURCE_CONSTRAINT
KHE_ASSIGN_TIME_CONSTRAINT
KHE_SPLIT_EVENTS_CONSTRAINT
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KHE_PREFER_RESOURCES_CONSTRAINT
KHE_PREFER_TIMES_CONSTRAINT
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KHE_SPREAD_EVENTS_CONSTRAINT
KHE_LINK_EVENTS_CONSTRAINT
KHE_ORDER_EVENTS_CONSTRAINT
KHE_AVOID_CLASHES_CONSTRAINT
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KHE_LIMIT_IDLE_TIMES_CONSTRAINT
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT
KHE_LIMIT_BUSY_TIMES_CONSTRAINT
KHE_LIMIT_WORKLOAD_CONSTRAINT

Downcasting and upcasting betweenKHE_CONSTRAINT and each of these subtypes,using C casts,
is a normal part of the use of KHE. Alternatively,since C casts can also be used for unsafe things,
explicit functions are offered for upcasting:

3.7. Constraints 35

KHE_CONSTRAINT KheFromAssignResourceConstraint(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_CONSTRAINT KheFromAssignTimeConstraint(
KHE_ASSIGN_TIME_CONSTRAINT c);

KHE_CONSTRAINT KheFromSplitEventsConstraint(
KHE_SPLIT_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromDistributeSplitEventsConstraint(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromPreferResourcesConstraint(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_CONSTRAINT KheFromPreferTimesConstraint(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidSplitAssignmentsConstraint(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromSpreadEventsConstraint(
KHE_SPREAD_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromLinkEventsConstraint(
KHE_LINK_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromOrderEventsConstraint(
KHE_ORDER_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidClashesConstraint(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidUnavailableTimesConstraint(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitIdleTimesConstraint(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromClusterBusyTimesConstraint(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitBusyTimesConstraint(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitWorkloadConstraint(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

and for downcasting:

36 Chapter 3. Instances

KHE_ASSIGN_RESOURCE_CONSTRAINT
KheToAssignResourceConstraint(KHE_CONSTRAINT c);

KHE_ASSIGN_TIME_CONSTRAINT
KheToAssignTimeConstraint(KHE_CONSTRAINT c);

KHE_SPLIT_EVENTS_CONSTRAINT
KheToSplitEventsConstraint(KHE_CONSTRAINT c);

KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KheToDistributeSplitEventsConstraint(KHE_CONSTRAINT c);

KHE_PREFER_RESOURCES_CONSTRAINT
KheToPreferResourcesConstraint(KHE_CONSTRAINT c);

KHE_PREFER_TIMES_CONSTRAINT
KheToPreferTimesConstraint(KHE_CONSTRAINT c);

KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KheToAvoidSplitAssignmentsConstraint(KHE_CONSTRAINT c);

KHE_SPREAD_EVENTS_CONSTRAINT
KheToSpreadEventsConstraint(KHE_CONSTRAINT c);

KHE_LINK_EVENTS_CONSTRAINT
KheToLinkEventsConstraint(KHE_CONSTRAINT c);

KHE_ORDER_EVENTS_CONSTRAINT
KheToOrderEventsConstraint(KHE_CONSTRAINT c);

KHE_AVOID_CLASHES_CONSTRAINT
KheToAvoidClashesConstraint(KHE_CONSTRAINT c);

KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KheToAvoidUnavailableTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_IDLE_TIMES_CONSTRAINT
KheToLimitIdleTimesConstraint(KHE_CONSTRAINT c);

KHE_CLUSTER_BUSY_TIMES_CONSTRAINT
KheToClusterBusyTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_BUSY_TIMES_CONSTRAINT
KheToLimitBusyTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_WORKLOAD_CONSTRAINT
KheToLimitWorkloadConstraint(KHE_CONSTRAINT c);

The downcasting functions check that their parameter is of the correct type, and abort if not.

3.7.1. Assign resource constraints

An assign resource constraint is created and added to an instance by

bool KheAssignResourceConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_ASSIGN_RESOURCE_CONSTRAINT *c);

This accepts the attributes common to all constraints, followed by an optionalrole, which is
specific to this kind of constraint. As usual, if successful it returnstrue, setting*c to the new
constraint; if not (which can only be becauseid is non-NULL and equal to the Id of an existing
constraint ofins), then it returnsfalse, setting*c to NULL.

3.7. Constraints 37

The attributes common to all kinds of constraints may be retrieved by upcasting to
KHE_CONSTRAINT and calling the relevant operations on that type. The attribute specific to assign
resources constraints may be retrieved by calling

char *KheAssignResourceConstraintRole(KHE_ASSIGN_RESOURCE_CONSTRAINT c);

Initially the constraint has no points of application. There are two ways to add them. The first
is to giveNULL for role, then add the event resources that this constraint applies to by calling

void KheAssignResourceConstraintAddEventResource(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT_RESOURCE er);

as often as necessary. It is an error to call this function whener contains a preassigned resource,
since assign resource constraints do not apply to event resources with preassigned resources. To
visit the event resources ofc, call

int KheAssignResourceConstraintEventResourceCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT_RESOURCE KheAssignResourceConstraintEventResource(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

as usual.

The second way to add event resources, used when reading XML files, is to give a non-NULL

value forrole, then add events and event groups. To add events and visit them, the calls are

void KheAssignResourceConstraintAddEvent(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT e);

int KheAssignResourceConstraintEventCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT KheAssignResourceConstraintEvent(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

To add event groups and visit them, the calls are

void KheAssignResourceConstraintAddEventGroup(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheAssignResourceConstraintEventGroupCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT_GROUP KheAssignResourceConstraintEventGroup(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

When this is done, KHE stores the events and event groups in the constraint so that they can be
written out again correctly later,but it also works out which event resources the constraint applies
to and callsKheAssignResourceConstraintAddEventResource for each of them, taking due
note of the XML rule that it does not apply when an event does not contain an event resource
with the specified role, or when such an event resource has a preassigned resource.

The constraint density of the assign resources constraints of an instance (Section 3.3) is
their number of their points of application divided by the number of event resources without
preassigned resources.

38 Chapter 3. Instances

3.7.2. Assign time constraints

An assign time constraint is created and added to an instance by

bool KheAssignTimeConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_ASSIGN_TIME_CONSTRAINT *c);

As usual, if successful it returnstrue, setting*c to the new constraint; if not (which can only
be becauseid is non-NULL and equal to the Id of an existing constraint ofins), then it returns
false, setting*c toNULL. The attributes may be retrieved by upcasting toKHE_CONSTRAINT and
calling the relevant operations on that type.

The points of application of an assign time constraint are events, and the XML file allows
them to be given individually and in groups. To add individual events and visit them, call

void KheAssignTimeConstraintAddEvent(KHE_ASSIGN_TIME_CONSTRAINT c,
KHE_EVENT e);

int KheAssignTimeConstraintEventCount(KHE_ASSIGN_TIME_CONSTRAINT c);
KHE_EVENT KheAssignTimeConstraintEvent(KHE_ASSIGN_TIME_CONSTRAINT c,
int i);

To add groups of events and visit them, call

void KheAssignTimeConstraintAddEventGroup(KHE_ASSIGN_TIME_CONSTRAINT c,
KHE_EVENT_GROUP eg);

int KheAssignTimeConstraintEventGroupCount(
KHE_ASSIGN_TIME_CONSTRAINT c);

KHE_EVENT_GROUP KheAssignTimeConstraintEventGroup(
KHE_ASSIGN_TIME_CONSTRAINT c, int i);

The XML specification states that assign time constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

The constraint density of the assign times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.3. Split events constraints

A split events constraint is created and added to an instance by

bool KheSplitEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int min_duration, int max_duration, int min_amount,
int max_amount, KHE_SPLIT_EVENTS_CONSTRAINT *c);

in the usual way. Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and
calling the relevant operation on that type. The exceptions are

3.7. Constraints 39

int KheSplitEventsConstraintMinDuration(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMaxDuration(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMinAmount(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMaxAmount(KHE_SPLIT_EVENTS_CONSTRAINT c);

which return the various attributes specific to split events constraints.

The points of application are events, and, as for assign time constraints, these may be added
and visited individually:

void KheSplitEventsConstraintAddEvent(KHE_SPLIT_EVENTS_CONSTRAINT c,
KHE_EVENT e);

int KheSplitEventsConstraintEventCount(KHE_SPLIT_EVENTS_CONSTRAINT c);
KHE_EVENT KheSplitEventsConstraintEvent(KHE_SPLIT_EVENTS_CONSTRAINT c,
int i);

and also in groups:

void KheSplitEventsConstraintAddEventGroup(
KHE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheSplitEventsConstraintEventGroupCount(
KHE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheSplitEventsConstraintEventGroup(
KHE_SPLIT_EVENTS_CONSTRAINT c, int i);

All the events are linked to the constraint, unlike for assign time constraints.

The constraint density of the split events constraints of an instance (Section 3.3) is their
number of points of application divided by the total number of events.

3.7.4. Distribute split events constraints

A distribute split events constraint is created and added to an instance by

bool KheDistributeSplitEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int duration, int minimum, int maximum,
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT *c);

in the usual way. Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and
calling the relevant operation on that type. The exceptions are

int KheDistributeSplitEventsConstraintDuration(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

int KheDistributeSplitEventsConstraintMinimum(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

int KheDistributeSplitEventsConstraintMaximum(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

which return the various attributes specific to distribute split events constraints.

The points of application are events, and, as for split events constraints, these may be added

40 Chapter 3. Instances

and visited individually:

void KheDistributeSplitEventsConstraintAddEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT e);

int KheDistributeSplitEventsConstraintEventCount(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT KheDistributeSplitEventsConstraintEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, int i);

and also in groups:

void KheDistributeSplitEventsConstraintAddEventGroup(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheDistributeSplitEventsConstraintEventGroupCount(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheDistributeSplitEventsConstraintEventGroup(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, int i);

All the events are linked to the constraint.

The constraint density of the distribute split events constraints of an instance (Section 3.3)
is their number of points of application divided by the total number of events.

3.7.5. Prefer resources constraints

A prefer resources constraint is created and added to an instance by

bool KhePreferResourcesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_PREFER_RESOURCES_CONSTRAINT *c);

As usual, the only reason for returningfalse is that id is non-NULL and there is already a
constraint inins with this id. Most of the attributes may be retrieved by upcasting to
KHE_CONSTRAINT and calling the relevant operations on that type; the exception isrole, which
is retrieved by calling

char *KhePreferResourcesConstraintRole(KHE_PREFER_RESOURCES_CONSTRAINT c);

since it is specific to this constraint type.

In the XML specification, the resources that make up the domain of the constraint may be
added in groups or individually. To add them in groups, and to visit the groups, call

bool KhePreferResourcesConstraintAddResourceGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KhePreferResourcesConstraintResourceGroupCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_RESOURCE_GROUP KhePreferResourcesConstraintResourceGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

Thebool result type ofKhePreferResourcesConstraintAddResourceGroup (and other func-

3.7. Constraints 41

tions below) is explained at the end of this section. To add and visit resources individually, call

bool KhePreferResourcesConstraintAddResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_RESOURCE r);

int KhePreferResourcesConstraintResourceCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_RESOURCE KhePreferResourcesConstraintResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

After the instance is complete, but not before, function

KHE_RESOURCE_GROUP KhePreferResourcesConstraintDomain(
KHE_PREFER_RESOURCES_CONSTRAINT c);

returns the domain ofc as a single resource group. If exactly one resource group or one resource
was added, this resource group will be that resource group or the automatically created singleton
resource group for that resource; otherwise it will be created by taking the union of everything
added. This resource group may be used like any other, except for a problem in one special case:
when no resource groups or resources are added, the domain is not only an empty resource group
but also has aNULL resource type.

The points of application of prefer resources constraints are event resources, and they
are handled in the same way as for assign resource constraints. That is, one can load the event
resources directly by having aNULL value forrole and calling

bool KhePreferResourcesConstraintAddEventResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT_RESOURCE er);

int KhePreferResourcesConstraintEventResourceCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT_RESOURCE KhePreferResourcesConstraintEventResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

or load them indirectly by loading events:

bool KhePreferResourcesConstraintAddEvent(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT e);

int KhePreferResourcesConstraintEventCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT KhePreferResourcesConstraintEvent(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

and event groups:

bool KhePreferResourcesConstraintAddEventGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT_GROUP eg,
KHE_EVENT *problem_event);

int KhePreferResourcesConstraintEventGroupCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT_GROUP KhePreferResourcesConstraintEventGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

42 Chapter 3. Instances

WhenKhePreferResourcesConstraintAddEventGroup returnsfalse, problem_event is set
to the first event that caused the problem. The rules for skipping inappropriate events are as for
assign resource constraints.

The resources, resource groups, and event resources of a prefer resources constraint all have
a resource type attribute. All these resources types must be equal. This is why the operations
above for adding a resource, resource group, event resource,event, or event group all have abool

result type: they all returnfalse and add nothing if the operation would add an entity with a
different resource type from something added previously.

The constraint density of the prefer resources constraints of an instance (Section 3.3)
is their number of points of application divided by the number of event resources without
preassigned resources.

3.7.6. Prefer times constraints

A prefer times constraint is created and added to an instance by

bool KhePreferTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int duration, KHE_PREFER_TIMES_CONSTRAINT *c);

As usual, the only possible reason for returningfalse is thatid is non-NULL and there is already a
constraint inins with thisid. A duration is optional; to not give one (meaning that the constraint
applies for all durations), use the special valueKHE_ANY_DURATION, a synonym for 0.

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operations on that type; the exception isduration, which is retrieved by calling

int KhePreferTimesConstraintDuration(KHE_PREFER_TIMES_CONSTRAINT c);

since it is specific to this constraint type.

In the XML specification, the times that make up the domain of the constraint may be added
in groups or individually. To add them in groups, and to visit the groups, call

void KhePreferTimesConstraintAddTimeGroup(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KhePreferTimesConstraintTimeGroupCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KhePreferTimesConstraintTimeGroup(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

To add and visit times individually, call

void KhePreferTimesConstraintAddTime(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_TIME t);

int KhePreferTimesConstraintTimeCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_TIME KhePreferTimesConstraintTime(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

3.7. Constraints 43

After the instance is complete, but not before, function

KHE_TIME_GROUP KhePreferTimesConstraintDomain(
KHE_PREFER_TIMES_CONSTRAINT c);

returns the domain ofc as a single time group. If exactly one time group or one time was added,
this time group will be that time group or the automatically created singleton time group for that
time; otherwise it will be created by taking the union of everything added. This time group may
be used like any other.

The points of application of prefer times constraints are events, and they can be added and
visited individually:

void KhePreferTimesConstraintAddEvent(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_EVENT e);

int KhePreferTimesConstraintEventCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_EVENT KhePreferTimesConstraintEvent(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

or in groups:

void KhePreferTimesConstraintAddEventGroup(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KhePreferTimesConstraintEventGroupCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_EVENT_GROUP KhePreferTimesConstraintEventGroup(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

The XML specification states that prefer times constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

The constraint density of the prefer times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.7. Avoid split assignments constraints

An avoid split assignments constraint is created and added to an instance by

bool KheAvoidSplitAssignmentsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT *c);

As usual, the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type, except that to retrieve therole attribute the call is

char *KheAvoidSplitAssignmentsConstraintRole(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

44 Chapter 3. Instances

Therole attribute may beNULL.

The handling of the points of application of an avoid split assignments constraint is
somewhat complex, because one point of application is fundamentally a set of event resources
(the XML file identifies each set by an event group and a role), so that the points of application
overall form a set of sets of event resources. We will first explain how to add these points of
application when reading an XML file, and then how to do it directly.

When reading an XML file, a non-NULL role is passed, and then each event group is added
in the usual way. To add an event group and to visit the event groups, the calls are

bool KheAvoidSplitAssignmentsConstraintAddEventGroup(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, KHE_EVENT_GROUP eg,
KHE_EVENT *problem_event);

int KheAvoidSplitAssignmentsConstraintEventGroupCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheAvoidSplitAssignmentsConstraintEventGroup(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int i);

Behind the scenes, the appropriate event resources are retrieved from the events of each event
group and added automatically, so that nothing further needs to be done. Afalse result
returned byKheAvoidSplitAssignmentsConstraintAddEventGroup indicates that one of the
events ofeg does not contain an event resource with the required non-NULL role. In this case,
*problem_event will contain the first event ofeg with this problem on return.

When the instance is not derived from an XML file it may be more convenient to add
event resources directly. For the sake of this case,role may beNULL, and theeg parameter of
KheAvoidSplitAssignmentsConstraintAddEventGroup may also beNULL. If either isNULL,
event resources are not added automatically.

To add event resources manually, and to visit event resources (whether added automatically
or manually), the calls are

void KheAvoidSplitAssignmentsConstraintAddEventResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index,
KHE_EVENT_RESOURCE er);

int KheAvoidSplitAssignmentsConstraintEventResourceCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index);

KHE_EVENT_RESOURCE KheAvoidSplitAssignmentsConstraintEventResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index, int er_index);

These functions add an event resource to theeg_index’th point of application ofc, return the
number of event resources at that point, and return theer_index’th event resource at that point.
They define the required set of sets of event resources.

Usually, constraints are added to the instance and to the entities they apply to. For avoid
split assignments constraints this would mean adding the constraint to the instance and the event
groups. This is done, but, for convenience, each avoid split assignments constaint is also added
to each of its event resources.

The constraint density of the avoid split assignments constraints of an instance (Section
3.3) is the number of event resources in all points of application divided by the number of event

3.7. Constraints 45

resources without preassigned resources.

3.7.8. Spread events constraints

A spread events constraint is created and added to an instance by

bool KheSpreadEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_SPREAD ts, KHE_SPREAD_EVENTS_CONSTRAINT *c);

where typeKHE_TIME_SPREAD is explained below. Most of the attributes may be retrieved by
upcasting toKHE_CONSTRAINT and calling the relevant operation on that type. The exception is

KHE_TIME_SPREAD KheSpreadEventsConstraintTimeSpread(
KHE_SPREAD_EVENTS_CONSTRAINT c);

which returns the time spread. TypeKHE_TIME_SPREAD is an object which describes the time
groups that the constraint requires the event group to spread through, and the limits on the
number of events that may touch each time group. Time spread objects are immutable, and may
be shared among any number of constraints. To create a time spread object, call

KHE_TIME_SPREAD KheTimeSpreadMake(KHE_INSTANCE ins);

Initially this has no time groups. To add them, call

void KheTimeSpreadAddLimitedTimeGroup(KHE_TIME_SPREAD ts,
KHE_LIMITED_TIME_GROUP ltg);

repeatedly. To retrieve the limited time groups of a time spread, call

int KheTimeSpreadLimitedTimeGroupCount(KHE_TIME_SPREAD lts);
KHE_LIMITED_TIME_GROUP KheTimeSpreadLimitedTimeGroup(
KHE_TIME_SPREAD lts, int i);

An object of typeKHE_LIMITED_TIME_GROUP contains what one element of a time spread needs:
a time group plus a minimum and maximum number of events. It may be created by calling

KHE_LIMITED_TIME_GROUP KheLimitedTimeGroupMake(KHE_TIME_GROUP tg,
int minimum, int maximum);

and functions

KHE_TIME_GROUP KheLimitedTimeGroupTimeGroup(KHE_LIMITED_TIME_GROUP ltg);
int KheLimitedTimeGroupMinimum(KHE_LIMITED_TIME_GROUP ltg);
int KheLimitedTimeGroupMaximum(KHE_LIMITED_TIME_GROUP ltg);

retrieve its attributes.

Two other operations on time spreads, available only after the instance is complete, provide
information that may be useful to solvers:

46 Chapter 3. Instances

bool KheTimeSpreadTimeGroupsDisjoint(KHE_TIME_SPREAD ts);
bool KheTimeSpreadCoversWholeCycle(KHE_TIME_SPREAD ts);

KheTimeSpreadTimeGroupsDisjoint returnstrue when the time groups ofts’s limited time
groups are pairwise disjoint.KheTimeSpreadCoversWholeCycle returnstrue when every time
of the cycle appears in at least one of the time groups ofts’s limited time groups.

Spread events apply to event groups; the operations for adding and visiting them are

void KheSpreadEventsConstraintAddEventGroup(
KHE_SPREAD_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheSpreadEventsConstraintEventGroupCount(
KHE_SPREAD_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheSpreadEventsConstraintEventGroup(
KHE_SPREAD_EVENTS_CONSTRAINT c, int i);

as usual.

The constraint density of the spread events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.9. Link events constraints

A link events constraint is created and added to an instance by

bool KheLinkEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_LINK_EVENTS_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type. One point of application of a link events constraint is an event group; one
constraint may contain any number of these. The operations for adding them are

void KheLinkEventsConstraintAddEventGroup(KHE_LINK_EVENTS_CONSTRAINT c,
KHE_EVENT_GROUP eg);

int KheLinkEventsConstraintEventGroupCount(KHE_LINK_EVENTS_CONSTRAINT c);
KHE_EVENT_GROUP KheLinkEventsConstraintEventGroup(

KHE_LINK_EVENTS_CONSTRAINT c, int i);

as usual.

The constraint density of the link events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.10. Order events constraints

An order events constraint is created and added to an instance by

bool KheOrderEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_ORDER_EVENTS_CONSTRAINT *c);

3.7. Constraints 47

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type.

One point of application of an order events constraint is a pair of instance events, together
with integer minimum and maximum separations. To add one point of application, call

void KheOrderEventsConstraintAddEventPair(KHE_ORDER_EVENTS_CONSTRAINT c,
KHE_EVENT first_event, KHE_EVENT second_event, int min_separation,
int max_separation);

Both min_separation andmax_separation must be non-negative. Infinity, the default value
of max_separation in the XML format, is implemented by passingINT_MAX.

To retrieve the number of points of application and the attributes of each, call

int KheOrderEventsConstraintEventPairCount(
KHE_ORDER_EVENTS_CONSTRAINT c);

KHE_EVENT KheOrderEventsConstraintFirstEvent(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

KHE_EVENT KheOrderEventsConstraintSecondEvent(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

int KheOrderEventsConstraintMinSeparation(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

int KheOrderEventsConstraintMaxSeparation(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

in the usual way. The value ofKheOrderEventsConstraintEventPairCount(c) is the same
as the value ofKheConstraintAppliesToCount((KHE_CONSTRAINT) c).

The constraint density of the order events constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events.

3.7.11. Avoid clashes constraints

An avoid clashes constraint is created and added to an instance by

bool KheAvoidClashesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_AVOID_CLASHES_CONSTRAINT *c);

as usual. The attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type.

Avoid clashes constraints apply to resource groups and resources. To add and visit resource
groups, the operations are

void KheAvoidClashesConstraintAddResourceGroup(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheAvoidClashesConstraintResourceGroupCount(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheAvoidClashesConstraintResourceGroup(
KHE_AVOID_CLASHES_CONSTRAINT c, int i);

48 Chapter 3. Instances

while to add and visit resources the operations are

void KheAvoidClashesConstraintAddResource(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE r);

int KheAvoidClashesConstraintResourceCount(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_RESOURCE KheAvoidClashesConstraintResource(
KHE_AVOID_CLASHES_CONSTRAINT c, int i);

These all work in the usual way.

The constraint density of the avoid clashes constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.12. Avoid unavailable times constraints

An avoid unavailable times constraint is created and added to an instance by

bool KheAvoidUnavailableTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT *c);

in the usual way. To add the resource groups and resources defining the points of application,
and to visit them, call

void KheAvoidUnavailableTimesConstraintAddResourceGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheAvoidUnavailableTimesConstraintResourceGroupCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheAvoidUnavailableTimesConstraintResourceGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

for resource groups and

void KheAvoidUnavailableTimesConstraintAddResource(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheAvoidUnavailableTimesConstraintResourceCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_RESOURCE KheAvoidUnavailableTimesConstraintResource(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

for individual resources. The XML format allows the unavailable times themselves to be defined
by both time groups and times. To add time groups and visit them, call

void KheAvoidUnavailableTimesConstraintAddTimeGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheAvoidUnavailableTimesConstraintTimeGroupCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintTimeGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

3.7. Constraints 49

To add individual times and visit them, call

void KheAvoidUnavailableTimesConstraintAddTime(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_TIME t);

int KheAvoidUnavailableTimesConstraintTimeCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_TIME KheAvoidUnavailableTimesConstraintTime(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

These functions all work in the usual way. Function

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintUnavailableTimes(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

returns a time group containing the union of the time groups and times ofc, and

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintAvailableTimes(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

returns a time group containing the complement of those times—the available times. Both
functions may be called only after construction of the instance is complete.

The constraint density of the avoid unavailable times constraints of an instance (Section
3.3) is the number of points of application divided by the number of resources.

3.7.13. Limit idle times constraints

A limit idle times constraint is created and added to an instance by

bool KheLimitIdleTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int minimum, int maximum, KHE_LIMIT_IDLE_TIMES_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are

int KheLimitIdleTimesConstraintMinimum(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);
int KheLimitIdleTimesConstraintMaximum(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

which are specific to this kind of constraint.

A limit idle times constraint requires time groups, which are added and visited by calling

void KheLimitIdleTimesConstraintAddTimeGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitIdleTimesConstraintTimeGroupCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheLimitIdleTimesConstraintTimeGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

After the instance ends, the following queries are available:

50 Chapter 3. Instances

bool KheLimitIdleTimesConstraintTimeGroupsDisjoint(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

bool KheLimitIdleTimesConstraintTimeGroupsCoverWholeCycle(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

They returntrue when the time groups ofc are pairwise disjoint, and when their union covers
the whole cycle.

A limit idle times constraint also requires the resource groups and resources which define
its points of application. Resource groups are added and visited by calling

void KheLimitIdleTimesConstraintAddResourceGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitIdleTimesConstraintResourceGroupCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitIdleTimesConstraintResourceGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheLimitIdleTimesConstraintAddResource(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitIdleTimesConstraintResourceCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_RESOURCE KheLimitIdleTimesConstraintResource(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

in the usual way.

The constraint density of the limit idle times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.14. Cluster busy times constraints

A cluster busy times constraint is created and added to an instance by

bool KheClusterBusyTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int minimum, int maximum, KHE_CLUSTER_BUSY_TIMES_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are

int KheClusterBusyTimesConstraintMinimum(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

int KheClusterBusyTimesConstraintMaximum(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

which are specific to this kind of constraint.

A cluster busy times constraint requires time groups, which are added and visited by

3.7. Constraints 51

void KheClusterBusyTimesConstraintAddTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheClusterBusyTimesConstraintTimeGroupCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheClusterBusyTimesConstraintTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

It also requires the resource groups and resources which define the points of application of the
constraint. Resource groups are added and visited by calling

void KheClusterBusyTimesConstraintAddResourceGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheClusterBusyTimesConstraintResourceGroupCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheClusterBusyTimesConstraintResourceGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheClusterBusyTimesConstraintAddResource(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheClusterBusyTimesConstraintResourceCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE KheClusterBusyTimesConstraintResource(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

in the usual way.

The constraint density of the cluster busy times constraints of an instance (Section 3.3) is
the number of points of application divided by the number of resources.

3.7.15. Limit busy times constraints

A limit busy times constraint is created and added to an instance by

bool KheLimitBusyTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_RESOURCE applies_to, int minimum, int maximum,
KHE_LIMIT_BUSY_TIMES_CONSTRAINT *c);

Most of these attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type. The exceptions are

int KheLimitBusyTimesConstraintMinimum(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

int KheLimitBusyTimesConstraintMaximum(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

which are specific to this kind of constraint.

A limit busy times constraint requires time groups, which are added and visited by

52 Chapter 3. Instances

void KheLimitBusyTimesConstraintAddTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitBusyTimesConstraintTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheLimitBusyTimesConstraintTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

repeatedly. After the instance is complete, but not before, function

KHE_TIME_GROUP KheLimitBusyTimesConstraintDomain(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

returns the domain ofc (that is, the set union of the times in its time groups) as a single time
group. This time group may be used like any other.

A limit busy times constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

void KheLimitBusyTimesConstraintAddResourceGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitBusyTimesConstraintResourceGroupCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitBusyTimesConstraintResourceGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheLimitBusyTimesConstraintAddResource(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitBusyTimesConstraintResourceCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE KheLimitBusyTimesConstraintResource(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

in the usual way.

The constraint density of the limit busy times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.16. Limit workload constraints

A limit workload constraint is created and added to an instance by

bool KheLimitWorkloadConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int minimum, int maximum, KHE_LIMIT_WORKLOAD_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type. The exceptions are

3.7. Constraints 53

int KheLimitWorkloadConstraintMinimum(KHE_LIMIT_WORKLOAD_CONSTRAINT c);
int KheLimitWorkloadConstraintMaximum(KHE_LIMIT_WORKLOAD_CONSTRAINT c);

which return the resource thatc applies to, the minimum, and the maximum.

Limit workload constraints do not require time groups, because they always apply to the
entire cycle. As usual, they require the resource groups and resources which define the points of
application of the constraint. Resource groups are added and visited by calling

void KheLimitWorkloadConstraintAddResourceGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitWorkloadConstraintResourceGroupCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitWorkloadConstraintResourceGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheLimitWorkloadConstraintAddResource(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitWorkloadConstraintResourceCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_RESOURCE KheLimitWorkloadConstraintResource(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

in the usual way.

The constraint density of the limit workload constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

Chapter 4. Solutions

4.1. Overview

A solution is represented by an object of typeKHE_SOLN (‘solution’is always abbreviated to ‘soln’
in the KHE interface). Any number of solutions may exist and be operated on simultaneously.
Instances are immutable after creation,and operations that change instances only assemble them,
they do not disassemble them. In contrast, each operation that changes a solution is paired with
one that changes it back. This supports not just the assembly of a fixed solution, such as one read
from a file, but also the changes and testing of alternatives needed when solving an instance.

Within each solution areKHE_MEET objects representing meets (also called split events or
sub-events), each of which may be assigned a time, andKHE_TASK objects representing the re-
source elements of meets, each of which may be assigned a resource. Although most meets are
derived from events and most tasks are derived from event resources, these derivations are op-
tional. Only meets and tasks that are so derived are considered part of the solution to the original
instance, but other meets and tasks may be present to help with solving. Several meets may be
derived from one event; these are the split events or sub-events of that event in the solution.

At all times, the solution (however incomplete it may be) has a definite numericalcost,
a 64-bit integer measuring the badness of the solution which is always available via function
KheSolnCost (Chapter 6). It may be used to guide the search for good solutions.

A solution must obey a condition called thesolution invariantthroughout its lifetime; this is
an unbreakable constraint. A precise statement of the solution invariant appears in Section 4.12.
Every operation that changes a solution in a way that could violate the invariant is implemented
with two functions, which look generically like this:

bool KheOperationCheck(...);
bool KheOperation(...);

The two functions accept the same inputs and return the same value in a given solution state. The
first returnstrue if the change would not violate the invariant, but itself changes nothing. The
second also returnstrue if the change would not violate the invariant, but in that case it also
makes the change. It changes nothing if the change would violate the invariant.

The relationshipbetween the solution invariant and the constraintsof the original instance is
rather subtle. Should a constraint be incorporated into the invariant, so that no solution (not even
a partial solution) will ever violate it? KHE leaves this question to the user. Some operations do
incorporate constraints into the solution invariant, but those operations are all optional.

Some aspects of solution entities that may be changed have operations of the form

void KheEntityAspectFix(ENTITY e);
void KheEntityAspectUnFix(ENTITY e);
bool KheEntityAspectIsFixed(ENTITY e);

54

4.1. Overview 55

The first fixes that aspect of the entity—prevents later operations from changing it; the second
removes the fix; the third returnstrue when the fix is in place. Initially everything is unfixed.
Fixing a fixed aspect, and unfixing an unfixed aspect, do nothing. When the current value of
some aspect will remain unchanged for a long time, fixing that aspect may have a significant
efficiency payoff. This is because fixing detaches attached monitors (Chapter 6) whose cost is
0 and cannot change while the current fixes are in place, which can save a lot of time. Unfixing
attaches those unattached monitors which could have non-zero cost given the unfix.

There are three levels of operations. At the lowest level arebasic operations, which
carry out basic queries and changes to a solution, such as assigning or unassigning the time of
a meet. Above them arehelper functions, which implement commonly needed sequences of
basic operations, such as swaps. Some helper functions utilize optimizations that make them
significantly more efficient than the equivalent sequences of basic operations.

At the highest level aresolvers, which make large-scale changes to solutions. A complete
algorithm for solving an instance is a solver, but so are operations with more modest scope, such
as assigning times to the meetings of one form, assigning rooms, and so on.

KHE supplies several solvers, documented in later chapters, and the user is free to write
others. As a matter of good design, solvers should not have behind-the-scenes access to KHE’s
data structures; they should use only the operations described in this guide and made available
by header filekhe.h. The solvers supplied by KHE follow this rule.

4.2. Solution objects

To create a solution for a given instance, initially with no meets or tasks, call

KHE_SOLN KheSolnMake(KHE_INSTANCE ins);

KheInstanceMakeEnd must be complete beforeKheSolnMake is called. To deletesoln and
everything in it, and remove it from its solution groups, if any, call

void KheSolnDelete(KHE_SOLN soln);

The memory consumed bysoln and everything in it will be freed.

A solution may lie in any number of solution groups. To add it to a solution group and delete
it from a solution group, use functionsKheSolnGroupAddSoln andKheSolnGroupDeleteSoln
from Section 2.2. To visit the solution groups containingsoln, call

int KheSolnSolnGroupCount(KHE_SOLN soln);
KHE_SOLN_GROUP KheSolnSolnGroup(KHE_SOLN soln, int i);

in the usual way.

A solution has an optional Description attribute which may contain arbitrary text saying
what is distinctive about the solution. This attribute may be set and retrieved by calling

void KheSolnSetDescription(KHE_SOLN soln, char *description);
char *KheSolnDescription(KHE_SOLN soln);

The default value isNULL, meaning no description.

56 Chapter 4. Solutions

A solution also has an optional RunningTime attribute giving the wall clock time to produce
the solution, in seconds. This attribute may be set and retrieved by calling

void KheSolnSetRunningTime(KHE_SOLN soln, float running_time);
float KheSolnRunningTime(KHE_SOLN soln);

The default value is-1.0, meaning that no running time is known. KHE makes no attempt to
ensure that the value stored in this field is honest.

Solution objects and their components have back pointers in the usual way. These may be
changed at any time. To set and retrieve the back pointer of a solution object, call

void KheSolnSetBack(KHE_SOLN soln, void *back);
void *KheSolnBack(KHE_SOLN soln);

as usual. Function

KHE_INSTANCE KheSolnInstance(KHE_SOLN soln);

returns the instance that the solution is for.

Another way to create a solution is

KHE_SOLN KheSolnCopy(KHE_SOLN soln);

which returns a copy ofsoln. The copy is exact except that it does not lie in any solution groups.
Immutable elements, such as anything from the instance, and time, resource, and event groups
created within the solution, are shared, as are back pointers.

Copying is useful when forking a solution process part-way through: the original solution
may continue down one thread, and the copy, which is quite independent, may be given to the
other thread. Care is needed in one respect, however: it is not safe to make two copies of one
solution simultaneously, even though the original solution is unaffected by copying it. This is
because the copy algorithm uses temporary forwarding pointers in the objects of the solution.

Even semantically unimportant things, such as the order of items in sets, are preserved by
KheSolnCopy. If the same solution algorithm is run on the original and the copy, and it does
not depend on anything peculiar such as elapsed time or the memory addresses of its objects,
it should produce the same solution. The author has verified this forKheGeneralSolve2014

(Section 8.1). Diversity can be obtained by changing the copy’s diversifier (Section 4.5).

The specification ofqsort states that when two elements compare equal, their order in the
final result isundefined. So the author has tried to eliminateall such cases in the comparison func-
tions packaged with KHE. Index numbers, returned by functions such asKheMeetSolnIndex

andKheTaskSolnIndex, are useful for breaking ties consistently as a last resort.

To visit the meets of a solution, in an unspecified order, call

int KheSolnMeetCount(KHE_SOLN soln);
KHE_MEET KheSolnMeet(KHE_SOLN soln, int i);

The meets visited include thecycle meetsdescribed in Section 4.8.3. To visit the meets of a
solution derived from a given event, call

4.2. Solution objects 57

int KheEventMeetCount(KHE_SOLN soln, KHE_EVENT e);
KHE_MEET KheEventMeet(KHE_SOLN soln, KHE_EVENT e, int i);

The first returns the number of meets derived frome (possibly 0), and the second returns thei’th
of these meets, in an unspecified order.

To visit the tasks of a solution, in an unspecified order, call

int KheSolnTaskCount(KHE_SOLN soln);
KHE_TASK KheSolnTask(KHE_SOLN soln, int i);

To visit the tasks derived from a given event resource, call

int KheEventResourceTaskCount(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_TASK KheEventResourceTask(KHE_SOLN soln, KHE_EVENT_RESOURCE er,
int i);

There is one for each meet derived from the event containinger.

A solution may also containnodesand taskings, as explained in Chapter 5. To visit the
nodes in an unspecified order, call

int KheSolnNodeCount(KHE_SOLN soln);
KHE_NODE KheSolnNode(KHE_SOLN soln, int i);

To visit the taskings, call

int KheSolnTaskingCount(KHE_SOLN soln);
KHE_TASKING KheSolnTasking(KHE_SOLN soln, int i);

in the usual way.

As an aid to debugging, function

void KheSolnDebug(KHE_SOLN soln, int verbosity, int indent, FILE *fp);

prints information about the current solution onto filefp with the given verbosity and indent,
as described for debug functions in general in Section 1.3. Verbosity 1 prints just the instance
name and current cost, verbosity 2 adds a breakdown of the current cost by constraint type (only
constraint types with non-zero cost are printed), verbosity 3 adds debug prints of the solution’s
defects (Section 6.2), and verbosity 4 prints further details.

4.3. Complete representation and preassignment conversion

A solution is acomplete representationwhen it satisfies the following two conditions:

• For each evente of the solution’s instance, the total duration of the meets derived frome is
equal to the duration ofe;

• For each event resourceer of the solution’s instance, each meet derived from the event
containinger contains a task derived fromer.

58 Chapter 4. Solutions

Complete representation does not rule out extra meets or tasks. It has nothing to do with being
a complete solution, in the sense of assigning a time to every meet and a resource to every task.

KHE does not require a solution to be a complete representation, since that would be too
restrictive when building and modifying solutions. However, the cost it reports for a solution is
correct only when that solution is a complete representation. This is because, behind the scenes,
KHE needs to be able to see a meet with no assigned time in order for it to realize that an assign
time constraint is being violated, and similarly for the other constraints.

There is a standard procedure, part of the XML specification, for converting a solution into
a complete representation:

1. For each evente of the solution’s instance, if there are no meets derived frome, then insert
one meet whose duration is the duration ofe, and whose assigned time is the preassigned
time ofe, or is absent ife has no preassigned time. Initially, this meet contains no tasks, but
that may be changed by the third rule.

2. If now there is an evente such that the total duration of the meets derived frome is not equal
to the duration ofe, then that is an error and the XML file is rejected.

3. For each event resourceer of each evente of the instance, for each meet derived frome, if
that meet does not contain a task derived fromer, then add one. Its assigned resource is the
preassigned resource ofer if there is one, or is absent ifer has no preassigned resource.

This procedure, minus the conversions from preassignments to assignments, is implemented by

bool KheSolnMakeCompleteRepresentation(KHE_SOLN soln,
KHE_EVENT *problem_event);

For each evente, it finds the total duration of the meets derived frome. If that is greater than
the duration ofe it returnsfalse with *problem_event set toe. If it is less, then one meet
derived frome is added whose duration makes up the difference. The domain of this meet
has the usual default value: the preassigned time ofe if any, or else the largest legal domain,
KheSolnPackingTimeGroup(soln) (Section 4.8.3). Then, within each meet derived from an
event, just created or not, it adds a task for each event resourceer not already represented. The
domain of this task has the usual default value: the preassigned resource ofer if any, or else the
largest legal domain,KheResourceTypeFullResourceGroup(rt), wherert is er’s resource type.

KheSolnMakeCompleteRepresentation has two uses. The first is inKheArchiveRead
(Section 2.3), which applies it to each solution it reads, as the XML specification requires, and
then calls these two public functions to convert preassignments into assignments:

void KheSolnAssignPreassignedTimes(KHE_SOLN soln);
void KheSolnAssignPreassignedResources(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt);

KheSolnAssignPreassignedTimes assigns the obvious time to each preassigned unassigned
meet.KheSolnAssignPreassignedResources assigns the obvious resource toeach preassigned
unassigned task of typert (any type ifrt is NULL).

The second use forKheSolnMakeCompleteRepresentation is to build a solution from

4.3. Complete representation and preassignment conversion 59

scratch, ready for solving. The solution returned byKheSolnMake has no meets except for
the initial cycle meet, and it has no tasks.KheSolnMakeCompleteRepresentation is a very
convenient way to add both. When solving, it is usually called immediately afterKheSolnMake

andKheSolnSplitCycleMeet (Section 4.8.3). The solution changes as solving proceeds, but it
remains a complete representation throughout, except perhaps during brief reconstructions. A
call to KheSolnAssignPreassignedResources is also a good idea, since it does no harm and
ensures that resource constraints involving preassigned resources will contribute to the cost of
the solution as soon as the meets they are preassigned to are assigned times. On the other hand,
it may be better not to assign preassigned times at this point; Section 10.4 has the alternatives.

4.4. Solution time, resource, and event groups

Groups are important in solving. A solver needs to be able to construct its own, since the ones
declared in the instance might not be enough. (Conceivably, a solver could need its own times
and resources as well, but that possibility is not currently supported.) Accordingly, the following
functions are provided for constructing a time group while solving:

void KheSolnTimeGroupBegin(KHE_SOLN soln);
void KheSolnTimeGroupAddTime(KHE_SOLN soln, KHE_TIME t);
void KheSolnTimeGroupSubTime(KHE_SOLN soln, KHE_TIME t);
void KheSolnTimeGroupUnion(KHE_SOLN soln, KHE_TIME_GROUP tg2);
void KheSolnTimeGroupIntersect(KHE_SOLN soln, KHE_TIME_GROUP tg2);
void KheSolnTimeGroupDifference(KHE_SOLN soln, KHE_TIME_GROUP tg2);
KHE_TIME_GROUP KheSolnTimeGroupEnd(KHE_SOLN soln);

The first operation begins the process; the next five do what the corresponding operations for
instance time groups do, and the last operation returns the finished time group. Its kind will be
KHE_TIME_GROUP_KIND_ORDINARY, and itsid andname attributes will beNULL.

A similar set of operations constructs a resource group:

void KheSolnResourceGroupBegin(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);
void KheSolnResourceGroupAddResource(KHE_SOLN soln, KHE_RESOURCE r);
void KheSolnResourceGroupSubResource(KHE_SOLN soln, KHE_RESOURCE r);
void KheSolnResourceGroupUnion(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
void KheSolnResourceGroupIntersect(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
void KheSolnResourceGroupDifference(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
KHE_RESOURCE_GROUP KheSolnResourceGroupEnd(KHE_SOLN soln);

and an event group:

void KheSolnEventGroupBegin(KHE_SOLN soln);
void KheSolnEventGroupAddEvent(KHE_SOLN soln, KHE_EVENT e);
void KheSolnEventGroupSubEvent(KHE_SOLN soln, KHE_EVENT e);
void KheSolnEventGroupUnion(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
void KheSolnEventGroupIntersect(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
void KheSolnEventGroupDifference(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
KHE_EVENT_GROUP KheSolnEventGroupEnd(KHE_SOLN soln);

60 Chapter 4. Solutions

All the usual operations may be applied to these groups. The functions usesoln as a factory
object instead of the group itself, to ensure that groups are complete and immutable (apart from
their back pointers) by the time they are given to the user. Groups are deleted when their solution
is deleted. They know which instance they are for, but the instance, being immutable after
creation, is not aware of their existence.

Within one solution, when calls toKheSolnTimeGroupEnd return groups containing the
same elements, the objects returned are the same too. This is done using a hash table of time
groups. It allows the user to experiment with many time groups, without worrying about their
memory cost. This is not being done for resource and event groups yet; it should be.

4.5. Diversification

One strategy for finding good solutions is to find many solutions and choose the best. This only
works when the solutions are diverse, creating a need to find ways to produce diversity.

Each solution contains a non-negative integerdiversifier. Its initial value is 0, but it may be
set and retrieved at any time by

void KheSolnSetDiversifier(KHE_SOLN soln, int val);
int KheSolnDiversifier(KHE_SOLN soln);

When solutions are created that need to be diverse, each is given a different diversifier. When an
algorithm reaches a point where it could equally well follow any one of several paths, it consults
the diversifier when making its choice.

Suppose the diversifier has valued and a point is reached where there arec alternatives, for
somec ≥ 1. A simple approach is to choose theith alternative (counting from 0), where

i = d % c;

We call a functionD(d,c) which returns an integeri s.t.0 ≤ i < c adiversification function.

How should we choose diversifiers and diversification functions to ensure that we really
do get diversity? One possibility is to start with a random integer and change it using a random
number generator, passing the current value as seed, each time the diversifier is consulted. But
there is no way to analyse the effect of this, so instead we are going to examine what happens
when the diversifiers are fixed successive integers starting from 0.

What we want is a little hard to grasp. Suppose that, at some points in the algorithm, it
is offered a choice between 1 alternative; at others, there are 2 alternatives, and so on, with a
maximum ofnalternatives. For a given diversifier, there aren! different functions of the number
of choices. Ideally we would want all of these functions to turn up asd varies over its range.

It is not obvious, but it is a fact that the modulus function above does turn up every function
whenn is 1, 2 or 3, but whenn is 4 it produces 12 distinct functions, only half the possible 24
functions, as the following tables, obtained by runningkhe -d4, show:

4.5. Diversification 61

 d | 1 2
----+------
 0 | 0 0
 1 | 0 1
----+------

 d | 1 2 3
----+---------
 0 | 0 0 0
 1 | 0 1 1
 2 | 0 0 2
 3 | 0 1 0
 4 | 0 0 1
 5 | 0 1 2
----+---------

 d | 1 2 3 4
----+------------
 0 | 0 0 0 0
 1 | 0 1 1 1
 2 | 0 0 2 2
 3 | 0 1 0 3
 4 | 0 0 1 0
 5 | 0 1 2 1
 6 | 0 0 0 2
 7 | 0 1 1 3
 8 | 0 0 2 0
 9 | 0 1 0 1
 10 | 0 0 1 2
 11 | 0 1 2 3
 12 | 0 0 0 0 (same as 0)
 13 | 0 1 1 1 (same as 1)
 14 | 0 0 2 2 (same as 2)
 15 | 0 1 0 3 (same as 3)
 16 | 0 0 1 0 (same as 4)
 17 | 0 1 2 1 (same as 5)
 18 | 0 0 0 2 (same as 6)
 19 | 0 1 1 3 (same as 7)
 20 | 0 0 2 0 (same as 8)
 21 | 0 1 0 1 (same as 9)
 22 | 0 0 1 2 (same as 10)
 23 | 0 1 2 3 (same as 11)
----+------------

Each row is one value ofd, and each column is one value ofc. What this means is that if, during
the course of one run, no more than 4 choices are offered at any one point, then only 12 distinct
solutions can emerge, no matter how many are begun.

The most natural diversification function which produces distinct outcomes is probably

(d / fact(c - 1)) % c

wherefact is the factorial function. (To avoid overflow, in practice one stops multiplying as
soon as the value exceedsd.) Each line is something like the binary representation ofd, only in
a factorial number system rather than binary:

62 Chapter 4. Solutions

 d | 1 2
----+------
 0 | 0 0
 1 | 0 1
----+------

 d | 1 2 3
----+---------
 0 | 0 0 0
 1 | 0 1 0
 2 | 0 0 1
 3 | 0 1 1
 4 | 0 0 2
 5 | 0 1 2
----+---------

 d | 1 2 3 4
----+------------
 0 | 0 0 0 0
 1 | 0 1 0 0
 2 | 0 0 1 0
 3 | 0 1 1 0
 4 | 0 0 2 0
 5 | 0 1 2 0
 6 | 0 0 0 1
 7 | 0 1 0 1
 8 | 0 0 1 1
 9 | 0 1 1 1
 10 | 0 0 2 1
 11 | 0 1 2 1
 12 | 0 0 0 2
 13 | 0 1 0 2
 14 | 0 0 1 2
 15 | 0 1 1 2
 16 | 0 0 2 2
 17 | 0 1 2 2
 18 | 0 0 0 3
 19 | 0 1 0 3
 20 | 0 0 1 3
 21 | 0 1 1 3
 22 | 0 0 2 3
 23 | 0 1 2 3
----+------------

But there is still a problem: if all alternatives have 4 choices, say, then the first 6 threads will
produce the same result despite differing ind. The solution to this seems to be function

(d / fact(c - 1) + d % fact(c - 1)) % c

Delightfully, it produces

 d | 1 2
----+------
 0 | 0 0
 1 | 0 1
----+------

 d | 1 2 3
----+---------
 0 | 0 0 0
 1 | 0 1 1
 2 | 0 0 1
 3 | 0 1 2
 4 | 0 0 2
 5 | 0 1 0
----+---------

 d | 1 2 3 4
----+------------
 0 | 0 0 0 0
 1 | 0 1 1 1
 2 | 0 0 1 2
 3 | 0 1 2 3
 4 | 0 0 2 0
 5 | 0 1 0 1
 6 | 0 0 0 1
 7 | 0 1 1 2
 8 | 0 0 1 3
 9 | 0 1 2 0
 10 | 0 0 2 1
 11 | 0 1 0 2
 12 | 0 0 0 2
 13 | 0 1 1 3
 14 | 0 0 1 0
 15 | 0 1 2 1
 16 | 0 0 2 2
 17 | 0 1 0 3
 18 | 0 0 0 3
 19 | 0 1 1 0
 20 | 0 0 1 1
 21 | 0 1 2 2
 22 | 0 0 2 3
 23 | 0 1 0 0
----+------------

4.5. Diversification 63

and is diverse up toc = 8at least. Function

int KheSolnDiversifierChoose(KHE_SOLN soln, int c);

implements this function, returning a non-negative integer less thanc.

It is quite reasonable foreveryalgorithm faced with an arbitrary choice to diversify. It is
easy to do, and it provides a continual prodding towards diversity that should drive solutions with
different diversifiers further and further apart as solving continues, always provided that there
are sufficiently many choices.

4.6. Visit numbers

Some algorithms, such as tabu search and ejection chains, need to know whether some part of
the solution has changed recently. KHE supports this with a system ofvisit numbers.

A visit number is just an integer stored at some point in the solution. The KHE platform
initializes visit numbers (to 0) and copies them, but does not otherwise use them. The user is free
to set their values in any way at any time, using operations that look generically like this:

void KheSolnEntitySetVisitNum(KHE_SOLN_ENTITY e, int num);
int KheSolnEntityVisitNum(KHE_SOLN_ENTITY e);

But there is also a conventional way to use visit numbers, as follows.

The solution object contains aglobal visit numberwhich is used differently from the others.
The following operations are applicable to it:

void KheSolnSetGlobalVisitNum(KHE_SOLN soln, int num);
int KheSolnGlobalVisitNum(KHE_SOLN soln);
void KheSolnNewGlobalVisit(KHE_SOLN soln);

The first two operations are not usually used directly. The third increases the global visit number
by one. This new value has not previously been assigned to any visit number.

The visit numbers of other solution entities should never exceed the global visit number.
The operations for other solution entities look generically like this:

void KheSolnEntitySetVisitNum(KHE_SOLN_ENTITY e, int num);
int KheSolnEntityVisitNum(KHE_SOLN_ENTITY e);
bool KheSolnEntityVisited(KHE_SOLN_ENTITY e, int slack);
void KheSolnEntityVisit(KHE_SOLN_ENTITY e);
void KheSolnEntityUnVisit(KHE_SOLN_ENTITY e);

TypeSOLN_ENTITY is fictitious and so are these functions; they just display the standard pattern.
The first two are the standard ones. The third returns the value of the condition

KheSolnVisitNum(soln) - KheSolnEntityVisitNum(e) <= slack

wheresoln is the solution containinge. The fourth setse’s visit number to its solution object’s
visit number, and the last sets it to one less than its solution’s visit number.

These operations may be used to implement tabu search efficiently as follows. Suppose for

64 Chapter 4. Solutions

example that a change to the assignment ofmeet is to remain tabu until at leasttabu_len other
changes have been made. The code for this is

if(!KheMeetVisited(meet, tabu_len))
{
KheSolnNewVisit(KheMeetSoln(meet));
KheMeetVisit(meet);
... change the assignment of meet ...

}

To ensure that everything is visitable initially, call

KheSolnSetVisitNum(soln, tabu_len);

It is easy to generalize this code to other operations.

One form of the ejection chains algorithm requires that once a meet (or other entity) has
been changed during the current visit, it must remain tabu until a new visit is started in the outer
loop of the algorithm. The code for this is

if(!KheMeetVisited(meet, 0))
{
KheMeetVisit(meet);
... change the assignment of meet ...

}

A variant of this idea makesmeet tabu to recursive calls, but not tabu for the entire remainder of
the current visit. The code for this is

if(!KheMeetVisited(meet, 0))
{
KheMeetVisit(meet);
... change the assignment of meet and recurse ...
KheMeetUnVisit(meet);

}

Only meets in the direct line of the recursion are tabu.

4.7. Running times and time limits

Each solution contains a timer object of the kind defined in Section 8.5.1. It is initialized when
the solution is created, and copied when it is copied. A call to

float KheSolnTimeNow(KHE_SOLN soln);

returns the number of seconds of wall clock time since the original creation, to a precision
much better than one second. As explained in Section 8.5.1, if the binary was compiled with the
KHE_USE_TIMING preprocessor flag set to0, KheSolnTimeNow(soln) will always return-1.0.

Each solution also contains afloat value intended to hold the wall clock time in seconds
taken to complete the solution. It is initialized to-1.0, meaning undefined, and is set and

4.7. Running times and time limits 65

retrieved by theKheSolnSetRunningTime andKheSolnRunningTime operations described in
Section 4.2. The honest way to set the running time is to make the call

KheSolnSetRunningTime(soln, KheSolnTimeNow(soln));

at the end of the solve. Since wall clock time is measured, the stored value will be misleading if
the solve was part of a thread that had to wait for processor time.

Also stored is an optional soft time limit, which may be set and retrieved like this:

void KheSolnSetTimeLimit(KHE_SOLN soln, float limit_in_secs);
float KheSolnTimeLimit(KHE_SOLN soln);

The default value of this limit is-1.0, a special value whose meaning is ‘no limit’. Setting a
time limit does not prevent a solve from exceeding it. Instead, the user who wishes to enforce it
must periodically callKheSolnTimeNow and compare its result with the time limit. We therefore
describe it as asoft time limit. A convenient way to make this comparison is to call

bool KheSolnTimeLimitReached(KHE_SOLN soln);

which returnstrue whenKheSolnTimeLimit(soln) is not -1.0, KheSolnTimeNow(soln) is
not-1.0, andKheSolnTimeNow(soln) >= KheSolnTimeLimit(soln).

4.8. Meets

A meet is created by calling

KHE_MEET KheMeetMake(KHE_SOLN soln, int duration, KHE_EVENT e);

This creates and adds tosoln a new meet of the given duration, which must be at least 1. Ife is
non-NULL, it indicates that this meet is derived from evente. Initially the meet contains no tasks;
they must be added separately. A meet may be deleted from its solution by calling

void KheMeetDelete(KHE_MEET meet);

Any tasks withinmeet are also deleted. Ifmeet is assigned to another meet, or any other meets
are assigned to it, all those assignments are removed. The meet is also deleted from any node
(Section 5.2) it may lie in.

The back pointer of a meet may be set and retrieved by

void KheMeetSetBack(KHE_MEET meet, void *back);
void *KheMeetBack(KHE_MEET meet);

and the visit number by

void KheMeetSetVisitNum(KHE_MEET meet, int num);
int KheMeetVisitNum(KHE_MEET meet);
bool KheMeetVisited(KHE_MEET meet, int slack);
void KheMeetVisit(KHE_MEET meet);
void KheMeetUnVisit(KHE_MEET meet);

66 Chapter 4. Solutions

as usual. The other attributes of a meet are accessed by

KHE_SOLN KheMeetSoln(KHE_MEET meet);
int KheMeetSolnIndex(KHE_MEET meet);
int KheMeetDuration(KHE_MEET meet);
KHE_EVENT KheMeetEvent(KHE_MEET meet);

These return the enclosing solution,meet’s index in that solution (that is, the value ofi for which
KheSolnMeet(soln, i) returnsmeet), its duration, and the event thatmeet is derived from
(possiblyNULL). Index numbers change when meets are deleted (the hole left by the deletion of
a meet, if not last, is plugged by the last meet), so care is needed. There is also

bool KheMeetIsPreassigned(KHE_MEET meet, TIME *time);

which returnstrue whenKheMeetEvent(meet) != NULL and that event has a preassigned time;
meet is called apreassigned meetin that case. Iftime != NULL, then*time is set to the event’s
preassigned time ifmeet is preassigned, and toNULL otherwise.

When deciding what order to assign meets in, it is handy to have some measure of how
difficult they are to timetable. Functions

int KheMeetAssignedDuration(KHE_MEET meet);
int KheMeetDemand(KHE_MEET meet);

attempt to provide this.KheMeetAssignedDuration is the duration ofmeet if it is assigned, or 0
otherwise.KheMeetDemand(meet) is the sum, overmeet and all meets assigned tomeet, directly
or indirectly, of the product of the duration of the meet and the number of tasks it contains. This
value is stored in the meet and kept up to date as solutions change, so a call onKheMeetDemand

costs almost nothing.

A task is added to its meet when it is created, and removed from its meet when it is deleted.
To visit the tasks of a meet, call

int KheMeetTaskCount(KHE_MEET meet);
KHE_TASK KheMeetTask(KHE_MEET meet, int i);
bool KheMeetRetrieveTask(KHE_MEET meet, char *role, KHE_TASK *task);
bool KheMeetFindTask(KHE_MEET meet, KHE_EVENT_RESOURCE er,
KHE_TASK *task);

The first two traverse the tasks. The order of tasks within meets is not significant, and it may
change as tasks are created and deleted.KheMeetRetrieveTask retrieves a task which is derived
from an event resource with the givenrole, if present.KheMeetFindTask is similar, but it looks
for a task derived from event resourceer, rather than for a role. There are also

bool KheMeetContainsResourcePreassignment(KHE_MEET meet,
KHE_RESOURCE r, KHE_TASK *task);

bool KheMeetContainsResourceAssignment(KHE_MEET meet,
KHE_RESOURCE r, KHE_TASK *task);

which returntrue if meet contains a task preassigned or assignedr, setting*task to one if so.
Here a task is considered to be preassigned if it is derived from a preassigned event resource.

4.8. Meets 67

A meet contains an optionalassignment, which assigns the meet to a particular offset in
another meet, thereby fixing its time relative to the starting time of the other meet, and atime
domainwhich restricts the times it may start at to an arbitrary subset of the times of the cycle.
These attributes are described in detail in later sections.

A meet may optionally be contained in one node (Chapter 5). Functions

KHE_NODE KheMeetNode(KHE_MEET meet);
int KheMeetNodeIndex(KHE_MEET meet);

return the node containingmeet, and the index ofmeet in that node, orNULL and-1 if none.

As an aid to debugging, function

void KheMeetDebug(KHE_MEET meet, int verbosity, int indent, FILE *fp);

printsmeet ontofp with the given verbosity and indent (for which see Section 1.3). Verbosity 1
prints just an identifying name; verbosity 2 adds the chain of assignments leading out ofmeet.

The name is usually the name ofmeet’s event, between quotes. If there is more than one
meet corresponding to that event, this will be followed by a colon and the numberi for which
KheEventMeet(soln, e, i) equalsmeet. Alternatively, ifmeet is a cycle meet (Section 4.8.3),
the name is its starting time (a time name or else an index) between slashes.

4.8.1. Splitting and merging

A meet may be split into two meets whose durations sum to the duration of the original meet:

bool KheMeetSplitCheck(KHE_MEET meet, int duration1, bool recursive);
bool KheMeetSplit(KHE_MEET meet, int duration1, bool recursive,
KHE_MEET *meet1, KHE_MEET *meet2);

These functions follow the pattern described earlier for operations that might violate the solution
invariant, in that both returntrue if the split is permitted. The second actually carries out the
split, setting*meet1 and*meet2 to the new meets if the split is permitted, and leaving them
unchanged if not. The original meet,meet, is undefined after a successful split, unlessmeet1

or meet2 is set to&meet (this may seem dangerous, but it does what is wanted whether the split
succeeds or not). The split meet may be a cycle meet, in which case so are the two fragments.

The first new meet,*meet1, has durationduration1, and the second,*meet2, has the
remaining duration. Parameterduration1 must be such that both meets have duration at least 1,
otherwise both functions abort. Their back pointers are set to the back pointer ofmeet. If meet
is assigned,*meet1 has the same target meet and offset asmeet, while*meet2 has the same target
meet, but its offset isduration1 larger, making the two meets adjacent in time.

If recursive istrue, any meets assigned tomeet that span the split point will also be split,
into one meet for the part overlapping*meet1 and one for the part overlapping*meet2. This
process proceeds recursively as deeply as required.

The two split functions returntrue if these two conditions hold:

• Eitherrecursive is true, or else no meets assigned tomeet span the split point.

68 Chapter 4. Solutions

• The meets resulting from each split have copies of the meet bounds (Section 4.8.4) of the
meets they are fragments of. Nevertheless their domains usually change, owing to meet
bounds with specificduration attributes. This must cause no incompatibilities with the
domains of other meets connected to them by assignments, allowing for offsets. When a
cycle meet (Section 4.8.3) splits, the two fragments have the appropriate singleton domains.
Domain incompatibilities cannot occur in that case.

If these conditions hold,meet is said to besplittableatduration1.

When a meet splits, its tasks split too. This produces what is typically required when
assigning rooms: the fragments are free to be assigned different resources. The other possibility,
where the fragments are required to be assigned the same resource, can be obtained by assigning
the fragmentary tasks to each other. This must be done separately.

The next two functions are concerned with merging two meets into one:

bool KheMeetMergeCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetMerge(KHE_MEET meet1, KHE_MEET meet2, bool recursive,
KHE_MEET *meet);

Parametersmeet1 andmeet2 become undefined after a successful merge, unlessmeet is set to
&meet1 or &meet2.

If recursive istrue, after mergingmeet1 andmeet2,KheMeetMerge searches for pairs of
meets, one formerly assigned to the end ofmeet1, the other formerly assigned to the beginning
of meet2, which are mergeable according toKheMeetMergeCheck, and merges each such pair.
This process proceeds recursively as deeply as required.KheMeetMergeCheck has norecursive
parameter because its result does not depend on whether the merge is recursive.

The functions returntrue if all these conditions hold:

• The two meets are distinct.

• The two meets have the same value ofKheMeetIsCycleMeet (Section 4.8.3).

• The two meets have the same value ofKheMeetEvent, possiblyNULL.

• The two meets have the same value ofKheMeetNode, possiblyNULL.

• The two meets are both either assigned to the same meet, or not assigned. If assigned, the
offset of one (it may be either)must equal the offset plus duration of the other, ensuring they
are adjacent in time. Cycle meets, although never assigned, must also be adjacent in time.

• The two meets have the same number of tasks, and the order of their tasks may be permuted
so that corresponding tasks are compatible. Two tasks are compatible when they have the
same taskings, domains, event resources, and assignments.

4.8. Meets 69

• The result meet takes over the meet bounds (Section 4.8.4) of one of the meets being
merged. Nevertheless its domain usually changes, owing to meet bounds with non-zero
duration attributes. This must cause no incompatibilities with the domains of other meets
connected to it by assignments, allowing for offsets. When cycle meets (Section 4.8.3)
merge, the result meet has the singleton domain of the chronologically first meet. Domain
incompatibilities cannot occur in that case.

If all these conditions hold,meet1 and meet2 are said to bemergeable. These conditions
usually hold trivially when merging the results of a previous split. The merged meet’s attributes
(including its meet bounds and the order of its tasks) may come from eithermeet1 or meet2; the
choice is deliberately left unspecified, and the user must not depend on it.

It is now clear whyKheMeetMergeCheck does not need arecursive parameter: because
none of the conditions just given depend on whether the merge is recursive. Recursive merges
are only attempted whenKheMergeCheck says they will succeed. So instead of preventing the
top-level merge, an unacceptable recursive merge simply does not happen.

4.8.2. Assignment

KHE’s basic operations do not include assigning a time to a meet. A meet is either unassigned or
else assigned to another meet at a given offset, fixing the starting times of the two meets relative
to each other, but not assigning a specific time to either. For example, ifm1 is assigned tom2
at offset 2, then whatever timem2 eventually starts at,m1 will start two times later. Of course,
ultimately meets need to be assigned times. This is done by assigning them to special meets
calledcycle meets(Section 4.8.3).

Assigning one meet to another supportshierarchical timetabling, in which several meets
are timetabled relative to each other, then the whole group is timetabled into a larger context, and
so on. One simple application is in handling link events constraints. Assigning all the linked
events except one to that exception guarantees that the linked events will be simultaneous; the
time eventually assigned to the exception becomes the time assigned to all.

The fundamental meet assignment operations are

bool KheMeetMoveCheck(KHE_MEET meet, KHE_MEET target_meet, int offset);
bool KheMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset);

KheMeetMove changes the assignment ofmeet from whatever it is now totarget_meet at
offset. If target_meet is NULL, the move is an unassignment andoffset is ignored.

These functions follow the usual pattern, returningtrue if the move can be carried out, with
KheMeetMove actually doing it if so. They returntrue if all of the following conditions hold:

• KheMeetAssignIsFixed (see below) returnsfalse.

• Themeet parameter is not a cycle meet.

• The move actually changes the assignment: eithertarget_meet isNULL andmeet’s current
assignment is non-NULL, or target_meet is non-NULL andmeet’s current assignment is not
to target_meet atoffset.

70 Chapter 4. Solutions

• Theoffset parameter is in range: iftarget_meet is non-NULL, thenoffset >= 0 and
offset <= KheMeetDuration(target_meet) - KheMeetDuration(meet);

• If target_meet is non-NULL, then the time domain (Section 4.8.4) oftarget_meet is a
subset of the time domain ofmeet.

• The node rule (Section 4.12) would not be violated if the move was carried out.

If all these conditions hold, thenmeet is said to bemoveableto target_meet at offset.
Returningfalse when the move changes nothing reflects the practical reality that no solver
wants to waste time on such moves.

KHE offers several convenience functions based onKheMeetMoveCheck andKheMeetMove.
For assigning a meet there is

bool KheMeetAssignCheck(KHE_MEET meet, KHE_MEET target_meet, int offset);
bool KheMeetAssign(KHE_MEET meet, KHE_MEET target_meet, int offset);

Assigning is the same as moving except thatmeet is expected to be unassigned to begin with, and
KheMeetAssignCheck andKheMeetAssign returnfalse if not. For unassigning there is

bool KheMeetUnAssignCheck(KHE_MEET meet);
bool KheMeetUnAssign(KHE_MEET meet);

Unassigning is the same as moving toNULL. For swapping there is

bool KheMeetSwapCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetSwap(KHE_MEET meet1, KHE_MEET meet2);

A swap is two moves, one ofmeet1 to whatevermeet2 is assigned to, and the other ofmeet2 to
whatevermeet1 is assigned to. It succeeds whenever those two moves succeed.

KheMeetSwap has two useful properties. First, exchanging the order of its parameters never
affects what it does. Second, the code fragment

if(KheMeetSwap(meet1, meet2))
KheMeetSwap(meet1, meet2);

leaves the solution in its original state whether the swap occurs or not.

A variant of the swapping idea calledblock swappingis offered:

bool KheMeetBlockSwapCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetBlockSwap(KHE_MEET meet1, KHE_MEET meet2);

Block swapping is the same as ordinary swapping except that it treats one very special case in
a different way: the case when both meets are initially assigned to the same meet, at different
offsets which cause them to be adjacent, but not overlapping, in time. In this case, both meets
remain assigned to the same meet afterwards, and the later meet is assigned the offset of the
earlier one, but the earlier one is not necessarily assigned the offset of the later one. Instead, it
is assigned that offset which places it adjacent to the other meet.

For example,when swapping a meet of duration 1assigned to the first time on Monday with

4.8. Meets 71

a meet of duration 2 assigned to the second time on Monday,KheMeetBlockSwap would move
the first meet to the third time on Monday, not the second time. This is much more likely to work
well when the two meets have preassigned resources in common. It is the same as an ordinary
swap when the meets have the same duration, but it is different when their durations differ. The
two useful properties of ordinary swaps also hold for block swaps.

A meet’s assignment may be retrieved by calling

KHE_MEET KheMeetAsst(KHE_MEET meet);
int KheMeetAsstOffset(KHE_MEET meet);

These return the meet thatmeet is assigned to, and the offset into that meet. If there is no
assignment, the values returned areNULL and-1.

Although a meet may only be assigned to one meet, any number of meets may be assigned
to a meet, each with its own offset. Functions

int KheMeetAssignedToCount(KHE_MEET target_meet);
KHE_MEET KheMeetAssignedTo(KHE_MEET target_meet, int i);

visit all the meets that are assigned to a given meet, in an unspecified order which could change
when a meet is assigned to or unassigned fromtarget_meet. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.)

Given that a meet can be assigned to another meet at some offset, it follows that a chain of
assignments can be built up, from one meet to another and another and so on. Function

KHE_MEET KheMeetRoot(KHE_MEET meet, int *offset_in_root);

returns theroot of meet: the last meet on the chain of assignments leading out ofmeet. It also
sets*offset_in_root to the offset ofmeet in its root meet, which is just the sum of the offsets
along the assignment path. One function which usesKheMeetRoot is

bool KheMeetOverlap(KHE_MEET meet1, KHE_MEET meet2);

This returnstrue if meet1 andmeet2 can be proved to overlap in time, because they have the
same root meet, and their offsets in that root meet and durations make them overlap. Also,

bool KheMeetAdjacent(KHE_MEET meet1, KHE_MEET meet2, bool *swap);

returnstrue if meet1 andmeet2 can be proved to be immediately adjacent in time (but not
overlapping), because they have the same root meet, and their offsets in that root meet and
durations make them adjacent. If so, it also sets*swap to true if meet2 precedesmeet1, and to
false otherwise. Again, the meets are required to have the same root meet. This implies that
a meet assigned to the end of one cycle meet (Section 4.8.3) is not reported to be adjacent to a
meet assigned to the start of the next cycle meet. This is usually what is wanted in practice.

Meet assignments may be fixed and unfixed, by calling

void KheMeetAssignFix(KHE_MEET meet);
void KheMeetAssignUnFix(KHE_MEET meet);
bool KheMeetAssignIsFixed(KHE_MEET meet);

72 Chapter 4. Solutions

Any attempt to change the assignment ofmeet will fail while the fix is in place. When several
events are linked by a link events constraint, assigning the meets of all but one of them to the
meets of that one and fixing those assignments, or assigning the meets of all of them to some
other set of meets and fixing those assignments, has a significant efficiency payoff.

A call to KheMeetMoveCheck(meet, target_meet, offset) returnsfalse irrespective
of target_meet andoffset whenmeet is a cycle meet or its assignment is fixed. Function

bool KheMeetIsMovable(KHE_MEET meet);

returnstrue when neither of these conditions holds, so thatKheMeetMoveCheck can be expected
to returntrue for at least some target meets and offsets.

Two similar functions follow chains of fixed assignments:

KHE_MEET KheMeetFirstMovable(KHE_MEET meet, int *offset_in_result);
KHE_MEET KheMeetLastFixed(KHE_MEET meet, int *offset_in_result);

KheMeetFirstMovable returns the first meetm on the chain of assignments out ofmeet such
that KheMeetIsMovable(m) holds. If there is no such meet it returnsNULL. It is used when
changing the time assigned tomeet: this can be done only by changing the assignment of
KheMeetFirstMovable(meet), or of a movable meet further along the chain, and this is only
possible when the result is non-NULL. KheMeetLastFixed returns the last meet on the chain of
fixed assignments out ofmeet; that is, it follows the chain of assignments out ofmeet until it
reaches a meet whose target meet isNULL or whose assignment is not fixed, and returns that meet.
Its result is always non-NULL, and could be a cycle meet. It is used to decide whether two meets
are fixed to the same meet,directly or indirectly. In both functions, the result could bemeet itself,
and*offset_in_result is set to the offset ofmeet in the result, if non-NULL.

4.8.3. Cycle meets and time assignment

Even if most meets are assigned to other meets, there must be a way to associate a particular
starting time with a meet eventually. Rather than having two kinds of assignment, one to a meet
and one to a time, which might conflict, KHE has a special kind of meet called acycle meet. A
cycle meet has typeKHE_MEET as usual, and it has many of the properties of ordinary meets. But
it is also associated with a particular starting time (and its domain is fixed to just that time and
cannot be changed), and so by assigning a meet to a cycle meet one also assigns a time.

A cycle meet cannot be assigned to another meet; its assignment is fixed toNULL and cannot
be changed. Cycle meets may be split (their offspring are also cycle meets) and merged. They
may even be deleted, but that is not likely to ever be a good idea.

The user cannot create cycle meetsdirectly. Instead,one cycle meet is created automatically
whenever a solution is created. The starting time of thisinitial cycle meetis the first time of the
cycle, and its duration is the number of times of the cycle. When solving, it is usual to split the
initial cycle meet into one meet for each block of times not separated by a meal break or the end
of a day, to prevent other meets from being assigned timeswhich cause them to span these breaks.
A function for this appears below. When evaluating a fixed solution, it is usual to not split the
initial cycle meet, since the other meets already have unchangeable starting times and durations,
and splitting the initial cycle meet might prevent them from being assigned to cycle meets.

4.8. Meets 73

To find out whether a given meet is a cycle meet, call

bool KheMeetIsCycleMeet(KHE_MEET meet);

Cycle meets appear on the list of all meets contained in a solution. They are not stored separately
anywhere. So the way to find them all is

for(i = 0; i < KheSolnMeetCount(soln); i++)
{
meet = KheSolnMeet(soln, i);
if(KheMeetIsCycleMeet(meet))
visit_cycle_meet(meet);

}

However, cycle meets are usually near the front of the list, so this can be optimized as follows:

time_count = KheInstanceTimeCount(KheSolnInstance(soln));
durn = 0;
for(i = 0; i < KheSolnMeetCount(soln) && durn < time_count; i++)
{
meet = KheSolnMeet(soln, i);
if(KheMeetIsCycleMeet(meet))
{
visit_cycle_meet(meet);
durn += KheMeetDuration(meet);

}
}

The loop terminates as soon as the total duration of the cycle meets visited reaches the number
of times in the instance.

Solutions offer several functions whose results depend on cycle meets. They notice when
cycle meets are split, and adjust their results accordingly. Functions

KHE_MEET KheSolnTimeCycleMeet(KHE_SOLN soln, KHE_TIME t);
int KheSolnTimeCycleMeetOffset(KHE_SOLN soln, KHE_TIME t);

return the unique cycle meet running at timet, and the offset oft within that meet. Function

KHE_TIME_GROUP KheSolnPackingTimeGroup(KHE_SOLN soln, int duration);

returns a time group containing the times at which a meet of the given duration may begin. For
example, if the initial cycle meet has not been split,KheSolnPackingTimeGroup(soln, 2) will
contain every time except the last in the cycle; if the initial cycle meet has been split into one
meet for each day, it will contain every time except the last in each day; and so on.

As mentioned earlier,when solving it is usual to split the initial cycle meet into one fragment
for each maximal block of times not spanning a meal break or end of day. The XML format
does not record this information, but solver

void KheSolnSplitCycleMeet(KHE_SOLN soln);

74 Chapter 4. Solutions

is able to infer it, as follows. Say that two events ofsoln’s instance are related if they share
a required link events constraint with non-zero weight. Find the equivalence classes of the
reflexive transitive closure of this relation. For each class, examine the required split events
constraints with non-zero weight of the events of the class to determine what durations the meets
derived from the events of this class may have. Also determine whether the starting time of the
class is preassigned, because one of its events has a preassigned time.

For each permitted duration, consult the required prefer times constraints of non-zero
weight of the events of the class to see when its meets of that duration could begin. If a meetm

with duration 2 can begin at timet, there cannot be a break after timet; if a meetm with duration
3 can begin at timet, there cannot be a break after timet or after the time followingt, if any;
and so on. Accumulating all this information for all classes determines the set of times which
cannot be followed by a break. All other times can be followed by a break, and the initial cycle
event is split at these times, and also at times where a break is explicitly allowed by function
KheTimeBreakAfter from Section 3.4.2.

These functions move a meet to a time, following the familiar pattern:

bool KheMeetMoveTimeCheck(KHE_MEET meet, KHE_TIME t);
bool KheMeetMoveTime(KHE_MEET meet, KHE_TIME t);

They work by convertingt into a cycle meet and offset, via functionsKheSolnTimeCycleMeet
andKheSolnTimeCycleMeetOffset above, and callingKheMeetMoveCheck andKheMeetMove.
Meets may also be assigned to cycle meets directly, usingKheMeetMove and the rest. The direct
route is more convenient in general solving, since time assignment is then not a special case.

The following functions are also offered:

bool KheMeetAssignTimeCheck(KHE_MEET meet, KHE_TIME t);
bool KheMeetAssignTime(KHE_MEET meet, KHE_TIME t);
bool KheMeetUnAssignTimeCheck(KHE_MEET meet);
bool KheMeetUnAssignTime(KHE_MEET meet);
KHE_TIME KheMeetAsstTime(KHE_MEET meet);

The first four are wrappers forKheMeetAssignCheck, KheMeetAssign, KheMeetUnAssignCheck,
andKheMeetUnAssign. KheMeetAsstTime follows the assignments ofmeet as far as possible, and
if it arrives in a cycle meet, it returns the starting time ofmeet; otherwise it returnsNULL.

4.8.4. Meet domains and bounds

Each meet contains a time group called itsdomain, retrievable by calling

KHE_TIME_GROUP KheMeetDomain(KHE_MEET meet);

When a meet is assigned a time, that time must be an element of its domain.

More precisely, the solution invariant says thatmeet’s domain must be a superset of the
domain of the meet it is assigned to, if any, adjusted for offsets. So, given a chain of assignments
beginning atmeet and ending at a cycle meet, the domain ofmeet must be a superset of the
domain of the cycle meet,adjusted for offsets. Since the domain of a cycle meet is a singleton set
defining a time, the time assigned tomeet by this chain of assignments lies inmeet’s domain.

4.8. Meets 75

Meet domains cannot be set directly. Instead,meet boundobjects influence them. This
may seem unnecessarily complicated, but meet bounds have several major advantages over
setting domains directly, including allowing restrictions on domains to be added and removed
independently, and doing the right thing when meets split and merge.

When meets split and merge, their durations change, and this usually requires a change of
domain. For example,a meet of duration 2 cannot be assigned the last time on any day, but if it is
split, the fragments may be. Accordingly, a meet bound object stores a whole set of time groups,
one for each possible duration. Only one time group influences a meet’s domain at any moment:
the one corresponding to the meet’s current duration. But the others remain in reserve for when
the meet’s duration is changed by a split or merge.

To create a meet bound object, call

KHE_MEET_BOUND KheMeetBoundMake(KHE_SOLN soln,
bool occupancy, KHE_TIME_GROUP dft_tg);

See below for theoccupancy anddft_tg parameters. To delete a meet bound object, call

bool KheMeetBoundDeleteCheck(KHE_MEET_BOUND mb);
bool KheMeetBoundDelete(KHE_MEET_BOUND mb);

This includes deletingmb from each meet it is added to, and is permitted when all of those
deletions are permitted, according toKheMeetDeleteMeetBoundCheck, defined below.

To retrieve the attributes defined when a meet bound is created, call

KHE_SOLN KheMeetBoundSoln(KHE_MEET_BOUND mb);
int KheMeetBoundSolnIndex(KHE_MEET_BOUND mb);
bool KheMeetBoundOccupancy(KHE_MEET_BOUND mb);
KHE_TIME_GROUP KheMeetBoundDefaultTimeGroup(KHE_MEET_BOUND mb);

These are rarely accessed in practice.

As mentioned above, a meet bound is supposed to define a time group for each possible
duration. These time groups can be set manually by making any number of calls to

void KheMeetBoundAddTimeGroup(KHE_MEET_BOUND mb,
int duration, KHE_TIME_GROUP tg);

Each declares that whenmb is applied to a meet of the givenduration, it restricts its domain to
be a subset oftg. They may be retrieved by

KHE_TIME_GROUP KheMeetBoundTimeGroup(KHE_MEET_BOUND mb, int duration);

In both functions,duration may be any positive integer, provided it is not unreasonably large.
Two calls toKheMeetBoundAddTimeGroup with the sameduration are pointless, but if they
occur, the second takes effect. There is no need to specify a time group for every possible
duration: durations other than those covered by calls toKheMeetBoundAddTimeGroup are
assigned time groups using theoccupancy anddft_tg arguments ofKheMeetBoundMake. To
explain them we need to delve deeper.

There are really two kinds of domains. Those we have dealt with so far may be called

76 Chapter 4. Solutions

starting-time domains, because they restrict the starting times of meets. They are appropriate, for
example, when expressing prefer times and spread events constraints (which constrain starting
times)structurally. The others may be calledoccupancy domains, because they restrict the whole
set of times a meet occupies, not just its starting time. For example, a meet of duration 2 should
not start immediately before a time when one of its resources is unavailable: the complement of
a resource’s set of unavailable times is an occupancy domain, not a starting-time domain.

KHE works directly only with starting-time domains, not occupancy domains, so what is
needed is a function to convert an occupancy domain into a starting-time domain:

KHE_TIME_GROUP KheSolnStartingTimeGroup(KHE_SOLN soln, int duration,
KHE_TIME_GROUP tg);

This returns the set of times that a meet of the given duration could start without any part of
it lying outsidetg. In other words, it accepts occupancy domaintg and returns the equivalent
starting-time domain for a meet of the given duration. Whenduration is 1, the result is justtg.
As duration increases the result shrinks, eventually becoming empty.

To return to meet bounds. Whenoccupancy is false, the time group used by the meet
bound for durations not set explicitly isdft_tg. It may be best to set all durations explicitly in
this case. Whenoccupancy is true, the value used for any unspecified duration is

KheSolnStartingTimeGroup(soln, duration, dft_tg);

These values could be passed explicitly, but this way they can be (and are) created only when
needed, and there is no need to know the maximum duration. For example, letavailable_tg be
the set of times that some resource is available. Then the meet bound created by

KheMeetBoundMake(soln, true, available_tg);

ensures that a meet lies entirely within this set of times, whatever duration it has.

A meetm may have any number of meet bounds. Its domain is the intersection, over all
its meet boundsmb, of KheMeetBoundTimeGroup(mb, KheMeetDuration(m)), or the full cycle if
none. A meet bound may be added to any number of meets. To add a meet bound, call

bool KheMeetAddMeetBoundCheck(KHE_MEET meet, KHE_MEET_BOUND mb);
bool KheMeetAddMeetBound(KHE_MEET meet, KHE_MEET_BOUND mb);

These follow the usual form, returningtrue when the addition is permitted (when the change
in meet’s domain it causes does not violate the solution invariant), withKheMeetAddMeetBound

actually carrying out the addition in that case. To delete a meet bound from a meet, call

bool KheMeetDeleteMeetBoundCheck(KHE_MEET meet, KHE_MEET_BOUND mb);
bool KheMeetDeleteMeetBound(KHE_MEET meet, KHE_MEET_BOUND mb);

This too is not always permitted, because it may increasemeet’s domain, which may violate the
solution invariant with respect to the domains of meets assigned tomeet.

While a meet bound is added to at least one meet, it is not permitted to change its time
groups (that is, calls toKheMeetBoundAddTimeGroup are prohibited).

To visit the meet bounds added to a given meet, call

4.8. Meets 77

int KheMeetMeetBoundCount(KHE_MEET meet);
KHE_MEET_BOUND KheMeetMeetBound(KHE_MEET meet, int i);

as usual. To visit the meets to which a given meet bound has been added, call

int KheMeetBoundMeetCount(KHE_MEET_BOUND mb);
KHE_MEET KheMeetBoundMeet(KHE_MEET_BOUND mb, int i);

The relationship between meets and meet bounds is a many-to-many one.

When a meet is split, its meet bounds are added to both fragments; and when two meets
are merged, one (either) of the two sets of meet bounds is used for the merged meet. Although
the meet bounds are the same, the durations change, so the domains may change too. Splits and
merges are only permitted when the new domains do not violate the solution invariant.

Adding a meet bound to a meet has some cost in run time, but is fast enough to use within
solvers. KHE intersects the bound’s time group’s bit set with the current domain’s bit set, looks
up the result in a hash table of all time groups known to the solution, and either uses an existing
time group returned by the lookup, or makes and uses a new one, which is then added to the table.
Deleting a meet bound is much the same, except that the bit sets of the remaining bounds’ time
groups are intersected to obtain the new domain. Time groups are immutable during solving and
may be shared. Meet bound objects are obtained from free lists held in the solution object.

WhenKheMeetMake makes a meet derived from an event with a preassigned time, it adds
to the meet a meet bound whose default time group is the singleton time group containing that
time. No other special arrangements are made for meets derived from preassigned events.

4.8.5. Automatic domains

Cycle meets have fixed singleton domains, and meets derived from events can also be assigned
fixed domains, based on their durations and the constraints that apply to them.

When solving hierarchically there may be other meets, lying at intermediate levels, for
which there is no obvious fixed domain. Instead, the domain of such a meet needs to be the
largest domain consistent with the domains of the meets assigned to it: the intersection of those
domains, allowing for offsets, or the full set of times if no meets are assigned to it.

As meets are assigned to and unassigned from such a meet, its domain changes automatical-
ly. At any moment it does have a domain,however,defined by the rule just given,and thisdomain
must satisfy the solution invariant as usual.

A newly created meet has a fixed domain. To convert it to the automatic form, call

bool KheMeetSetAutoDomainCheck(KHE_MEET meet, bool automatic);
bool KheMeetSetAutoDomain(KHE_MEET meet, bool automatic);

Assigningtrue to automatic gives the meet an automatic domain. This will returnfalse if
meet is a cycle meet, or ifmeet is derived from an event or contains tasks, as discussed below.
Assigningfalse returns the meet to a fixed domain. Meet bounds are not affected by automatic
domains; what is affected is whether they are used to construct the domain or not.

KheMeetDomain returnsNULL when the meet has an automatic domain. It is important not
to mistake this for ‘having no domain,’a concept not defined by KHE. Function

78 Chapter 4. Solutions

KHE_TIME_GROUP KheMeetDescendantsDomain(KHE_MEET meet);

returns the intersection of the domains of the descendantsofmeet, includingmeet itself,adjusted
for offsets, or the full time group if there are no such meets or they all have automatic domains.
It may thus be used to find the true domain of a meet whenKheMeetDomain returnsNULL. It is
relatively slow and not intended for use during solving.

When a meet with an automatic domain is split, its two fragments have automatic domains.
When two meets are joined, they must both either have automatic domains or not; and if both do,
then the joined meet has an automatic domain.

A meet with an automatic domain may not be derived from an event, and it may not have
tasks. These two conditions are naturally satisfied by the kinds of meets that need automatic
domains. They are necessary, since otherwise KHE would be forced to maintain explicit
domains as meets are assigned and unassigned, which would not be efficient. As it is, automatic
domains are implemented by having the domain test bypass meets whose domains are automatic,
as though each such meet was replaced by the collection of meets assigned to it.

4.9. Tasks

A task is a demand for one resource. It is created by calling

KHE_TASK KheTaskMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_MEET meet, KHE_EVENT_RESOURCE er);

The task lies insoln and has resource typert. When parametermeet is non-NULL, the task
lies withinmeet, representing a demand for one resource, of typert, at the times whenmeet is
running. Whenmeet isNULL, the task still demands a resource, but at no times, making it useful
only as a target for the assignment of other tasks, as explained below.

Parameterer may be non-NULL only whenmeet is non-NULL and derived from some event
e. In that case,er must be one ofe’s event resources. Its presence causes the task to consider
itself to be derived from event resourceer.

When first created, a meet has no tasks. They must be created separately by calls to
KheTaskMake. FunctionKheSolnMakeCompleteRepresentation (Section 4.3)does this. When
a task’s enclosing meet splits, the task splits too. And when two meets merge, their tasks must
be compatible and are merged pairwise, inversely to the split.

A task contains an optionalassignmentto another task, and aresource domainwhich
restricts the resources it may be assigned to an arbitrary subset of the resources of its type. These
attributes are described in detail in later sections.

A task may be deleted by calling

void KheTaskDelete(KHE_TASK task);

This removes the task from its meet, if any, and unassigns any assignments involving the task.

The back pointer of a task may be set and retrieved by

void KheTaskSetBack(KHE_TASK task, void *back);
void *KheTaskBack(KHE_TASK task);

4.9. Tasks 79

as usual, and the usual visit number operations are available:

void KheTaskSetVisitNum(KHE_TASK task, int num);
int KheTaskVisitNum(KHE_TASK task);
bool KheTaskVisited(KHE_TASK task, int slack);
void KheTaskVisit(KHE_TASK task);
void KheTaskUnVisit(KHE_TASK task);

The attributes of a task related to its meet may be retrieved by

KHE_MEET KheTaskMeet(KHE_TASK task);
int KheTaskMeetIndex(KHE_TASK task);
int KheTaskDuration(KHE_TASK task);
float KheTaskWorkload(KHE_TASK task);

If there is no meet,KheTaskMeet returnsNULL andKheTaskDuration andKheTaskWorkload
return 0. If there is a meet and event resource,KheTaskWorkload returns the workload of the
task, defined in accord with the XML format’s definition to be

w(task) =
d(meet)w(er)

d(e)

whered(meet) is the duration oftask’s meet,w(er) is the workload of the task’s event resource,
andd(e) is the duration of the task’s meet’s event. See below for the similar and more generally
usefulKheTaskTotalDuration andKheTaskTotalWorkload operations. Other attributes of a
task may be accessed by

KHE_SOLN KheTaskSoln(KHE_TASK task);
int KheTaskSolnIndex(KHE_TASK task);
KHE_RESOURCE_TYPE KheTaskResourceType(KHE_TASK task);
KHE_EVENT_RESOURCE KheTaskEventResource(KHE_TASK task);

These return the solution containingtask, the index oftask in its solution (the value ofi for
whichKheSolnTask(soln, i) returnstask), the task’s resource type, and its event resource (if
any). Index numbers may change when tasks are deleted (what actually happens is that the hole
left by the deletion of a task, if not last, is plugged by the last task), so care is needed. Also,

bool KheTaskIsPreassigned(KHE_TASK task, KHE_RESOURCE *r);

returnstrue when KheTaskEventResource(task) != NULL and that event resource has a
preassigned resource;task is called apreassigned taskin that case. Ifr != NULL, then*r is set
to the event resource’s preassigned resource iftask is preassigned, and toNULL otherwise.

A task may lie in atasking, which is an arbitrary set of tasks (Section 5.5). Functions

KHE_TASKING KheTaskTasking(KHE_TASK task);
int KheTaskTaskingIndex(KHE_TASK task);

return the tasking containingtask and the index oftask in that tasking, orNULL and-1 if the
task does not lie in a tasking. Finally,

80 Chapter 4. Solutions

void KheTaskDebug(KHE_TASK task, int verbosity, int indent, FILE *fp);

produces the usual debug print oftask ontofp with the given verbosity and indent.

4.9.1. Assignment

Just as KHE assigns one meet to another meet, not to a time, so it assigns one task to another task,
not to a resource. Accordingly, the assignment operations for tasks parallel those for meets, the
main difference being that there is no offset.

The fundamental task assignment operations are

bool KheTaskMoveCheck(KHE_TASK task, KHE_TASK target_task);
bool KheTaskMove(KHE_TASK task, KHE_TASK target_task);

KheTaskMove changes the assignment oftask to target_task. If target_task is NULL, the
move is an unassignment. These operations follow the usual pattern, returningfalse and chang-
ing nothing if they cannot be carried out. Here is the full list of reasons why this could happen:

• task’s assignment is fixed;

• task is a cycle task (Section 4.9.2);

• the move changes nothing:target_task is the same astask’s current assignment;

• target_task is non-NULL and the resource domain (Section 4.9.3) oftarget_task is not
a subset of the resource domain oftask.

As for meet moves, returningfalse when the move changes nothing reflects the practical reality
that no solver wants to waste time on such moves.

KHE offers several convenience functions based onKheTaskMoveCheck andKheTaskMove.
For assigning a task there is

bool KheTaskAssignCheck(KHE_TASK task, KHE_TASK target_task);
bool KheTaskAssign(KHE_TASK task, KHE_TASK target_task);

Assigning is the same as moving except thattask is expected to be unassigned to begin with, and
KheTaskAssignCheck andKheTaskAssign returnfalse if not. For unassigning there is

bool KheTaskUnAssignCheck(KHE_TASK task);
bool KheTaskUnAssign(KHE_TASK task);

Unassigning is the same as moving toNULL. For swapping there is

bool KheTaskSwapCheck(KHE_TASK task1, KHE_TASK task2);
bool KheTaskSwap(KHE_TASK task1, KHE_TASK task2);

A swap is two moves, one oftask1 to whatevertask2 is assigned to, and the other oftask2
to whatevertask1 is assigned to. It succeeds whenever those two moves succeed. As for meet
swaps, exchanging the parameters changes nothing, and code fragment

4.9. Tasks 81

if(KheTaskSwap(task1, task2))
KheTaskSwap(task1, task2);

leaves the solution in its original state whether the swap occurs or not.

A task’s assignment may be retrieved by calling

KHE_TASK KheTaskAsst(KHE_TASK task);

If there is no assignment,NULL is returned. Although a task may only be assigned to one task,
any number of tasks may be assigned to a task. Functions

int KheTaskAssignedToCount(KHE_TASK target_task);
KHE_TASK KheTaskAssignedTo(KHE_TASK target_task, int i);

visit all the tasks that are assigned totarget_task, in an unspecified order which could change
when a task is assigned or unassigned fromtarget_task. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.) Functions

int KheTaskTotalDuration(KHE_TASK task);
float KheTaskTotalWorkload(KHE_TASK task);

return the total duration and workload oftask and the tasks assigned to it, directly or indirectly.
These functions are usually more appropriate thanKheTaskDuration andKheTaskWorkload.

Given that a task can be assigned to another task, a chain of assignments can be built up,
from one task to another and so on. Function

KHE_TASK KheTaskRoot(KHE_TASK task);

returns theroot of task: the last task on the chain of assignments leading out oftask, possibly
task itself. The result is neverNULL, but it could be a cycle task (Section 4.9.2).

Task assignments may be fixed and unfixed as usual, by calling

void KheTaskAssignFix(KHE_TASK task);
void KheTaskAssignUnFix(KHE_TASK task);
bool KheTaskAssignIsFixed(KHE_TASK task);

The assignment oftask cannot be changed while the fix is in place. When several tasks are
linked by an avoid split assignments constraint, assigning all but one of them to that one and fix-
ing those assignments, or assigning all of them to some other task and fixing those assignments,
has a significant efficiency payoff. Function

KHE_TASK KheTaskFirstUnFixed(KHE_TASK task);

returns the first task on the chain of assignments out oftask whose assignment is not fixed (pos-
siblytask), orNULL if none. A solver can change the resource assigned totask only by changing
the assignment ofKheTaskFirstUnFixed(task), or of a task further along the chain.

82 Chapter 4. Solutions

4.9.2. Cycle tasks and resource assignment

Just as meets are assigned times by assigning them, directly or indirectly, to cycle meets, so tasks
are assigned resources by assigning them, directly or indirectly, tocycle tasks. A cycle task
has typeKHE_TASK as usual, and it has many of the properties of ordinary tasks. But it is also
associated with a particular resource (and its domain is fixed to just that resource and cannot be
changed), and so by assigning a task to a cycle task one also assigns a resource.

The user cannot create cycle tasks directly. Instead, one cycle task is created automatically
for each resource whenever a solution is created. The firstKheInstanceResourceCount tasks
of a solution are its cycle tasks, in the order the resources appear in the instance. Function

bool KheTaskIsCycleTask(KHE_TASK task);

returnstrue whentask is a cycle task. Function

KHE_TASK KheSolnResourceCycleTask(KHE_SOLN soln, KHE_RESOURCE r);

returns the cycle task representingr in soln.

These functions move a task to a resource, following the familiar pattern:

bool KheTaskMoveResourceCheck(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskMoveResource(KHE_TASK task, KHE_RESOURCE r);

They work by convertingr into a cycle task, via functionKheSolnResourceCycleTask above,
and callingKheTaskMoveCheck andKheTaskMove. Tasks may also be assigned to cycle tasks
directly, usingKheTaskMove and the rest.

The following functions are also offered:

bool KheTaskAssignResourceCheck(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskAssignResource(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskUnAssignResourceCheck(KHE_TASK task);
bool KheTaskUnAssignResource(KHE_TASK task);
KHE_RESOURCE KheTaskAsstResource(KHE_TASK task);

The first four are wrappers forKheTaskAssignCheck, KheTaskAssign, KheTaskUnAssignCheck,
andKheTaskUnAssign. KheTaskAsstResource follows the assignmentsoftask as far as possible.
If it arrives at a cycle task, it returns the resource represented by that task, else it returnsNULL.

To find the tasks assigned a given resource, either directly or indirectly via other tasks, call

int KheResourceAssignedTaskCount(KHE_SOLN soln, KHE_RESOURCE r);
KHE_TASK KheResourceAssignedTask(KHE_SOLN soln, KHE_RESOURCE r, int i);

When a resourcer is assigned to a task, the task and all tasks assigned to it, directly or indirectly,
go on the end ofr’s sequence. Whenr is unassigned from a task, the task and all tasks assigned
to it, directly or indirectly, are removed, and the gaps are plugged by tasks taken from the end.
The sequence does not includer’s cycle task.

In practice, tasks are of three kinds:cycle tasks, which represent resources;unfixed tasks,
which require assignment to cycle tasks; andfixed tasks, whose assignments are fixed to unfixed

4.9. Tasks 83

tasks, relinquishing responsibility for assigning a resource to those tasks. Resource assignment
algorithms are concerned with assigning or reassigning unfixed tasks.

4.9.3. Task domains and bounds

Each task contains a resource group called itsdomain, retrievable by calling

KHE_RESOURCE_GROUP KheTaskDomain(KHE_TASK task);

When a task is assigned a resource, that resource must be an element of its domain.

More precisely, the solution invariant says thattask’s domain must be a superset of the
domain of the task it is assigned to, if any. So, given a chain of assignments beginning attask

and ending at a cycle task, the domain oftask must be a superset of the domain of the cycle task.
Since the domain of a cycle task is a singleton set defining a resource, the resource assigned to
task by this chain of assignments lies intask’s domain.

Task domains cannot be set directly. Instead,task boundobjects influence them. Task
bounds work in the same way as meet bounds, except that the complications introduced by meet
splitting are absent.

To create a task bound object, call

KHE_TASK_BOUND KheTaskBoundMake(KHE_SOLN soln, KHE_RESOURCE_GROUP rg);

To delete a task bound object, call

bool KheTaskBoundDeleteCheck(KHE_TASK_BOUND tb);
bool KheTaskBoundDelete(KHE_TASK_BOUND tb);

This includes deletingtb from each task it is added to, and is permitted when all of those
deletions are permitted, according toKheTaskDeleteTaskBoundCheck, defined below.

To retrieve the attributes defined when a task bound is created, call

KHE_SOLN KheTaskBoundSoln(KHE_TASK_BOUND tb);
int KheTaskBoundSolnIndex(KHE_TASK_BOUND tb);
KHE_RESOURCE_GROUP KheTaskBoundResourceGroup(KHE_TASK_BOUND tb);

These are rarely accessed in practice.

A task may have any number of task bounds. Its domain is the intersection, over all its task
boundstb, of KheTaskBoundResourceGroup(tb), or the full set of resources of its type if none.
A task bound may be added to any number of tasks. To add a task bound, call

bool KheTaskAddTaskBoundCheck(KHE_TASK task, KHE_TASK_BOUND tb);
bool KheTaskAddTaskBound(KHE_TASK task, KHE_TASK_BOUND tb);

These follow the usual form, returningtrue when the addition is permitted (when the change
in task’s domain it causes does not violate the solution invariant), withKheTaskAddTaskBound

actually carrying out the addition in that case. To delete a task bound from a task, call

bool KheTaskDeleteTaskBoundCheck(KHE_TASK task, KHE_TASK_BOUND tb);
bool KheTaskDeleteTaskBound(KHE_TASK task, KHE_TASK_BOUND tb);

84 Chapter 4. Solutions

This too is not always permitted, because it may increasetask’s domain, which may violate the
solution invariant with respect to the domains of tasks assigned totask.

To visit the task bounds added to a given task, call

int KheTaskTaskBoundCount(KHE_TASK task);
KHE_TASK_BOUND KheTaskTaskBound(KHE_TASK task, int i);

as usual. To visit the tasks to which a given task bound has been added, call

int KheTaskBoundTaskCount(KHE_TASK_BOUND tb);
KHE_TASK KheTaskBoundTask(KHE_TASK_BOUND tb, int i);

The relationship between tasks and task bounds is a many-to-many one.

Adding a task bound to a task has some cost in run time, but is fast enough to use within
solvers. The implementation parallels the one described previously for meet bounds.

WhenKheTaskMake makes a task derived from an event resource which has a preassigned
resource, it adds to the task a task bound whose resource group is the singleton resource group
containing that resource. No other special arrangements are made for tasks derived from
preassigned event resources.

4.10. Marks and paths

Suppose you want to make the best time assignment for a meet. You try each assignment in turn,
remembering the best so far and its solution cost, then finish off by re-doing the best one.

Now suppose the alternative operations are more complicated. For example, they might
be Kempe meet moves (Section 10.2.2), each consisting of an unpredictable number of time
assignments. The same program structure works, but undoing one alternative is much more
complicated. Marks and paths solve these kinds of problems.

A mark is like a waymark on a journey: it marks a particular point, or state, that a solution
has reached. It is created and deleted by

KHE_MARK KheMarkBegin(KHE_SOLN soln);
void KheMarkEnd(KHE_MARK mark, bool undo);

These operations must be called in matching pairs: for each call toKheMarkBegin there must be
one later call toKheMarkEnd with the same mark object. Between these two calls there may be
other calls toKheMarkBegin andKheMarkEnd, and those calls must occur in matching pairs.

KheMarkEnd deletes the mark created by the correspondingKheMarkBegin. If its undo

parameter istrue, it also undoes all operations onsoln since the correspondingKheMarkBegin,
returning the solution to its state when that call was made. Another way to undo is

void KheMarkUndo(KHE_MARK mark);

It undoes all operations onsoln since the call toKheMarkBegin which returnedmark, only
without removingmark. It can only be called when it would be legal to callKheMarkEnd with the
same value ofmark: whenmark is the mark returned most recently by a call toKheMarkBegin,
apart from marks already completed byKheMarkEnd.

4.10. Marks and paths 85

When undoing by either method, the resulting value of the solution may differ from the
original in its naturally nondeterministic aspects, such as the set of unmatched demand monitors
(but not their number), and the order of elements in arrays representing sets (of meets, etc.). But
as a solution it will be the same as the original. KHE objects deleted while doing and re-created
while undoing are re-created with the same memory addresses as the originals.

At any time betweenKheMarkBegin and its correspondingKheMarkEnd, functions

KHE_SOLN KheMarkSoln(KHE_MARK mark);
KHE_COST KheMarkSolnCost(KHE_MARK mark);

may be called to obtainmark’s solution and the solution cost at the timeKheMarkBegin was
called. Exploring the result ofKheMarkSoln will reveal the solution as it is now, not as it was
whenKheMarkBegin was called.

All mark objectsshare access to one sequence,stored in the solution object,of recordsof the
operations performed on the solution since the first call toKheMarkBegin whose corresponding
KheMarkEnd has not occurred yet. When undoing, these operations are undone in reverse order
and removed from the sequence. All changes to solutions, including changes to back pointers,
are recorded, except changes to visit numbers, since undoing them would be inappropriate. A
mark object holds a pointer to the solution object, its cost whenKheMarkBegin was called, an
index into the sequence saying where to stop undoing, and a sequence of paths, described next.

A pathis like the route between two waymarks. A path is created by calling

KHE_PATH KheMarkAddPath(KHE_MARK mark);

and represents the route from the state ofmark’s solution represented bymark to the state of
that solution at the momentKheMarkAddPath is called. Concretely, a path holds a copy of the
shared sequence of operations, taken at the momentKheMarkAddPath is called, from its mark’s
index to the end. As well as being returned,a path is stored in its mark and deleted by that mark’s
KheMarkEnd, if it has not been deleted before then. A path is meaningless after its mark ends.

In practice, this helper function may be more useful thanKheMarkAddPath:

KHE_PATH KheMarkAddBestPath(KHE_MARK mark, int k);

It is written using the more basic functions given below. Its behaviour is equivalent to calling
KheMarkAddPath(mark), then sortingmark’s paths into increasing cost order, then deleting paths
from the end as required to ensure that not more thank paths are kept. But rather than following
this description literally, it uses an optimized method that only callsKheMarkAddPath(mark)

when the resulting path would be one of those kept; it returns the new path in that case, andNULL

otherwise. For example,KheMarkAddBestPath(mark, 1) saves only the best path, and only
creates a path when it would be a new best.

Any number of paths may be stored in a mark, and they may be visited using

int KheMarkPathCount(KHE_MARK mark);
KHE_PATH KheMarkPath(KHE_MARK mark, int i);

as usual, and sorted by calling

86 Chapter 4. Solutions

void KheMarkPathSort(KHE_MARK mark,
int(*compar)(const void *, const void *));

wherecompar is a function suited to passing toqsort when sorting an array ofKHE_PATH objects.
One such function,KhePathIncreasingSolnCostCmp, is provided, such that after calling

KheMarkPathSort(mark, &KhePathIncreasingSolnCostCmp);

the paths will be sorted into increasing solution cost order, so that the path with the smallest
solution cost comes first. The following operations on paths are also available:

KHE_SOLN KhePathSoln(KHE_PATH path);
KHE_COST KhePathSolnCost(KHE_PATH path);
KHE_MARK KhePathMark(KHE_PATH path);
void KhePathDelete(KHE_PATH path);
void KhePathRedo(KHE_PATH path);

KhePathSoln returnspath’s solution, andKhePathSolnCost returns the solution cost at
the moment the path was created byKheMarkAddPath. KhePathMark returnspath’s mark.
KhePathDelete deletespath, including removing it from its mark.KheMarkEnd calls
KhePathDelete for each of its paths; once a mark is deleted, its paths have no meaning.

WhenKhePathRedo(path) is called, the solution must be in the state it was in whenpath’s
mark was created. It redoespath, without deleting or otherwise disturbing its mark, so that the
state after it returns is the state at the end ofpath. This is the only way to redo a path,and because
it checks that it starts from the same state that the path started from originally, it guarantees that
the operations executed while redoing the path cannot fail. KHE objects created along the path
and deleted during the undo (which must have occurred in order to return the solution to its
original state) are re-created during the redo with the same memory addresses as the originals.

One application of marks and paths is the conversion of a sequence of operations into an
atomic sequence, one which is either carried out completely or not at all:

mark = KheMarkBegin(soln);
success = SomeSequenceOfOperations(...);
KheMarkEnd(mark, !success);

If the sequence of operations is successful, it remains in place; otherwise the unsuccessful
sequence, or whatever part if it was completed before failure occurred, is undone. Similarly,

mark = KheMarkBegin(soln);
SomeSequenceOfOperations(...);
KheMarkEnd(mark, KheSolnCost(soln) >= KheMarkSolnCost(mark));

keeps the sequence of operations if it reduces the cost of the solution, but not otherwise.

Another application is the coordination of complex searches, such as tree searches, which
try many alternatives and keep the best. Before the search begins, create a mark, and pass it
to the search function, so that whenever it finds a worthwhile state it can record it in the mark
by callingKheMarkAddPath or KheMarkAddBestPath. (If the initial state is a valid solution,
one that the rest of the search is trying to improve on, callKheMarkAddPath immediately after

4.10. Marks and paths 87

KheMarkBegin.) Within the search function, create other marks as required so that subtrees can
be undone by callingKheMarkEnd(sub_mark, true). At the end,all worthwhile statesare paths
in the original mark, where they can be examined, sorted, or whatever—like this, perhaps:

if(KheMarkPathCount(mark) > 0)
KhePathRedo(KheMarkPath(mark, 0));

KheMarkEnd(mark, false);

when only the best path is kept. If it is safe to redo that path, there can be nothing to undo.

Marks and paths have been implemented carefully, and their running time is small. Indeed,
it is usually faster to use marks and undoing to return a solution to a previous state, than to
use operations opposite to the originals. This is becauseKheMarkBegin andKheMarkEnd call
KheSolnMatchingMarkBegin andKheSolnMatchingMarkEnd (Section 7.2), and because there
is no need to check that an undo is safe, as there is when carrying out an opposite operation.

4.11. Placeholder and invalid solutions

A solution can be converted to aplaceholder solutionby calling

void KheSolnReduceToPlaceholder(KHE_SOLN soln);

This deletes everything belowsoln: all its meets, all its tasks, and so on. It cannot be undone. It
reclaims a great deal of memory, which is the point of it, but it makessoln unusable except that
the following functions remain available and return their previous values:

char *KheSolnDescription(KHE_SOLN soln);
void *KheSolnBack(KHE_SOLN soln);
KHE_INSTANCE KheSolnInstance(KHE_SOLN soln);
KHE_SOLN_GROUP KheSolnSolnGroup(KHE_SOLN soln);
void *KheSolnImpl(KHE_SOLN soln);
int KheSolnDiversifier(KHE_SOLN soln);
int KheSolnVisitNum(KHE_SOLN soln);
float KheSolnTimeNow(KHE_SOLN soln);
void KheSolnSetTimeLimit(KHE_SOLN soln, float limit_in_secs);
float KheSolnTimeLimit(KHE_SOLN soln);
bool KheSolnTimeLimitReached(KHE_SOLN soln);
KHE_COST KheSolnCost(KHE_SOLN soln);

The functions defined below within this section also remain available. For example, placeholder
solutions may be used to build a table of solutions showing their costs; but they cannot be used
to find cost breakdowns by constraint type, or to print timetables, and so on.

To find out whether a solution is a placeholder, function

bool KheSolnIsPlaceholder(KHE_SOLN soln);

may be called. In practice this will usually be clear anyway from the algorithmic context.

A placeholder solution can also be aninvalid solution, meaning that it was converted to a
placeholder because it was invalid. In practice, this would only happen when reading a solution

88 Chapter 4. Solutions

from an archive (Section 2.3). Function

bool KheSolnIsInvalid(KHE_SOLN soln);

returnstrue if soln is invalid, and function

KML_ERROR KheSolnInvalidError(KHE_SOLN soln);

returns the first error that renderedsoln invalid, or NULL if soln is not invalid. For type
KML_ERROR, see Appendix A.4.2.

Function

void KheSolnReduceToInvalid(KHE_SOLN soln, KML_ERROR ke);

may be called to convert an ordinary solution, or a non-invalid placeholder solution, into an
invalid solution whose error iske. This function is offered only for completeness: there seems
to be no reason for the user to ever call it.

4.12. The solution invariant

Here is the condition, called the solution invariant, that every solution always satisfies. The last
three rules relate to data types introduced in Chapter 5.

1. Themeet rule: if meet is assigned totarget_meet at offsetoffset, then:

(a) The value ofoffset is at least 0 and at most the duration oftarget_meet minus the
duration ofmeet;

(b) The time domain oftarget_meet, shifted rightoffset places, is a subset of the time
domain ofmeet;

2. The task rule: if task is assigned totarget_task, then the resource domain of
target_task is a subset of the resource domain oftask.

3. Thecycle rule: the parent links of nodes may not form a cycle.

4. Thenode rule: if meetmeet is assigned to meettarget_meet and lies in noden, thenn has
a parent node andtarget_meet lies in that parent node.

5. Thelayer rule: every node of a layer has the same parent node as the layer.

No sequence of operations can bring a solution to a state that violates this invariant.

Chapter 5. Extra Types for Solving
This chapter introduces four types of objects that help with solving:nodes, layers, zones, and
taskings. They are an integral part of a solution, being copied when it is copied and deleted when
it isdeleted. But they are not part of the XML model,so their use isoptional. Nodesand layers to-
gether define thelayer tree, a data structure invented by the author [7] for use in time assignment.
Zones help to make time assignments regular, and taskings are used in resource assignment.

5.1. Layer trees

The layer tree is a data structure for organizing solutions during time assignment. It supports
hierarchical timetabling, in which meets are timetabled together into small timetables called
tiles, the tiles are timetabled together, and so on until a complete timetable is produced. Layer
trees are recommended when solving general instances, since they gracefully handle awkward
cases, such as linked events whose durations differ.

Layer trees are made ofnodes, which form a tree (actually, a forest). Each node has an
optionalparent node. The nodes with a given parent are itschildren.

Within each node lie any number of meets. Thenode rule, part of the solution invariant
(Section 4.12), imposes a structure on how the meets of nodes may be assigned: ifmeet is
assigned totarget_meet and lies in noden, thenn has a parent node andtarget_meet lies in
that parent node. A layer tree usually has a single root node containing the cycle meets,called the
cycle node. If there is a cycle node, the node rule guarantees that if every non-cycle meet lying
in a node is assigned to some meet, then every such meet is assigned a time.

A meet may lie in at most one node. When using layer trees, it is conventional for every
meet to lie in a node except when it has received an assignment that is considered to be final.
Omitting these finalized meets from nodes hides them from time assignment algorithms, which
typically access meets via nodes.

When a meet splits, it is replaced in its node (if any) by the two fragments. When two meets
merge, they must lie in the same node (or none), and they are replaced by the merged meet.

A layer is a subset of the children of some node with the property that none of the meets in
the nodes of the layer may overlap in time. This could be for any reason, but it is usually because
their meets all share a preassigned resource which possesses a required avoid clashes constraint.
The property is not enforced by KHE; it is merely a convention.

Here are some examples of layer trees. The first has four nodes,N, n1, n2, andn3. Theni
share a layer and are children ofN, so their meets must be assigned to meets ofN and should
not overlap in time:

N

n1 n2 n3

89

90 Chapter 5. Extra Types for Solving

The nodes are shown as rectangles. The horizontal direction represents time. That theni share
a layer is indicated by placing them alongside each other, and that they are children ofN is
indicated by placing them vertically belowN.

In the next example,N has five children, lying in two layers,{n1,n2,n3} and{m1,m2} :

N

n1 n2 n3

m1 m2

This could arise when one group of students attends theni while another group attends themi.

Finally, here is an example where a node lies in two layers (but still has only one parent):

N

n2 n3nm1

m2 m3

The two layers{nm1,n2,n3} and{nm1,m2,m3} both contain nodenm1. This case arises naturally
when an event (or a set of linked events) is attended by two groups of students, so that their
timetables coincide at that event but may differ elsewhere.

The key operation in hierarchical timetabling is the assignment of the meets of all the
children of a node to the meets of the node, so that meets that share a layer do not overlap. One
way to construct a timetable is to build a single layer tree containing every meet,whose root node
contains the cycle meets, and then apply this operation at each node in turn, visiting the nodes in
postorder (that is, from the bottom up).

5.2. Nodes

To create a layer tree node, initially with no meets, no parent, and no children, call

KHE_NODE KheNodeMake(KHE_SOLN soln);

Its back pointer may be accessed by

void KheNodeSetBack(KHE_NODE node, void *back);
void *KheNodeBack(KHE_NODE node);

and its visit number by

void KheNodeSetVisitNum(KHE_NODE n, int num);
int KheNodeVisitNum(KHE_NODE n);
bool KheNodeVisited(KHE_NODE n, int slack);
void KheNodeVisit(KHE_NODE n);
void KheNodeUnVisit(KHE_NODE n);

as usual, and its other attributes may be retrieved by calling

5.2. Nodes 91

KHE_SOLN KheNodeSoln(KHE_NODE node);
int KheNodeSolnIndex(KHE_NODE node);

FunctionKheNodeSolnIndex returns theindex numberof node, that is, the value ofi for which
KheSolnNode(soln, i), defined in Section 4.2, returnsnode. The index number may change
when nodes are deleted (what actually happens is that the hole left by the deletion of a node, if
not last, is plugged by the last node) so care is needed if node index numbers are stored. To visit
the nodes of a solution in increasing index number order, use functionsKheSolnNodeCount and
KheSolnNode from Section 4.2. To delete a node, call

bool KheNodeDeleteCheck(KHE_NODE node);
bool KheNodeDelete(KHE_NODE node);

This deletes all parent-child links involvingnode, and deletes all meets fromnode (but does not
delete them). It is permitted only when no meets assigned tonode’s meets lie in a node.

To make one node the parent of another, call

bool KheNodeAddParentCheck(KHE_NODE child_node, KHE_NODE parent_node);
bool KheNodeAddParent(KHE_NODE child_node, KHE_NODE parent_node);

These abort ifchild_node already has a parent; they returnfalse and do nothing when adding
the link would cause a cycle. To delete a parent-child link, call

bool KheNodeDeleteParentCheck(KHE_NODE child_node);
bool KheNodeDeleteParent(KHE_NODE child_node);

Deletion is permitted only when none of the meets ofchild_node is assigned. The gap created
in the list of child nodes of the parent node by the deletion ofchild_node is filled by shuffling
the following nodes down one place. To retrieve the parent of a node, call

KHE_NODE KheNodeParent(KHE_NODE node);

This returnsNULLwhennode has no parent. Children are added and deleted,obviously,by adding
and deleting parents. Functions

int KheNodeChildCount(KHE_NODE node);
KHE_NODE KheNodeChild(KHE_NODE node, int i);

visit a node’s children in the usual way. There are also

bool KheNodeIsDescendant(KHE_NODE node, KHE_NODE ancestor_node);
bool KheNodeIsProperDescendant(KHE_NODE node, KHE_NODE ancestor_node);

KheNodeIsDescendant returnstrue whennode is a descendant ofancestor_node, possibly
ancestor_node itself; KheNodeIsProperDescendant returnstrue when node is a proper
descendant ofancestor_node, that is, a descendant other thanancestor_node itself. They
work in the obvious way, searching upwards fromnode for ancestor_node.

Several helper functions for rearranging nodes appear in Section 9.5. They are often more
useful thanKheNodeAddParent andKheNodeDeleteParent. Some of them call

void KheNodeSwapChildNodesAndLayers(KHE_NODE node1, KHE_NODE node2);

92 Chapter 5. Extra Types for Solving

This function makes all the child nodes and child layers ofnode1 into child nodes and child
layers ofnode2 and vice versa. The child nodes and layers are the exact same objects as before,
stored in the same order as before; only their parent node is changed. Any assigned meets lying
in child nodes of either node are unassigned (otherwise the node rule would be violated).

A meet may lie in at most one node, and functionKheMeetNode (Section 4.8) returns the
node containing a given meet, if any. To add a meet to a node and delete it, the operations are

bool KheNodeAddMeetCheck(KHE_NODE node, KHE_MEET meet);
bool KheNodeAddMeet(KHE_NODE node, KHE_MEET meet);
bool KheNodeDeleteMeetCheck(KHE_NODE node, KHE_MEET meet);
bool KheNodeDeleteMeet(KHE_NODE node, KHE_MEET meet);

KheNodeAddMeetCheck andKheNodeAddMeet abort if meet already lies in a node, and return
false if it is already assigned to a meet not in the parent ofnode. KheNodeDeleteMeetCheck

andKheNodeDeleteMeet abort if meet does not lie innode, and returnfalse if a meet from a
child of node is assigned tomeet. Functions

int KheNodeMeetCount(KHE_NODE node);
KHE_MEET KheNodeMeet(KHE_NODE node, int i);

visit the meets of a node in the usual way. The order that meets are stored in nodes and returned
by these functions is arbitrary, and the user can change it by calling

void KheNodeMeetSort(KHE_NODE node,
int(*compar)(const void *, const void *))

wherecompar is a comparison function suitable for passing toqsort. Two such comparison
functions are supplied. One sorts the meets into decreasing duration order:

int KheMeetDecreasingDurationCmp(const void *p1, const void *p2);

Here is the implementation:

int KheMeetDecreasingDurationCmp(const void *p1, const void *p2)
{
KHE_MEET meet1 = * (KHE_MEET *) p1;
KHE_MEET meet2 = * (KHE_MEET *) p2;
if(KheMeetDuration(meet1) != KheMeetDuration(meet2))
return KheMeetDuration(meet2) - KheMeetDuration(meet1);

else
return KheMeetIndex(meet1) - KheMeetIndex(meet2);

}

Ties are broken by referring to the meet index. The other sorts meets by increasing value of the
index of the target meet, breaking ties by increasing value of the target offset:

int KheMeetIncreasingAsstCmp(const void *p1, const void *p2)

This brings together meets whose assignments place them adjacent in time. Unassigned meets
appear after assigned ones, but are not themselves sorted into any particular order.

5.2. Nodes 93

Unlike cycle meets, which are different behind the scenes from other meets, cycle nodes are
just ordinary nodes whose meets happen to be cycle meets. Accordingly, function

bool KheNodeIsCycleNode(KHE_NODE node);

merely returnstrue if node contains at least one meet, and its first meet is a cycle meet.

The total duration, assigned duration, and demand of the meets ofnode are returned by

int KheNodeDuration(KHE_NODE node);
int KheNodeAssignedDuration(KHE_NODE node);
int KheNodeDemand(KHE_NODE node);

The duration is kept up to date and stored in the node, soKheNodeDuration costs almost nothing.
The other two have to sum values stored in the meets, which is slower but still fast.

Following the pattern laid down in Section 1.3, function

bool KheNodeSimilar(KHE_NODE node1, KHE_NODE node2);

returnstrue whennode1 andnode2 are similar: when they contain similar events. The exact
rule is as follows. Ifnode1 andnode2 are the same node, they are similar. A node isadmissible
if all of its meets are derived from events, and for each event found among those meets, all of the
meets of that event lie in the node. Thus, an admissible node can be considered as a set of events.
Two distinct nodes are similar if they are admissible and each event in one can be matched up
with a similar event in the other. The definition of similarity for events is as in Section 3.6.2.

A similar property isregularity(Section 5.4). Two nodes are regular when they are the same
node or contain meets of equal durations and equal time domains. Function

bool KheNodeRegular(KHE_NODE node1, KHE_NODE node2, int *regular_count);

returnstrue whennode1 andnode2 are regular, andfalse otherwise. Either way, it reorders the
meets of both nodes so that corresponding meets have equal durations and equal time domains,
as far as possible;*regular_count is the number of such pairs. (Sotrue is returned when
*regular_count equals the number of meets in both nodes.)

Another function useful to solvers is

int KheNodeResourceDuration(KHE_NODE node, KHE_RESOURCE r);

This returns the total duration of meets innode and its descendants that contain a preassignment
of r. If a meet contains two such preassignments, its duration is only counted once.

To make a debug print ofnode onto filefp with a given verbosity and indent, call

void KheNodeDebug(KHE_NODE node, int verbosity, int indent, FILE *fp);

Verbosity 1prints just the node index number, verbosity 2 adds the duration and meets, verbosity
3 adds the node’s children, and verbosity 4 adds its segments. There is also

void KheNodePrintTimetable(KHE_NODE node, int cell_width,
int indent, FILE *fp);

which prints a timetable showing the meets ofnode across the top, and the assigned meets

94 Chapter 5. Extra Types for Solving

lying in child nodes ofnode on subsequent lines, one line per child layer. Ifnode has child
layers when it is called, those layers are used; otherwiseKheNodeChildLayersMake and
KheNodeChildLayersDelete are called to create layers at the start and delete them at the end.
Parametercell_width is the width of each cell, in characters.

5.3. Layers

A layer (not to be confused with the resource layer of Section 3.5.4) is a subset of the child
nodes of some node. The intention is that the meets of a layer’s nodes should not overlap in time,
although this condition is not enforced.

For a given node there are two sets of layers of interest: the node’sparent layers, which are
the layers it lies in (it may lie in several), and itschild layers, which are subsets of its child nodes.
A node is a member of all of its parent layers and none of its child layers.

To create a layer of children of a given parent node, initially with no nodes, call

KHE_LAYER KheLayerMake(KHE_NODE parent_node);

It has a back pointer and a visit number, accessed by

void KheLayerSetBack(KHE_LAYER layer, void *back);
void *KheLayerBack(KHE_LAYER layer);

void KheLayerSetVisitNum(KHE_LAYER layer, int num);
int KheLayerVisitNum(KHE_LAYER layer);
bool KheLayerVisited(KHE_LAYER layer, int slack);
void KheLayerVisit(KHE_LAYER layer);
void KheLayerUnVisit(KHE_LAYER layer);

as usual. Functions

KHE_NODE KheLayerParentNode(KHE_LAYER layer);
int KheLayerParentNodeIndex(KHE_LAYER layer);

return the parent node of layer and the value of i for which
KheNodeChildLayer(KheLayerParentNode(layer), i) returnslayer. For convenience the
solution containing it can be found by

KHE_SOLN KheLayerSoln(KHE_LAYER layer);

To delete the layer (but not its nodes), call

void KheLayerDelete(KHE_LAYER layer);

To add and delete a child node ofparent_node from a layer, call

void KheLayerAddChildNode(KHE_LAYER layer, KHE_NODE node);
void KheLayerDeleteChildNode(KHE_LAYER layer, KHE_NODE node);

KheLayerAddChildNode aborts if node’s parent node andlayer’s parent node are different,

5.3. Layers 95

andKheLayerDeleteChildNode aborts ifnode does not lie inlayer; otherwise, both succeed.
When a child node is deleted from a layer, all later nodes are shuffled up one place to fill the gap.
To visit the child nodes of a layer, call

int KheLayerChildNodeCount(KHE_LAYER layer);
KHE_NODE KheLayerChildNode(KHE_LAYER layer, int i);

To sort the child nodes of a layer, call

void KheLayerChildNodesSort(KHE_LAYER layer,
int(*compar)(const void *, const void *));

wherecompar is a function suited to passing toqsort when it sorts an array of nodes.

Although much about layers is taken on trust, thelayer ruleis enforced: the parent node of
each node of a layer equals the parent node of the layer. When the parent of a node is changed,
the node is deleted from all the layers it lies in.

The usual reason why nodes are placed into a layer together is because their meets have one
or more preassigned resources in common,and the resources have hard avoid clashes constraints,
preventing the meets from overlapping in time. To document this reason when it applies, a layer
contains a set of resources. To add and delete a resource from this set, the functions are

void KheLayerAddResource(KHE_LAYER layer, KHE_RESOURCE r);
void KheLayerDeleteResource(KHE_LAYER layer, KHE_RESOURCE r);

To visit this set of resources, the functions are

int KheLayerResourceCount(KHE_LAYER layer);
KHE_RESOURCE KheLayerResource(KHE_LAYER layer, int i);

There is no check that these resources are actually preassigned to the layer’s meets.

WhenKheLayerMake(parent_node) is called, the resulting layer becomes achild layerof
parent_node. To visit the child layers of a given node, call

int KheNodeChildLayerCount(KHE_NODE parent_node);
KHE_LAYER KheNodeChildLayer(KHE_NODE parent_node, int i);

Also,

void KheNodeChildLayersSort(KHE_NODE parent_node,
int(*compar)(const void *, const void *));

sorts the child layers ofparent_node, usingcompar (a function suited to passing toqsort) as
the comparison function, and

void KheNodeChildLayersDelete(KHE_NODE parent_node);

deletes all the child layers ofparent_node, without deleting any nodes.

WhenKheLayerAddChildNode(layer, node) is called,layer becomes aparent layerof
node. To visit a node’s parent layers, call

96 Chapter 5. Extra Types for Solving

int KheNodeParentLayerCount(KHE_NODE child_node);
KHE_LAYER KheNodeParentLayer(KHE_NODE child_node, int i);

It is important to allow multiple parent layers in this way. For example, suppose there is one
layer for the meets attended by Year 12 students and another for the meets attended by Year
11 students. If one of the Year 11 events is linked to one of the Year 12 events by a link events
constraint, then there will usually be a single node whose subtree contains the meets of both
events, and this node will appear in both layers. Function

bool KheNodeSameParentLayers(KHE_NODE node1, KHE_NODE node2);

returnstrue whennode1 andnode2 have the same parent layers.

Functions

int KheLayerDuration(KHE_LAYER layer);
int KheLayerMeetCount(KHE_LAYER layer);

return the total duration oflayer’s child nodes and the number of meets in them. These values
are stored in the layer and kept up to date as it changes, in the expectation that they will be used
when sorting layers. Similarly,

int KheLayerAssignedDuration(KHE_LAYER layer);
int KheLayerDemand(KHE_LAYER layer);

return the total duration of the assigned meets oflayer’s child nodes, and their total demand.
These values are calculated on demand, not stored, so the functions are a bit slower. There are
also set operations, implemented efficiently using bit vectors of node indexes:

bool KheLayerEqual(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerSubset(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerDisjoint(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerContains(KHE_LAYER layer, KHE_NODE node);

These returntrue if layer1 andlayer2 contain the same nodes, if every node oflayer1 is a
node oflayer2, if layer1 andlayer2 contain no nodes in common, and ifnode lies inlayer.

Three functions offer more complex comparisons between layers:

bool KheLayerSame(KHE_LAYER layer1, KHE_LAYER layer2, int *same_count);
bool KheLayerSimilar(KHE_LAYER layer1, KHE_LAYER layer2,
int *similar_count);

bool KheLayerRegular(KHE_LAYER layer1, KHE_LAYER layer2,
int *regular_count);

These work in the same general way: they reorder the nodes in the two layers so that the first
*same_count (etc.) nodes inlayer1 are equivalent in some way to the corresponding nodes in
layer2, returningtrue if this accounts for all the nodes in both layers.KheLayerSame aligns
nodes that are the identical same node;KheLayerSimilar aligns nodes that are similar,according
to KheNodeSimilar from Section 5.2; andKheLayerRegular aligns nodes that are regular,
according toKheNodeRegular from Section 5.2. Iflayer1 andlayer2 are the same layer, all

5.3. Layers 97

three functions returntrue and set their count variable to the number of nodes in the layer. If
some nodes are shared between the two layers, these are always considered equivalent and they
always appear first after the layers are ordered.

These functions are implemented by calls to a more general function:

bool KheLayerAlign(KHE_LAYER layer1, KHE_LAYER layer2,
bool (*node_equiv)(KHE_NODE node1, KHE_NODE node2), int *count);

which does the same kind of alignment, first bringing identical nodes to the front of both layers,
then ordering the other nodes, callingnode_equiv to decide whether two nodes are equivalent.

Two layers that share a common parent node may be merged:

void KheLayerMerge(KHE_LAYER layer1, KHE_LAYER layer2, KHE_LAYER *res);

The layers are deleted and replaced by layer*res, containing the nodes and resources oflayer1

andlayer2. It makes sense to merge, for example, when one layer is a subset of the other.

As an aid to debugging, KHE offers function

void KheLayerDebug(KHE_LAYER layer, int verbosity, int indent, FILE *fp);

It sends a debug print oflayer to fp in the usual way.

5.4. Zones

A regular timetable is one which has a pattern that makes it easy to understand. For example, if
a train comes every 15 minutes, then that is a regular train timetable.

In high school timetabling, two forms of regularity are important.Meet regularity is
achieved when meets which overlap in time have the same starting times and durations. It is
automatic when all meets have duration 1, but not otherwise. For example, if there are two meets
of duration 2, and one starts at the first time on Mondays while the second starts at the second
time, that is not regular. Most instances seem to have meets of durations 1and 2, with just a few
meets of higher durations, and under those circumstances meet regularity is easy to achieve.

Node regularityis achieved when the meets of two nodes which overlap in time have the
same starting times and durations. Node regularity makes a timetable easy to understand, and
simplifies resource assignment by reducing the number of pairs of events whose meets overlap
in time, by ensuring that they generally either overlap completely or not at all.

There seems to be little value in measuring regularity formally; the important thing is to
encourage it. This is what zones are for.

For any noden, consider the set of all pairs of the form(m,o), wherem is a meet lying inn,
ando is a legal offset ofm: if mhas duration 1,o may only be 0; ifmhas duration 2,o may be
0 or 1; and so on. Such a pair is called ameet-offset of n. For example, ifn contains the cycle
meets, then there is a meet-offset ofn for each time of the cycle.

A zoneof noden is a subset of the meet-offsets ofn. A zone may be created by calling

KHE_ZONE KheZoneMake(KHE_NODE node);

98 Chapter 5. Extra Types for Solving

Initially it contains no meet-offsets. Functions

KHE_NODE KheZoneNode(KHE_ZONE zone);
int KheZoneNodeIndex(KHE_ZONE zone);

returnzone’s node, which never changes, and the value ofi for whichKheNodeZone(node, i)

returnszone. When a zone is deleted, the indexes of other zones in its node may change. (As
usual, the gap left by the deletion of the zone is plugged by moving the last zone into it, unless
the deleted zone was the last zone.) For convenience there is also

KHE_SOLN KheZoneSoln(KHE_ZONE zone);

which returns the solution containingzone’s node.

A zone has has the usual back pointer and visit number:

void KheZoneSetBack(KHE_ZONE zone, void *back);
void *KheZoneBack(KHE_ZONE zone);

void KheZoneSetVisitNum(KHE_ZONE zone, int num);
int KheZoneVisitNum(KHE_ZONE zone);
bool KheZoneVisited(KHE_ZONE zone, int slack);
void KheZoneVisit(KHE_ZONE zone);
void KheZoneUnVisit(KHE_ZONE zone);

A zone may be deleted by calling

void KheZoneDelete(KHE_ZONE zone);

and all the zones of a node may be deleted by calling

void KheNodeDeleteZones(KHE_NODE node);

Each meet-offset may lie in at most one zone. To add a meet-offset to a zone, and to delete a
meet-offset from a zone, the operations are

void KheZoneAddMeetOffset(KHE_ZONE zone, KHE_MEET meet, int offset);
void KheZoneDeleteMeetOffset(KHE_ZONE zone, KHE_MEET meet, int offset);

To retrieve the zone of a meet-offset, call

KHE_ZONE KheMeetOffsetZone(KHE_MEET meet, int offset);

All these functions abort ifoffset is not a legal offset ofmeet. KheZoneAddMeetOffset also
aborts if the meet-offset already lies in a zone, orzone is NULL, or meet does not lie in a node,
or zone is not a zone of the node containingmeet. KheMeetOffsetZone returnsNULL if the
meet-offset does not lie in any zone, as is the case by default.

The zones of a node may be accessed from the node in the usual way:

int KheNodeZoneCount(KHE_NODE node);
KHE_ZONE KheNodeZone(KHE_NODE node, int i);

5.4. Zones 99

They are returned in an arbitrary order. The meet-offsets of a zone may be accessed by calling

int KheZoneMeetOffsetCount(KHE_ZONE zone);
void KheZoneMeetOffset(KHE_ZONE zone, int i, KHE_MEET *meet, int *offset);

They are returned in an arbitrary order. Function

void KheZoneDebug(KHE_ZONE zone, int verbosity, int indent, FILE *fp);

produces a debug print ofzone ontofp in the usual way.

When a meet is deleted from a node or deleted altogether, all the meet-offsets involving that
meet are removed from their zones. When a meet is split or merged, the meet-offsets mutate in
the appropriate way, but preserve their zones. For example, when a meetmof duration 3 is split
into a meetm1 of duration 1 and a meetm2 of duration 2, the meet-offsets mutate as follows:

(m,0), (m,1), (m,2) → (m1,0), (m2,0), (m2,1)

Nothing constrains a zone to hold any particular meet-offsets,and indeed nothing requires zones
to be created at all. The basic operations of KHE are not restricted in any way by zones. By
convention only, some solvers use zones to encourage meet and node regularity. See Section 9.6
for solvers that install zones.

A useful helper function when using zones is

bool KheMeetMovePreservesZones(KHE_MEET meet1, int offset1,
KHE_MEET meet2, int offset2, int durn);

Assuming that a meet of durationdurn may be assigned tomeet1 at offset1 and tomeet2 at
offset2, this function returnstrue if that meet would be assigned to the same zones either way.
It treats theNULL value returned at times byKheMeetOffsetZone as though it was a zone.

Another useful function is

int KheNodeIrregularity(KHE_NODE node);

It returns theirregularity of node: 0 if none of its meets is assigned, else the number of distinct
zones ofn’s parent node that the assigned meets ofn are assigned to (countingNULL as a zone),
minus one. For example, whenn’s parent node has no zones, or all of the meets ofn are assigned
to the same zone,n’s irregularity is 0. One reasonable way to preserve existing regularity is
to measure the irregularity of the nodes affected by an operation beforehand, measure it again
afterwards, and undo the operation if irregularity has increased.

5.5. Taskings

A taskingis an object of typeKHE_TASKING representing a set of tasks. A task may lie in at most
one tasking at any one time. Taskings make useful parameters to resource solvers: the solver’s
job can be to assign resources to the tasks of the tasking—any subset of the tasks of a solution.
For a deeper analysis of the role of taskings, see Section 11.3.2.

To create a tasking, initially with no tasks, call

100 Chapter 5. Extra Types for Solving

KHE_TASKING KheTaskingMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);

Whenrt is non-NULL, it signifies that all the tasks of the tasking have that type; but it may also
beNULL, in which case there is no restriction. To retrieve the two attributes, call

KHE_SOLN KheTaskingSoln(KHE_TASKING tasking);
KHE_RESOURCE_TYPE KheTaskingResourceType(KHE_TASKING tasking);

To visit the taskings of a solution, call functionsKheSolnTaskingCount andKheSolnTasking
from Section 4.2. To delete a tasking, without deleting its tasks, call

void KheTaskingDelete(KHE_TASKING tasking);

To add a task to a tasking, and to delete it from a tasking, call

void KheTaskingAddTask(KHE_TASKING tasking, KHE_TASK task);
void KheTaskingDeleteTask(KHE_TASKING tasking, KHE_TASK task);

KheTaskingAddTask aborts iftask already lies in a tasking, or if the resource type oftasking

is non-NULL andtask does not have that resource type.KheTaskingDeleteTask aborts iftask
does not lie intasking. Functions

int KheTaskingTaskCount(KHE_TASKING tasking);
KHE_TASK KheTaskingTask(KHE_TASKING tasking, int i);

visit the tasks of a tasking in the usual way, and

void KheTaskingDebug(KHE_TASKING tasking, int verbosity,
int indent, FILE *fp);

produces a debug print oftasking.

Chapter 6. Solution Monitoring

As a solution changes, it is continuouslymonitoredby a hand-tuned constraint network.

6.1. Measuring cost

KHE measures the badness of a solution as a single integral value called thecost, or sometimes
the combined costbecause it includes the cost of both hard and soft constraint deviations.
Storing costs in this way is convenient,because it allows costs to be assigned using=, added using
+, and compared using< and so on in the usual way. The hard cost is shifted left by 32 bits, to
ensure that it is more significant than any reasonable total soft cost, then added to the soft cost.

The type of a combined cost isKHE_COST, a synonym for the standard C 64-bit integer type
int64_t (a fact best forgotten). To find the current combined cost of a solution, call

KHE_COST KheSolnCost(KHE_SOLN soln);

This value is stored explicitly insoln, so this function takes virtually no time to execute. Call

KHE_COST KheCost(int hard_cost, int soft_cost);

to create a combined cost. The two components of a combined cost may be accessed by

int KheHardCost(KHE_COST combined_cost);
int KheSoftCost(KHE_COST combined_cost);

There is also the constantKheCostMax, which returns the maximum value storable in a variable
of typeKHE_COST (a synonym forINT64_MAX) and the function

int KheCostCmp(KHE_COST cost1, KHE_COST cost2);

which returns anint which is less than, equal to, or greater than zero if the first argument is
respectively less than, equal to, or greater than the second, as needed when sorting items by cost.
The implementation does not make the mistake of merely subtractingcost2 from cost1; the
result then would be aKHE_COST which will usually overflow theint result.

The suggested way to display a combined cost is as a decimal number with the hard cost
before the decimal point and the soft cost after. Five decimal places are displayed, allowing for
soft costs up to 99999. Larger soft costs are displayed as 99999. To assist with this, function

double KheCostShow(KHE_COST combined_cost);

returns a value which, when printed withprintf format"%.5f", prints the cost in this format.

These functions assume that both components of the cost are non-negative. There is no
problem with negative combined costs in themselves,but when a hard and soft cost are combined
together, if either is negative they may be different if they are separated again.

101

102 Chapter 6. Solution Monitoring

6.2. Monitors

A monitoris an object, of typeKHE_MONITOR, that monitors one part of a solution: typically, one
point of application of one constraint. It contains the usual back pointer and visit number:

void KheMonitorSetBack(KHE_MONITOR m, void *back);
void *KheMonitorBack(KHE_MONITOR m);
void KheMonitorSetVisitNum(KHE_MONITOR m, int num);
int KheMonitorVisitNum(KHE_MONITOR m);
bool KheMonitorVisited(KHE_MONITOR m, int slack);
void KheMonitorVisit(KHE_MONITOR m);
void KheMonitorUnVisit(KHE_MONITOR m);

Operations

KHE_SOLN KheMonitorSoln(KHE_MONITOR m);
int KheMonitorSolnIndex(KHE_MONITOR m);
KHE_COST KheMonitorCost(KHE_MONITOR m);
KHE_COST KheMonitorLowerBound(KHE_MONITOR m);

return the enclosing solution, the index ofm in that solution, the cost of whatm is monitoring (kept
up to date by KHE as the solution changes), and a constant lower bound onKheMonitorCost,
which is usually 0 but will be non-zero when KHE can prove the lower bound easily.

TypeKHE_MONITOR is the abstract supertype of many concrete subtypes, with these tags:

typedef enum {
KHE_ASSIGN_RESOURCE_MONITOR_TAG,
KHE_ASSIGN_TIME_MONITOR_TAG,
KHE_SPLIT_EVENTS_MONITOR_TAG,
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR_TAG,
KHE_PREFER_RESOURCES_MONITOR_TAG,
KHE_PREFER_TIMES_MONITOR_TAG,
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR_TAG,
KHE_SPREAD_EVENTS_MONITOR_TAG,
KHE_LINK_EVENTS_MONITOR_TAG,
KHE_ORDER_EVENTS_MONITOR_TAG,
KHE_AVOID_CLASHES_MONITOR_TAG,
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR_TAG,
KHE_LIMIT_IDLE_TIMES_MONITOR_TAG,
KHE_CLUSTER_BUSY_TIMES_MONITOR_TAG,
KHE_LIMIT_BUSY_TIMES_MONITOR_TAG,
KHE_LIMIT_WORKLOAD_MONITOR_TAG,
KHE_TIMETABLE_MONITOR_TAG,
KHE_TIME_GROUP_MONITOR_TAG,
KHE_ORDINARY_DEMAND_MONITOR_TAG,
KHE_WORKLOAD_DEMAND_MONITOR_TAG,
KHE_EVENNESS_MONITOR_TAG,
KHE_GROUP_MONITOR_TAG,
KHE_MONITOR_TAG_COUNT

} KHE_MONITOR_TAG;

6.2. Monitors 103

Each monitor object contains a tag identifying its subtype, returned by

KHE_MONITOR_TAG KheMonitorTag(KHE_MONITOR m);

Monitors of the first sixteen types monitor one point of application of one constraint; their cost
is the total cost of deviations at that point. They are described in detail in later sections of this
chapter. Monitors of the last six types (fromKHE_TIMETABLE_MONITOR_TAG onwards) do not
monitor constraints. Timetable monitors hold the timetables of resources and events (Section
6.7); time group monitors (Section 6.8) are used within them. Ordinary and workload demand
monitors monitor matchings, and evenness monitors monitor evenness (Chapter 7). Group
monitors group together other monitors (Section 6.9). The last value is not a tag; it is a count of
the number of monitor types, allowing code of the form

for(tag = 0; tag < KHE_MONITOR_TAG_COUNT; tag++)
... do something for monitors of type tag ...

For those monitors that monitor a point of application of a constraint, functions

KHE_CONSTRAINT KheMonitorConstraint(KHE_MONITOR m);
char *KheMonitorAppliesToName(KHE_MONITOR m);

return the constraint and the name of the point of application (if this point is an event resource,
the name of the enclosing event is returned). For other monitors they returnNULL. Each con-
straint monitor also has functions which return the specific constraint and point of application.

The cost of a monitor is a function of itsdeviation, which is a non-negative integer. This
value can be obtained by calling

int KheMonitorDeviation(KHE_MONITOR m);
char *KheMonitorDeviationDescription(KHE_MONITOR m);

These functions are intended for reporting, not solving.KheMonitorDeviation returns the
deviation, andKheMonitorDeviationDescription returns a description of it: an expression,
augmented with brief text, showing how it is calculated. The result string is stored in heap
memory and may be freed by passing it toMFree (Appendix A.1) after use.

To visit the full set of monitors monitoringsoln, call

int KheSolnMonitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMonitor(KHE_SOLN soln, int i);

Although KHE does not fully specify the order in which these monitors appear, it does guarantee
that the monitors which monitor constraints will appear together in the list in the order that their
constraints appear in the input. It is best to select these monitors by testing whether the result of
KheMonitorConstraint above is non-NULL.

To debug a monitorm with a given verbosity and indent, calll

void KheMonitorDebug(KHE_MONITOR m, int verbosity, int indent, FILE *fp);

The output starts with aG,A or D indicating whether the monitor is a group monitor, an attached
non-group monitor, or a detached non-group monitor. This is followed by the number of paths

104 Chapter 6. Solution Monitoring

up from the monitor to the solution (Section 6.9), usually 0 or 1. Then comes the monitor’s tag
and cost, then other information depending on the monitor type and verbosity. There is also

char *KheMonitorTagShow(KHE_MONITOR_TAG tag);

which returns a string representation oftag. In practice a more useful function is

char *KheMonitorLabel(KHE_MONITOR m);

This returnsKheMonitorTagShow(KheMonitorTag(m)) if m is not a group monitor, andm’s
subtag label ifm is a group monitor.

6.3. Attaching, detaching, and provably zero fixed cost

For a monitor to be updated when the solution changes, there must be linkages from the appro-
priate points within the solution to the monitor. When these linkages are present, the monitor is
said to beattached to the solution, or justattached. Monitors are attached to begin with, but they
can be detached at any time, and even reattached later, by calling

void KheMonitorDetachFromSoln(KHE_MONITOR m);
void KheMonitorAttachToSoln(KHE_MONITOR m);

Even when detached, a monitor remembers which parts of the solution it is supposed to monitor,
so the attach operation does not have to tell the monitor where to attach itself. To find out whether
a monitor is currently attached or detached, call

bool KheMonitorAttachedToSoln(KHE_MONITOR m);

These three operations apply to all kinds of monitors except the group monitors of Section 6.9,
to which the concept of attachment to the solution does not apply. Another function, highly
recommended for calling at the end of a solve, is

void KheSolnEnsureOfficialCost(KHE_SOLN soln);

This ensures that all constraint monitors are both attached to the solution and reporting their
cost to the solution, directly or indirectly via group monitors, and that all demand and evenness
monitors are detached from the solution, guaranteeing that the solution cost is the official cost.

While a monitor is detached, it receives no information about changes to the solution, and,
by definition, its cost is 0. Detaching a monitor may therefore change its cost. If there is a change
in cost, it is reported to the monitor’s parents (if it has any) as usual. Conversely, attaching a
monitor brings it up to date with the current state of the solution, which again may change its
cost; and again, if there is a change in cost it is reported to its parents (if it has any).

There are two main reasons for detaching a monitor. First, the user might make a deliberate
choice to ignore some constraints. For example, a solver that works in two phases, first finding
a solution that satisfies the hard constraints, and then attacking the soft ones, might detach the
monitors for the soft constraints during its first phase. An example of this kind of deliberate
choice is KHE’s matching feature (Chapter 7), which is implemented with monitors. Unlike
other monitors, matching monitors are detached initially. KHE makes this choice deliberately,

6.3. Attaching,detaching,and provably zero fixed cost 105

on the grounds that the cost of the matching is not officially part of the cost function.

The second reason for detaching a monitor is that it may be clear that its cost will be zero
for a long time. In that case, detaching it means that no time is spent keeping it up to date, yet it
still reports the correct cost. For example, if the meets of one point of application of a link events
constraint are assigned to each other and those assignments will not be removed, then it is safe
to save time by detaching the corresponding monitor.

This reasoning was formerly embodied in a function calledKheMonitorAttachCheck,
which assumed that certain elements of the solution were unlikely to change, and detached mon-
itors accordingly.KheMonitorAttachCheck has been withdrawn; the equivalent functionality is
now obtained, more reliably, by calling theFix andUnFix functions, as follows.

A monitor hasprovably zero fixed costif enough of the solution is currently fixed (by calls
to KheMeetAssignFix andKheTaskAssignFix) to allow KHE to prove that the monitor must
have cost 0 while those fixes remain. For each kind of monitor, either a specific definition of
when that kind of monitor has provably zero fixed cost is given below, or else that kind never has
provably zero fixed cost.

When one of the fixing operations just listed is called, after doing the actual fixing KHE
ensures that all monitors which did not have provably zero fixed cost before but now do are
detached. When one of the corresponding unfix operations is called, after doing the actual
unfixing it ensures that all monitors which had provably zero fixed cost before but now do not
are attached. So there is no risk that detaching these monitors could lead to cost errors; as soon
as unfixes make a non-zero cost possible, they are attached again.

6.4. Event monitors

An event monitormonitors one or more events. The set of monitors (attached or unattached)
which monitor a given event may be found by calling

int KheSolnEventMonitorCount(KHE_SOLN soln, KHE_EVENT e);
KHE_MONITOR KheSolnEventMonitor(KHE_SOLN soln, KHE_EVENT e, int i);

These return the number of monitors that monitore in soln, and theith of these, as usual. The
timetable monitor for evente (Section 6.7) is not visited by these functions; it may be retrieved
by callingKheEventTimetableMonitor.

The total cost of these monitors measures how welle is timetabled. Functions

KHE_COST KheSolnEventCost(KHE_SOLN soln, KHE_EVENT e);
KHE_COST KheSolnEventMonitorCost(KHE_SOLN soln, KHE_EVENT e,
KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoringe, and the total cost of all monitors monitoring
e of a specific type, defined bytag. KheSolnEventMonitorCost returns 0 whentag does not
specify one of the monitor types in the following subsections.

Each point of application of a spread events constraint or link events constraint is one event
group, and a monitor of these kinds appears on the list of monitors of each of the events in its
event group. Similarly, an order events monitor appears on the list of monitors of both of the
events it monitors. IfKheSolnEventCost(soln, e) is summed over all events, the cost of such

106 Chapter 6. Solution Monitoring

monitors is counted repeatedly, and the total may exceed the total cost of all event monitors.

The following subsections list the various kinds of event monitors and the details specific
to each of them. Their types (KHE_SPLIT_EVENTS_MONITOR and so on) may be obtained by
downcasting fromKHE_MONITOR after checking the type tag.

6.4.1. Split events monitors

A split events monitor has tagKHE_SPLIT_EVENTS_MONITOR_TAG and monitors an event which
is one point of application of one split events constraint. Functions

KHE_SPLIT_EVENTS_CONSTRAINT KheSplitEventsMonitorConstraint(
KHE_SPLIT_EVENTS_MONITOR m);

KHE_EVENT KheSplitEventsMonitorEvent(KHE_SPLIT_EVENTS_MONITOR m);

return the split events constraint and event being monitored, and

void KheSplitEventsMonitorLimits(KHE_SPLIT_EVENTS_MONITOR m,
int *min_duration, int *max_duration, int *min_amount, int *max_amount);

sets the four last variables to the corresponding attributes of the monitor’s constraint.

6.4.2. Distribute split events monitors

A distribute split events monitor has tagKHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR_TAG and
monitors one point of application of a distribute split events constraint (one event). Functions

KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KheDistributeSplitEventsMonitorConstraint(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m);

KHE_EVENT KheDistributeSplitEventsMonitorEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m);

return the constraint and event being monitored, and

void KheDistributeEventsMonitorLimits(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m,
int *duration, int *minimum, int *maximum, int *meet_count);

sets*duration, *minimum, and *maximum to the corresponding attributes of the monitor’s
constraint, and*meet_count to the number of meets derived from the monitored event whose
duration is*duration (or to the total number of meets if*duration is KHE_ANY_DURATION).

6.4.3. Assign time monitors

An assign time monitor has tagKHE_ASSIGN_TIME_MONITOR_TAG and monitors an event which
is one point of application of one assign time constraint. Functions

6.4. Event monitors 107

KHE_ASSIGN_TIME_CONSTRAINT KheAssignTimeMonitorConstraint(
KHE_ASSIGN_TIME_MONITOR m);

KHE_EVENT KheAssignTimeMonitorEvent(KHE_ASSIGN_TIME_MONITOR m);

return the assign time constraint and event being monitored.

An assign time monitor does not have provably zero fixed cost whenKheMeetAssignFix

has been called for each of the meets derived from the event it monitors and the monitor has
cost 0 when attached, because the assignments may be to other meets whose assignments are not
fixed. The full assignment paths leading out of the monitored meets would need to be fixed; but
that would be awkward to implement and give no efficiency payoff, because then the monitor
would never be updated anyway. So an assign time monitor never has provably zero cost.

6.4.4. Prefer times monitors

A prefer times monitor has tagKHE_PREFER_TIMES_MONITOR_TAG and monitors an event which
is one point of application of one prefer times constraint. Functions

KHE_PREFER_TIMES_CONSTRAINT KhePreferTimesMonitorConstraint(
KHE_PREFER_TIMES_MONITOR m);

KHE_EVENT KhePreferTimesMonitorEvent(KHE_PREFER_TIMES_MONITOR m);

return the prefer times constraint and event being monitored.

6.4.5. Spread events monitors

A spread events monitor has tagKHE_SPREAD_EVENTS_MONITOR_TAG and monitors an event
group which is one point of application of a spread events constraint. It appears in the list of
monitors of all the events in its event group. Functions

KHE_SPREAD_EVENTS_CONSTRAINT KheSpreadEventsMonitorConstraint(
KHE_SPREAD_EVENTS_MONITOR m);

KHE_EVENT_GROUP KheSpreadEventsMonitorEventGroup(
KHE_SPREAD_EVENTS_MONITOR m);

return the spread events constraint and event group being monitored. There are also

int KheSpreadEventsMonitorTimeGroupCount(KHE_SPREAD_EVENTS_MONITOR m);
void KheSpreadEventsMonitorTimeGroup(KHE_SPREAD_EVENTS_MONITOR m, int i,
KHE_TIME_GROUP *time_group, int *minimum, int *maximum, int *incidences);

The first returns the number of time groups (as in the corresponding constraint). The second
returns thei’th time group and the minimum and maximum number of meets wanted there
(again, as in the constraint), plus the current number of meets incident on that time group. If
*incidences is less than*minimum or more than*maximum, a cost is incurred.

6.4.6. Link events monitors

A link events monitor has tagKHE_LINK_EVENTS_MONITOR_TAG and monitors an event group
which is one point of application of a link events constraint. It appears in the list of monitors of

108 Chapter 6. Solution Monitoring

all the events in its event group. Functions

KHE_LINK_EVENTS_CONSTRAINT KheLinkEventsMonitorConstraint(
KHE_LINK_EVENTS_MONITOR m);

KHE_EVENT_GROUP KheLinkEventsMonitorEventGroup(
KHE_LINK_EVENTS_MONITOR m);

return the link events constraint and event group being monitored.

A link events monitor has provably zero fixed cost when following to the end the chains of
fixed assignments out of the meets of the events it monitors produces the same result for each
event: the same offsets and durations within the same final meets.KheMeetAssignFix and
KheMeetAssignUnFix may detach and attach link events monitors.

Detaching link events monitors is the most important service provided by fixing. Keeping
these monitors up to date is slow, despite the author’s best efforts to optimize. When the times of
a set of linked events change together, an attached link events monitor receives the changes one
by one, forcing it through a tedious sequence of cost changes beginning and ending with 0.

6.4.7. Order events monitors

An order events monitor has tagKHE_ORDER_EVENTS_MONITOR_TAG and monitors two events
which together constitute one point of application of an order events constraint. It appears in
the list of monitors of both events. Functions

KHE_ORDER_EVENTS_CONSTRAINT KheOrderEventsMonitorConstraint(
KHE_ORDER_EVENTS_MONITOR m);

KHE_EVENT KheOrderEventsMonitorFirstEvent(KHE_ORDER_EVENTS_MONITOR m);
KHE_EVENT KheOrderEventsMonitorSecondEvent(KHE_ORDER_EVENTS_MONITOR m);
int KheOrderEventsMonitorMinSeparation(KHE_ORDER_EVENTS_MONITOR m);
int KheOrderEventsMonitorMaxSeparation(KHE_ORDER_EVENTS_MONITOR m);

return the constraint being monitored and the four attributes of the monitor: the two events
monitored, and the minimum and maximum separations.

An order events monitor has provably zero fixed cost when both of its events are broken
into a single meet, following to the end the chains of fixed assignments out of those two meets
leads to the same final meet, and their separation (the offset into the final meet of the second
meet, minus the duration plus offset into the final meet of the first meet) is in the legal range.
KheMeetAssignFix andKheMeetAssignUnFix may detach and attach order events monitors.

6.5. Event resource monitors

An event resource monitormonitors one or more event resources. The monitors (attached or
unattached) which monitor a given event resource may be visited by

int KheSolnEventResourceMonitorCount(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_MONITOR KheSolnEventResourceMonitor(KHE_SOLN soln,

KHE_EVENT_RESOURCE er, int i);

The total cost of these monitors measures how weller is timetabled. Functions

6.5. Event resource monitors 109

KHE_COST KheSolnEventResourceCost(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_COST KheSolnEventResourceMonitorCost(KHE_SOLN soln,
KHE_EVENT_RESOURCE er, KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoringer, and the total cost of all monitors
monitoringer of a specific type, defined bytag. KheSolnEventResourceMonitorCost returns
0 whentag does not specify one of the monitor types in the following subsections.

Each point of application of an avoid split assignments constraint is a whole set of event
resources, and a monitor of this kind is attached to each of the event resources in its set. If
KheSolnEventResourceCost(soln, er) is summed over all event resources, such a monitor
is counted repeatedly, so the total may exceed the total cost of all event resource monitors.

The following subsections list the various kinds of event resource monitors and the details
specific to each of them. Their types (KHE_ASSIGN_RESOURCE_MONITOR and so on) may be
obtained by downcasting fromKHE_MONITOR after checking the type tag.

6.5.1. Assign resource monitors

An assign resource monitor has tagKHE_ASSIGN_RESOURCE_MONITOR_TAG and monitors an
event resource which is one point of application of one assign resource constraint. Functions

KHE_ASSIGN_RESOURCE_CONSTRAINT KheAssignResourceMonitorConstraint(
KHE_ASSIGN_RESOURCE_MONITOR m);

KHE_EVENT_RESOURCE KheAssignResourceMonitorEventResource(
KHE_ASSIGN_RESOURCE_MONITOR m)

return the assign resource constraint and event resource being monitored. Like assign time
monitors, assign resource monitors are never considered to have provably zero fixed cost.

6.5.2. Prefer resources monitors

A prefer resources monitor has tagKHE_PREFER_RESOURCES_MONITOR_TAG and monitors an
event resource which is one point of application of one prefer resources constraint. Functions

KHE_PREFER_RESOURCES_CONSTRAINT KhePreferResourcesMonitorConstraint(
KHE_PREFER_RESOURCES_MONITOR m);

KHE_EVENT_RESOURCE KhePreferResourcesMonitorEventResource(
KHE_PREFER_RESOURCES_MONITOR m);

return the prefer resources constraint and event resource being monitored.

6.5.3. Avoid split assignments monitors

The operations for building avoid split assignments constraints accept a role and event groups,
as required when reading XML. However, they also accept a set of event resources, and these
are what are actually used. Accordingly, one avoid split assignments monitor monitors a set of
event resources, and appears in the list of monitors of each of those event resources. Functions

110 Chapter 6. Solution Monitoring

KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KheAvoidSplitAssignmentsMonitorConstraint(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m)

int KheAvoidSplitAssignmentsMonitorEventGroupIndex(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m)

return the constraint and the index of the set of event resources being monitored, suitable
for passing to functionsKheAvoidSplitAssignmentsConstraintEventResourceCount and
KheAvoidSplitAssignmentsConstraintEventResource (Section 3.7.7). There are also

int KheAvoidSplitAssignmentsMonitorResourceCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m);

KHE_RESOURCE KheAvoidSplitAssignmentsMonitorResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int i);

int KheAvoidSplitAssignmentsMonitorResourceMultiplicity(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int i);

The first returns the number of distinct resources currently assigned to tasks monitored bym. If
m is a defect this number will be at least 2. The second and third return theith of these distinct
resources (in an arbitrary order) and the number of tasks monitored bym to which that resource
is currently assigned. The monitor does not record which tasks those are.

An avoid split assignments monitor has provably zero fixed cost when the paths of fixed
assignments leading out of the tasks it monitors have the same endpoint.KheTaskAssignFix

andKheTaskAssignUnFix may detach and attach avoid split assignments monitors. Similarly
to link events monitors, the efficiency payoff is significant.

6.6. Resource monitors

A resource monitormonitors a resource. The set of monitors (attached or unattached) which
monitor a given resource may be visited by calling

int KheSolnResourceMonitorCount(KHE_SOLN soln, KHE_RESOURCE r);
KHE_MONITOR KheSolnResourceMonitor(KHE_SOLN soln, KHE_RESOURCE r, int i);

The total cost of these monitors measures how wellr is timetabled. Functions

KHE_COST KheSolnResourceCost(KHE_SOLN soln, KHE_RESOURCE r);
KHE_COST KheSolnResourceMonitorCost(KHE_SOLN soln, KHE_RESOURCE r,
KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoringr, and the total cost of all monitors monitoring
r of a specific type, defined bytag. KheSolnResourceMonitorCost returns 0 whentag does
not specify one of the monitor types in the following subsections.

The following subsections list the kinds of resource monitors and their features. Their types
(KHE_AVOID_CLASHES_MONITOR etc.) may be obtained by downcasting fromKHE_MONITOR after
checking the type tag. Monitors of typeKHE_WORKLOAD_DEMAND_MONITOR, defined in Section
7.4, are also visited byKheSolnResourceMonitorCount and KheSolnResourceMonitor.
However, the timetable monitor for a resource is not visited by these functions; as explained in

6.6. Resource monitors 111

Section 6.7, it is retrieved by callingKheResourceTimetableMonitor.

6.6.1. Avoid clashes monitors

An avoid clashes monitor has tagKHE_AVOID_CLASHES_MONITOR_TAG and monitors a resource
which is one point of application of one avoid clashes constraint. Functions

KHE_AVOID_CLASHES_CONSTRAINT KheAvoidClashesMonitorConstraint(
KHE_AVOID_CLASHES_MONITOR m);

KHE_RESOURCE KheAvoidClashesMonitorResource(
KHE_AVOID_CLASHES_MONITOR m);

return the avoid clashes constraint and resource being monitored.

An avoid clashes monitorm may have non-zeroKheMonitorLowerBound(m). Let t be the
total duration of the events to whichm’s resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greater thanm’s weight. Then ift
exceeds the number of times in the cycle, the excess is a lower bound on the number of defects
that m must have in any reasonable solution (one in which violations ofm are preferred to
violations of the more expensive assign time constraints). Converting this number of defects into
a cost usingm’s cost function in the usual way gives the lower bound.

6.6.2. Avoid unavailable times monitors

This monitor has tagKHE_AVOID_UNAVAILABLE_TIMES_MONITOR_TAG and monitors a resource
which is one point of application of one avoid unavailable times constraint. Functions

KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KheAvoidUnavailableTimesMonitorConstraint(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m);

KHE_RESOURCE KheAvoidUnavailableTimesMonitorResource(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m);

return the avoid unavailable times constraint and resource being monitored.

An avoid unavailable times monitorm may have non-zeroKheMonitorLowerBound(m).
Supposem’s resource is subject to an avoid clashes constraint of weight greater thanm’s weight.
Let t1 be the total duration of the events to whichm’s resource is preassigned which either have
preassigned times or are subject to an assign time constraint of weight greater thanm’s weight.
Let t2 be the number of times to be avoided according tom. Then if t1 + t2 exceeds the number of
times in the cycle, the excess is a lower bound on the number of defects thatm must have in any
reasonable solution (one in which every meet is assigned a time, and violations ofm are preferred
to violations of the more expensive assign time and avoid clashes constraints). Converting this
number of defects into a cost usingm’s cost function in the usual way gives the lower bound.

6.6.3. Limit idle times monitors

A limit idle times monitor has tagKHE_LIMIT_IDLE_TIMES_MONITOR_TAG and monitors a
resource which is one point of application of one limit idle times constraint. Functions

112 Chapter 6. Solution Monitoring

KHE_LIMIT_IDLE_TIMES_CONSTRAINT KheLimitIdleTimesMonitorConstraint(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

KHE_RESOURCE KheLimitIdleTimesMonitorResource(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

return the limit idle times constraint and resource being monitored, and

int KheLimitIdleTimesMonitorTimeGroupMonitorCount(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

KHE_TIME_GROUP_MONITOR KheLimitIdleTimesMonitorTimeGroupMonitor(
KHE_LIMIT_IDLE_TIMES_MONITOR m, int i);

visit the time group monitors (Section 6.8) thatm monitors, one for each time group in the limit
idle times constraint. These can be used to find out which time groups contain idle times.

6.6.4. Cluster busy times monitors

A cluster busy times monitor has tagKHE_CLUSTER_BUSY_TIMES_MONITOR_TAG and monitors a
resource which is one point of application of one cluster busy times constraint. Functions

KHE_CLUSTER_BUSY_TIMES_CONSTRAINT KheClusterBusyTimesMonitorConstraint(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KHE_RESOURCE KheClusterBusyTimesMonitorResource(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

return the cluster busy times constraint and resource being monitored. Function

void KheClusterBusyTimesMonitorBusyGroupCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m,
int *busy_group_count, int *minimum, int *maximum);

sets*busy_group_count to the number of busy time groups, and*minimum and*maximum to
theMinimum andMaximum attributes of the cluster busy times constraint. Ifm has non-zero cost,
then*busy_group_count < *minimum or *busy_group_count > *maximum. Functions

int KheClusterBusyTimesMonitorTimeGroupMonitorCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KHE_TIME_GROUP_MONITOR KheClusterBusyTimesMonitorTimeGroupMonitor(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i);

visit the time group monitors (Section 6.8) thatm monitors, one for each time group in the cluster
busy times constraint. These can be used to find out which time groups are busy.

6.6.5. Limit busy times monitors

A limit busy times monitor has tagKHE_LIMIT_BUSY_TIMES_MONITOR and monitors a resource
which is one point of application of one limit busy times constraint. Functions

6.6. Resource monitors 113

KHE_LIMIT_BUSY_TIMES_CONSTRAINT KheLimitBusyTimesMonitorConstraint(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

KHE_RESOURCE KheLimitBusyTimesMonitorResource(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

return the limit busy times constraint and resource being monitored. Functions

int KheLimitBusyTimesMonitorDefectiveTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

void KheLimitBusyTimesMonitorDefectiveTimeGroup(
KHE_LIMIT_BUSY_TIMES_MONITOR m, int i, KHE_TIME_GROUP *tg,
int *busy_count, int *minimum, int *maximum);

visit the time groups monitored bym that are currently defective, in unspecified order. For eachi,
*tg is set to one defective time group,*busy_count is set to the number of timesm’s resource is
busy during*tg, and*minimum and*maximum are set to the minimum and maximum values from
the constraint; so either the resource is underloaded during*tg and*busy_count < *minimum,
or the resource is overloaded during*tg and*busy_count > *maximum.

Limit busy times monitors contain aceiling attribute, set and retrieved by

void KheLimitBusyTimesMonitorSetCeiling(KHE_LIMIT_BUSY_TIMES_MONITOR m,
int ceiling);

int KheLimitBusyTimesMonitorCeiling(KHE_LIMIT_BUSY_TIMES_MONITOR m);

Whenbusy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 12.7.2. The default value ofceiling is INT_MAX, which
effectively turns it off. Ifm is attached whenKheLimitBusyTimesMonitorSetCeiling is called,
it will be detached and reattached by the call.

A limit busy times monitorm may have non-zeroKheMonitorLowerBound(m). Supposem’s
resource is subject to an avoid clashes constraint of weight greater thanm’s weight. Lett1 be the
total duration of the events to whichm’s resource is preassigned which either have preassigned
times or are subject to an assign times constraint of weight greater thanm’s weight. Lett2 be the
number of times in the cycle minus the number of times inm’s constraint’s domain. Then at least
t1 − t2 of the times of the events preassigned tom’s resource must occur in time groups limited by
m. If this exceeds the number of time groups inm’s constraint times itsMaximum attribute, then the
excess, converted into a cost usingm’s cost function in the usual way, gives the lower bound.

6.6.6. Limit workload monitors

A limit workload monitor has tagKHE_LIMIT_WORKLOAD_MONITOR and monitors a resource
which is one point of application of one limit workload constraint. Functions

KHE_LIMIT_WORKLOAD_CONSTRAINT KheLimitWorkloadMonitorConstraint(
KHE_LIMIT_WORKLOAD_MONITOR m);

KHE_RESOURCE KheLimitWorkloadMonitorResource(
KHE_LIMIT_WORKLOAD_MONITOR m);

float KheLimitWorkloadMonitorWorkload(KHE_LIMIT_WORKLOAD_MONITOR m);

114 Chapter 6. Solution Monitoring

return the limit workload constraint, the monitored resource, and its current workload; and

void KheLimitWorkloadMonitorWorkloadAndLimits(
KHE_LIMIT_WORKLOAD_MONITOR m, float *workload,
int *minimum, int *maximum);

also returns the workload, plus the minimum and maximum values from the constraint.

Limit workload monitors contain aceiling attribute, set and retrieved by

void KheLimitWorkloadMonitorSetCeiling(KHE_LIMIT_WORKLOAD_MONITOR m,
int ceiling);

int KheLimitWorkloadMonitorCeiling(KHE_LIMIT_WORKLOAD_MONITOR m);

Whenbusy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 12.7.2. The default value ofceiling is INT_MAX, which
effectively turns it off. Ifm is attached whenKheLimitWorkloadMonitorSetCeiling is called,
it will be detached and reattached by the call.

A limit workload monitorm may have non-zeroKheMonitorLowerBound(m). Add up the
workloads of the tasks to whichm’s resource is preassigned. If this exceeds the maximum of the
corresponding limit workload constraint, converting the excess into a cost usingm’s cost function
in the usual way gives the lower bound.

6.7. Timetable monitors

A timetableis a record of what is going on at each time. As part of monitoring cost, KHE
monitors the timetable of each resource and each event. Function

KHE_TIMETABLE_MONITOR KheResourceTimetableMonitor(KHE_SOLN soln,
KHE_RESOURCE r);

returns the timetable monitor of resourcer, and

KHE_TIMETABLE_MONITOR KheEventTimetableMonitor(KHE_SOLN soln,
KHE_EVENT e);

returns the timetable monitor of evente. TypeKHE_TIMETABLE_MONITOR is a subtype of type
KHE_MONITOR with tag KHE_TIMETABLE_MONITOR_TAG. The cost of a timetable monitor is
always 0, so it never appears in any list of defects.

When a timetable monitor is attached,a particular set of meets is known to it at any moment.
For a resource timetable monitor it is the set of meets that are assigned a time and the resource.
For an event timetable monitor it is the set of meets derived from the event that are assigned a
time. The monitor offers these operations, which report which meets are running at each time:

int KheTimetableMonitorTimeMeetCount(KHE_TIMETABLE_MONITOR tm,
KHE_TIME time);

KHE_MEET KheTimetableMonitorTimeMeet(KHE_TIMETABLE_MONITOR tm,
KHE_TIME time, int i);

KheTimetableMonitorTimeMeetCount returns the number of known meets running attime,

6.7. Timetable monitors 115

andKheTimetableMonitorTimeMeet returns theith of these meets. Closely related to them is

bool KheTimetableMonitorTimeAvailable(KHE_TIMETABLE_MONITOR tm,
KHE_MEET meet, KHE_TIME time);

which returnstrue if moving meet within tm, or adding it totm, so that its starting time istime,
would neither placemeet partly off the end of the timetable nor cause clashes.

A timetable monitor offers no operations which report its set of meets directly. For event
timetables one can use functionsKheEventMeetCount and KheEventMeet from Section 4.2
to obtain the meets derived from a particular event; the timetabled meets are just those with
an assigned time. For resource timetables one can useKheResourceAssignedTaskCount and
KheResourceAssignedTask from Section 4.9.1 to obtain all the tasks assigned the resource; the
timetabled ones are just those whose enclosing meet has an assigned time.

The conditionKheTimetableMonitorTimeMeetCount(tm, time) >= 2 is true at each
time whentm has a clash. To find out quickly which times these are, use

int KheTimetableMonitorClashingTimeCount(KHE_TIMETABLE_MONITOR tm);
KHE_TIME KheTimetableMonitorClashingTime(KHE_TIMETABLE_MONITOR tm, int i);

They return all times such thattm has a clash at that time, not in chronological order.

As usual, timetable monitors are created byKheSolnMake and exist for as long as the
solution does. There is one for each resource, and one for each event. Unlike other monitors,
however, timetable monitors are not attached initially. It is possible for the timetable returned by
KheResourceTimetableMonitor or KheEventTimetableMonitor to be unattached and so not
up to date (it will be empty in that case). It can be brought up to date by attaching it.

Link events monitors (but not spread events monitors) depend on event timetable monitors.
All resource monitors except limit workload monitors depend on resource timetable monitors.
When a monitor is attached, any unattached timetable monitor(s) it depends on are also attached.
When the last monitor that depends on some timetable monitor is detached, that timetable
monitor is detached. Thus, unless the user chooses to attach a timetable monitor directly,
timetable monitorsare attached only as needed by other monitors. Detaching a timetable monitor
causes KHE to abort unless no attached monitors depend on it.

Although it would make sense to treat a timetable as a group monitor, that option is not
offered. The user who wants all the problems associated with a single resource or event to be
channelled through a single monitor must create a group monitor, separate from the timetable,
and add the appropriate monitors to it in the usual way.

Timetable monitors may be debugged by callingKheMonitorDebug as usual. And

void KheTimetableMonitorPrintTimetable(KHE_TIMETABLE_MONITOR tm,
int cell_width, int indent, FILE *fp);

prints a conventional tabular timetable, usingDays and possiblyWeeks time groups from the
instance to determine its shape. Parametercell_width is the width of each cell, in characters.

116 Chapter 6. Solution Monitoring

6.8. Time group monitors

A time groupmonitor is a monitor associated with one timetable monitor. It monitors what is
happening at the times of its time group within the timetable; specifically, it keeps track of how
many of the times of the time group are busy in that timetable (occupied by at least one meet). It
also keeps track of how many idle times the time group contains, but only if there is a limit idle
times monitor in the vicinity that needs to know.

Time group monitors are created and attached by KHE as required, and it is best not to
meddle with that. However, there is no problem with retrieving information from them:

KHE_TIMETABLE_MONITOR KheTimeGroupMonitorTimetableMonitor(
KHE_TIME_GROUP_MONITOR m);

KHE_TIME_GROUP KheTimeGroupMonitorTimeGroup(KHE_TIME_GROUP_MONITOR m);
int KheTimeGroupMonitorBusyCount(KHE_TIME_GROUP_MONITOR m);

These returnm’s associated timetable monitor, the time group thatm monitors, and the number of
busy times in that time group.

When a limit idle times monitor is attached which monitorstgm’s time group withintgm’s
timetable monitor, two other functions related to idle times calculations may be called:

int KheTimeGroupMonitorIdleCount(KHE_TIME_GROUP_MONITOR m);
void KheTimeGroupMonitorFirstAndLastBusyTimes(
KHE_TIME_GROUP_MONITOR tgm, KHE_TIME times[2], int *count);

The first returns the number of idle times. The second places the first and last busy times into
times, and sets*count to the number of times it placed there. If there are no busy times,*count

is 0; if there is one busy time,*count is 1; else*count is 2. This specification does not refer to
idle times, but nevertheless the function will abort if there is no limit idle times monitor nearby.

6.9. Group monitors

Sometimes the cost of a single monitor is needed: for example, when reporting problems to the
user. And the total cost of all monitors is always needed, since that is the cost of the solution.

Sometimes something in between these two extremes is needed: the cost of a set of related
monitors. To support this, the monitors of a solution are organized into a directed acyclic graph,
or dagfor short, of arbitrary depth. Each monitor reports its cost to its parent monitors. The dag
is often a tree, in which case the picture looks like this:

6.9. Group monitors 117

Soln

Group
monitor

Group
monitor

Non-group
monitor

Non-group
monitor …

Non-group
monitor

Solution

The leaves are thenon-group monitors, the various monitors described previously which monitor
the solution directly. The internal nodes are calledgroup monitors, because they monitor a set
of monitors (their children). The cost of a group monitor is the sum of the costs of its children.

The solution object itself is a group monitor (initially, the only one). It supports all the
group monitor operations, plus the many other operations described earlier.

Group monitors have typeKHE_GROUP_MONITOR, a concrete subtype ofKHE_MONITOR, like
KHE_ASSIGN_TIME_MONITOR etc. KHE_GROUP_MONITOR is a supertype ofKHE_SOLN, so upcast

(KHE_GROUP_MONITOR) soln

is safe, although often unnecessary, since many operations on typeKHE_GROUP_MONITOR have
KHE_SOLN versions. For example,sinceKHE_GROUP_MONITOR is itself a subtype ofKHE_MONITOR,
the total cost of all monitors could be found by calling

KheMonitorCost((KHE_MONITOR) soln)

but of course the equivalentKHE_SOLN version,KheSolnCost, is easier to use.

When the solution changes at some point, the change is reported to the non-group monitors
that monitor that point. Each updates its cost and reports any change to its parents, which update
their cost and report to their parents, and so on until there are no parents. The dag usually has
a single root, the solution object itself, but it does not have to be that way, because the links that
join non-group and group monitors to their parent monitors can be added and deleted at will.

6.9.1. Basic operations on group monitors

Unlike other types of monitors, group monitors other than the solution object can be freely
created and deleted. Function

KHE_GROUP_MONITOR KheGroupMonitorMake(KHE_SOLN soln, int sub_tag,
char *sub_tag_label)

creates a new group monitor with no parents and no children. It is passed the solution as a
parameter, and it remembers it, but it is not made a child of it. Functions

118 Chapter 6. Solution Monitoring

int KheGroupMonitorSubTag(KHE_GROUP_MONITOR gm);
char *KheGroupMonitorSubTagLabel(KHE_GROUP_MONITOR gm);

return thesub_tag andsub_tag_label attributes ofgm. These are used to distinguish kinds of
group monitors. Ifsub_tag_label is non-NULL, it is printed when debugging. The values of
these attributes in solution objects are-1 and"Soln". The term ‘sub-tag’ is used because group
monitors already have a tag attribute, whose value isKHE_GROUP_MONITOR_TAG.

A group monitor other than the solution object may be deleted by calling

void KheGroupMonitorDelete(KHE_GROUP_MONITOR gm);

Its children will no longer have it as a parent, and its parents will no longer have it as a child. For
each parent ofgm, the hole in the parent’s list of child monitors is plugged by moving the last
child monitor togm’s position. For each child ofgm, the hole in the child’s list of parent monitors
is plugged by moving the last parent monitor togm’s position.

Every group monitor can have any number of child monitors, and every monitor (group or
non-group) can have any number of parent monitors. Even the solution object can have parents,
allowing monitoring of the total cost of a set of solutions. The operations for adding children to
a group monitor and removing them are

void KheGroupMonitorAddChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);
void KheGroupMonitorDeleteChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);

Herem could be a non-group monitor or a group monitor.KheGroupMonitorAddChildMonitor

makesm a child ofgm, andgm a parent ofm. It aborts if this would create a cycle in the dag (only
possible whenm is a group monitor).KheGroupMonitorDeleteChildMonitor removesm from
gm, leavingm with one less parent andgm with one less child. The resulting holes are plugged as
described above for deleting group monitors. It aborts ifm is not a child ofgm. There is also

bool KheGroupMonitorHasChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);

which returnstrue whenm is a child ofgm. It is useful whenm may already be a child ofgm:

if(!KheGroupMonitorHasChildMonitor(gm, m))
KheGroupMonitorAddChildMonitor(gm, m);

No-one is checking that one monitor does not become the child of another twice over; and if it
does, its cost will be counted twice in the cost of its parent.

For a group monitorm, KheLowerBound(m) is the sum of the lower bounds ofm’s children.
It may increase when a descendant is added, and decrease when a descendant is removed.

Initially, all non-group monitors are made children of the solution object, and all of them
except demand monitors are attached to the solution, so thatKheSolnCost is the total cost of all
non-demand monitors, which is indeed the cost of the solution. Care is needed when grouping
not to inadvertently disconnect monitors from the solution, since then their costs will not be
counted, or to connect them via multiple paths, since then their costs will be counted multiple
times. It is usually best to make a new group monitor a child of the solution immediately:

6.9. Group monitors 119

gm = KheGroupMonitorMake(soln, sub_tag, sub_tag_label);
KheGroupMonitorAddChildMonitor((KHE_GROUP_MONITOR) soln,
(KHE_MONITOR) gm);

And when deleting a group monitor, the best option may be helper function

void KheGroupMonitorBypassAndDelete(KHE_GROUP_MONITOR gm);

It callsKheGroupMonitorDelete, but first it makesgm’s children into children ofgm’s parents,
if any, thus keeping them linked in. There is also

void KheSolnBypassAndDeleteAllGroupMonitors(KHE_SOLN soln);

which appliesKheGroupMonitorBypassAndDelete to every group monitor ofsoln.

Functions

int KheGroupMonitorChildMonitorCount(KHE_GROUP_MONITOR gm);
KHE_MONITOR KheGroupMonitorChildMonitor(KHE_GROUP_MONITOR gm, int i);

visit the child monitors of group monitorgm in the usual way. Ifgm is the solution object, these
versions of the functions allow the user to avoid the upcast:

int KheSolnChildMonitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnChildMonitor(KHE_SOLN soln, int i);

Functions

int KheMonitorParentMonitorCount(KHE_MONITOR m);
KHE_GROUP_MONITOR KheMonitorParentMonitor(KHE_MONITOR m, int i);

visit the parent monitors ofm. There is also

bool KheMonitorDescendant(KHE_MONITOR m1, KHE_MONITOR m2);

which returnstrue if m1 is a descendant ofm2, including when the two are equal.

6.9.2. Defects

Informally,a defect is a specific problem with a solution. In KHE, the word has a formal meaning
as well: adefectis a monitor whose cost is non-zero.

It can be helpful to target defects directly, rather than wasting time changing parts of the
solution where there are no defects. This is especially the case near the end of the solve process,
when there may be thousands of monitors but only a handful of defects. To support this, KHE
offers fast access to those child monitors of a group monitor which are defects:

int KheGroupMonitorDefectCount(KHE_GROUP_MONITOR gm);
KHE_MONITOR KheGroupMonitorDefect(KHE_GROUP_MONITOR gm, int i);

When a monitor’s cost changes from zero to non-zero, the monitor is added to its parents’defect
lists; and when its cost changes from non-zero to zero it is removed. These updates take a
constant and negligible amount of time per parent. When the group monitor is the solution object

120 Chapter 6. Solution Monitoring

there are convenience versions:

int KheSolnDefectCount(KHE_SOLN soln);
KHE_MONITOR KheSolnDefect(KHE_SOLN soln, int i);

There is also

void KheGroupMonitorDefectDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

which is likeKheMonitorDebug applied togm, except that it prints only the defective children.

If a solution is changed and then changed back again to its original state, its cost returns
to its original value, but there are two ways in which its defects can be different. First, they may
appear in a different order. Second, although the number of defects which are demand monitors
(Chapter 7) must return to its original value, the demand monitors that make up that number
may change. This is because there are many maximum matchings in general, and KHE does not
guarantee to find any particular one of them.

In practice, one wants to traverse a list of defects and try to repair them. Quite commonly,
an attempt to repair a defect will remove it temporarily and then reinstate it if the repair was
not successful. This will cause the defect to be shifted to the end of the defect list. A simple
traversal of the defects from first to last will visit some defects more than once, and others not at
all. To handle this problem, it is necessary to make a copy of the defects and traverse the copy.
Although every defect will have non-zero cost at the time it is copied, as the list is traversed,
after the solution changes or if the list includes demand monitors, one cannot assume that every
monitor on the copy list will have non-zero cost.

To find the total cost of all monitors of a given type in the descendants ofgm, call

KHE_COST KheGroupMonitorCostByType(KHE_GROUP_MONITOR gm,
KHE_MONITOR_TAG tag, int *defect_count);

It returns the number of defects, in*defect_count, as well as the cost. It traverses the whole
sub-dag of monitors ofgm (actually, just the defects), so it is slow: it is intended for reporting,
not for solving. It returns0 whentag is KHE_GROUP_MONITOR_TAG, because it attributes cost to
the monitors that originally generated it. Version

KHE_COST KheSolnCostByType(KHE_SOLN soln, KHE_MONITOR_TAG tag,
int *defect_count);

may be called when the group monitor is the solution object. The values returned by these
functions are displayed in a convenient tabular form by functions

void KheGroupMonitorCostByTypeDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

void KheSolnCostByTypeDebug(KHE_SOLN soln,
int verbosity, int indent, FILE *fp);

which print one line for each kind of monitor undergm or soln for which there are defects.

6.9. Group monitors 121

6.9.3. Tracing

Sometimes a solver needs to know which monitors have experienced a change in cost recently.
Ejection chain solvers, for example, need this information, andmonitor tracingprovides it.

Tracing involves objects of typeKHE_TRACE. To create one, call

KHE_TRACE KheTraceMake(KHE_GROUP_MONITOR gm);

wheregm is the group monitor to be traced. The solution may be traced by upcasting it:

t = KheTraceMake((KHE_GROUP_MONITOR) soln);

The group monitor that a trace object is for can be found by calling

KHE_GROUP_MONITOR KheTraceGroupMonitor(KHE_TRACE t);

To delete a trace object, call

void KheTraceDelete(KHE_TRACE t);

This will call KheTraceEnd(t) below if needed. KHE keeps a free list of trace objects in the
solution object, so many trace objects can be created and deleted at virtually no cost.

Actual tracing is initiated and ended by calling

void KheTraceBegin(KHE_TRACE t);
void KheTraceEnd(KHE_TRACE t);

These must be called in matching pairs.KheTraceBegin removes any information left over
from any preceding trace, and attachest to its group monitor so that it can record what happens.
KheTraceEnd detachest from its group monitor. Different trace objects may be attached and
detached quite independently of each other, even when they have the same group monitor.

After the trace ends, the following functions may be called:

KHE_COST KheTraceInitCost(KHE_TRACE t);
int KheTraceMonitorCount(KHE_TRACE t);
KHE_MONITOR KheTraceMonitor(KHE_TRACE t, int i);
KHE_COST KheTraceMonitorInitCost(KHE_TRACE t, int i);

KheTraceInitCost returns the initial cost oft’s group monitor (at the time the trace began);
KheTraceMonitorCount returns the number of child monitors oft’s group monitor whose
cost changed during the trace;KheTraceMonitor returns theith of these child monitors; and
KheTraceMonitorInitCost(t, i) returns the initial cost ofKheTraceMonitor(t, i).

These functions may be called during a trace as well as after it, returning values as though
the trace had just ended. While it is not an error to callKheGroupMonitorAddChildMonitor

or KheGroupMonitorDeleteChildMonitor while tracing the group monitor concerned, it is not
recommended. A solution cannot be copied while one of its group monitors is being traced.

Chapter 7. Matchings and Evenness
Suppose a decision is made to run five Music meetssimultaneously,when the school has only two
Music teachers and two Music rooms. Clearly, when teachers and rooms are assigned later, there
will be major problems, but until then the usual cost function will not reveal any problems.

More subtly, suppose there are eight teachers, and that three of them teach English only,
three teach History only, and two teach both. Suppose a decision is make to run five English
meets and five History meets simultaneously. Then there are enough English teachers to teach
the five English meets, and there are enough History teachers to teach the five History meets, but
there are not enough English and History teachers, taken together, to teach the ten meets.

Matchings(officially, unweighted bipartite matchings) detect such problems. Although not
compulsory, they are often helpful. This chapter describes them in general, how they apply to
timetabling, and how to use them in KHE. Getting started can be as simple as calling

KheSolnMatchingBegin(soln);
KheSolnMatchingSetWeight(soln, KheCost(1, 0));
KheSolnMatchingAddAllWorkloadRequirements(soln);
KheSolnMatchingAttachAllOrdinaryDemandMonitors(soln);

after the solution is made a complete representation.

7.1. The bipartite matching problem

A bipartite graphis an undirected graph whose nodes are divided into two sets, such that every
edge connects a node of one set to a node of the other. Amatchingis a subset of the edges
such that no two edges touch the same node. Amaximum matchingis a matching containing as
many edges as possible. Thebipartite matching problemis the problem of finding a maximum
matching in a bipartite graph. For example, here is a bipartite graph (at left), and the same graph
with a maximum matching shown in bold (at right):

There is a standard polynomial-time algorithm for this problem.

In timetabling, where bipartite matching has been used for many years [2, 4, 13], it is usual
for one of the two sets of nodes to represent variables (slots, events, etc.) demanding something

122

7.1. The bipartite matching problem 123

to be assigned to them, while the other set represents values (times, resources, etc.) which are
available to supply these demands. Accordingly, these two sets will be referred to as thedemand
nodesand thesupply nodes. A maximum matching assigns supply nodes to as many demand
nodes as possible, given that each demand node requires any one of the supply nodes it is
connected to, and each supply node may be assigned to at most one demand node. Although the
problem is formally symmetrical between the two kinds of nodes, since each edge touches one of
each, in timetabling it is not symmetrical. For example, it does not matter if some supply nodes
are not matched, but it does matter if some demand nodes are not matched.

It is usually not a good idea to make the assignments indicated by a maximum matching,
because there are other constraints not modelled by the matching, and it is desirable to find, not
just any maximum matching, but one that satisfies these other constraints. The better way to use
a maximum matching is as a monitor of the current state. Because the matching is maximum,
it indicates that there must be at least a certain number of problems, in the form of unassigned
demand nodes, in any solution incorporating the decisions already made, and that is valuable
information when evaluating those decisions.

Some applications of matching to timetabling utilize the idea of atixel, the author’s term for
one resource at one time (the name recalls thepixelof computer graphics). For example, teacher
Smith during the first time on Mondays is one tixel; it may be represented by the ordered pair

(Smith,Mon1)

This is also called asupply tixel, because it can supply the demands of events for teachers. The
events are said to containdemand tixels. For example, an event of duration 2 which requests
student group8A, one English teacher, and one room, is said to contain six demand tixels. This
is shorthand for saying that it demands six supply tixels.

Underlying the high school timetabling problem is a matching that the author calls the
global tixel matching. Its supply nodes are the supply tixels,one for each resource of the instance
at each time. Its demand nodes are the demand tixelsof the events of the instance. Edges connect
demand tixels to those supply tixels that are suited to them. For example, a demand for student
group 8A would be connected to supply tixels whose resource is 8A,and a demand for an English
teacher at timeMon1would be connected to those supply tixels whose resource is an English
teacher and whose time isMon1. Each demand tixel wants to be assigned one supply tixel, and
each supply tixel may only be assigned to one demand tixel, since otherwise there would be a
timetable clash. So a matching is indeed what is required, and a maximum matching will have
the least possible number of problems.

As decisions are made, in the form of assignments of times to meets or resources to tasks
(or domain reductions, for example from the set of all qualified resources to a smaller set of
preferred resources), the demand tixels affected by these decisions become connected to fewer
supply tixels. When the maximum matching is recalculated (and fortunately there is an efficient
algorithm for doing this incrementally as the graph changes) there may be more unmatched
nodes than previously, suggesting that the decisions made may have been poor ones, and that
alternatives should be explored.

The global tixel matching is useful for evaluating instances before solving begins. It can
reveal, for example, that the supply of computer laboratories is insufficient to cover the demand,
and other problems of that kind. It turns out to be very powerful late in the solve process, when

124 Chapter 7. Matchings and Evenness

resources are being assigned after times have been assigned, provided it is enhanced with tixels
expressing resource unavailabilitiesand workload limits (Section 7.4). However, it is quite weak
before times are assigned, because it does not understand that the supply tixels assigned to events
must be correlated in time: it does not perceive the contradiction in assigning,say, the two supply
tixels(Smith,Mon1) and(Lab6,Wed5) to an event of duration 1.

An example given earlier, of scheduling five Music events simultaneously when there are
only two Music teachers and two Music rooms, shows that useful checks can be made when de-
ciding to run events simultaneously, even though their actual time remains undecided. Whatever
time is ultimately assigned to simultaneous events, each resource of the instance can supply at
most one tixel to satisfy their demands. So the demand tixels for one time of the eventsconcerned
may be matched with a set of supply nodes, one node for each resource of the instance. This is
calledlocal tixel matchingby the author. The tixels are somewhat different, in that they share a
common generic time rather than holding a variety of true times.

7.2. Setting up

By default, a solution contains no matching. To add a matching, call

void KheSolnMatchingBegin(KHE_SOLN soln);

To take it away again, call

void KheSolnMatchingEnd(KHE_SOLN soln);

KheSolnMatchingEnd can be omitted if the matching is needed for the lifetime of the solution,
since the matching is deleted when its solution is deleted. There is also

bool KheSolnHasMatching(KHE_SOLN soln);

which returnstrue whensoln has a matching. Most of the other operations of this chapter are
undefined when no matching is present. Some may abort, others may do nothing.

KheSolnMatchingBegin adds exactly one matching to the solution. It is kept up to date
thereafter as the solution changes, untilKheSolnMatchingEnd is called or the solution is deleted.
Adding a matching includes adding its demand nodes, each of which is represented by a monitor
called ademand monitor. Removing a matching includes removing all demand monitors. A
demand monitor contributes a cost to the solution just like other monitors do. The cost is 0 when
the node is matched, and some non-negative value, set by the user, when it is unmatched.

Demand monitorsmay be attached and detached individually as usual. Detaching a demand
monitor removes its node from the matching graph. Immediately afterKheSolnMatchingBegin

returns, the demand monitors it makes are all detached, so the matching graph has no demand
nodes. Convenience functions defined below may be used to attach the demand monitors.

Rather than fiddling around callingKheSolnHasMatching, it is conventional to assume that
a matching is present when KHE is being used for solving, but not when it is being used only to
evaluate solutions. The rationale for this is that by comparison with the overall cost of a solve, it
costs virtually nothing, and helps to make the solve environment uniform, if a matching is always
present. If it isn’t actually wanted, its demand monitors can be detached. On the other hand,

7.2. Setting up 125

when evaluating solutions, at least when just their cost is required, matchings have no use, and
if there are many solutions it is best to avoid the memory cost of the demand and supply nodes.

Behind the scenes, a lazy implementation is used: no matching is done until a query
operation (for example, a request for the current cost of a demand monitor, or a debug print)
occurs, allowing the time spent matching to be amortized over all operations carried out since
the previous query. There is no way for the user to observe the laziness. The key operation, of
bringing the matching up to date (making it maximum) runs in time roughly proportional to the
number of unmatched nodes in the graph when it is called.

The cost of one unmatched node is set and retrieved by

void KheSolnMatchingSetWeight(KHE_SOLN soln, KHE_COST weight);
KHE_COST KheSolnMatchingWeight(KHE_SOLN soln);

For example, a call to

KheSolnMatchingSetWeight(soln, KheCost(1, 0));

gives each unmatched node a hard cost of 1. The initial weight is 0. A change of weight is
reflected immediately in the cost reported by all demand monitors.

Although it would be trivial to allow the user to set the cost of each demand monitor
individually, this has not been done, because it might suggest that the matching algorithm is
capable of finding the matching which minimizes the total cost of unmatched nodes. In reality,
there is no way to make the cost depend on which nodes are unmatched, nor on how appropriate
the matching’s assignments are. Those would be useful features, since then the cost of assign
resources and prefer resources constraints could be reflected in the matching cost, but then a
different problem,calledweighted bipartite matching, would have to be solved, whose algorithm
the author considers to be too slow for solving.

In the absence of weighted matching, choosingweight is not easy. The simple choice is
KheCost(1, 0), and it may well be the best. Another choice is one which guarantees that the
weighted cost of the matching is a lower bound on the ultimate total cost of the violations of
all relevant constraints, assuming that more assignments are added without changing the current
ones. Each unassigned tixel in the matching must ultimately correspond with either a missing
resource assignment at one time, or a resource clash at one time. So a suitable weight is the
minimum of the following quantities: for each event resource, the sum of the combined weights
of the assign resource constraints that apply to it; and for each resource, the sum of the combined
weights of the avoid clashes constraints that apply to it. (Fortunately, both of these constraints
incur a cost for each violating tixel.) Function

KHE_COST KheSolnMinMatchingWeight(KHE_SOLN soln);

works out this value. If there are no event resources and no resources, it returns 0.

The matching has atypethat may be changed at any moment:

KHE_MATCHING_TYPE KheSolnMatchingType(KHE_SOLN soln);
void KheSolnMatchingSetType(KHE_SOLN soln, KHE_MATCHING_TYPE mt);

KHE_MATCHING_TYPE is the enumerated type

126 Chapter 7. Matchings and Evenness

typedef enum {
KHE_MATCHING_TYPE_EVAL_INITIAL,
KHE_MATCHING_TYPE_EVAL_TIMES,
KHE_MATCHING_TYPE_EVAL_RESOURCES,
KHE_MATCHING_TYPE_SOLVE

} KHE_MATCHING_TYPE;

A full explanation of these values is given in the following section. Just briefly, however,
KHE_MATCHING_TYPE_SOLVE implements an enhanced local tixel matching and is the best choice
when solving; it is also the default value. The others are variants of global tixel matching. A
change of type is reflected immediately in the cost reported by all attached demand monitors.

For the most part,matchings work quietly behind the scenes without attention from the user.
However, there is an important optimization that only the user can invoke. Suppose that some
changes are made to the solution as an experiment, then either retained or undone. Then KHE
will run faster if that part of the program is bracketed by calls to these functions:

void KheSolnMatchingMarkBegin(KHE_SOLN soln);
void KheSolnMatchingMarkEnd(KHE_SOLN soln, bool undo);

Calls to these operations must occur in matching pairs, possibly nested. Ifundo is true, then
KheSolnMatchingMarkEnd assumes without checking that all changes tosoln since the cor-
responding call toKheSolnMatchingMarkBegin have been undone. It uses this information to
bring the matching up to date more quickly than could be done without it. To encourage their use,
both functions are well-defined even when there is no matching: in that case, they do nothing.

As an aid to debugging, function

void KheSolnMatchingDebug(KHE_SOLN soln, int verbosity,
int indent, FILE *fp);

ensures that the matching is up to date, then prints its current state ontofp. Verbosity 1prints just
the number of unmatched demand monitors, verbosity 2 prints those monitors, and verbosity 3
prints all demand monitors and the supply nodes they are matched with.

7.3. Ordinary supply and demand nodes

This section explains how most of the supply and demand nodes of the matching, the ones
associated with meets, are defined. Since they are linked together with edges that depend on the
type of the matching, this section also explainsKHE_MATCHING_TYPE in detail.

For each offset of a meetmeet (for each integer between 0 inclusive and the duration of
meet exclusive), the matching containsR ordinary supply nodes, whereR is the total number of
resources in the instance. Ifmeet has durationd, this isdRsupply nodes altogether. Each models
the supply of one resource at one offset. These supply nodes cannot be accessed by the user.

Each task ofmeet containsKheMeetDuration(meet) demand nodes, which will be called
ordinary demand nodesto distinguish them from the workload demand nodes to be defined
later. Each models the demand made by its task at one offset. Ordinary demand nodes have type
KHE_ORDINARY_DEMAND_MONITOR and may be accessed by

7.3. Ordinary supply and demand nodes 127

int KheTaskDemandMonitorCount(KHE_TASK task);
KHE_ORDINARY_DEMAND_MONITOR KheTaskDemandMonitor(KHE_TASK task, int i);

as usual. The first function’s value is always equal to the duration of the enclosing meet. Like
most monitors, these ones cannot be created or deleted by the user. They are created when
the task is created, split and merged when it is split and merged, and deleted when it is deleted.
Unlike other monitors, they are detached initially. This is so that, by default, KHE monitors only
the official cost, not this extra stuff.

In addition to the operations applicable to all monitors, ordinary demand monitors offer

KHE_TASK KheOrdinaryDemandMonitorTask(KHE_ORDINARY_DEMAND_MONITOR m);
int KheOrdinaryDemandMonitorOffset(KHE_ORDINARY_DEMAND_MONITOR m);

returning the task thatm monitors, and its offset within that task. Helper functions

void KheSolnMatchingAttachAllOrdinaryDemandMonitors(KHE_SOLN soln);
void KheSolnMatchingDetachAllOrdinaryDemandMonitors(KHE_SOLN soln);

ensure that all ordinary demand monitors are attached or detached; they visit every ordinary
demand monitor of every task of every meet ofsoln, check whether it is currently attached, then
attach or detach it if required.

Although the list of monitors in a task is fixed, each may be attached or detached individual-
ly, and they may be linked by edges to supply nodes in different ways, depending on the matching
type, as will now be explained.

An ordinary demand node’sown meetis the meet its task lies in. Itsroot meetis the meet
reached by following the chain of assignments (possibly empty) out of its own meet to a meet
that contains no assignment. Itsown offsetis its offset in its own meet, and itsroot offsetis its
offset in its root meet (the sum of its own offset and the offsets along the assignment path).

When linking an ordinary demand node to ordinary supply nodes, there are at least two ways
to take time into account:

A. Link it only to ordinary supply nodes lying in cycle meets at offsets that represent the times
of the time domain of its own meet, shifted by its own offset.

B. Link it only to ordinary supply nodes lying in its root meet at its root offset.

Informally, (A) evaluates the initial state of time assignment, whereas (B) evaluates its current
state in a way that ensures that simultaneous demands compete for the same supply nodes, as in
local tixel matching. And there are at least two ways to take resources into account:

1. Link it to supply nodes representing the resources of its task’s domain.

2. Link it to supply nodes representing the resources of its task’s root task’s domain. If the
root task is a cycle task, this will link only to supply nodes representing that resource.

Informally, (1)evaluates the initial state of resource assignment,whereas (2)evaluates the current
state. The four non-empty matching types produce the four conjunctions of these conditions:

128 Chapter 7. Matchings and Evenness

A B
1 KHE_MATCHING_TYPE_EVAL_INITIAL KHE_MATCHING_TYPE_EVAL_TIMES

2 KHE_MATCHING_TYPE_EVAL_RESOURCES KHE_MATCHING_TYPE_SOLVE

Type (B2) is suited to solving; the others are suited to evaluation before or after solving.

7.4. Workload demand nodes

In addition to ordinary demand nodes, matchings may containworkload demand nodes, used to
take account of avoid unavailable times constraints, limit busy times constraints, and limit work-
load constraints, collectively calledworkload demand constraintshere. For example, suppose
the cycle contains 40 times, and teacherSmithhas a required workload limit of 30 times and is
unavailable at timeMon1. Then ten workload demand nodes should be created, one demanding
supply tixel(Smith,Mon1), and the other nine demandingSmithat one unrestricted time.

It is important to include workload demand nodes, since otherwise the problems reported by
the matching will be unrealistically few. They are the same for all matching types, and in most
cases it is enough to call helper function

void KheSolnMatchingAddAllWorkloadRequirements(KHE_SOLN soln);

This may be done at any time, and does what is usually wanted. However, it is partly heuristic,
so KHE offers the option of controlling the details.

For the purposes of matchings only, aworkload requirementis a requirement imposed on
a resource that it be occupied attending meets for at most a given number of the times of some
time group. Within a solution at any moment,a sequence of workload requirements is associated
with each resource. They may be visited in order by calling

int KheSolnMatchingWorkloadRequirementCount(KHE_SOLN soln,
KHE_RESOURCE r);

void KheSolnMatchingWorkloadRequirement(KHE_SOLN soln, KHE_RESOURCE r,
int i, int *num, KHE_TIME_GROUP *tg, KHE_MONITOR *m);

The first returns the number of workload requirements associated wthr in soln, and the second
returns thei’th requirement, in the form of a number of times and a time group. If the third
return parameter,*m, is non-NULL, it is theoriginating monitor: the monitor that gave rise to
this requirement. The originating monitor is stored in workload demand monitors created as a
consequence of this requirement, to assist in analysing defects; it is not otherwise used.

Each resource has no requirements initially. To change the requirements of resourcer,
begin with a call to

void KheSolnMatchingBeginWorkloadRequirements(KHE_SOLN soln,
KHE_RESOURCE r);

continue with any number of calls to

void KheSolnMatchingAddWorkloadRequirement(KHE_SOLN soln,
KHE_RESOURCE r, int num, KHE_TIME_GROUP tg, KHE_MONITOR m);

7.4. Workload demand nodes 129

wherem may beNULL, and end with a call to

void KheSolnMatchingEndWorkloadRequirements(KHE_SOLN soln,
KHE_RESOURCE r);

All three functions must be called, in order. The first clearsr’s workload requirements, the sec-
ond appends a requirement thatr attend events for at mostnum of the times oftg (num may not
exceed the number of times intg), and the third replaces any existing workload demand nodes
for r with new ones derived from the workload requirements. The new monitors are attached
automatically as they are created.KheMatchingMonitorSetAllWorkloadRequirements calls
these functions. The sections below describe the calls it makes, and how workload requirements
are converted into workload demand nodes.

The workload demand nodes created byKheSolnMatchingEndWorkloadRequirements

are monitors of typeKHE_WORKLOAD_DEMAND_MONITOR. Like other monitors of resources,
they appear on the list of monitors visited by functionsKheResourceMonitorCount and
KheResourceMonitor from Section 6.6.

In addition to the operations applicable to all monitors, workload demand monitors offer

KHE_RESOURCE KheWorkloadDemandMonitorResource(
KHE_WORKLOAD_DEMAND_MONITOR m);

KHE_TIME_GROUP KheWorkloadDemandMonitorTimeGroup(
KHE_WORKLOAD_DEMAND_MONITOR m);

KHE_MONITOR KheWorkloadDemandMonitorOriginatingMonitor(
KHE_WORKLOAD_DEMAND_MONITOR m);

These return the resource that the workload demand monitor is for, the time group of the
workload requirement that led tom, and the originating monitor (possiblyNULL) of the workload
requirement that led tom.

7.4.1. Constructing workload requirements

This section explains howKheSolnMatchingAddAllWorkloadRequirements works. For each
resourcer, it first callsKheSolnMatchingBeginWorkloadRequirements(soln, r), and then
visits each required workload demand monitorm of weight greater than 0 applicable tor, in order
of decreasing weight. What it does with each monitor is explained below. It then finishes its
work onr with a call toKheSolnMatchingEndWorkloadRequirements(soln, r).

If m is an avoid unavailable times monitor, or a limit busy times monitor whoseMaximum

attribute is 0, then for each timet in m’s constraint’s domain it calls

KheSolnMatchingAddWorkloadRequirement(soln, r, 0,
KheTimeSingletonTimeGroup(t), m);

If m is a limit busy times monitor withMaximum greater than 0, then for each time grouptg in m’s
constraint it calls

KheSolnMatchingAddWorkloadRequirement(soln, r, k, tg);

wherek is theMaximum attribute. TheMinimum attribute is ignored.

130 Chapter 7. Matchings and Evenness

A limit workload monitor is like a limit busy times monitor whose time group contains all
the times of the cycle, soKheSolnMatchingAddWorkloadRequirement is called once with this
time group. The number passed to this call requires careful calculation, involving the workloads
of all events. The remainder of this section explains this calculation.

Let k be the integer eventually passed toKheSolnMatchingAddWorkloadRequirement.
Initializek to theMaximum attribute of the limit workload constraint. For each event resourceer,
let d(er) be its duration andw(er) be its workload. The basic idea is that ifr is assigned toer,
thend(er) − w(er) should be added tok. For example, a resource with workload limit 30 that is
assigned to an event resource with duration 3 and workload 2 needs a workload requirement of
31, not 30. And ifr is assigned to an event with duration 6 but workload 12, thenk needs to be
decreased by 6.

In some cases, preassignments or domain restrictions make it certain thatr will be assigned
to some event, and in those cases the adjustment can be done safely in advance. For example,
if every staff member attends a weekly meeting with duration 1 and workload 0, then their
workload requirements can all be increased by 1 to compensate. Similarly, ifr will definitely
not be assigned to some event, then the event’s duration and workload have no effect onr.

The residual problem cases are those event resourceser whose workload and duration
differ, whichr may be assigned to but not necessarily. In these cases, an inexact model is used
which preserves the guarantee that the number of unmatched nodes is a lower bound on the final
number, but the number is weaker (that is, smaller) than the ideal.

If w(er) > d(er), then er is ignored. This case can only make the problem harder, so
ignoring it means that the number returned will be smaller than the ideal. Ifw(er) < d(er), then
d(er) − w(er) is added tok, just as thoughr was assigned toer. If r is ultimately assigned to
er, then this will be exact; if it is not, then again it will weaken the bound, by overestimatingr’s
available workload.

These tests are actually applied to clusters of events known to be running simultaneously,
because of required link events constraints or preassignmentsand other time domain restrictions.
Each resource can be assigned to at most one of the event resources of the events of a cluster, so
only one of the events, the one whose modelling is least exact, needs to be taken account of.

7.4.2. From workload requirements to workload demand nodes

KHE converts workload requirements to workload demand nodes automatically, during the call
to KheSolnMatchingEndWorkloadRequirements (defined above). The following explanation
of how this is done, adapted from [9], is included for completeness.

When converting workload requirements into workload demand nodes, the relationships
between the requirements’ sets of times affect the outcome. In general, an exact conversion
seems to be possible only when these sets of times satisfy thesubset tree condition: each pair of
sets of times is either disjoint, or else one is a subset of the other.

For example, suppose the cycle has five days of eight times each, and resourcer is required
to be occupied for at most thirty times altogether and at most seven on any one day, and to be
unavailable at timesFri6, Fri7, andFri8. These requirements form a tree (in general, a forest):

7.4. Workload demand nodes 131

30Times

7 Mon 7 Tue 7 Wed 7 Thu 7 Fri

0 Fri6 0 Fri7 0 Fri8

A postorder traversal of this tree may be used to deduce that workload demand nodes forr are
needed for oneMon time, oneTuetime, oneWedtime, oneThu time, oneFri6 time, oneFri7
time, oneFri8 time, and three arbitrary times. In general, each tree node contributes a number of
demand nodes equal to the size of its set of times minus its number minus the number of demand
nodes contributed by its descendants, or none if this number is negative.

The tree is built by inserting the workload requirements in order, ignoring requirements
that fail the subset tree condition. For example, a failure would occur if, in addition to the above
requirements, there were limits on the number of morning and afternoon times. The constraints
which give rise to such requirements are still monitored by other monitors, but their omission
from the matching causes it to report fewer unmatchable nodes than the ideal. Fortunately, such
overlapping requirements do not seem to occur in practice, at least, not as required constraints.

7.5. Diagnosing failure to match

KHE’s usual methods of organizing monitors, such as grouping and tracing, may be applied to
demand monitors. This section offers three other ways to visit unmatched demand monitors.

7.5.1. Visiting unmatched demand nodes

The unmatched demand nodes may be visited by functions

int KheSolnMatchingDefectCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMatchingDefect(KHE_SOLN soln, int i);

Each monitor is either an ordinary demand monitor or a workload demand monitor; a call to
KheMonitorTag followed by a downcast will produce the specific type. Then functions defined
earlier give access to the part of the solution being monitored by these monitors.

Unmatched demand nodes with higher indexes tend to have become unmatched more
recently than demand nodes with lower indexes. When the number of unmatched demand nodes
increases, it is reasonable to take the last unmatched demand node as an indication of what went
wrong. However, it will usually be better to use grouping and tracing to localize problems.

7.5.2. Hall sets

Hall setsare the definitive method of diagnosing failure to match. They are fine for occasional
use, such as for generating a report to the user, but too slow for repeated use during solving.

Suppose there is a setD of demand nodes, whose outgoing edges all lead to nodes in some
setSof supply nodes. Then every node inD must be matched with a node inS, or not matched at
all. If |D| > |S|, then at least|D| − |S|nodes ofD will be unmatched in any maximum matching.

132 Chapter 7. Matchings and Evenness

It turns out that every case of an unmatched node can be explained in this way, often
utilizing setsD andS that are small enough to understand in user terms: they might represent
the demand and supply of Science laboratories, for example. Such aD andS, with every edge
out of D leading toS, and|D| > |S|, is called aHall setafter the mathematician P. Hall. Given a
maximum matching, every unmatched demand node lies in a Hall set.

The following functions examine the Hall sets of a matching. They all begin by building
the Hall sets if the ones currently stored are not up to date. This means that any change to the
solution invalidates everything returned by all previous calls to these functions.

The number of Hall sets is returned by

int KheSolnMatchingHallSetCount(KHE_SOLN soln);

This is not usually the same as the number of unmatched demand nodes, since there may be
several of those in one Hall set. No node lies in two Hall sets. The number of supply and demand
nodes in thei’th Hall set may be found by calling

int KheSolnMatchingHallSetSupplyNodeCount(KHE_SOLN soln, int i);
int KheSolnMatchingHallSetDemandNodeCount(KHE_SOLN soln, int i);

By the way that Hall sets are defined,KheSolnMatchingHallSetDemandNodeCount(soln, i)

must be larger thanKheSolnMatchingHallSetSupplyNodeCount(soln, i).

Thej’th supply node of thei’th Hall set can only be an ordinary supply node, but, in case
other kinds of supply nodes are added in future, the following function is used to find the meet
it lies in, its offset within that meet, and the resource it represents:

bool KheSolnMatchingHallSetSupplyNodeIsOrdinary(KHE_SOLN soln,
int i, int j, MEET *meet, int *meet_offset, KHE_RESOURCE *r);

At present this always returnstrue. A report to the user should distinguish the cases when*meet

is and is not a cycle meet. Thej’th demand node of thei’th Hall set is returned by

KHE_MONITOR KheSolnMatchingHallSetDemandNode(KHE_SOLN soln,
int i, int j);

It will be either an ordinary demand node or a workload demand node as usual. Finally,

void KheSolnMatchingHallSetsDebug(KHE_SOLN soln,
int verbosity, int indent, FILE *fp);

prints the Hall sets ofm’s matching ontofp with the given verbosity and indent. The verbosity
must be at least 1 but otherwise does not affect what is printed.

7.5.3. Finding competitors

Given an unmatched demand monitorm returned byKheSolnMatchingHallSetDemandNode or
KheSolnMatchingDefect, a competitorof that monitor is eitherm itself or a monitor whose
removal would allowm to match. Competitors are similar to the demand nodes of Hall sets, ex-
cept that they relate to a single unmatched demand node. They are themselves always matched.
Finding competitors amounts to redoing the search for an augmenting path for the failed node

7.5. Diagnosing failure to match 133

and noting the demand nodes that are visited along the way.

Functions

void KheSolnMatchingSetCompetitors(KHE_SOLN soln, KHE_MONITOR m);
int KheSolnMatchingCompetitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMatchingCompetitor(KHE_SOLN soln, int i);

may be used together to visit the competitors of unmatched demand monitorm:

KheSolnMatchingSetCompetitors(soln, m);
for(i = 0; i < KheSolnMatchingCompetitorCount(soln); i++)
{
competitor_m = KheSolnMatchingCompetitor(soln, i);
... visit competitor_m ...

}

The competitors are visited in breadth-first order, beginning withm (which the user may choose
to skip by initializingi in the loop above to1 rather than0). There may be any number of
competitors other thanm, including none, and they may be ordinary demand monitors and
workload demand monitors.

The solution contains one set of competitors which remains constant except when reset by
a call toKheSolnMatchingSetCompetitors. If the solution changes, this set of competitors
remains well-defined as a set of monitors, but becomes out of date as a set of competitors.

Competitors are useful because they can be found quickly, but they are not definitive in
the way that Hall sets are: in unusual cases, a given unmatched monitor may have different
competitors in different maximum matchings. For example, consider these two matchings:

A

A

B

B

C

C

D

D

E

E

A

A

B

B

C

C

D

D

E

E

Both are maximum, since all three supply nodes are matched in each; but the competitors ofC
in the first matching areA andB, while the competitors ofC in the second areD andE.

It is important not to change the solution when traversing competitors. Even if it is changed
back again, the unmatched demand nodes may be different afterwards. In the usual case where
the aim is to move one meet that is competing for some scarce resources, the right approach is to
use the loop to find those meets, store them, and move them after it ends.

In applications such as ejection chains it is important to understand what the defect really

134 Chapter 7. Matchings and Evenness

is. In the case of unmatched demand nodes, the true defect is the Hall set. This may be
approximated in practice by the set of competitors. Thus, a repair should operate on the set of
competitors independently of their order or which one happens to be the unmatched one.

7.6. Evenness monitoring

Suppose that a school has seven Mathematics teachers, and that at some time there are seven
Mathematics lessons running simultaneously. All seven teachers must be utilized at that time,
which, although feasible, will restrict the options for resource assignment later.

Unless the teachers are very overworked, there must be other times when few Mathematics
lessons are running. The Mathematics lessons are distributed unevenly through the cycle.

KHE offers a kind of monitor, of typeKHE_EVENNESS_MONITOR, which monitors this kind
of evenness. These work similarly to demand monitors; they are created and removed by

void KheSolnEvennessBegin(KHE_SOLN soln);
void KheSolnEvennessEnd(KHE_SOLN soln);

although the call toKheSolnEvennessEnd may be omitted when evenness monitoring is wanted
for the lifetime of the solution. Evenness monitors are created byKheSolnEvennessBegin but
not attached initially. There is one evenness monitor for each resource partition of the instance
and each time of the cycle, which keeps track of how many tasks whose domains lie within
that partition (as determined byKheResourceGroupPartition) are running at that time. The
monitor reports a deviation when this number exceeds some limit, which is usually set at one
less than the number of resources in the partition. Thus, the deviation would be zero when six
Mathematics teachers are needed, and one when seven are needed. Function

bool KheSolnHasEvenness(KHE_SOLN soln);

returnstrue when evennness monitors are present.

Like demand monitoring, evenness monitoring depends on the resources demanded at each
time. Unlike demand monitoring,however, domains that cross partition boundaries are not taken
into account, and evenness is only monitored at the root level of the layer tree. Despite these
simplifications, evenness monitoring is potentially useful for giving early warning of demand
problems, especially when used in conjunction with domain tightening (Section 11.3.3).

When present, evenness monitors may be found in the list of all monitors kept in the
solution, and attached and detached in the usual way. More useful in practice are functions

void KheSolnAttachAllEvennessMonitors(KHE_SOLN soln);
void KheSolnDetachAllEvennessMonitors(KHE_SOLN soln);

which visit each evenness monitor and ensure that it is attached or detached. The usual
operations on monitors may be carried out by upcasting to typeKHE_MONITOR as usual. There
are also operations specific to evenness monitors:

KHE_RESOURCE_GROUP KheEvennessMonitorPartition(KHE_EVENNESS_MONITOR m);
KHE_TIME KheEvennessMonitorTime(KHE_EVENNESS_MONITOR m);
int KheEvennessMonitorCount(KHE_EVENNESS_MONITOR m);

7.6. Evenness monitoring 135

These return the partition being monitored, the time being monitored, and the number of tasks
whose domains lie within that partition that are currently running at that time (or 0 ifm is
unattached). It would be useful to be able to retrieve the specific tasks that go to make up this
count, but that information is not kept. If it is needed, it is necessary to search the cycle meet
overlapping the time, and all the meets assigned to that cycle meet directly or indirectly, to find
the tasks running at the monitored time whose domains lie within the monitored partition.

Each evenness monitor also contains a limit, such that when the count goes above that limit
a deviation is reported. This limit can be retrieved and changed at any time by calling

int KheEvennessMonitorLimit(KHE_EVENNESS_MONITOR m);
void KheEvennessMonitorSetLimit(KHE_EVENNESS_MONITOR m, int limit);

Its default value is the number of resources in the partition, minus this same number divided by
six and rounded down. Thus, when there are less than six resources, the value is the number of
resources;when there are between six and eleven resources, the value is one less than the number
of resources; and so on. This seems to work reasonably well in practice. Another way to ignore
unevenness in small partitions would be to detach their monitors.

The deviation isKheEvennessMonitorCount(m) - KheEvennessMonitorLimit(m), or 0
if this number is negative. This is converted into a cost by multiplying by a weight (there is no
choice of cost function). The weight may be retrieved, and set at any time, by

KHE_COST KheEvennessMonitorWeight(KHE_EVENNESS_MONITOR m);
void KheEvennessMonitorSetWeight(KHE_EVENNESS_MONITOR m, KHE_COST weight);

The default weight is the smallest non-zero weight,KheCost(0, 1). Helper function

void KheSolnSetAllEvennessMonitorWeights(KHE_SOLN soln, KHE_COST weight);

sets the weights of all evenness monitors at once.

Evenness is not monitored in the current version ofKheGeneralSolve (Section 8.1),
because tests run by the author showed run time increases of about 20%, for little or no gain.
Although it has some beneficial effects, evenness monitoring tends to disrupt node regularity and
reduce diversity, since it causes very similar solutions to have slightly different costs.

Part B

Solving

A solver is an operation that makes large-scale changes to a solution. Solvers operate at a high
level and should not be cluttered with implementation details: their source files will include
khe.h as usual, but should not include header filekhe_interns.h which gives access to KHE’s
internals. Thus, the user of KHE is as well equipped to write a solver as its author.

Many solvers are packaged with KHE. They are the subject of this part of the manual, all of
which is implemented usingkhe.h but notkhe_interns.h.

136

Chapter 8. Introducing Solving

This chapter introducessolving. It definesan interface for solvers,presentsa few high-level ones,
and explains some general concepts, including setting options and gathering statistics.

8.1. General solving

A solver is a function that finds solutions, or partial solutions, to instances. Ageneral solver
solves an instance completely, unlike, say, atime solverwhich only finds time assignments, or a
resource solverwhich only finds resource assignments.

The recommended interface for general solvers, defined inkhe.h, is

typedef KHE_SOLN (*KHE_GENERAL_SOLVER)(KHE_SOLN soln,
KHE_OPTIONS options);

A general solver may split meets, build layer trees and task trees, assign times and resources, and
so on without restriction. It will usually return the solution it is given,but it may return a different
solution to the same instance, in which case it should delete the solution it is given.

Its second parameter,options, is a pointer to a set of options which may be used to vary
the behaviour of the solver. Options are the subject of Section 8.4.

The main general solver distributed with KHE is

KHE_SOLN KheGeneralSolve2014(KHE_SOLN soln, KHE_OPTIONS options);

This is a single-threaded general solver which works by calling functions defined elsewhere in
this guide. It returns the solution it is given.

The author’s intention is that the best solver (all things considered) that he creates in any
given year, if better than his previous solvers, should be calledKheGeneralSolve with the year
appended, and that KHE’s main program should call it, either directly or as the solver passed to
some parallel solver.KheGeneralSolve2014 is the first of these solvers.

KheGeneralSolve2014 assumes thatsoln is as returned byKheSolnMake, so it begins with
KheSolnSplitCycleMeet and KheSolnMakeCompleteRepresentation. Then it calls other
solvers defined elsewhere in this guide: it builds a layer tree and task tree, attaches demand
monitors, callsKheCycleNodeAssignTimes to assign times, andKheTaskingAssignResources
to assign resources. Finally, it callsKheSolnEnsureOfficialCost and returns.

KheGeneralSolve2014 is affected indirectly by many options, via the functions it calls.
The only options it consults directly aremonitor_evenness, which it uses to decide whether to
install evenness monitors (Section 7.6), andtime_assignment_only, which when set causes it
to exit early, immediately after time assignment.

137

138 Chapter 8. Introducing Solving

8.2. Parallel solving

Function

void KheArchiveParallelSolve(KHE_ARCHIVE archive, int thread_count,
int make_solns, KHE_GENERAL_SOLVER solver, KHE_OPTIONS options,
int keep_solns, KHE_SOLN_GROUP soln_group);

creates a pool ofthread_count threads and uses them to solve the instances ofarchive. They
include the thread that calledKheArchiveParallelSolve, sothread_count must be at least 1.

KheArchiveParallelSolve createsmake_solns solutions for each instance ofarchive,
by creating that many solutionsand callingsolver on each solution with a copy ofoptions. The
solutions passed tosolver are identical except that the diversifier of the first is 0, the diversifier
of the second is 1, and so on. The solver may use these values to create diverse solutions.

If soln_group is non-NULL,KheArchiveParallelSolve keeps the bestkeep_solns out of
themake_solns solutions it made for each instance, and adds them tosoln_group, deleting the
others. Otherwise it deletes all the solutions it made.

A variant ofKheArchiveParallelSolve that may sometimes be more convenient is

KHE_SOLN KheInstanceParallelSolve(KHE_INSTANCE ins, int thread_count,
int make_solns, KHE_GENERAL_SOLVER solver, KHE_OPTIONS options);

Behind the scenes it is the same, but it solves a single instance rather than an entire archive, and
it returns any one best solution rather than storing a set of best solutions in a solution group.

Parallelism is obtained via functionspthread_create and pthread_join from the
Posix threads library. KHE has been carefully designed to ensure that operations carried out in
parallel on distinct solutions cannot interfere with each other. If you do not have Posix, a simple
workaround documented in KHE’s makefile will allow you to compile KHE without it. The only
difference is thatKheArchiveParallelSolve andKheInstanceParallelSolve will find their
solutions sequentially rather than in parallel.

8.3. Benchmarking

For benchmarking (that is, for gathering statistics while a solver runs), KHE offers

void KheBenchmark(KHE_ARCHIVE archive, KHE_GENERAL_SOLVER solver,
char *solver_name, char *author_name, char test_label,
KHE_STATS_TABLE_TYPE table_type);

It solvesarchive, possibly several times, usingsolver, writing the results into files in directory
"stats" of the current directory. Some files are archives, others contain tables of statistics
recording the performance ofsolver, printed by KHE’s statistics functions (Section 8.5).

Parametersolver_name is a brief name forsolver, suited for use in the header of a table
column;author_name is the name of the author of the solver; andtest_label (a character
between’A’ and’Z’) determines which tests are performed and which files are written. These
may change from time to time. See the top of filekhe_sm_benchmark.c for current details.

8.3. Benchmarking 139

Parametertable_type determines the format of any tables written. Its values are

typedef enum {
KHE_STATS_TABLE_PLAIN,
KHE_STATS_TABLE_LOUT,
KHE_STATS_TABLE_LATEX

} KHE_STATS_TABLE_TYPE;

which request plain text, Lout, or LaTeX format.

KheBenchmark takes it upon itself to skip some instances of the archive it is given. To see
which are skipped, consult functionKheBenchmarkTryInstance in file khe_sm_benchmark.c.
If it comes upon such an instance, it includes a row for it in the tables it prints, but it does not
attempt to solve it, and it leaves the entries for that row blank.

8.4. Options

All solvers take anoptions parameter of typeKHE_OPTIONS, a pointer to a set of options which
can be used to vary their behaviour. Function

KHE_OPTIONS KheOptionsMake(void);

returns a new options object whose options all have their default values. For each option, there is
one function to retrieve the option and another to set it. These functions are documented along-
side the solvers that their options affect, and the full list of options appears below. Some simple
solvers do not use any options; in that case, theoptions argument may beNULL. Function

void KheOptionsDelete(KHE_OPTIONS options);

may be called to delete an options object when it is no longer needed.

Options can be classified into two kinds, although the distinction between them is not
absolute. One kind is there for the convenience of the end user, to allow him to try out different
possibilities. Options of this kind are not set by any of KHE’s solvers. The other kind is there
because some of KHE’s solvers need to vary the behaviour of other solvers that they call. These
ones are set by KHE’s solvers.

Because options (especially the second kind) can change, when solving in parallel different
options objects must be passed to each solve. These can be created by copying using

KHE_OPTIONS KheOptionsCopy(KHE_OPTIONS options);

It will call KheEjectorCopy to copy any ejectors stored inside it. This is necessary because a
single ejector cannot safely be accessed by two solvers in parallel. Split analysers also cannot be
used in parallel, soKheOptionsCopy creates a new split analyser object for the copy.

The following subsections present the complete list of options. Only brief indications of
their meaning are given here, with references to the places where they are described in detail.

140 Chapter 8. Introducing Solving

8.4.1. General options

This subsection describes options used widely or by KHE’s general solvers.

Thediversify option determines whether some solvers consult the solution’s diversifier
(Section 4.5), and so produce a different result for different solutions when their diversifiers are
different. It is retrieved and set by

bool KheOptionsDiversify(KHE_OPTIONS options);
void KheOptionsSetDiversify(KHE_OPTIONS options, bool diversify);

Its default value istrue. Many of the solvers packaged with KHE consult this option.

Themonitor_evenness option determines whetherKheGeneralSolve2014 (Section 8.1)
installs evenness monitors (Section 7.6). It is retrieved and set by

bool KheOptionsMonitorEvenness(KHE_OPTIONS options);
void KheOptionsSetMonitorEvenness(KHE_OPTIONS options,
bool monitor_evenness);

Its default value isfalse.

Thetime_assignment_only option determines whetherKheGeneralSolve2014 (Section
8.1) exits early, leaving the solution in its state after time assignment. It is retrieved and set by

bool KheOptionsTimeAssignmentOnly(KHE_OPTIONS options);
void KheOptionsSetTimeAssignmentOnly(KHE_OPTIONS options,
bool time_assignment_only);

Its default value isfalse.

8.4.2. Structural solver options

This subsection describes options used by KHE’s structural solvers.

Thestructural_time_equiv option holds a time-equivalence object (Section 9.2). It is
retrieved and set by

KHE_TIME_EQUIV KheOptionsStructuralTimeEquiv(KHE_OPTIONS options);
void KheOptionsSetStructuralTimeEquiv(KHE_OPTIONS options,

KHE_TIME_EQUIV structural_time_equiv);

The default value is a time-equivalence object created byKheOptionsMake or
KheOptionsCopy and deleted byKheOptionsDelete. There seems to be no reason to ever call
KheOptionsSetStructuralTimeEquiv, but the user of the time-equivalence object will need to
call KheTimeEquivSolve at some point.

Thestructural_split_analyser option holds a split analyser object (Section 9.7.1). It
is retrieved and set by

KHE_SPLIT_ANALYSER KheOptionsStructuralSplitAnalyser(KHE_OPTIONS options);
void KheOptionsSetStructuralSplitAnalyser(KHE_OPTIONS options,

KHE_SPLIT_ANALYSER structural_split_analyser);

8.4. Options 141

The default value is a split analyser object created byKheOptionsMake or KheOptionsCopy
and deleted by KheOptionsDelete. There seems to be no reason to ever call
KheOptionsSetStructuralSplitAnalyser.

8.4.3. Time solver options

This subsection describes options used by KHE’s time solvers, except for ejection chain time
repair algorithms, whose options appear in Section 8.4.5.

Thetime_cluster_meet_domains option determines whetherKheCycleNodeAssignTimes
(Section 10.8.3) clusters meet domains usingKheSolnClusterAndLimitMeetDomains (Section
10.3.3) before assigning times and unclusters them afterwards. It is retrieved and set by

bool KheOptionsTimeClusterMeetDomains(KHE_OPTIONS options);
void KheOptionsSetTimeClusterMeetDomains(KHE_OPTIONS options,
bool time_cluster_meet_domains);

Its default value isfalse.

The time_tighten_domains option determines whetherKheCycleNodeAssignTimes
(Section 10.8.3) tightens resource domains (Section 11.3.4). It is retrieved and set by

bool KheOptionsTimeTightenDomains(KHE_OPTIONS options);
void KheOptionsSetTimeTightenDomains(KHE_OPTIONS options,
bool time_tighten_domains);

Its default value istrue.

Thetime_node_repair option determines whetherKheCycleNodeAssignTimes (Section
10.8.3) ends by callingKheEjectionChainNodeRepairTimes (Section 10.7.2). If so, it calls it
twice, before and after removing regularity-enhancing features. It is retrieved and set by

bool KheOptionsTimeNodeRepair(KHE_OPTIONS options);
void KheOptionsSetTimeNodeRepair(KHE_OPTIONS options,
bool time_node_repair);

Its default value istrue.

The time_node_regularity option determines whetherKheNodeLayeredAssignTimes
(Section 10.8.2) tries for node regularity. It is retrieved and set by

bool KheOptionsTimeNodeRegularity(KHE_OPTIONS options);
void KheOptionsSetTimeNodeRegularity(KHE_OPTIONS options,
bool time_node_regularity);

Its default value istrue.

Thetime_layer_swap option determines whether or notKheNodeLayeredAssignTimes
(Section 10.8.2) tries more than one ordering of its layers. It is retrieved and set by

bool KheOptionsTimeLayerSwap(KHE_OPTIONS options);
void KheOptionsSetTimeLayerSwap(KHE_OPTIONS options,
bool time_layer_swap);

142 Chapter 8. Introducing Solving

Its default value isfalse.

Thetime_layer_repair option determineswhether or notKheNodeLayeredAssignTimes

(Section 10.8.2) repairs its assignment of times to each layer immediately after assigning the
layer. It is retrieved and set by

bool KheOptionsTimeLayerRepair(KHE_OPTIONS options);
void KheOptionsSetTimeLayerRepair(KHE_OPTIONS options,
bool time_layer_repair);

Its default value istrue.

If time_layer_repair is true, then optiontime_layer_repair_backoff determines
whether exponential backoff is used to decide which layers to repair. It is retrieved and set by

bool KheOptionsTimeLayerRepairBackoff(KHE_OPTIONS options);
void KheOptionsSetTimeLayerRepairBackoff(KHE_OPTIONS options,
bool time_layer_repair_backoff);

Its default value isfalse, meaning to repair every layer.

The time_layer_repair_long option affectsKheEjectionChainLayerRepairTimes
(Section 10.7.2), determining whether it targets just the current layer, or every layer up to and
including the current layer. It is retrieved and set by

bool KheOptionsTimeLayerRepairLong(KHE_OPTIONS options);
void KheOptionsSetTimeLayerRepairLong(KHE_OPTIONS options,
bool time_layer_repair_long);

Its default value isfalse, meaning to target just the current layer.

The time_kempe_stats option holds an object of typeKHE_KEMPE_STATS, used for
recording statistics about Kempe meet moves (Section 10.2.2). It is retrieved and set by

KHE_KEMPE_STATS KheOptionsTimeKempeStats(KHE_OPTIONS options);
void KheOptionsSetTimeKempeStats(KHE_OPTIONS options,
KHE_KEMPE_STATS time_kempe_stats);

Its default value is a newKHE_KEMPE_STATS object, both when an options object is created and
when it is copied. So there is not usually any need to callKheOptionsSetTimeKempeStats.

8.4.4. Resource solver options

This subsection describes options used by KHE’s resource solvers, except for ejection chain
resource repair algorithms, whose options appear in Section 8.4.5.

Theresource_invariant option determines whether resource solvers limit themselves to
producing results that preserve theresource assignment invariant(Section 11.2), which states
that the number of unmatched demand tixels may not increase. It is retrieved and set by

bool KheOptionsResourceInvariant(KHE_OPTIONS options);
void KheOptionsSetResourceInvariant(KHE_OPTIONS options,
bool resource_invariant);

8.4. Options 143

Its default value isfalse. Many resource solvers consult this option:KheTaskTreeMake,
KheTaskingMakeTaskTree, KheTaskingTightenToPartition, KheResourcePairReassign,
KheResourcePairRepairSplitAssignments, and KheEjectionChainRepairResources. It
would be ideal if they all did, but they don’t at present.

The resource_rematch option tells KheTaskingAssignResources whether to call
KheResourceRematch. It is retrieved and set by

bool KheOptionsResourceRematch(KHE_OPTIONS options);
void KheOptionsSetResourceRematch(KHE_OPTIONS options,
bool resource_rematch);

It has default valuetrue.

The resource_pair option affectsKheResourcePairRepair as explained in Section
11.9.2. It is retrieved and set by

KHE_OPTIONS_RESOURCE_PAIR KheOptionsResourcePair(KHE_OPTIONS options);
void KheOptionsSetResourcePair(KHE_OPTIONS options,
KHE_OPTIONS_RESOURCE_PAIR resource_pair);

It has default valueKHE_OPTIONS_RESOURCE_PAIR_SPLITS. Some rudimentary statistics are
gathered in three integer values:resource_pair_calls, resource_pair_successes, and
resource_pair_truncs. These may be retrieved and set as usual:

int KheOptionsResourcePairCalls(KHE_OPTIONS options);
void KheOptionsSetResourcePairCalls(KHE_OPTIONS options,
int resource_pair_calls);

int KheOptionsResourcePairSuccesses(KHE_OPTIONS options);
void KheOptionsSetResourcePairSuccesses(KHE_OPTIONS options,
int resource_pair_successes);

int KheOptionsResourcePairTruncs(KHE_OPTIONS options);
void KheOptionsSetResourcePairTruncs(KHE_OPTIONS options,
int resource_pair_truncs);

See Section 11.9.2 for the details.

8.4.5. Ejection chain options

This section describes options relevant to ejector objects and ejection chain repair algorithms.
For full details, consult Chapter 12.

Functions

KHE_EJECTOR KheOptionsEjector(KHE_OPTIONS options, int index);
void KheOptionsSetEjector(KHE_OPTIONS options, int index,
KHE_EJECTOR ej);

retrieve and set one ejector object for each non-negativeindex. At each index the default value
is NULL. Functions

144 Chapter 8. Introducing Solving

char *KheOptionsEjectorSchedulesString(KHE_OPTIONS options);
void KheOptionsSetEjectorSchedulesString(KHE_OPTIONS options,
char *ejector_schedules_string);

retrieve and set a string describing the schedules to apply to an ejector. For the default value,
consult Section 12.6. Functions

bool KheOptionsEjectorPromoteDefects(KHE_OPTIONS options);
void KheOptionsSetEjectorPromoteDefects(KHE_OPTIONS options,
bool ejector_promote_defects);

retrieve and set theejector_promote_defects option of ejectors. Its default value istrue.
Functions

bool KheOptionsEjectorFreshVisits(KHE_OPTIONS options);
void KheOptionsSetEjectorFreshVisits(KHE_OPTIONS options,
bool ejector_fresh_visits);

retrieve and set theejector_fresh_visits option of ejectors. Its default value isfalse.

Theejector_repair_times option determines whether augment functions are permitted
to change the assignments of meets. It is retrieved and set by

bool KheOptionsEjectorRepairTimes(KHE_OPTIONS options);
void KheOptionsSetEjectorRepairTimes(KHE_OPTIONS options,
bool ejector_repair_times);

It is set by the various ejection chain functions, so setting by the caller of those functions will
have no effect. Its default value istrue.

Optionejector_vizier_node determineswhetherKheEjectionChainNodeRepairTimes
andKheEjectionChainLayerRepairTimes (Section 10.7.2) insert a vizier node (Section 9.5.4)
temporarily while they run. It is retrieved and set by

bool KheOptionsEjectorVizierNode(KHE_OPTIONS options);
void KheOptionsSetEjectorVizierNode(KHE_OPTIONS options,
bool ejector_vizier_node);

Its default value isfalse.

Theejector_nodes_before_meets option determines whether augment functions that try
both node swaps and meet moves try the node swaps first. It is retrieved and set by

bool KheOptionsEjectorNodesBeforeMeets(KHE_OPTIONS options);
void KheOptionsSetEjectorNodesBeforeMeets(KHE_OPTIONS options,
bool ejector_nodes_before_meets);

Its default value isfalse.

Theejector_use_kempe_moves option determines whether augment functions that move
meets use Kempe meet moves in addition to ejecting and basic ones (Section 10.2.2). It is
retrieved and set by

8.4. Options 145

KHE_OPTIONS_KEMPE KheOptionsEjectorUseKempeMoves(KHE_OPTIONS options);
void KheOptionsSetEjectorUseKempeMoves(KHE_OPTIONS options,
KHE_OPTIONS_KEMPE ejector_use_kempe_moves);

where typeKHE_OPTIONS_KEMPE is

typedef enum {
KHE_OPTIONS_KEMPE_NO,
KHE_OPTIONS_KEMPE_AUTO,
KHE_OPTIONS_KEMPE_YES

} KHE_OPTIONS_KEMPE;

KHE_OPTIONS_KEMPE_NO means to not use them, andKHE_OPTIONS_KEMPE_YES means to use
them wherever possible (this is the default value).KHE_OPTIONS_KEMPE_AUTO means to use them
only when moving meets that lie in nodes that lie in layers of large duration relative to the cycle
duration, reasoning that swaps are virtually always needed when such meets are moved.

Theejector_use_fuzzy_moves option determines whether augment functions that move
meets try fuzzy meet moves (Section 10.7.4) in addition to the other kinds of meet moves. If
they do, to conserve running time they only do so at depth 1 on the ejection chain, i.e. only
when repairing a defect of the current best solution, not when repairing a defect introduced by a
previous repair. The option is retrieved and set by

bool KheOptionsEjectorUseFuzzyMoves(KHE_OPTIONS options);
void KheOptionsSetEjectorUseFuzzyMoves(KHE_OPTIONS options,
bool ejector_use_fuzzy_moves);

Its default value isfalse. At present thewidth, depth, and max_meets parameters of
KheFuzzyMeetMove are fixed constants.

Theejector_use_split_moves option determines whether augment functions that move
meets try split meet moves in addition to the other kinds of meet moves. The option is retrieved
and set by

bool KheOptionsEjectorUseSplitMoves(KHE_OPTIONS options);
void KheOptionsSetEjectorUseSplitMoves(KHE_OPTIONS options,
bool ejector_use_split_moves);

Its default value isfalse, but some of the solvers change it on their own authority.

The ejector_ejecting_not_basic option determines whether augment functions that
assign and move meets use ejecting assignments and moves, not basic ones (Section 10.2.2). It
is retrieved and set by

bool KheOptionsEjectorEjectingNotBasic(KHE_OPTIONS options);
void KheOptionsSetEjectorEjectingNotBasic(KHE_OPTIONS options,
bool ejector_ejecting_not_basic);

Its default value istrue.

Theejector_limit_node option holds a node. When it is non-NULL, it causes augment
functions that assign and move meets to limit their repairs to the descendants of that node. It is

146 Chapter 8. Introducing Solving

retrieved and set by

KHE_NODE KheOptionsEjectorLimitNode(KHE_OPTIONS options);
void KheOptionsSetEjectorLimitNode(KHE_OPTIONS options,
KHE_NODE ejector_limit_node);

Its default value isNULL.

The ejector_repair_resources option determines whether augment functions are
permitted to change the assignments of tasks. It is retrieved and set by

bool KheOptionsEjectorRepairResources(KHE_OPTIONS options);
void KheOptionsSetEjectorRepairResources(KHE_OPTIONS options,
bool ejector_repair_resources);

It is set by the various ejection chain functions, so setting by the caller of those functions will
have no effect. Its default value istrue.

Theejector_limit_defects option is an integer limit on the number of defects handled
by the main loop of the ejector. Each time the main list of defects is copied and sorted, if its size
exceeds this limit, defects are dropped from the end until it doesn’t. It is retrieved and set by

int KheOptionsEjectorLimitDefects(KHE_OPTIONS options);
void KheOptionsSetEjectorLimitDefects(KHE_OPTIONS options,
int ejector_limit_defects);

Its default value isINT_MAX.

8.5. Gathering statistics

KHE offers a module for gathering statistics. It can calculate running times and generate files
containing tables in several formats, and graphs in Lout format.

8.5.1. Running time and date

To find out how long something takes to run,objects of typeKHE_STATS_TIMER (the usual pointer
to a private record) are used. Each records one moment in time. To create and delete these timer
objects, the functions are

KHE_STATS_TIMER KheStatsTimerMake(void);
void KheStatsTimerDelete(KHE_STATS_TIMER st);

KheStatsTimerMake returns a new timer, initialized by callingKheStatsTimerReset on it, and
KheStatsTimerDelete deletesst, reclaiming the memory it used. There is also

KHE_STATS_TIMER KheStatsTimerCopy(KHE_STATS_TIMER st);

which copiesst, producing a new timer holding the same time asst. The other functions are

void KheStatsTimerReset(KHE_STATS_TIMER st);
float KheStatsTimerNow(KHE_STATS_TIMER st);

8.5. Gathering statistics 147

KheStatsTimerReset resets the time held withinst to the time whenKheStatsTimerReset was
called.KheStatsTimerNow compares the time recorded inst (whenKheStatsTimerReset was
last called)with the time now and reports the difference in seconds. Both functions may be called
any number of times on the same timer. Any number of timers may be used independently.

Because wall clock times are used, times measured within one thread of a parallel solve
will not in general measure the time consumed by that thread. However, a parallel solver can
be called betweenKheStatsTimerReset andKheStatsTimerNow, and then they will reliably
measure the elapsed time of the parallel solve.

Also offered is

char *KheStatsDateToday(void);

which returns the current date as a string in static memory.

For the sake of compilations that do not have the Unix system functions called by these
functions, filekhe.h has aKHE_USE_TIMING preprocessor flag. Its default value is 1; changing
it to 0 will turn off all calls to Unix timing system functions. If that is done, all functions
will still compile and run without error, butKheStatsTimerNow will always return-1.0, and
KheStatsDateToday will return "?".

8.5.2. Files of tables and graphs

The main thing that the stats module does is generate files of tables and graphs. Any number of
files may be generated simultaneously (not in parallel, because the stats module has no locking,
but by one thread). One file may contain any number of tables and graphs, although only one
may be generated at a time within any one file.

To begin and end a file, call

void KheStatsFileBegin(char *file_name);
void KheStatsFileEnd(char *file_name);

This writes a file calledfile_name in sub-directorystats of the current directory (which the
user must have created previously). The file is opened byKheStatsFileBegin and closed by
KheStatsFileEnd. To generate the actual tables and graphs, see the following subsections.

8.5.3. Tables

To generate tables, make matching pairs of calls to the following functions in between the calls
to KheStatsFileBegin andKheStatsFileEnd:

void KheStatsTableBegin(char *file_name, KHE_STATS_TABLE_TYPE table_type,
int col_width, char *corner, bool with_average_row, bool with_total_row,
bool highlight_cost_minima, bool highlight_time_minima,
bool highlight_int_minima);

void KheStatsTableEnd(char *file_name);

Only one table at a time can be generated into a given file, so a table is not identified separately
from its file. The table is begun byKheStatsTableBegin, and finished, including being written
out to the file, byKheStatsTableEnd. Where the file format permits, a label will be associated

148 Chapter 8. Introducing Solving

with the table: the file name for the first table, the file name followed by an underscore and
2 for the second table, and so on. The value of the table is created in between these two calls,
by calling functions to be presented shortly. Because the entire table is saved in memory until
KheStatsTableEnd is called, these other calls may occur in any order. In particular it is equally
acceptable to generate the table row by row or column by column.

The format of the table is specified bytable_type:

typedef enum {
KHE_STATS_TABLE_PLAIN,
KHE_STATS_TABLE_LOUT,
KHE_STATS_TABLE_LATEX

} KHE_STATS_TABLE_TYPE;

The choices are plain text, Lout, or LaTeX. Parametercol_width determines the width in char-
actersof each column in plain text; it is ignored by the other formats. Parametercorner isprinted
in the top left-hand corner of the table. It must be non-NULL, but it can be the empty string.

Each entry in the table has a type, which may be eitherstring, cost, time (really just an
arbitraryfloat), or int. If with_average_row is true, the table ends with an extra row. Each
entry in this row contains the average of the non-blank,non-string entries above it, if they all have
the same type; otherwise the entry is blank. Ifwith_total_row is true, the effect is the same
except that totals are printed, not averages.

If highlight_cost_minima is true, the minimum values of typecostin each row appear
in bold font, or marked by an asterisk in plain text. Parametershighlight_time_minima and
highlight_int_minima are the same except that they highlight values of typetimeor int.

A caption can be added by calling

void KheStatsCaptionMake(char *file_name, char *fmt, ...);

at any time betweenKheStatsTableBegin andKheStatsTableEnd, as often as desired. This
does whatprintf would do with the arguments afterfile_name. The results of all calls are
saved and printed as a caption byKheStatsTableEnd.

In any given table, each row except the first (header) row must be declared, by calling

void KheStatsRowAdd(char *file_name, char *row_label, bool rule_below);

The rows appear in the order of the calls. Parameterrow_label both identifies the row and
appears in the first (header) column of the table. Ifrule_below istrue, the row will have a rule
below it. The header row always has a rule below it, and there is always a rule below the last row
(not counting any average or total row).

In the same way, non-header columns are declared, in order, by calls to

void KheStatsColAdd(char *file_name, char *col_label, bool rule_after);

wherecol_label both identifies the column and appears in the first (header) row of the table,
and settingrule_after to true causes a rule to be printed after the column.

To add an entry to the table, call any one of these functions:

8.5. Gathering statistics 149

void KheStatsAddEntryString(char *file_name, char *row_label,
char *col_label, char *str);

void KheStatsAddEntryCost(char *file_name, char *row_label,
char *col_label, KHE_COST cost);

void KheStatsAddEntryTime(char *file_name, char *row_label,
char *col_label, float time);

void KheStatsAddEntryInt(char *file_name, char *row_label,
char *col_label, int val);

These add an entry tofile_name’s table at rowrow_label and columncol_label, aborting if
these are unknown or an entry has already been added there. If no entry is ever added at some
position, the table will be blank there. The entry’s format depends on the call. For example,

KheStatsAddEntryCost(file_name, row_label, col_label, KheSolnCost(soln));

adds a solution cost to the table which will be formatted in the standard way.

All strings passed to these functions that require long-term storage are copied, so mutating
strings are not a concern. On the other hand, there is no locking, so calls which create tables
should be single-threaded, as should calls which modify the same table.

8.5.4. Graphs

To generate graphs in Lout format, make matching pairs of calls to the following functions in
between the calls toKheStatsFileBegin andKheStatsFileEnd:

void KheStatsGraphBegin(char *file_name);
void KheStatsGraphEnd(char *file_name);

As for tables, only one graph can be generated into a given file at a time, and so the graph is iden-
tified by the file name. To set options which control the overall appearance of the graph, call

void KheStatsGraphSetWidth(char *file_name, float width);
void KheStatsGraphSetHeight(char *file_name, float height);
void KheStatsGraphSetXMax(char *file_name, float xmax);
void KheStatsGraphSetYMax(char *file_name, float ymax);
void KheStatsGraphSetAboveCaption(char *file_name, char *val);
void KheStatsGraphSetBelowCaption(char *file_name, char *val);
void KheStatsGraphSetLeftCaption(char *file_name, char *val);
void KheStatsGraphSetRightCaption(char *file_name, char *val);

These determine the width and height of the graph (in centimetres), the maximum x and y values,
and the small captions above, below, to the left of, and to the right of the graph. If calls to these
functions are not made, the options remain unspecified, causing Lout’s graph package to substi-
tute default values for them in its usual way. The caption values must be valid Lout source.

A caption can be added by calling the same function as for tables:

void KheStatsCaptionMake(char *file_name, char *fmt, ...);

at any time betweenKheStatsGraphBegin andKheGraphTableEnd.

150 Chapter 8. Introducing Solving

Any number ofdatasetsmay be displayed on one graph; each dataset is a sequence of
points. Often there is just one dataset. To create a dataset, call

void KheStatsDataSetAdd(char *file_name, char *dataset_label,
KHE_STATS_DATASET_TYPE dataset_type);

wheredataset_label is used to identify the dataset, anddataset_type determines how the
data are presented. At present the stats module offers just one choice:

typedef enum {
KHE_STATS_DATASET_HISTO

} KHE_STATS_DATASET_TYPE;

but the Lout graph package offers many others, so it would not be difficult to expand the choices
here.KHE_STATS_DATASET_HISTO printsa histogram. The x valuesof the dataset’spointsshould
be increasing integers; the y values are the frequencies. Function

void KheStatsPointAdd(char *file_name, char *dataset_label,
float x, float y);

adds a point to a dataset. The points are generated in the order received,so in practice,successive
calls toKheStatsPointAdd on the same dataset should have increasing x values.

8.6. Exponential backoff

One strategy for making solvers faster is to do a lot of what is useful, and not much of what isn’t
useful. When something is always useful, it is best to simply do it. When something might be
useful but wastes a lot of time when it isn’t, it is best to try it, observe whether it is useful, and
do more or less of it accordingly. Solvers that do this are said to beadaptive.

For example, suppose there is a choice of two or more methods of doing something. In
that case, information can be kept about how successful each method has been recently, and the
choice can be weighted towards recently successful methods.

However, this section is concerned with a different situation, involving just one method.
Suppose there is a sequence ofopportunitiesto apply this method, and that as each opportunity
arrives, the solver can choose to apply the method or not. Typically, the method will be a repair
method: repair is optional. If the solveracceptsthe opportunity, the method is then run and either
succeeds(does something useful) orfails (does nothing useful). Otherwise, the solverdeclines
the opportunity. So opportunities are classified as successful, failed, or declined.

Exponential backofffrom computer network implementation is a form of adaptation suited
to this situation. It works as follows. If the solver applies the method and it is successful, then it
forgets all history and will accept the next opportunity. But if the solver applies the method and
it fails, then it remembers the total number of failed opportunitiesF (including this one) since
the last successful opportunity, and does not accept another opportunity until after it has declined

F−12 opportunities. Declined opportunities do not count as failures.

Here are some examples. Each character isone opportunity;S isa successful opportunity (or
the start of the sequence),F is a failed one, and. is a declined one. Each successful opportunity

8.6. Exponential backoff 151

makes a fresh start, so the examples all begin withS and contain onlyF and. thereafter:

S
SF.
SF.F..
SF.F..F....
SF.F..F....F........

and so on. Every complete trace of exponential backoff can be broken at eachS into sub-traces
like these. Methods that always succeed are tried at every opportunity. Methods that always fail
are tried only about log2n times, wheren is the total number of opportunities.

Other rules for which opportunities to accept could be used, rather than waiting untilF−12
opportunities have been declined. For example, every opportunity could be accepted, which
amounts to having no backoff at all. The principles are the same, only the rule changes.

KHE offers four operations which together implement exponential backoff:

KHE_BACKOFF KheBackoffBegin(KHE_BACKOFF_TYPE backoff_type);
bool KheBackoffAcceptOpportunity(KHE_BACKOFF bk);
void KheBackoffResult(KHE_BACKOFF bk, bool success);
void KheBackoffEnd(KHE_BACKOFF bk);

KheBackoffBegin creates a new backoff object, passing abackoff_type value which
determines which rule is used, of type

typedef enum {
KHE_BACKOFF_NONE,
KHE_BACKOFF_EXPONENTIAL

} KHE_BACKOFF_TYPE;

The two values select no backoff and exponential backoff.KheBackoffAcceptOpportunity is
called when an opportunity arises, and returnstrue if that opportunity should be accepted. In
that case, the next call must be toKheBackoffResult, reporting whether or not the method was
successful.KheBackoffEnd reclaims the memory consumed by the backoff object.

Suppose that the program pattern without exponential backoff is

while(...)
{
...
if(opportunity_has_arisen)
success = try_repair_method(soln);

...
}

Then the modified pattern for including exponential backoff is

152 Chapter 8. Introducing Solving

bk = KheBackoffBegin(KHE_BACKOFF_EXPONENTIAL);
while(...)
{
...
if(opportunity_has_arisen && KheBackoffAcceptOpportunity(bk))
{
success = try_repair_method(soln);
KheBackoffResult(bk, success);

}
...

}
KheBackoffEnd(bk);

Each successfulKheBackoffAcceptOpportunity is followed by a call toKheBackoffResult.

All backoff objects hold a few statistics, kept only for printing byKheBackoffDebug
below, and a boolean flag which istrue if the next call must be toKheBackoffResult. When
exponential backoff is requested, a backoff object also maintains two integers,C andM. C is
the number of declines since the last accept (or since the backoff object was created).M is the
maximum number of opprtunities that may be declined, defined by

M =

0 if F = 0
F−12 if F ≥ 1

whereF is the number of failures since the last success (or since the backoff object was
created). The next call toKheBackoffAcceptOpportunity will return true if C ≥ M. The
implementation will not increaseM if that would cause an overflow. Overflow is very unlikely,
since an enormous number of opportunities would have to occur first.

Function

char *KheBackoffShowNextDecision(KHE_BACKOFF bk);

returns"ACCEPT" when the next call toKheBackoffAcceptOpportunity will return true, and
"DECLINE" when it will returnfalse. There is also

void KheBackoffDebug(KHE_BACKOFF bk, int verbosity, int indent, FILE *fp);

Verbosity 1 prints the current state, including a ‘!’ when the flag is set, on one line. Verbosity 2
prints some statistics: the number of opportunities so far, and how many are successful, failed,
and declined, in a multi-line format. A function for testing this module appears inkhe.h.

Chapter 9. Structural Solvers

This chapter documents the solvers packaged with KHE that modify the structure of a solution:
split and merge its meets, add nodes and layers, and so on. These solvers may alter time and
resource assignments, but they only do so occasionally and incidentally to their structural work.

9.1. Layer tree construction

KHE offers a solver for building a layer tree holding the meets of a given solution:

KHE_NODE KheLayerTreeMake(KHE_SOLN soln);

The root node of the tree,holding the cycle meets, is returned. The function has no special access
to data behind the scenes. Instead, it works by calling basic operations and helper functions:

• It callsKheMeetSplit to satisfy split events constraints and other influences on the number
and duration of meets, as far as possible. It is usual to callKheLayerTreeMake when each
event is represented insoln by a single meet of the full duration (that is, afterKheSolnMake

andKheSolnMakeCompleteRepresentation), but some meets may be already split. In any
case,KheLayerTreeMake does not create, delete, or merge meets.

• It callsKheMeetBoundMake with aNULL meet bound group to set the time domains of meets
to satisfy preassigned times, prefer times constraints, and other influences on time domains,
as far as possible. For each meet, one call toKheMeetBoundMake is made for each possible
duration. It is usual to callKheLayerTreeMake at a moment when the time domains of
the meets are not restricted by meet bounds, but some meets may already have bounds. In
any case,KheLayerTreeMake only adds bounds, never removes them, so it either leaves a
domain unchanged, or reduces it to a subset of its initial value.

• It callsKheMeetAssign in trivial cases where there is no doubt that the assignments will be
final. Precisely, if there are two events of equal duration linked by a link events constraint
and split into meets of equal durations, and the algorithm places one in a parent node and
the other in a child of that parent, then, provided the child node itself has no children (which
would render the case non-trivial), the meets of the child node will be assigned to meets of
the parent node, and the child node will be deleted in accordance with the convention given
in Chapter 10, that meets whose assignments will never change should not lie in nodes.

• It calls KheMeetAssignFix to fix all the assignments it makes (as defined immediately
above). These can be unfixed afterwards if desired.

153

154 Chapter 9. Structural Solvers

• It callsKheNodeMake andKheNodeAddMeet to ensure that for each event there is one node
holding the meets of that event, unless these meets receive the trivial assignments just de-
scribed. There is also a node (the root node returned byKheLayerTreeMake, also accessible
asKheSolnNode(soln, 0)) holding the cycle meets. Any other meets (usually none) are
not placed into nodes.KheLayerTreeMake requiressoln to contain no nodes initially.

• It calls KheNodeAddParent to reflect link events constraints (even between events whose
durations differ), as far as possible, and the need to ultimately assign every meet to a cycle
meet. WhenKheLayerTreeMake returns, every node is a descendant of the root node.

• Some instances contain events which have already been split, with the fragments presented
as distinct events. It is best if the nodes holding the meets derived from these fragments are
merged. So for each pair of distinct events which appear to be part of one course because
they share a spread events constraint or avoid split assignments constraint, if certain other
conditions (Section 9.1.5) are satisfied, the nodes holding the meets of those two events are
merged by a call toKheNodeMerge.

These elements interact in ways that make most of them impossible to separate. For example,
the splitting of an event into meets needs to be influenced not just by the event’s own split events
constraints and distribute split events constraints, but also by the constraints of the events that it
is linked to by link events constraints.

Logically, order events constraints should also affect the construction of layer trees. In the
version of KHE documented here they are not consulted, but this will change.

AlthoughKheLayerTreeMake does not callKheLayerMake, resource layers (sets of events
that share a common preassigned resource which has a hard avoid clashes constraint) strongly
influence its behaviour. It ensures that the events of each layer are split into meets which can be
packed into the cycle meets without overlapping in time, except in the unlikely case where the
total duration of the events of the layer exceeds the total number of times in the cycle.

For eachmeet with a pre-existing assignment to sometarget_meet, KheLayerTreeMake
tries to placemeet into a child node oftarget_meet’s node. In exceptional circumstances, this
may not be possible, and then the pre-existing assignment is removed byKheLayerTreeMake.
Suppose there is an event with two meets, both assigned to other meets. If those two other meets
are both derived from the same event, or if they are both cycle meets, then all is well; but if not,
one of the original meets will be unassigned. This is done becauseKheLayerTreeMake tracks
relations between events, not meets, and cannot cope with the idea of one event being assigned
partly to one event and partly to another. A meet will also be unassigned when there is a cycle
of assignments, but that should never occur in practice.

The above attempts to be a complete specification ofKheLayerTreeMake, sufficient for
using it. For the record, the following subsections explain how it works in detail.

9.1.1. Overview

KheLayerTreeMake uses a constructive heuristic which runs quickly. It works by examining the
relevant constraintsand taking actions to satisfy them,giving priority to those with higher weight.
It does not search through a large space of possible solutions to find the best. This is appropriate,
because in practice good solutions are easy to find. The problem is more about giving due weight

9.1. Layer tree construction 155

to the many influences on the solution than about real solving.

KheLayerTreeMake begins by unassigning meets to remove cases where two meets derived
from a single event are assigned to meets not both derived from the same event or both cycle
meets, and splitting meets whose duration exceeds the number of times in the instance into meets
of duration within that bound. This allows the remainder of the algorithm to assume that each
event is preassigned to at most one other event, and that there are no oversize meets.

In practice, it is likely that the constraints of an instance will cooperate harmoniously, but
for completeness it is necessary to handle cases where they do not. For example, there is nothing
to prevent a link events constraint from linking two events, one of which is required by a split
events constraint to split into three meets, while the other is required to split into one.

There is a data structure,described in the following sections,which embodiesall the require-
ments that the final layer tree must satisfy, including how events are to be split into meets, and
how meets are to be grouped into nodes. It is an invariant that at least one layer tree must satisfy
all these requirements. Initially, the data structure embodies no requirements at all. A long series
of jobs is then applied to it, each inspired by some constraint or other feature of the instance to
request that the data structure add some new requirements to the ones it currently embodies. If
no layer trees would satisfy both the old and new requirements, the job isrejected(it is ignored);
otherwise, it isaccepted(its requirements are added). There are also cases in which some of the
requirements of a job are accepted but others have to be rejected. The jobs are sorted by decreas-
ing priority, which is usually the combined weight of the constraint that inspired the job. In this
way, contradictory requests are resolved by giving preference to requests of higher priority.

Here is the full list of job types, with brief descriptions. How each job modifies the data
structure will be explained later. The jobs not derived from constraints have high priority.

Pre-existing splits.Each already split evente generates a job requiring the meets thate is
ultimately split into to be packable into (created by further splitting of) the pre-existing meets.

Preassigned times.XHSTT specifies that a meet derived from an event with a preassigned
time must be assigned that time. Several simultaneous meets derived from one event are unlikely
to be wanted, so this job requests that a preassigned event be not split further than its pre-existing
splits, and that the meets’ time domains be set to singleton domains.

Pre-existing assignments and link events constraints.These are interpreted as requests to
create parent-child links between nodes.

Avoid clashes constraints.Each resource subject to a required avoid clashes constraint
gives rise to a job which requests that the layer tree recognize that the events to which the
resource is preassigned cannot overlap in time.

Split events constraints and distribute split events constraints.These request restrictionson
the number of meets that an event may be split into, and their durations.

Spread events constraints.If the events of an event group of a spread events constraint
are split into too many or too few meets, then a non-zero number of deviations of the constraint
becomes inevitable. The job tries to tighten the requirements on the number of meets of the
events concerned, to the point where this problem cannot arise.

Prefer times constraints.This kind of job requests that the time domain of the meets of an
event which have a certain duration be reduced to satisfy a prefer times constraint. This may lead
to an empty domain for meets of that duration; if so, then there can be no meets of that duration

156 Chapter 9. Structural Solvers

at all, which may prevent the job from being accepted.

After all jobs have been applied, the data structure is traversed and a layer tree is built.
Finally,KheLayerTreeMake examines each pair of events connected by a spread events or avoid
split assignments constraint, and if those events’ nodes satisfy the conditions given in Section
9.1.5), it merges them by callingKheNodeMerge.

9.1.2. Linking

The data structure used byKheLayerTreeMake must be close enough to the layer tree to make
it straightforward to derive an actual layer tree at the end. In fact, it needs to represent the set of
layer trees that satisfy the requirements of all the jobs accepted so far. This section explains how
this is done for linking, and later sections explain the parts that handle splitting and layering.

If meets1can be assigned to meets2 at offseto1, ands2 can be assigned tos3 at offseto2, then
it is always possible to assigns1 directly tos3 at offseto1 + o2. Thus, the relation of assignability
between meets is transitive. Although it is not safe to assign a meet to itself, it does no harm to
pretend here that assignability is reflexive as well.

In some cases, two meets are assignable to each other. They must have equal durations
and time domains, but that is not unusual. By a well-known fact about reflexive and transitive
relations, two-way assignability is an equivalence relation between meets.

Similar relations can be defined between events. LetA(e1,e2) hold when the meets ofe1can
be assigned to the meets ofe2 at non-overlapping offsets. Define

S(e1,e2) = A(e1,e2) ∧ A(e2,e1)

Again,A is reflexive and transitive, andS is an equivalence relation.

The data structure used for linking events includes a representation of relationsA andS.
The equivalence classes defined bySare represented by nodes of a graph, containing the events
of the class and connected to other equivalence classes by directed edges representingA. Acould
be an arbitrary directed acyclic graph, but in fact it is limited to a tree: each equivalence class is
recorded as assignable to at most one other equivalence class. Relational nodes will always be
called classes, to avoid confusion with layer tree nodes.

The child classes of each equivalence class are organized into layers. That additional
structure is not needed for linking, however, so its description will be deferred to Section 9.1.4.

Initially, each event lies in its own class, plus there is one class with no events, representing
the cycle meets. Every event class is a child of the cycle meets class. Thus, initially relationSis
empty, and relationA records only the basic fact that every event is assignable to the cycle meets
to begin with. This is quite true, since, at this initial stage, before any jobs are accepted, the data
structure believes that each event’s domain is the entire cycle, that each event is free to split into
meets of duration 1, and that there are no layers.

Basing the data structure on events, rather than on meets, seems to be right, but it does cause
differences between the meets of one event to be overlooked. For example, the data structure
believes that all meets derived from the same event have the same time domain.

Jobs that link events together do so by proposing elements ofA andS to the data structure,
which accepts them when it can. AnS proposal is a request to merge the equivalence classes

9.1. Layer tree construction 157

containing its two events into one (if they are not already the same); anAproposal is a request to
replace one parent link by another (which must still imply the first by transitivity). A proposal
could be rejected for various reasons: it might lead to a directed acyclic graph which is not a
tree, or cause events from the same layer to overlap in time, or lead to unacceptable restrictions
on how events are to be split (as in the example at the start of this chapter), and so on.

Pre-existing assignments are proposed first as elements ofS, and if that fails as elements of
A. The second proposal at least cannot fail to be accepted, because these jobs have maximum
priority and do not contradict each other. A link events constraint job first proposes all pairs
of linked events of equal duration as elements ofS, and then all pairs regardless of duration as
elements ofA. In general, anA proposal could require that the whole set of classes lying on a
cycle of A links be evaluated for merging, but this particular way of making proposals ensures
that, in fact, only pairwise merges need to be evaluated.

Each equivalence class has aclass leader, one of its own events. When an equivalence class
is created, its leader is the sole event it initially contains, and when two classes are merged, one
of the two leaders is chosen to be the leader of the merged class. For convenience, we pretend
that the cycle meets are derived from a singlecycle eventwhich is the leader of their class.

If classC contains an evente which is assigned to an event outsideC, then the evente is
assigned to lies in the parent class ofC. There may not be two such events inC unless they are
assigned to the same event at the same offset. The leader must be one of these events. The data
structure only becomes aware of assignments when the jobs representing them are accepted.

If C does not contain an event which is assigned to another event outside the class, then
it must contain at least one event which is not assigned at all, since otherwise there would be a
cycle of assignments within the class. Any such unassigned event may be the leader.

These conditions are trivially satisfied when a class is created, by making its sole event the
leader. When two classes are merged, there are various possibilities, including failure to merge
when the two leaders are assigned to distinct events outside both classes.

When constructing the final layer tree, all the unassigned events of each class except
the leader are placed in layer tree nodes which are made children of the node containing the
leader. Similarly, the nodes containing the leaders of child classes become children of the node
containing the leader of the parent class. In reality, of course, it is the meets derived from these
events by the splitting algorithm to be described next that are placed into these nodes.

9.1.3. Splitting

Given an eventeof durationd, any mathematical partition ofd is a possible outcome of splitting
e. For example, ifehas duration 6, the possible outcomes are the eleven partitions

6
5 1

4 2
4 1 1

3 3
3 2 1

3 1 1 1
2 2 2

2 2 1 1
2 1 1 1 1

1 1 1 1 1 1

One element of a partition is called apart, and is the duration of one meet.

Any condition that limits how an event is split defines a subset of this set of partitions. For
example, if a split events constraint states that an event of duration 6 should be split into exactly
four meets, that is equivalent to requiring the partition to be either 3 1 1 1 or 2 2 1 1.

Each equivalence class holds a set of events of equal duration that are assignable to each

158 Chapter 9. Structural Solvers

other. These will eventually be partitioned into meets in the same way. In addition to the events,
the class holds the requirements that the final partition must satisfy. These define a subset of the
set of all partitions of the duration, but it is not possible to store the subset directly, because for
large durations it may be very large. One partitionisstored,however: the lexically minimum one
satisfying the requirements. (A lexically minimum partition has minimum largest part, and so
on recursively. For example, 1 1 1 1 1 1is the lexically minimum partition of 6.) It is an invariant
that the set of partitions satisfying the requirements may not be empty.

In the special case of the equivalence class that represents the cycle meets, the requirements
are fixed to allow exactly one partition: the one representing the durations of the cycle meets.

The requirements on partitions are of two kinds. First, there are thelocal requirements.
These are mainly lower and upper bounds on the total number of parts, and on the number of
parts of each possible duration, modelled on the corresponding fields of the split events and
distribute split events constraints. Another kind of local requirement arises when a pre-existing
split job is accepted: if an event of duration 6 is already split into meets of duration 4 and 2,
say, when the algorithm begins, then, to be acceptable, a partition must be packable into partition
4 2. One partition ispackableinto another if splitting some parts of the second partition and
discarding others can produce the first. For example, 2 1 1 is packable into 2 2 2, but neither of
3 1 1 1 and 2 2 1 1 is packable into the other.

Second, there are thestructural requirements. Each parent class has an arbitrary number
of child classes, whose events will eventually be assigned to the parent class’s events. So the
lexically minimum partition of each child class must be packable into the parent class. In
these calculations the constraint always flows upwards: the child’s lexically minimum partition
is taken as given, and the parent’s minimum partition is adjusted (if possible) to ensure that
the child’s is packable into it. When a child class’s minimum partition changes, the parent’s
requirements must be re-tested. In this way, a change to a partition propagates upwards through
the structure until it either dies out or causes some class to have no legal partitions. In the second
case, the job which originated the changes must be rejected.

Some of the child classes may be organized into layers. In that case, each layer’s classes,
taken together, must be packable into the parent class. Each layer is represented by a split layer
object, as explained in detail in the next section. That object contains a minimum partition which
must be packable into the parent class, just like the minimum partitions of child classes.

Deciding whether any partitions satisfy even the local requirements is non-trivial: is it
safe to place two events into one class, when one is already split into partition 4 2 and the other
is already split into partition 3 2 1? Some simple checks are made, then a full generate-and-test
enumeration is begun and interrupted at the first success. The enumeration produces the lexically
minimum acceptable partition first, which is then stored and propagated upwards. Fortunately,
packability can be tested very quickly in practice, despite being an NP-complete bin packing
problem, because event durations are usually small.

At the end, after the last job is processed, each event of each class is split into meets whose
durations form the lexically minimum partition of that class.

9.1.4. Layering

The relation between meets and layers (sets of events that share a common preassigned resource

9.1. Layer tree construction 159

with a required avoid clashes constraint) is a many-to-many relation: a layer may contain any
number of meets, and a meet may lie in any number of layers.

Suppose that meets1 lies in layerl and is assigned to meets2. KHE enforces the rule that
any assignment ofs2 may not be such as to causes1 to overlap in time with any other meet ofl.
In a sense,s2 (actually, that part of it assigneds1) becomes a member ofl while s1 is assigned to
it. We say thats1 liesdirectly in l, ands2 lies indirectly in l.

An event lies directly in a layer if any of its meets lie directly in the layer. An equivalence
class lies directly in a layer if any of its events lie directly in the layer, and it lies indirectly in the
layer if any of its child classes lie in the layer, either directly or indirectly. This is because the
events of child classes will eventually be assigned to the events of the class.

The layering aspect ofKheLayerTreeMake is based on an object called asplit layer, which
represents one element of the many-to-many relation between equivalence classes and layers. In
other words, there is one split layer object for each case of an equivalence class lying in a layer,
directly or indirectly. Its attributes are the class, the resource defining the layer, the set of all child
classes of the class that lie in the layer, and a partition, whose value will be defined shortly.

When an equivalence class lies directly in a layer (when it contains an event that lies directly
in the layer), none of its child classes can lie in the layer, since that would mean that two events
of the same layer overlap in time. So in that case the set of child classes must be empty. To keep
it that way, the partition contains as many 1’s as the duration of the class. This makes it clear that
there is no room for any child classes in the layer, without constraining the division of the class’s
events into sub-events in any way.

When an equivalence class lies indirectly in a layer, some of its child classes lie in the layer.
Their total duration must not exceed the duration of the class, and their meets, taken together,
must be packable into the class, since they are disjoint in time. So in this case the set of child
classes may be (in fact, must be) non-empty, and the partition holds the multiset union of the
lexically minimum partitions of the child classes.

The job which adds a layer to the data structure adds its events one by one. In the unlikely
event that the duration of the layer exceeds the number of times in the cycle, or bin packing
problems prevent an event being added, the job rejects the event, which amounts to ignoring the
presence of the preassigned resource in that event.

Adding an event to a layer means that the event’s class and all its ancestors must get split
layer objects for the layer. For all these classes, moving upwards until either there are no more
ancestors or a class already has a split layer object for the layer,either add a new split layer object
holding just the current child class, or add the child class to an existing split layer object.

While the upward propagation adds new split layer objects, there is no possibility of failure,
since a layer containing a single event is no more constraining than the event alone (the event is
already present, only its membership of a layer is changing). But if an existing split layer object
is reached, the class must be added to it, and so its partition grows, possibly leading to an empty
set of acceptable partitions in the parent, causing rejection of the request.

9.1.5. Merging

As mentioned earlier, when instances contain events which have already been split, it is best to
merge the nodes containing those events. The advantages include ensuring that how the instance

160 Chapter 9. Structural Solvers

is presented does not affect the way it is solved, exposing symmetries which could be expensive
if left hidden, and taking a step towards regularity.

Node merging is carried out after the main part of the layer tree construction algorithm
is complete and a layer tree is present. For each pair of events that share a spread events or
avoid split assignments constraint, the first meet of each event is found and the chain of fixed
assignments is followed to the first unfixed meet and from there to the node. The two nodes thus
found are candidates for merging. If they both exist, and they are distinct, and the first meet in
each contains the same preassigned resources (counting resources in meets assigned to the meet,
directly or indirectly, as well as resources in the meet itself), then the nodes are merged.

Only nodes which share at least one preassigned resource are merged. This ensures that it is
right to assign non-overlapping times to the meets of a node, which is what solvers usually do.

Requiring the same preassigned resources turns out to be important,because of the way that
layers are built from nodes, not from meets. If some of the meets of a node contain a resource
but others do not, then when the nodes containing that resource are formed into a layer later, the
layer’s duration may be longer than the cycle length, making it awkward to timetable.

9.2. Time-equivalence

Two sets of meets aretime-equivalentif it can be shown, by following fixed meet assignments,
that each set of meets must occupy the same set of times as the other while fixed assignments
remain in place. This may be true even when none of the meets is assigned a time.

Two events are time-equivalent if their sets of meets are time-equivalent. Usually, this
is because they are joined by a link events constraint which is being handled structurally, for
example byKheLayerTreeMake (Section 9.1).

Two resources are time-equivalent if they have the same resource type (call itrt),
KheResourceTypeDemandIsAllPreassigned(rt) (Section 3.5.1) istrue, and the sets of meets
containing their preassigned tasks are time-equivalent. Time-equivalent resources are busy at the
same times. They are usually students who choose the same courses.

It is clear that time-equivalence between sets of meets is an equivalence relation, as is
time-equivalence between events and between resources. So the events and resources of an
instance can be partitioned into time-equivalence classes. These classes are calculated by a
time-equivalence solver, which can be created and deleted by calling

KHE_TIME_EQUIV KheTimeEquivMake(void);
void KheTimeEquivDelete(KHE_TIME_EQUIV te);

However, a call toKheOptionsStructuralTimeEquiv (Section 8.4.2) is the usual way to obtain
a time-equivalence object. To perform the calculation for a particularsoln, call

void KheTimeEquivSolve(KHE_TIME_EQUIV te, KHE_SOLN soln);

The equivalence classes of events are event groups which can be visited by

int KheTimeEquivEventGroupCount(KHE_TIME_EQUIV te);
KHE_EVENT_GROUP KheTimeEquivEventGroup(KHE_TIME_EQUIV te, int i);

9.2. Time-equivalence 161

in the usual way. The equivalence class for a given event is returned efficiently by

KHE_EVENT_GROUP KheTimeEquivEventEventGroup(KHE_TIME_EQUIV te,
KHE_EVENT e);

If e is not time-equivalent to any other event, a singleton event group containinge is returned.
There is also

int KheTimeEquivEventEventGroupIndex(KHE_TIME_EQUIV te, KHE_EVENT e);

which returns the valuei such thatKheTimeEquivEventGroup(te, i) containse.

Similarly, the equivalence classes of resources are resource groups which can be visited by

int KheTimeEquivResourceGroupCount(KHE_TIME_EQUIV te);
KHE_RESOURCE_GROUP KheTimeEquivResourceGroup(KHE_TIME_EQUIV te, int i);

in the usual way. The equivalence class for a given resource is returned efficiently by

KHE_RESOURCE_GROUP KheTimeEquivResourceResourceGroup(KHE_TIME_EQUIV te,
KHE_RESOURCE r);

If r is not time-equivalent to any other resource, including the case when its resource type is not
all preassigned, a singleton group containingr is returned. Again,

int KheTimeEquivResourceResourceGroupIndex(KHE_TIME_EQUIV te,
KHE_RESOURCE r);

returns the valuei such thatKheTimeEquivResourceGroup(te, i) containsr.

All of these results reflect the state of the solution at the time of the most recent call to
KheTimeEquivSolve(te); they are not updated as the solution changes.

9.3. Layers

Layers were introduced in Section 5.3, but no easy way to build a set of layers was provided.
This section remedies that deficiency and adds some useful aids to solving with layers.

9.3.1. Layer construction

The usual rationale for the existence of a layer is that its nodes’ meets must not overlap in time
because they contain preassignments of a common resource. Function

KHE_LAYER KheLayerMakeFromResource(KHE_NODE parent_node,
KHE_RESOURCE r);

builds a layer of this kind. It callsKheLayerMake to make a new child layer ofparent_node,
andKheLayerAddResource to addr to this layer. Then, each child node ofparent_node which
contains a meet preassignedr (either directly within the node, indirectly within descendant
nodes, or in meets assigned, directly or indirectly, to those meets) is added to the layer.

The layering of nodeparent_node is a particular set of layers which is useful when

162 Chapter 9. Structural Solvers

assigning times to the child nodes ofparent_node, created by calling function

void KheNodeChildLayersMake(KHE_NODE parent_node);

This will delete any existing child layers ofparent_node and add the layers of the layering.

The layering is built as follows. First, for each resource of the instance that possesses a
required avoid clashes constraint, one layer is built by callingKheLayerMakeFromResource

above. If it turns out to be empty, it is immediately deleted again. Each pair of these layers such
that one’s node set is a subset of the other’s is merged withKheLayerMerge. Finally, each child
of parent_node not in any layer goes into a layer (with no resources) by itself.

The layers emerge fromKheNodeChildLayersMake in whatever order they happen to be.
The user will probably need to sort them, by callingKheNodeChildLayersSort (Section 5.3),
passing it a user-defined comparison function. Section 10.8.2 has an example of a comparison
function that seems to work well in practice.

After sorting, there may be value in calling

void KheNodeChildLayersReduce(KHE_NODE parent_node);

This merges some layers of marginal utility into others, as follows. Suppose there is a layerL
whose nodes all appear in earlier layers. Then if the meets of the nodes are assigned layer by
layer,L’s nodes will all be assigned before time assignment reachesL. Arguably,L could be
deleted without harm. However, it does contain one piece of useful information: it knows that
the meets to which its resources are preassigned will all be assigned times afterL is assigned. If
this information is to be preserved,L’s resources need to be moved forwards to the first earlier
layer that is true of. For each nodeN of L, find the minimum over all layers containingN of
the index of the layer. This is the index of the layer during whose time assignmentN will be
assigned. Then find the maximum, over all nodesN of L, of these minima. This is index of the
layer whose assignment will complete the assignment of all the nodes ofL. If this is smaller than
L’s index,KheNodeChildLayersReduce deletesL and moves its resources to this earlier layer.

Two important facts about layers and layerings must be borne in mind. First, they reflect
the state of the layer tree at a particular moment. If, after they are built, the tree is restructured (if
nodes are moved, etc.) they become out of date and useless. Second, building a layering is slow
and should not be done within the inner loops of a solver.

Altogether, it seems best to regard layers as temporary structures, created when required by
KheChildLayersMake and destroyed byKheChildLayersDelete. In between these two calls,
nodes may be merged and split, but it is best not to move them. A useful convention, supported
by several of KHE’s solvers that use layers, is to assume that if child layers are present, then they
are up to date. Such solvers begin by callingKheChildLayersMake if there are no layers, and
end by callingKheChildLayersDelete, but only if they calledKheChildLayersMake.

9.3.2. Layer coordination

High schools usually containformsor years, which are sets of students of the same age who
follow the same curriculum, at least approximately. These students may be grouped into classes,
each represented by one student group resource. At some times, the student group resources of
one form might attend the same events, or linked events. For example, they might all attend a

9.3. Layers 163

common Sport event, or they might all attend Mathematics at the same times so that they can be
regrouped by ability at Mathematics. At other times, they might attend quite different events,
but over the course of the cycle they all attend the same amount of each different kind of event:
so many times of English, so many of Science, so many of a shared elective, and so on.

As an aid to producing a regular timetable, it might be helpful tocoordinatethe timetables
of student groups from the same form: run all the form’s English classes simultaneously, all
its Mathematics classes simultaneously, and so on. Where resources are insufficient to support
this, changes can be made later. In this way, a regular timetable is produced to begin with, and
irregularities are introduced only where necessary.

The XML format does not explicitly identify forms, or even say which resource type
contains the student group resources. This is in fact an advantage, because it forces us to look
for structure that aids regularity. We then coordinate the timetabling of resources that possess the
useful structure, without knowing or caring whether they are in fact student group resources.

Coordination will only work when the chosen resources attend similar events. This was
the rule when inferring resource partitions (Section 3.5.5), so we take the resource partition as
the structural equivalent of the form. The events should occupy all or most of the times of the
cycle, otherwise coordination eliminates too many options for spreading them in time. ‘Forms’
of teachers and rooms are rarely useful, just because they do not satisfy these conditions.

After KheLayerTreeMake returns, it is the nodes lying directly below the root node that need
to be coordinated, not events or meets. Two child nodes may be coordinated by moving one of
them so that it is a child node of the other. KHE offers solver function

void KheCoordinateLayers(KHE_NODE parent_node, bool with_domination);

which carries out such moves on some of the children ofparent_node, as follows.

KheCoordinateLayers is only interested in resources whose layers have duration at
least 90% of the duration ofparent_node. For each pair of such resources lying in the same
resource partition, it checks whether their two layers are similar by building the layers with
KheLayerMakeFromResource and calling KheLayerSimilar (Section 9.3). If so, it uses
KheNodeMove (Section 9.5.3) to make each node of the second layer a child of the corresponding
node of the first, unless the two nodes are the same, forcing these nodes to be simultaneous. It
does not assign meets, or remove them from nodes. Finally, it removes the two layers it made.

If with_domination isfalse, the behaviour is as described. Ifwith_domination istrue,
a slight generalization is used. Suppose that one of the two layers has duration equal to the
duration ofparent_node, and all but one of its nodes is similar to some node in the other layer.
Then the dissimilar nodes of the other layer (possibly none) might as well be made children of
the one dissimilar node of that layer, since if the other nodes are coordinated they must run
simultaneously with it anyway. (The durations of their meets may be incompatible; that is not
checked at present, although it should be.) So that is done.

In unusual cases the duration of a layer can be larger after coordinating than before. At the
end, if any layers have duration larger than the parent node’s duration,KheCoordinateLayers

tries to reduce the duration of those layers to the parent node’s duration, by finding cases where
one node of a layer can be safely moved to below another.

164 Chapter 9. Structural Solvers

9.4. Runarounds

Layer coordination can lead to problems assigning resources. For example, suppose that the five
student groups of the Year 7 form each attend one Music event, and that the school has two Music
teachers and two Music rooms. Each event is easily accommodated individually, but when the
Year 7 layers are coordinated, they run simultaneously and exceed resource limits.

These problems do not arise in large faculties with sufficient resources to accommodate an
entire form at once. Thus they do not invalidate the basic idea of node layer coordination. What
is needed is a local fix for these problems. This is whatrunaroundsprovide: a way to spread the
events concerned through the times they need, without abandoning coordination altogether.

9.4.1. Minimum runaround duration

Consider the case above where there are not enough Music resources to run the Year 7 Music
events simultaneously. If these events lie in nodes that are children of a common parent (one may
lie in the parent itself), it is easy to detect this problem: carry out a time assignment at the parent,
and see whether the cost of the solution increases. This is assuming that the matching monitors,
which detect unsatisfiable resource demands, are attached.

More generally, we can ask how large the duration of the parent node has to be in order to
ensure that there is no cost increase. This quantity is called theminimum runaround duration
of the node. It will be equal to the duration when there is no problem, and larger when there is a
problem. It can be calculated as follows. While a time assignment of the child nodes produces
a state of higher cost than the unassigned state, add new meets to the parent node. The duration
of the parent node when this process ends is its minimum runaround duration. Function

bool KheMinimumRunaroundDuration(KHE_NODE parent_node,
KHE_TIME_SOLVER time_solver, KHE_TIME_OPTIONS options,
int *duration);

sets*duration to the minimum runaround duration ofparent_node and returnstrue, except
in an unlikely case, documented below, when it returnsfalse with *duration undefined.

KheMinimumRunaroundDuration first unassigns all the child meets and saves the unas-
signed cost. It then carries out the time assignment trials just described. For each trial after the
first it adds one fresh meet toparent_node for each of its original meets,utilizing their durations
and time domains, but with no event resources. So the result’s duration must be a multiple of the
duration ofparent_node. Before returning, it unassignsall the children and removes the meets it
added, leaving the tree in its initial state, unless some child meets were assigned to begin with.

Parametertime_solver is a time assignment solver which is called to carry out each trial.
A simple solver, such asKheSimpleAssignTimes from Section 10.4, should be sufficient here.

Increasing the duration at each trial by the full duration of the node may seem excessive,and
there are cases where fewer additional meets would be enough. However, those cases require the
child nodes’ assignments to overlap in ways that do not work out well in practice, because they
may lead to split assignments in the tasks affected.

How many trials are needed? In reasonable instances, each child node’s duration should
be no greater than the parent node’s duration. Thus, after as many trials as there are child nodes
plus one, there should be enough room in the parent node to assign every child meet at an offset

9.4. Runarounds 165

which does not overlap with any other, or with the original parent meets. This is the number of
trials thatKheMinimumRunaroundDuration carries out. It stops early if one succeeds with cost
no greater than the unassigned cost. It returnsfalse only when each trial either did not assign
all the child meets (that is, the call ontime_solver returnedfalse) or did assign them all, but
at a higher cost than the unassigned cost.

9.4.2. Building runarounds

Nodes may be classified into three types. Afixed nodehas no child nodes. There is no possibility
of spreading the events of a fixed node and its descendants through more times than the node’s
duration. Aproblem nodehas minimum runaround duration larger than its duration, like the
node of Music events used as an example above. It must have child nodes, and timetabling them
simultaneously is known to be inferior to spreading them out further. The remaining nodes are
free nodes: they have child nodes which may run simultaneously, or not, as convenient.

UsingKheNodeMerge to merge problem nodes with other problem nodes and free nodes can
eliminate problem nodes without greatly disrupting regularity. For example, merging a Music
problem node of duration 2 and minimum runaround duration 6 with a free node of duration 4
produces a merged node of duration 6 which can usually be timetabled without problems.

If a merged node can be timetabled without the cost of the solution increasing, it may be
kept, and is then called arunaround node. (The termrunaroundis used by manual timetablers
known to the author to describe this kind of timetable, where events like the Music events are
‘run around’ with other events.) Otherwise it must be split up again and some other merging
tried instead. It only remains, then, to decide which sets of nodes to try to merge.

Regularity is easier to attain when nodes have the same duration,so if there are already many
nodes of a certain duration, it is helpful if a merged node also has that duration. Nevertheless,
a node should not be added to a merge merely to make up some duration: merging limits the
choices open to later phases of the solve, so it should be done only when necessary.

A minimum runaround duration could be very large, close to the duration of the whole
cycle. For example, suppose there is a single teacher, the school chaplain, who gives each of
the five Year 7 student groups 6 times of religious instruction per week. Those events have a
minimum runaround duration of 30. When the minimum runaround duration of a node is larger
than a certain value, the algorithm given below ignores the node: its events will be awkward to
timetable, but runarounds as defined here are not the answer.

To build runaround nodes from the child nodes ofparent_node, call

void KheBuildRunarounds(KHE_NODE parent_node,
KHE_NODE_TIME_SOLVER mrd_solver, KHE_TIME_OPTIONS mrd_options,
KHE_NODE_TIME_SOLVER runaround_solver,
KHE_TIME_OPTIONS runaround_options);

where mrd_solver and mrd_options are passed toKheMinimumRunaroundDuration
when minimum runaround durations need to be calculated, andrunaround_solver and
runaround_options are used to timetable merged nodes.KheSimpleAssignTimes is sufficient
for mrd_solver, andKheRunaroundNodeAssignTimes works well asrunaround_solver. All
nodes are unassigned afterwards.

166 Chapter 9. Structural Solvers

It would not do to merge (for example) a node that includes both Year 7 and Year 8 events
with a node that includes only Year 7 ones. SoKheBuildRunarounds first works out which
resources are preassigned to events in or below which nodes (taking account only of preassigned
resources which have required avoid clashes constraints, and whose events occupy at least 90%
of the duration ofparent_node), and partitions the child nodes ofparent_node into disjoint
subsets, such the nodes in each subset have the same preassigned resources.

For each disjoint subset independently,KheBuildRunarounds tries to build a merged node
around each of the subset’s problem nodes in turn, largest minimum runaround duration first.
When doing this, it prefers to build a node of a particular durationu, and it prefers to use other
problem nodes (again, largest minimum runaround duration first), but it will also use free nodes
(minimum duration first). It is heuristic, but it usually works well. It is not limited to sequences
of pairwise mergings, as clustering algorithms often are. Here is the algorithm in detail:

1. The input is a set of nodesN (one disjoint subset as above), plusu, a desirable duration for a
merged node, andv, a maximum duration for a merged node. The output isM, the final set
of nodes. Writed(n) for the duration of noden, r (n) for its minimum runaround duration,
andd(X) for the total duration of the set of nodesX.

2. InitializeM to empty. SortN to put free nodes first, in decreasing duration order, problem
nodes next, in increasing minimum runaround duration order, and fixed nodes last.

3. If N is empty, stop. Otherwise delete the last element ofN and call itn.

4. If n is fixed, problem withr (n) ≥ v, or free, move it toM and return to Step 3.

5. Heren must be a problem node satisfyingr (n) < v. Within each of the following cases,
some non-empty subsetsX of N are defined. In each case,r (n) ≤ d(n) + d(X), so a merged
node consisting ofn merged withX is likely to work well. For each case in turn, and for
each setX defined within each case in turn, removeX from N, mergenandX, and timetable
the resulting merged node. If that is successful (all events timetabled with no increase in
solution cost), add the merged node toM and return to Step 3. If it fails, split the merged
node up again, return the nodes ofX to their former places inN, and try the next setX; or
if there are no more sets, addn to M and return to Step 3.

Case 1. For eachx ∈ N from last to first such thatr (n) ≤ d(n) + d(x) = u ≤ v, let X = {x} .

Case 2. For eachi from 1to |N|such thatXi, the lasti elements ofN, satisfies the condition
r (n) ≤ d(n) + d(Xi) ≤ v, let X = Xi.

KheBuildRunarounds calls KheMinimumRunaroundDuration to find minimum runaround
durations, passingmrd_solver to it. It callsKheNodeMerge to merge nodes,runaround_solver
to timetable merged nodes, andKheNodeSplit to undo failed merges. It uses one-fifth of the
duration ofparent_node for v. Foru, it builds a frequency table of the durations of child nodes
of parent_node. It then chooses the duration for which the frequency times the duration is
maximum. This weights the choice away from small durations, which are not very useful.

9.5. Rearranging nodes 167

9.5. Rearranging nodes

Earlier sections of this chapter contain the major solvers which work with nodes. This section
contains a miscellany of smaller helper funtions which rearrange nodes.

9.5.1. Node merging

Two nodes may be merged by calling

bool KheNodeMergeCheck(KHE_NODE node1, KHE_NODE node2);
bool KheNodeMerge(KHE_NODE node1, KHE_NODE node2, KHE_NODE *res);

The nodes may be merged if they have the same parent node, possiblyNULL.

The meets of the result,*res, are the meets ofnode1 followed by the meets ofnode2, and
the child nodes of*res are the child nodes ofnode1 followed by the child nodes ofnode2.
The two nodes must either lie in the same layers and have the same parent, or have no parent,
otherwiseKheNodeMerge aborts. This implies that node merging cannot violate the cycle rule,
or any rule. As usual with merging,node1 andnode2 are undefined afterwards (actually,node1

is recycled as*res andnode2 is freed), but one may write, for example,

KheNodeMerge(node1, node2, &node1);

to re-use variablenode1 to hold the result.

Merging permits the meets of the child nodes of the two nodes to be assigned to the meets
of either node, rather than to just one as before. For example, suppose the layer tree rooted at
node1 contains the Science events of several groups of Year 7 students, and the layer tree rooted
atnode2 contains the Music events of the same groups of students. Then originally the Science
events must be simultaneous and the Music events must be simultaneous, but afterwards the two
kinds of events may intermingle. This may be useful if there are few Music teachers and Music
rooms, so that the Music events must be spread out in time. This kind of arrangement is well
known to manual timetablers; it has various names, includingrunaround.

There is no operation to split a node into two nodes. However,KheNodeMerge may be
undone using marks and paths as usual.

9.5.2. Node meet splitting and merging

Node meet splitting and merging (not to be confused with node merging above) split the meets
of a node as much as possible, and merge them together as much as possible:

void KheNodeMeetSplit(KHE_NODE node, bool recursive);
void KheNodeMeetMerge(KHE_NODE node, bool recursive);

Both operations always succeed, although they may do nothing.

For every offset of every meet ofnode, KheNodeMeetSplit callsKheMeetSplit, passing
it therecursive parameter. In this way, the meets become as split up as possible.

KheNodeMeetMerge sorts the meets so that meets assigned to the same target meets are
adjacent, with their target offsets in increasing order, usingKheMeetIncreasingAsstCmp from

168 Chapter 9. Structural Solvers

Section 5.2. Unassigned meets go at the end. It then tries to merge each pair of adjacent meets.
Any calls toKheMeetMerge it makes are passed therecursive parameter.

9.5.3. Node moving

A node may be made the child ofparent_node, instead of its current parent, by calling

bool KheNodeMoveCheck(KHE_NODE child_node, KHE_NODE parent_node);
bool KheNodeMove(KHE_NODE child_node, KHE_NODE parent_node);

This does the same as the sequence

KheNodeDeleteParent(child_node);
KheNodeAddParent(child_node, parent_node);

except that this sequence will fail if any ofchild_node’s meets are assigned initially, whereas
KheNodeMove deals with such assignments and can fail only the cycle rule.

In most cases,KheNodeMove begins by deassigning those meets ofchild_node that are
assigned. However, there is one interesting exception. Suppose thatchild_node’s new parent
node is an ancestor ofchild_node’s current parent node:

child_node

child_node

parent_node

parent_node
→

parent_node

parent_node

child_node

child_node

In each case where a complete chain of assignments reaches from a meetmeet of child_node
to a meet ofparent_node, meet will be assigned afterwards, to the meet at the end of the chain,
with offset equal to the sum of the offsets along the chain. This is valid (it does not change the
timetable). Where there is no complete chain,meet will be unassigned afterwards.

For example, suppose nodep has accumulated children to make the timetable regular, but
now the children’s original freedom to be assigned elsewhere needs to be restored:

while(KheNodeChildCount(p) > 0)
KheNodeMove(KheNodeChild(p, 0), KheNodeParent(p));

KheNodeMove preserves the current timetable during these relinkings.

9.5.4. Vizier nodes

A vizier (Arabic wazir) is a senior official, the one who actually runs the country while the
nominal ruler gets the adulation. In a similar way, avizier nodesits below another node and does
what that other node nominally does: act as the common parent of the subordinate nodes, and
hold the meets that those nodes’meets assign themselves to.

Any node can have a vizier, but only the cycle node really has a use for one. By connecting
everything to the cycle node indirectly via a vizier, it becomes trivial to try time repairs in

9.5. Rearranging nodes 169

which the meets of the vizier node change their assignments, effecting global alterations such as
swapping everything on Tuesday morning with everything on Wednesday morning. Function

KHE_NODE KheNodeVizierMake(KHE_NODE parent_node);

inserts a new vizier node directly belowparent_node. Afterwards,parent_node has exactly
one child node, the vizier; it may be accessed usingKheNodeChild(parent_node, 0) as usual,
and it is also the return value. For every meetpm of the parent node, the vizier has one meet
vm with the same duration aspm and assigned topm at offset 0. The domain ofvm is NULL; its
assignment is not fixed. Each child node ofparent_node becomes a child of the vizier; each
child layer ofparent_node becomes a child layer of the vizier; each meet assigned to a meet of
the parent node becomes assigned to the corresponding meet of the vizier. Ifparent_node has
zones, the vizier is given new corresponding zones, and the parent node’s zones are removed.

All this leaves the timetable unchanged, including constraints imposed by domains and
zones. The vizier takes over without affecting anyone’s existing rights and privileges. A vizier
node is not different from any other node; only its role is special.

KheNodeSwapChildNodesAndLayers (Section 5.2) is used to move the child nodes and
layers to the vizier node, so they are the exact same objects after the call as before. But although
the zones added to the vizier correspond exactly with the original zones, they are new objects.

To remove a vizier node, call

void KheNodeVizierDelete(KHE_NODE parent_node);

Hereparent_node must have no child layers, no zones, and exactly one child node, assumed
to be the vizier. It callsKheNodeSwapChildNodesAndLayers again, to make the child nodes of
the vizier into child nodes ofparent_node, and the child layers of the vizier into child layers of
parent_node. Any assignments to meets in the child nodes of the vizier must be to meets in the
vizier, and they are converted into assignments to meets inparent_node where possible (when
the target meet in the vizier is itself assigned). New zones are created inparent_node based on
the zones and meet assignments in the vizier. Finally the vizier and its meets are deleted.

Zones are not preserved across calls toKheNodeVizierMake andKheNodeVizierDelete
in the exact way that child nodes and child layers are. The zones added to the vizier node by
KheNodeVizierMake are new objects, although they do correspond exactly with the zones in
parent_node. The zones added toparent_node by KheNodeVizierDelete are also new, and
there will be a zone in a given parent meet at a given offset only if there was a meet in the vizier
which was assigned that parent meet and was running (with a zone) at that offset. If vizier meets
overlap in time (not actually prohibited), that will further confuse the reassignment of zones. It
may be best to followKheNodeVizierDelete by a call to some function which ensures that every
offset of every parent meet has a zone, for exampleKheNodeExtendZones (Section 9.6).

FunctionKheNodeMeetSplit (Section 9.5.2) is useful with vizier nodes. Splitting a vizier’s
meets non-recursively opens the way to fine-grained swaps, between half-mornings instead of
full mornings, and so on. A wild idea, that the author has not tried, is to have an unsplit vizier
with its own split vizier. Then the larger swaps and the smaller ones are available together.

170 Chapter 9. Structural Solvers

9.5.5. Flattening

Although layer coordination and runaround building are useful for promoting regularity, there
may come a point where these kinds of voluntary restrictions prevent assignments which satisfy
more important constraints, and so they must be removed.

What is needed is to flatten the layer tree. Two functions are provided for this. The first is

void KheNodeBypass(KHE_NODE node);

This requiresnode to have a parent, and it moves the children ofnode so that they are children
of that parent. The second is

void KheNodeFlatten(KHE_NODE parent_node);

It moves nodes as required to ensure that all the proper descendants ofparent_node initially are
children ofparent_node on return.

Both functions useKheNodeMove to move nodes. They cannot fail, becauseKheNodeMove

fails only when there is a problem with the cycle rule, which cannot occur here. Both functions
are ‘interesting exceptions’ (Section 9.5.3) where assignments are preserved. By convention
(Chapter 10), meets with fixed, final assignments should not lie in nodes. If that convention is
followed, these functions do not affect such meets.

9.6. Adding zones

Suppose a layer of child nodes of noden has its meets assigned to the meets ofn at various
offsets. Define one zone for each child nodec of the layer, whose meet-offsets are the ones at
whichc’s meets are running. Helper function

void KheLayerInstallZonesInParent(KHE_LAYER layer);

installs these zones, first deleting any existing zones of the parent node oflayer, then installing
one zone for each child node oflayer containing at least one assigned meet. Such zones form
an image of how one child layer (the first to be assigned, usually) is assigned. An algorithm can
use them as a template when assigning the other child layers, or when repairing the assignments
of any child layers, including the first layer.

KheLayerInstallZonesInParent installs zones representing the assignments of one layer
into the layer’s parent node. If the duration of the parent node exceeds the duration of the layer,
some offsets in some parent node meets will not be assigned any zone. This seems likely to be a
problem, or at least a lost opportunity. What to do about it is not clear.

Arguably, zones should be derived from all layers, not just one, in a way that gives every
offset a zone. But that is not easy to do,even heuristically. Anyway, there are advantages in using
zones derived from a good assignment of some layer, since the assignment proves that those
zones work well. This suggests taking the zones installed byKheLayerInstallZonesInParent

and extending them until every offset has a zone. Accordingly, function

void KheNodeExtendZones(KHE_NODE node);

ensures that every offset of every meet ofnode has a zone, by assigning one ofnode’s existing

9.6. Adding zones 171

zones to each offset in each meet ofnode that does not have a zone—unlessnode has no zones
to begin with, in which case it does nothing.

For each (zone, meet) pair where the meet has at least one offset without a zone, the
algorithm finds one option for adding some of the zone to the meet (how much to add, and
where),and assigns a priority to the option. Then it selectsan option of minimum priority,carries
it out, and repeats. It runs out of options only when every offset in every meet has a zone.

An option for adding some of a given zone to a given meet is found as follows. If the zone is
already present in the meet, it is best to add it at offsets adjacent to the offsets it already occupies,
if possible. If the zone is not already present, it is best to add it adjacent to existing offsets or the
ends of the meet, in a continuous run, to avoid fragmentation of the offsets it occupies as well as
the offsets it doesn’t occupy. Constraints on zone durations arise either way. Within the limits
imposed by them, it is best to aim for an ideal zone duration, which in a completely unoccupied
meet is the meet duration divided by the total number of zones, but which is adjusted to take
account of existing zone durations, with higher being a better option than lower. As the option
is decided on, it is assigned a priority based on whether it utilizes an underutilized zone, avoids
fragmentation, and approximates to the ideal zone duration.

9.7. Meet splitting and merging

This section presents features which modify the meet splits made by layer tree construction.

9.7.1. Analysing split defects

Given a defect (a monitor of non-zero cost), it is usually easy to see what needs to be done to
repair it: if there is a clash, move one of the clashing meets away; if there is a split assignment,
try to find a resource to assign to all the tasks; and so on.

Split defects, that is, split events and distribute split events monitors of non-zero cost, are
awkward to analyse in this way, partly because split events monitors monitor both the number
of meets and their durations, and partly because several split events and distribute split events
monitors may cooperate in constraining how a given event is split into meets.

KHE offers asplit analyserwhich analyses the split events and distribute split events
monitors of a given event, and comes up with a sequence of suggestions as to how any defects
among those monitors could be repaired using splits or merges (or both: for example, if there are
too few meets of a given duration, that could be corrected by splitting larger meets or by merging
smaller ones). To create and subsequently delete a split analyser object, call

KHE_SPLIT_ANALYSER KheSplitAnalyserMake(void);
void KheSplitAnalyserDelete(KHE_SPLIT_ANALYSER sa);

In practice, it is better to obtain a split analyser object from thestructural_split_analyser

option (Section 8.4.2). To carry out the analysis for a particular solution and event, call

void KheSplitAnalyserAnalyse(KHE_SPLIT_ANALYSER sa,
KHE_SOLN soln, KHE_EVENT e);

After doing this, the sequence of suggestions fore which are splits may be retrieved by calling

172 Chapter 9. Structural Solvers

int KheSplitAnalyserSplitSuggestionCount(KHE_SPLIT_ANALYSER sa);
void KheSplitAnalyserSplitSuggestion(KHE_SPLIT_ANALYSER sa, int i,
int *merged_durn, int *split1_durn);

for i between0 andKheSplitAnalyserSuggestionSplitCount(sa) - 1 as usual. Each split
suggestion suggests splitting any meet of duration*merged_durn into two fragments, one with
duration*split1_durn. Similarly, the sequence of merge suggestions may be retrieved by

int KheSplitAnalyserMergeSuggestionCount(KHE_SPLIT_ANALYSER sa);
void KheSplitAnalyserMergeSuggestion(KHE_SPLIT_ANALYSER sa, int i,
int *split1_durn, int *split2_durn);

Each suggests merging any two meets with durations*split1_durn and*split2_durn.

Each suggestion is distinct from the others. No notice is taken of constraint weights,
except that constraints of weight zero are ignored. The suggestions are updated only by calls to
KheSplitAnalyserAnalyse; they are unaffected by later changes to the solution. So they go out
of date after a split or merge, but become up to date again if that split or merge is undone.

Function

void KheSplitAnalyserDebug(KHE_SPLIT_ANALYSER sa, int verbosity,
int indent, FILE *fp);

places a debug print ofsa ontofp with the given verbosity and indent, including suggestions.

9.7.2. Merging adjacent meets

It sometimes happens that at the end of a solve, two meets derived from the same event are
adjacent in time and not separated by a break. If the same resources are assigned to both, they
can be merged, which may remove a spread defect and thus reduce the overall cost. Function

void KheMergeMeets(KHE_SOLN soln);

unfixes meet splits in all meets derived from events and carries out all merges that reduce solution
cost. For each evente, it takes the meets derived frome that have assigned times and sorts them
chronologically. Then, for each pair of adjacent meets in the sorted order, it triesKheMeetMerge,
keeping the merge if it succeeds and reduces cost.

KheMergeMeets can be called at any time. The best time to call it is probably at the very
end of solving, or possibly after time assignment.

9.8. Monitor attachment and grouping

Sometimes, how monitors are grouped and attached is important: when using ejection chains
(Chapter 12), for example,or Kempe and ejecting meet moves (Section 10.2.2). This section lays
out some general concepts and conventions for monitor attachment and grouping.

Solutions often contain structural constraints: nodes, restricted domains,fixed assignments,
and so on. A solver isexpected to respect such constraints,unless itsspecification explicitlystates
otherwise. They are part of the solution, and every solver should be able to deal with them. In

9.8. Monitor attachment and grouping 173

the same way, a solver may find that some monitors have been deliberately detached before it
starts running. For example, all monitors of soft constraints may have been detached, because
the caller wants the solver to concentrate on hard constraints. A solver should not change the
attachmentsof monitors to the solution,unless itsspecification explicitly statesotherwise. Itsaim
is to minimizeKheSolnCost(soln), however that is defined bysoln’s monitor attachments.

There are two ways to exclude a monitor from contributing to the solution cost: by detaching
it usingKheMonitorDetachFromSoln, and by ensuring that there is no path from it to the solution
group monitor. The first way should always be used, because it is the efficient way.

Some solvers need specific groupings. The Kempe meet move operation (Section 10.2.2)
is an example: its precondition specifies that a particular group monitor must be present. This is
permissible, and as with all preconditions it imposes a requirement on the caller of the operation
to ensure that the precondition is satisfied when the operation is called. But such requirements
should not prohibit the presence of other group monitors. For example, the implementation
of the Kempe meet move operation begins with a tiny search for the group monitor it requires.
If other group monitors are present nearby, that is not a problem. If this example is followed,
multiple requirements for group monitors will not conflict.

There is a danger that group monitors will multiply, slowing down the solve and confusing
its logic. It is best if each function that creates a group monitor takes responsibility for deleting
it later, even if this means creating the same group monitors over and over again. Timing tests
conducted by the author show that adding and deleting the group monitors used by the various
solvers in this guide takes an insignificant amount of time.

Two monitors (or defects) arecorrelatedwhen they monitor the same thing, not formally
usually, but in reality. For example, if two events are joined by a link events constraint, and one
is fixed to the other, then two spread events monitors, one for each event, will be correlated.

Correlated defects are bad for ejection chains. The cost of each defect separately might not
be large enough to end the chain if removed, causing the chain to terminate in failure, whereas
if it was clear that there was really only one problem, the chain might be able to repair it and
continue. So correlated monitors should be grouped, whenever possible. These groups are
the equivalence classes of the correlation relation, which is clearly an equivalence relation. A
grouping of correlated monitors is called aprimary grouping.

A function which creates a primary grouping works as follows. Monitors not relevant to
the grouping remain as they were. Relevant monitors are deleted from any parents they have, and
partitioned into groups of correlated monitors. For each group containing two or more monitors,
a group monitor called aprimary group monitoris made, the monitors are made children of it,
and it is made a child of the solution object. For each group containing one monitor, that monitor
is made a child of the solution, and no group monitor is made. Any group monitors other than
the solution object which lose all their children because of these changes are deleted, possibly
causing further deletions of childless group monitors.

A function which deletes a primary grouping visits all monitors relevant to the grouping and
deletes those parents of those monitors whosesub_tag indicates that they are part of the primary
grouping. The deleting is done by calls toKheGroupMonitorBypassAndDelete.

FunctionKheEjectionChainPrepareMonitors (Section 12.7.3)createsprimarygroupings
of some correlated monitors, and detaches others, in preparation for ejection chain repair.

174 Chapter 9. Structural Solvers

Secondary groupingsare useful groupings that are not primary groupings (that do not
group monitors which monitor the same thing). Instead, they group diverse sets of monitors for
particular purposes, such as efficient access to defects.

Secondary groupings are often built on primary groupings: if a monitor that a secondary
grouping handles is a descendant of a primary group monitor, the primary group monitor goes
into the secondary grouping, replacing the individual monitors which are its children.

A secondary grouping makes one group monitor, called asecondary group monitor, not
many. The secondary group monitor is not made a child of the solution object,nor are its children
unlinked from any other parents that they may have. So it does not disturb existing calculations in
any way; rather, it adds a separate calculation on the side. A secondary grouping can be removed
by passing the secondary group monitor toKheGroupMonitorDelete.

It is convenient to have standard values for the sub-tags and sub-tag labels of the group
monitors created by grouping functions, both primary and secondary. So KHE defines type

typedef enum {
KHE_SUBTAG_SPLIT_EVENTS, /* "SplitEventsGroupMonitor" */
KHE_SUBTAG_DISTRIBUTE_SPLIT_EVENTS, /* "DistributeSplitEventsGroupMonitor" */
KHE_SUBTAG_ASSIGN_TIME, /* "AssignTimeGroupMonitor" */
KHE_SUBTAG_PREFER_TIMES, /* "PreferTimesGroupMonitor" */
KHE_SUBTAG_SPREAD_EVENTS, /* "SpreadEventsGroupMonitor" */
KHE_SUBTAG_LINK_EVENTS, /* "LinkEventsGroupMonitor" */
KHE_SUBTAG_ORDER_EVENTS, /* "OrderEventsGroupMonitor" */
KHE_SUBTAG_ASSIGN_RESOURCE, /* "AssignResourceGroupMonitor" */
KHE_SUBTAG_PREFER_RESOURCES, /* "PreferResourcesGroupMonitor" */
KHE_SUBTAG_AVOID_SPLIT_ASSIGNMENTS, /* "AvoidSplitAssignmentsGroupMonitor" */
KHE_SUBTAG_AVOID_CLASHES, /* "AvoidClashesGroupMonitor" */
KHE_SUBTAG_AVOID_UNAVAILABLE_TIMES, /* "AvoidUnavailableTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_IDLE_TIMES, /* "LimitIdleTimesGroupMonitor" */
KHE_SUBTAG_CLUSTER_BUSY_TIMES, /* "ClusterBusyTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_BUSY_TIMES, /* "LimitBusyTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_WORKLOAD, /* "LimitWorkloadGroupMonitor" */
KHE_SUBTAG_ORDINARY_DEMAND, /* "OrdinaryDemandGroupMonitor" */
KHE_SUBTAG_WORKLOAD_DEMAND, /* "WorkloadDemandGroupMonitor" */
KHE_SUBTAG_KEMPE_DEMAND, /* "KempeDemandGroupMonitor" */
KHE_SUBTAG_NODE_TIME_REPAIR, /* "NodeTimeRepairGroupMonitor" */
KHE_SUBTAG_LAYER_TIME_REPAIR, /* "LayerTimeRepairGroupMonitor" */
KHE_SUBTAG_TASKING, /* "TaskingGroupMonitor" */
KHE_SUBTAG_ALL_DEMAND /* "AllDemandGroupMonitor" */

} KHE_SUBTAG_STANDARD_TYPE;

for the sub-tags, and the strings in comments, obtainable by calling

char *KheSubTagLabel(KHE_SUBTAG_STANDARD_TYPE sub_tag);

for the corresponding sub-tag labels. There is also

KHE_SUBTAG_STANDARD_TYPE KheSubTagFromTag(KHE_MONITOR_TAG tag);

which returns the appropriate sub-tag for a group monitor whose children have the giventag.

9.8. Monitor attachment and grouping 175

Functions for creating secondary groupings appear elsewhere in this guide. They include
KheKempeDemandGroupMonitorMake, needed by Kempe and ejecting meet moves (Section
10.2.2), and several functions used by ejection chain repair algorithms (Section 12.7.4).

When building secondary groupings, these public functions are often helpful:

bool KheMonitorHasParent(KHE_MONITOR m, int sub_tag,
KHE_GROUP_MONITOR *res_gm);

void KheMonitorAddSelfOrParent(KHE_MONITOR m, int sub_tag,
KHE_GROUP_MONITOR gm);

void KheMonitorDeleteAllParentsRecursive(KHE_MONITOR m);

Consult the documentation in the source code to find out what they do.

Chapter 10. Time Solvers

A time solverassigns times to meets, or changes their assignments. This chapter presents a
specification of time solvers, and describes the time solvers packaged with KHE.

10.1. Specification

If time solvers share a specification, where possible, it is easy to replace one by another, pass one
as a parameter to another, and so on. This section recommends such a specification.

In hierarchical timetabling, ‘time assignment’ means the assignment of the meets of child
nodes to the meets of a parent node, so the recommended interface is

typedef bool (*KHE_NODE_TIME_SOLVER)(KHE_NODE parent_node,
KHE_OPTIONS options);

This typedef appears inkhe.h. The recommended meaning is that such anode time solvershould
assign or reassign some or all of the meets of the proper descendants ofparent_node: it might
assign the unassigned meets of the child nodes ofparent_node, or reassign the meets of proper
descendants ofparent_node, and so on. It is free to reorganize the tree belowparent_node,
provided that every descendant ofparent_node remains a descendant. It must not change any-
thing in or aboveparent_node. In the tree belowparent_node it may add, delete, split, and
merge meets. Some solvers (e.g. ejection chains) do actually do this, so the caller must take care
to avoid the error (very easily made, as the author can testify) of assuming that the set of meets
after a time solver is called is the same as before. Theoptions parameter is as in Section 8.4.

A solver should returntrue when it has changed the solution (usually for the better, but not
necessarily), and when it is not sure whether it did or not. It should returnfalse when it did not
change the solution. The caller may use this information to evaluate the helpfulness of the solver,
or to decide whether to follow it with a repair step, and so on.

A second time solver type is defined inkhe.h:

typedef bool (*KHE_LAYER_TIME_SOLVER)(KHE_LAYER layer,
KHE_OPTIONS options);

Instead of assigning or reassigning meets in the proper descendants of some parent node, alayer
time solverassigns or reassigns meets in the nodes oflayer and their descendants, like a node
time solver for the parent node oflayer, but limited tolayer. The solver is free to reorganize
the layer tree below the nodes oflayer (but not to alter the nodes oflayer), provided every
descendant of each node oflayer remains a descendant of that node.

If all time solvers follow these rules, then meets that do not lie in nodes will never be visited
by them. The recommended convention is that meets should not lie in nodes if and only if they
already have assignments that should never be changed.

176

10.1. Specification 177

Time assignment solvers (and solvers generally) are free to use the back pointers of the
solution entities they target. However, since there is potential for conflict here when one solver
calls another, the following conventions are recommended.

If solverS does not use back pointers (if it never sets any), then this should be documented,
and solvers that callS may assume that back pointers will be unaffected by it. IfS uses back
pointers (if it sets at least one), then this should be documented, and solvers that callS must
assume that back pointers in the solution objects targeted byS will not be preserved. As a safety
measure, solvers should set the back pointers that they have used toNULL before returning.

10.2. Helper functions

The functions presented in this section assign and unassign meets, but are not complete time
solvers in themselves. Instead, they are helper functions that time solvers might find useful.

10.2.1. Node assignment functions

This section presents several functions which affect the assignments of the meets of one node.

These functions swap the assignments of the meets of two nodes:

bool KheNodeMeetSwapCheck(KHE_NODE node1, KHE_NODE node2);
bool KheNodeMeetSwap(KHE_NODE node1, KHE_NODE node2);

Both node1 andnode2 must be non-NULL. Both functions returntrue if the nodes have the
same number of meets, and a sequence ofKheMeetSwap operations applied to corresponding
meets would succeed.KheNodeMeetSwapCheck just makes the check, whileKheNodeMeetSwap
performs the meet swaps as well. Ifnode1 andnode2 are the identical same node,false is
returned. As usual when swapping, the code fragment

if(KheNodeMeetSwap(node1, node2))
KheNodeMeetSwap(node1, node2);

is guaranteed to change nothing, whether the first swap succeeds or not.

To maximize the chances of success it is naturally best to sort the meets before calling these
functions, probably like this:

KheNodeMeetSort(node1, &KheMeetDecreasingDurationCmp);
KheNodeMeetSort(node2, &KheMeetDecreasingDurationCmp);

This sorting has been omitted fromKheNodeMeetSwapCheck and KheNodeMeetSwap for
efficiency, since each node’s meets need to be sorted only once, yet the node may be swapped
many times. The user is expected to sort the meets of every relevant node, perhaps like this:

for(i = 0; i < KheSolnNodeCount(soln); i++)
KheNodeMeetSort(KheSolnNode(soln, i), &KheMeetDecreasingDurationCmp);

before any swapping begins. Some other functions, for exampleKheNodeRegular (Section 5.2),
also sort meets, so care is needed.

178 Chapter 10. Time Solvers

These functions propagate one node’s assignments to another:

bool KheNodeMeetRegularAssignCheck(KHE_NODE node, KHE_NODE sibling_node);
bool KheNodeMeetRegularAssign(KHE_NODE node, KHE_NODE sibling_node);

KheNodeMeetRegularAssignCheck callsKheNodeMeetRegular (Section 5.2) to check that the
two nodes are regular, and if they are, it goes on to check that each meet insibling_node is
assigned, and that each meet ofnode is either already assigned to the same meet and offset that
the corresponding meet ofsibling_node is assigned to, or else may be assigned to that meet
and offset.KheNodeMeetRegularAssign makes all these checks too, and then carries out the
assignments if the checks all pass.

To unassign all the meets ofnode, call

void KheNodeMeetUnAssign(KHE_NODE node);

Even preassigned meets are unassigned, so some care is needed here.

10.2.2. Kempe and ejecting meet moves

TheKempe meet moveis a well-known generalization of moves and swaps. It originates as a
move of one meet, say from timet1 to timet2 (in reality, from one meet and offset to another meet
and offset). If this initial move creates clashes with other meets, then they are moved fromt2 to t1.
If that in turn creates clashes with other meets, then they are moved fromt1 to t2, and so on until
all clashes are removed. The result is usually a move or swap, but it can be more complex.

Curiously, the Kempe meet move is not unlike an ejection chain algorithm. Instead of
removing a single defect at each step, it removes an arbitrary number, but it tries only one repair:
moving tot2 on odd-numbered steps and tot1 on even-numbered steps.

Suppose the original meetm1 has durationd1. Usually, the Kempe meet move only moves
meets of durationd1, and only fromt1 to t2 (on odd-numbered steps) and fromt2 to t1 (on even-
numbered steps). However, whenm1 is being moved to a different offset in the same target meet,
the Kempe meet move does not commit itself to this until it has examined the first meet, call itm2,
which has to be moved on the second step. Ifm2 was immediately adjacent tom1 in time before
m1was moved on the first step, it is acceptable form2 to have a durationd2 which is different from
d1. In that case, all meets moved on odd-numbered steps must have durationd1, and all meets
moved on even-numbered steps must have durationd2, and each meet is moved to the opposite
end of the block of adjacent times thatm1 andm2 were together assigned to originally.

Kempe meet moves need to know what clashes they have caused, and this is done via the
matching, partly because it is the fastest way, and partly because it works at any level of the
layer tree, unlike avoid clashes monitors, which work only at the root. Accordingly, preassigned
demand monitors must be attached, and grouped (directly or indirectly) under a group monitor
with sub-tagKHE_SUBTAG_KEMPE_DEMAND, by calling

KHE_GROUP_MONITOR KheKempeDemandGroupMonitorMake(KHE_SOLN soln);

before making any Kempe meet moves. This is a secondary grouping, as defined in Section
9.8. The group monitor’s children are the ordinary demand monitors of the preassigned tasks
of soln. (As usual in KHE, apreassigned taskis a task derived from a preassigned event

10.2. Helper functions 179

resource.) No primary groupings are relevant here so primary group monitors never replace the
ordinary demand monitors. The operation will abort if it cannot find a group monitor with this
sub-tag among the parents of the first demand monitor of the first preassigned task of the meet it
moves. If that meet has no preassigned tasks, it will search the meets assigned to it, directly and
indirectly. There may be no preassigned tasks at all, in which case there can be no clashes. In
that case, the Kempe meet move operation does exactly what an ordinary meet move would do.

Use of the matching raises the question of whether Kempe meet moves should try to remove
demand defects other thansimple clashes, where a resource which possesses a hard avoid clashes
constraint is preassigned to two meets which are running at the same time. The author’s view is
that it should not. When there is a simple clash caused by one meet moving to a time, the only
possible resolution is for the other to move away. With demand defects in general, there may be
multi-way clashes which can be resolved by moving one of several meets away, and that is not
what the Kempe meet move is about.

Assuming that the grouping is done correctly, then, a call to

bool KheKempeMeetMove(KHE_MEET meet, KHE_MEET target_meet,
int offset, bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

will make a Kempe meet move. It is similar toKheMeetMove in moving the current assignment
of meet to target_meet atoffset, but it requiresmeet to be already assigned so that it knows
where to move clashing meets back to. It does not use back pointers or visit numbers. It sets
*demand to the total demand of the meets it moves, to give the caller some idea of the disruption
it caused, and it sets*basic totrue if it did not find any meets that needed to be moved back the
other way, so that what it did was just a basic meet move. Thekempe_stats parameter is used
for collecting statistics about Kempe meet moves, as described below; it may beNULL if statistics
are not wanted. There is also

bool KheKempeMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

which movesmeet to the cycle meet and offset representing timet.

If preserve_regularity is false, these functions ignore zones. One way to take zones
into account is to callKheMeetMovePreservesZones (Section 5.4) first. In theory this is inade-
quate when meets of different durations are moved, but the inadequacy will virtually never arise
in practice. The other way is to setpreserve_regularity to true, and then the functions will
useKheNodeIrregularity (Section 5.4) to measure the irregularityof the nodes affected,before
and after; the operation will fail if the total irregularity of the nodes affected has increased.

KheKempeMeetMove succeeds, returningtrue, if it movesmeet totarget_meet atoffset,
possibly moving other meets as well, to ensure that the final state has no new simple clashes and
no new cases of a preassigned resource attending a meet at a time when it is unavailable. It fails,
returningfalse, in these cases:

• Some call toKheMeetMove,which is used to make the individual moves, returnsfalse. This
includes the case wheremeet is already assigned totarget_meet atoffset, which, as pre-
viously documented, is defined to fail for the practical reason that the move accomplishes

180 Chapter 10. Time Solvers

nothing and pursuing it can only waste time.

• Moving some meet makes some preassigned resource busy when it is unavailable.

• A meet which needs to be moved is not currently assigned to the expected target meet
(either meet’s original target meet ortarget_meet, depending on whether the current
step is odd or even), or has the wrong duration or offset. This prevents the changes from
spreading beyond the expected area of the solution.

• preserve_regularity is true but the operation increases irregularity (discussed above).

• Some meet needs to be moved, but it has already moved during this operation, indicating
that the classical graph colouring reason for failure has occurred.

If KheKempeMeetMove fails, it leaves the solution in the state it was in at the failure point. In prac-
tice, it must be enclosed inKheMarkBegin andKheMarkEnd (Section 4.10), so that undoing can
be used to clean up the mess. This could easily have been incorporated intoKheKempeMeetMove,
producing a version that left the solution unchanged if it failed. However, the caller will probably
want to enclose the operation inKheMarkBegin andKheMarkEnd anyway, since it may need to
be undone for other reasons, so cleanup is left to the caller.

The kempe_stats parameter is an object (the usual pointer to a private record) used to
record statistics about Kempe meet moves. If statistics are wanted, then to create and delete a
Kempe stats object, call

KHE_KEMPE_STATS KheKempeStatsMake(void);
void KheKempeStatsDelete(KHE_KEMPE_STATS kempe_stats);

Actually the usual way to obtain aKHE_KEMPE_STATS object is from thetime_kempe_stats
attribute ofKHE_OPTIONS (Section 8.4.3), which is initialized byKheKempeStatsMake. Each
time the object is passed to a successful call toKheKempeMeetMove or KheKempeMeetMoveTime,
its statistics are updated. They can be retrieved at any time using the following functions.

A stepof a Kempe meet move is a move of one meet. The statistics include a histogram
of the number of successful Kempe meet moves withstep_count steps, for eachstep_count,
retrievable by calling

int KheKempeStatsStepHistoMax(KHE_KEMPE_STATS kempe_stats);
int KheKempeStatsStepHistoFrequency(KHE_KEMPE_STATS kempe_stats,
int step_count);

int KheKempeStatsStepHistoTotal(KHE_KEMPE_STATS kempe_stats);
float KheKempeStatsStepHistoAverage(KHE_KEMPE_STATS kempe_stats);

These return the maximumstep_count for which there is at least one Kempe meet move, or0

if none; the number of Kempe meet moves withstep_count steps; the total number of steps
over all Kempe meet moves; and the average number of steps. This last is only safe to call if
KheKempeStatsStepHistoTotal > 0.

A phaseof a Kempe meet move is a move of one or more meets in one direction. For
example, a Kempe move that turns out to be an ordinary move has one phase; one that turns out
to move one meet in one direction, then two in the other, has two phases; and so on. The statistics

10.2. Helper functions 181

include a histogram of the number of successful Kempe meet moves withphase_count phases,
for eachphase_count, retrievable by calling

int KheKempeStatsPhaseHistoMax(KHE_KEMPE_STATS kempe_stats);
int KheKempeStatsPhaseHistoFrequency(KHE_KEMPE_STATS kempe_stats,
int phase_count);

int KheKempeStatsPhaseHistoTotal(KHE_KEMPE_STATS kempe_stats);
float KheKempeStatsPhaseHistoAverage(KHE_KEMPE_STATS kempe_stats);

These return the maximumphase_count for which there is at least one Kempe meet move, or0

if none; the number of Kempe meet moves withphase_count phases; the total number of phases
over all Kempe meet moves; and the average number of phases. This last is only safe to call if
KheKempeStatsPhaseHistoTotal > 0.

Functions

bool KheEjectingMeetMove(KHE_MEET meet, KHE_MEET target_meet,
int offset, bool preserve_regularity, int *demand, bool *basic);

bool KheEjectingMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool preserve_regularity, int *demand, bool *basic);

offer a variant of the Kempe meet move called theejecting meet move. This begins by moving
meet to target_meet atoffset, and then finds the meets that need to be moved back the other
way exactly as for Kempe meet moves (using the same group monitor), but instead of moving
them, it unassigns them and stops.KheEjectingMeetMove does not requiremeet to be assigned
initially (the move may be an assignment),not does it carry out any checking of the durations and
offsets of the meets it unassigns. All other details are as for Kempe meet moves. Similarly,

bool KheBasicMeetMove(KHE_MEET meet, KHE_MEET target_meet,
int offset, bool preserve_regularity, int *demand);

bool KheBasicMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool preserve_regularity, int *demand);

are variants in which even the unassignments are omitted. They are the same asKheMeetMove

and KheMeetMoveTime as far as changing the solution goes, differing from them only in
optionally preserving regularity, and in reporting demand. No group monitor is needed.

The rest of this section describesKheKempeMeetMove’s implementation. It is an important
operation, so its implementation must be robust, and must squeeze every drop of utility out of
the basic idea.KheEjectingMeetMove is just a cut-down version ofKheKempeMeetMove.

A frameis a set of adjacent positions in a target meet, defined by the target meet, a start
offset into the target meet, and a stop offset, which may equal the duration of the target meet, but
be no larger. The set of positions runs from the start offset inclusive to the stop offset exclusive.
A meetlies ina frame when it is assigned to that frame’s target meet, and the set of positions it
occupies in that target meet is a subset of the set of positions defined by the frame.

The Kempe meet move operation defines four frames. On odd-numbered steps, including
the move of the original meet, every move is of a meet lying in a frame called theodd-from frame
to a frame called theodd-to frame. Similarly, every meet move on even-numbered steps is from
theeven-from frameto theeven-to frame.

182 Chapter 10. Time Solvers

The odd-from frame and the odd-to frame have the same duration, and the even-from frame
and the even-to frame have the same duration. When a meet is moved, its new target meet is the
target meet of the to frame of its step, and its offset in that target meet is defined by requiring
its offset in its to frame to equal its former offset in its from frame. This completely determines
where the meet is moved to, and ensures that the timetable of moved meets is replicated in the to
frame exactly as it was in the from frame.

The implementation will now be described, assuming that the four frames are given. How
they are defined will be described later.

First, if there are no preassigned tasks withinmeet or within meetsassigned tomeet, directly
or indirectly, thenKheKempeMeetMove callsKheMeetMove and returns its result. Otherwise, it
finds the group monitor it needs as described above and begins to trace it. It then carries out a
sequence of steps. As each step begins, there is a given set of meets to move, and the step tries
to move them. An empty set signals success.

On odd-numbered steps,KheKempeMeetMove moves the given set of meets from their
offsets in the odd-from frame to the same offsets in the odd-to frame. This will fail if any of
the meets do not lie entirely within the odd-from frame, and if any call toKheMeetMove returns
false. Even-numbered steps are the same, using the even-from frame and even-to frame.

The set of meets to move on the first step contains justmeet. At the end of each step, the set
of meets for the next step is found, as follows. The monitor trace is used to find the preassigned
demand monitors whose cost increased during the current step. For each of these monitors,
KheMonitorFirstCompetitor and KheMonitorNextCompetitor (Section 7.5.3) are used to
find the demand monitors competing with them for supply. These can be of four kinds:

1. A workload demand monitor derived from an avoid unavailable times monitor signals that
a preassigned resource has moved to an unavailable time, so fail.

2. Any other workload demand monitor signals a workload overload other than an unavailable
time, so ignore it. At a higher level, this defect might cause failure, but, as explained above,
the Kempe meet move itself only takes notice of simple clashes and unavailabilities.

3. A demand monitor derived from an unpreassigned task does not signal a simple clash, so
ignore it, on the same reasoning as the previous item.

4. A demand monitor derived from a preassigned task signals a simple clash. The appropriate
enclosing meet of the task (the one on the chain of assignments leading out of the task’s
meet just before the expected target meet) is found. If there is no such meet,or it was moved
on a previous step, fail. If it was moved on the current step, or is already scheduled to move
on the next step, ignore it. Otherwise schedule it to be moved on the next step.

A task is taken to be preassigned when a call toKheTaskIsPreassigned (Section 4.9.3), with
as_in_event_resource set tofalse, returnstrue.

It remains to explain how the four frames are defined.

Given the callKheKempeMeetMove(meet, target_meet, offset, ...), the target meet
of the odd-from frame and the even-to frame isKheMeetAsst(meet), and the target meet of the
even-from frame and the odd-to frame istarget_meet. These may be equal, or not.

10.2. Helper functions 183

The odd frames have the same duration, and the even frames have the same duration.
Usually, all frames have the same duration, the odd-from frame and the even-to frame are equal,
and the even-from frame and the odd-to frame are equal. This is theseparate case:

odd-from frame odd-to frame

even-to frame even-from frame
odd-number

odd-numbered steps

e

even-numbered steps

But there is another possibility, thecombined case. Suppose the odd-from frame and the
even-from frame are adjacent in time (suppose they have the same target meet, and the start
offset of either equals the stop offset of the other). Call the union of their two sets of offsets the
combined block. In that case, the durations of the odd-from frame and the even-from frame may
differ. The odd-to frame occupies the opposite end of the combined block from the odd-from
frame, and the even-to frame occupies the opposite end from the even-from frame:

odd-from frame even-from frame

even-to frame odd-to frame

combined combined block

Four diagrams could be drawn here, showing cases where the odd-from frame has shorter and
longer duration than the even-from frame, and where it appears to the left and right of the
even-from frame. But in all these cases, meets move between the frames in the same way.

To find these frames, first make the initial move ofmeet totarget_meet atoffset. This is
an odd-numbered move, so it moves a meet from the odd-from frame to the odd-to frame. But it
is defined by the caller, so no frames are needed. If it fails, then fail. Otherwise,find the resulting
clashing meets. This may cause failure in various cases, as explained above; if successful, all
the clashing meets will currently be assigned totarget_meet at various offsets. If there are no
clashing meets, the initial move suffices, so return success. Otherwise, let theinitial clash frame
be the smallest frame enclosing the clashing meets. The even-from frame will be a superset of
this frame, to allow all the clashing meets to move legally on the second step.

Next, see whether the separate case applies, as follows. The initial meet must lie inside
the odd-to frame after it moves. Since the even-from frame must equal the odd-to frame in the
separate case, let the even-from frame be the initial clash frame, enlarged as little as possible to
include the initial meet after it moves. Then the odd-from frame is defined completely by the
requirements that its duration must equal the duration of the even-from frame, and that the offset
of the initial meet in the odd-from frame before it moves must equal its offset in the odd-to frame,
and so in the even-from frame, after it moves. Once the odd-from frame is defined in this way,
check that it does not protrude out either end of its target meet, nor overlap with the even-from
frame. If it passes this check, set the odd-to frame equal to the even-from frame, and set the
even-to frame equal to the odd-from frame. The separate case applies.

Otherwise, see whether the combined case applies, as follows. If the initial meet’s original
target meet is nottarget_meet, or its original position overlaps the initial clash frame, then the
combined case does not apply, and so the entire operation fails. Otherwise, set the even-from
frame to the initial clash frame, and set the odd-from frame to the smallest frame which both

184 Chapter 10. Time Solvers

includes the initial meet’s original position and also abuts the even-from frame. This frame
must exist; no further checks are needed. Set the odd-to frame to occupy the opposite end of the
combined block from the the odd-from frame, and set the even-to frame to occupy the opposite
end of the combined block from the even-from frame. The combined case applies.

10.3. Meet bound groups and domain reduction

The functions described in this section do not assign meets. Instead, they reduce meet domains.

10.3.1. Meet bound groups

Meet domains are reduced by adding meet bound objects to meets (Section 4.8.4). Frequently,
meet bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of meet bounds—but it is convenient to have a
standard for it, so KHE defines a typeKHE_MEET_BOUND_GROUP with suitable operations.

To create a meet bound group, call

KHE_MEET_BOUND_GROUP KheMeetBoundGroupMake(void);

To add a meet bound to a meet bound group, call

void KheMeetBoundGroupAddMeetBound(KHE_MEET_BOUND_GROUP mbg,
KHE_MEET_BOUND mb);

To visit the meet bounds of a meet bound group, call

int KheMeetBoundGroupMeetBoundCount(KHE_MEET_BOUND_GROUP mbg);
KHE_MEET_BOUND KheMeetBoundGroupMeetBound(KHE_MEET_BOUND_GROUP mbg, int i);

To delete a meet bound group, including deleting all the meet bounds in it, call

bool KheMeetBoundGroupDelete(KHE_MEET_BOUND_GROUP mbg);

This function returnstrue when every call it makes toKheMeetBoundDelete returnstrue.

10.3.2. Exposing resource unavailability

If a meet contains a preassigned resource with some unavailable times, run times will be reduced
if those times are removed from the meet’s domain, since then futile time assignments will be
ruled out quickly. This idea is implemented by

void KheMeetAddUnavailableBound(KHE_MEET meet, KHE_COST min_weight,
KHE_MEET_BOUND_GROUP mbg);

This makes a meet bound based on the available times of the resources preassigned tomeet and
to meets with fixed assignments tomeet, directly or indirectly. It adds this bound tomeet, and to
mbg if mbg is non-NULL.

The meet bound is an occupancy bound whose default time group is the full cycle minus
KheAvoidUnavailableTimesConstraintUnavailableTimes(c) for each avoid unavailable

10.3. Meet bound groups and domain reduction 185

times constraintc for the relevant resources whose combined weight is at leastmin_weight. For
example, settingmin_weight to 0 includes all constraints; setting it toKheCost(1, 0) includes
hard constraints only. Each time group is adjusted for the offset inmeet of the meet containing
the preassigned resource. If the resulting time group is the entire cycle, as it will be, for example,
whenmeet’s preassigned resources are always available, then no meet bound is made.

There is also

void KheSolnAddUnavailableBounds(KHE_SOLN soln, KHE_COST min_weight,
KHE_MEET_BOUND_GROUP mbg);

which callsKheMeetAddUnavailableBound for each non-cycle meet insoln whose assignment
is not fixed, taking care to visit the meets in a safe order (parents before children).

10.3.3. Preventing cluster busy times and limit idle times defects

This section presents a function which reduces the cost of cluster busy times and limit idle times
monitors,by reducing heuristically the domains of the meets to which the monitors’resources are
preassigned, before time assignment begins. For example, suppose teacher Jones is limited by a
cluster busy times constraint to attend for at most three of the five days of the week. Choose any
three days and reduce the time domains of the meets that Jones is preassigned to to those three
days. Then those meets cannot cause a cluster busy times defect for Jones.

But first, we need to consider the alternatives. One is to do nothing special during the
initial time assignment, and repair any defects later. But there are likely to be many defects then,
casting doubt on the value of the initial assignment, since repairing cluster busy times defects is
time-consuming and difficult. Repairing limit idle times defects is easier, but it still takes time.

A second alternative is to take these monitors into account as part of the usual method of
constructing an initial assignment of times to meets. The usual method is to group the meets into
layers (sets of meets which must be disjoint in time, because they share preassigned resources)
and assign the layers in turn. Some monitors are handled during layer assignment, including
demand and spread events monitors. Cluster busy times monitors can be too, as follows.

Suppose there is a cluster busy times monitor for resourcer requiring thatr be busy on at
most four of the five days of the cycle. Create a meet with duration equal to the number of times
in one day, whose domain is the set of first times on all days. Add a task preassignedr to this
meet. Then, in the course of assigningr ’s layer, this meet will be assigned a time, and if there
are no clashes, the other meets preassignedr will be limited to at most four days as required. At
the author’s university, this method is used to give most students two half-days off.

There are a few detailed problems: a whole-day meet may not be assignable to any cycle
meet, and the author’s best method of assigning the meets of one layer (Section 10.6) works best
when there are several meets of each duration, whereas here there may be only one whole-day
meet. These problems can be surmounted by reducing the domains of the other meets instead
of adding a new meet. But there are other problems—problems that may be called fundamental,
because they arise from handling clustering one layer at a time.

A resource islightly loadedwhen it is preassigned to meets whose total duration is much
less than the cycle’s duration. Cluster busy times monitors naturally apply to lightly loaded
resources, because heavily loaded ones don’t have the free time that makes clustering desirable.

186 Chapter 10. Time Solvers

In university problems,each layer is a set of meetspreassigned just one resource: a lightly loaded
student. The layers are fairly independent, being mutually constrained only by the capacities of
class sections. Under these conditions, handling clustering one layer at a time works well.

But now consider the situation, common in high schools, where each meet contains two
preassigned resources,one student group resource and one teacher resource. Suppose the student
group resources are heavily loaded, and the teacher resources are lightly loaded and subject
to cluster busy times constraints. It is best to timetable the meets one student group layer at a
time, because the student group resources are heavily loaded, but this leaves no place to handle
the teachers’ cluster busy times monitors. Even if the meets were assigned in teacher layers,
those layers are often not independent: electives, for example, have several simultaneous meets,
requiring several teachers to have common available times.

This brings us to the third alternative, the subject of this section. Before time assignment
begins, reduce the domains of meets subject to cluster busy times and limit idle times monitors
to guarantee that the monitors have low (or zero) cost, whatever times are assigned later. Use the
global tixel matching to avoid mistakes which would make meets unassignable. Function

void KheSolnClusterAndLimitMeetDomains(KHE_SOLN soln,
KHE_COST min_cluster_weight, KHE_COST min_idle_weight,
float slack, KHE_MEET_BOUND_GROUP mbg, KHE_OPTIONS options);

does this. It adds meet bounds to meets, and tombg if mbg is non-NULL, based on cluster busy
times monitors with combined weight at leastmin_cluster_weight, and on limit idle times
monitors with combined weight at leastmin_idle_weight. Minimum limits are ignored. See
below for precisely which monitors are included. IfKheOptionsDiversify(options) istrue,
the result is diversified by varying the order in which domain reductions for limit idle times
monitors are tried.

Carrying out all possible domain reductions is almost certainly too extreme; it gives other
solvers no room to move. Parameterslack is offered to avoid this problem. For each resource
r, functionKheSolnClusterAndLimitMeetDomains keeps track ofp(r), the total duration of
the events preassignedr, anda(r), the total duration of the times available to these events, given
the reductions made so far. Clearly, it is important for the function to ensurea(r) ≥ p(r), since
otherwise these events will not have room to be assigned. But, lettings be the value ofslack,
the function actually ensuresa(r) ≥ s ⋅ p(r), or rather, it does not apply any reduction that makes
this conditionfalse. The minimum acceptable value ofslack is1.0, which is almost certainly
too small. A value around1.5 seems more reasonable.

The remainder of this section describes the issues involved in reducing domains, and how
KheSolnClusterAndLimitMeetDomains works in detail.

A set of resources may betime-equivalent: sure to be busy at the same times. There would
be no change in cost if all the cluster busy times and limit idle times monitors of a set of time-
equivalent resources applied to just one of them: their costs depend only on when their resource
is busy. So although for simplicity the following discussion speaks of individual resources, in
factKheSolnClusterAndLimitMeetDomains deals with sets of time-equivalent resources, taken
from thestructural_time_equiv option of itsoptions parameter. These must have been set
previously by a call toKheTimeEquivSolve (Section 9.2).

A cluster busy times monitor for a resourcer is included when its combined weight is at

10.3. Meet bound groups and domain reduction 187

leastmin_cluster_weight, its Maximum limit is less than its number of time groups, and each
time group is either disjoint from or equal to each time group of each previously included monitor
for r. A limit idle timesmonitor for a resourcer of typert is included when its combined weight
is at leastmin_idle_weight, rt satisfiesKheResourceTypeDemandIsAllPreassigned(rt),
its time groups are disjoint from each other, and each time group is either disjoint from or equal
to each time group of each previously included monitor for that resource. The time groups are
usually days, so the disjoint-or-equal requirement is usually no impediment.

An exclusion operation, or just exclusion, is the addition of an occupancy meet bound
(Section 4.8.4) to each meet preassigned a given resource, ensuring that those meets do not
overlap a given set of times. An exclusion issuccessfulif its calls toKheMeetAddMeetBound
succeed and do not increase the number of unmatched demand tixels in the global tixel matching.
KheSolnClusterAndLimitMeetDomains keeps only successful exclusions; unsuccessful ones
are tried, then undone. It repeatedly tries exclusions until for each monitor, either a guarantee
of sufficiently low cost is obtained, or no further successful exclusions are available. Exclusions
based on cluster busy times monitors are tried first, since they are most important. After they
have all been tried, the algorithm switches to exclusions based on limit idle times monitors.

Build a graph with one vertex for each resource. For each resource, the aim is to exclude
some of its cluster busy times monitors’ time groups from its meets, enough to satisfy those
monitors’Maximum limits. Thinking of each time group as a colour, the aim is to assign a given
number of distinct colours from a given set to each vertex.

If some meet (or set of linked meets) has several preassigned resources, those resources
should exclude some of the same time groups, to leave others available. Linked meets with
preassigned teachersa, b, c, d, andemust not be excluded from Mondays bya, from Tuesdays
by b, and so on. The global tixel matching test prevents this extreme example, but we also need
to avoid even approaching it. So when two resources share meets, this evidence that they should
have similar exclusions is recorded by connecting their vertices by apositive edgewhose cost is
the total duration of the meets they share.

Even when two resources share no meets, they may still influence each other’s exclusions,
when there is an intermediate resource which shares meets with both of them. Two teachers who
teach the same student group are an example of this. If some time group is excluded by one of
the teachers, it would be better if it was not excluded by the other, since that again limits choice.
In this case the two resources’ vertices are joined by anegative edgewhose cost is the total
duration of the meets they share with the intermediate resource. If there are several intermediate
resources, the maximum of their costs is used.

Negative edges produce a soft graph colouring problem: a good result gives overlapping
sets of colours to vertices connected by positive edges, and disjoint sets of colours to vertices
connected by negative edges. This connection with graph colouring rules out finding an
optimum solution quickly, but it also suggests a simple heuristic which is likely to work well,
since it is based on the successful saturation degree heuristic for graph colouring.

A vertex isopenwhena(v) > s ⋅ p(v) (as explained above), and it has at least one untried ex-
clusion with at least one cluster busy times monitor which would benefit from that exclusion. If
there are no open vertices, the procedure ends. Otherwise an open vertex is chosen for colouring
whose total cost of edges (positive and negative) going to partly or completely coloured vertices
is maximum, with ties broken in favour of vertices of larger degree.

188 Chapter 10. Time Solvers

Once an open vertex is chosen, the cost of each of its untried colours is found, and the
untried colours are tried in order of increasing cost until one of them succeeds or all have been
tried. The cost of a colourc is the total cost of outgoing negative edges to vertices containingc,
minus the total cost of outgoing positive edges to vertices containingc.

The numbers used by the heuristic are adjusted to take account of the idea that one vertex
requiring several colours is similar to several vertices, each requiring one colour, and connected
in a clique by strongly negative edges. In particular, being partly coloured increases a vertex’s
chance of being chosen for colouring, as does requiring more than one more colour.

Saturation degree heuristics are often initialized by finding and colouring a large clique, but
nothing of that kind is attempted here. A time group which is a subset of the unavailable times
of its resource should always be excluded. This is done, wherever applicable, at the start, after
which there may be several partly coloured vertices.

When handling limit idle times monitors, individual times are excluded instead of entire
time groups. The time groups of limit idle times monitors are compact, and the excluded times
lie at the start or end of one of these time groups. Exclusions which remove a last unexcluded
time are tried first, followed by exclusions which remove a first unexcluded time.

Whether an idle exclusion is needed depends on the following calculation. As above, let
thepreassigned duration p(v) of a vertexv be the total duration of the meets thatv’s resource is
preassigned to. Let theavailability a(v) of vertexvbe the number of times that these same meets
may occupy. Initially this is the number of times in the cycle, but as time groups are excluded
during the cluster busy times phase it shrinks, and then as individual times are excluded during
the limit idle times monitor phase it shrinks further.

As explained above, when an exclusion would causea(v) ≥ s ⋅ p(v) to becomefalse, it is
prevented. Assuming this obstacle is not present, consider limit idle times monitorm within v.
A worst-case estimate of its number of deviationsd(m) can be found as follows.

Let a(m), theavailabilityof m, be the total number of unexcluded times inm’s time groups.
Since time groups are disjoint,a(m) ≤ a(v). The worst case form occurs when as many meets
as possible are assigned times outside its time groups, leaving many unassigned and potentially
idle times inside. The maximum duration of meets that can be assigned outsidem’s time groups
is a(v) − a(m), leaving a minimum duration of

MD(m) = max(0,p(v) − (a(v) − a(m)))

to be assigned withinm’s time groups. This assignment leavesa(m) − MD(m) of m’s available
places unfilled. A little algebra shows that this difference is non-negative, givena(v) ≥ p(v).

Let M(m) bem’s Maximum attribute. The worst-case deviationd(m) is the amount by which
the number of unfilled places exceedsM(m), that is,

d(m) = max(0,a(m) − MD(m) − M(m))

If d(m) is positive, an exclusion which reducesa(m) further may be tried, and multiplyingd(m)
by w(m), the combined weight ofm’s constraint, gives a priority for trying such an exclusion.

Limit idle times monitors are tried in decreasingd(m)w(m) order, updated dynamically,and
modified by propagating exclusions across positive edges. Negative edges are not used.

10.4. Some basic time solvers 189

10.4. Some basic time solvers

This section presents some basic time solvers. The simplest are

bool KheNodeSimpleAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);
bool KheLayerSimpleAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

They assign those meets of the child nodes ofparent_node (or of the nodes oflayer) that are
not already assigned. For each such meet, in decreasing duration order, they try all offsets in all
meets of the parent node. IfKheMeetAssignCheck permits at least one of these, the best is made,
measuring badness by callingKheSolnCost; otherwise the meet remains unassigned, and the
result returned will befalse. These functions do not use options or back pointers.

There is one wrinkle. When assigning a meet which is derived from an evente, these
functions will not assign the meet to a meet which is already the target of an assignment of some
other meet derived frome. This is because if two meets from the same event are assigned to the
same meet, they are locked into being adjacent, or almost adjacent, in time, undermining the only
possible motive for splitting them apart.

These functions are not intended for serious timetabling. They are useful for simple
tasks: assigning nodes whose children are known to be trivially assignable, finding minimum
runaround durations (Section 9.4.1), and so on.

The logical order to assign times to the nodes of a layer tree is postorder (from the bottom
up), since until a node’s children are assigned to it, its resource demands are not clear. Function

bool KheNodeRecursiveAssignTimes(KHE_NODE parent_node,
KHE_NODE_TIME_SOLVER solver, KHE_OPTIONS options);

appliessolver to all the nodes in the subtree rooted atparent_node, in postorder. It returns
true when every call it makes onsolver returnstrue. It uses options and back pointers if and
only if solver uses them. For example,

KheNodeRecursiveAssignTimes(parent_node, &KheNodeSimpleAssignTimes, NULL);

carries out a simple assignment at each node, and

KheNodeRecursiveAssignTimes(parent_node, &KheNodeUnAssignTimes, NULL);

unassigns all meets in all proper descendants ofparent_node.

Functions

bool KheNodeUnAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);
bool KheLayerUnAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

unassign any assigned meets ofparent_node’s child nodes (or oflayer’s nodes). They do not
use options or back pointers. Also,

bool KheNodeAllChildMeetsAssigned(KHE_NODE parent_node);
bool KheLayerAllChildMeetsAssigned(KHE_LAYER layer);

returntrue when the meets of the child nodes ofparent_node (or of layer) are all assigned.

190 Chapter 10. Time Solvers

Preassigned meets could be assigned separately first, then left out of nodes so that they
are not visited by time assignment algorithms. The problem with this is that a few times may be
preassigned to obtain various effects, such as Mathematics first in the day, and this should not
affect the way that forms are coordinated. Accordingly, the author favours handling preassigned
meets along with other meets, as far as possible.

However, when coordination is complete and real time assignment begins, it seems best
to assign preassigned meets first, for two reasons. First, preassignments are special because
they have effectively infinite weight. There is no point in searching for alternatives. Second,
preassignments cannot be handled by algorithms that are guided by total cost, because they have
no assign time constraints, so there is no reduction in cost when they are assigned. Functions

bool KheNodePreassignedAssignTimes(KHE_NODE root_node,
KHE_OPTIONS options);

bool KheLayerPreassignedAssignTimes(KHE_LAYER layer,
KHE_OPTIONS options);

search the child nodes ofroot_node, which must be the overall root node, or the nodes oflayer,
whose parent must be the overall root node, for unassigned meets whose time domains contain
exactly one element.KheMeetAssignTime is called on each such meet to attempt to assign that
one time to the meet. These functions do not use options or back pointers.

KHE’s solvers assume that it is always a good thing to assign a time to a meet. However,
occasionally there are cases where cost can be reduced by unassigning a meet, because the cost
of the resulting assign time defect is less than the total cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSolnTryMeetUnAssignments(KHE_SOLN soln);

for use at the end. It tries unassigning each meet ofsoln in turn. If any unassignment reduces
the cost ofsoln, it is not reassigned. The result istrue if any unassignments were kept.

10.5. A time solver for runarounds

Time solver

bool KheRunaroundNodeAssignTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

assigns times to the unassigned meets of the child nodes ofparent_node, using an algorithm
specialized for runarounds. It tries to spread similar nodes out throughparent_node as much
as possible. By definition, some resources are scarce in runaround nodes, so it is good to spread
demands for similar resources as widely as possible. It works well on symmetrical runarounds,
but it can fail in more complex cases. If that happens, it undoes its work and makes a call to
KheNodeLayeredAssignTimes(parent_node, false) from Section 10.8.2. This is not a very
appropriate alternative, but any assignment is better than none.

KheRunaroundNodeAssignTimes begins by finding the child layers ofparent_node using
KheNodeChildLayersMake (Section 9.3.1), and placing similar nodes at corresponding indexes
in the layers, usingKheLayerSimilar (Section 5.3). It then assigns the unassigned meets of

10.5. A time solver for runarounds 191

these nodes. Its first priority is to not increase solution cost; its second is to avoid assigning two
child meets to the same parent meet (this would prevent them from spreading out in time); and
its third is to prevent corresponding meets in different layers from overlapping in time.

The algorithm is based on a procedure (let’s call itSolve) which accepts a set of child
layers, each accompanied by a set of triples of the form

(parent_meet, offset, duration)

meaning thatparent_meet is open to assignment by a child meet of the layer, at the given offset
and duration. The task ofSolve is to assign all the unassigned meets of the nodes of its layers.

The initial call toSolve is passed all the child layers. Each layer’s triples usually contain
one triple for each parent meet, with offset 0 and the duration of the parent meet for duration,
indicating that the parent meets are completely open for assignment. If any meets are assigned
already, the triples are modified accordingly to record the smaller amount of open space.

Solve begins by finding the maximum duration,md, of an unassigned meet in any of its
layers. It assigns all meets with this duration in all layers itself, and then makes recursive calls to
assign the meets of smaller duration. For each layer, it takes the meets of durationmd in the order
they appear in the layer and its nodes. It assigns these meets to consecutive suitable positions
through the layer, shifting the starting point of the search for suitable positions by one place in
the parent layer as it begins each layer. It never makes an assignment which increases the cost
of the solution, and it makes an assignment which causes two child meets to be assigned to the
same parent meet only as a last resort. If some meet fails to assign, the whole algorithm fails and
the problem is passed on toKheNodeChildLayersAssignTimes as described above.

As meets are assigned, the offsets and durations of the triples change to reflect the fact that
the parent meets are more occupied. After all assignments of meets of durationmd are complete,
the layers are sorted to bring layers with equal triples together. Each set of layers with equal
triples is then passed to a recursive call toSolve, which assigns its meets of smaller duration.

The purpose of handling sets of layers with equal triples together in this way can be seen in
an example. Suppose the parent node has two doubles and each child node has one double. Then
there are two ways to assign the child’s double; half the child layers will get one of these ways,
the other half will get the other way. The layers in each half have identical assignments so far,
undesirably but inevitably. By bringing them together we maximize the chance that the recursive
call which assigns the singles will find a way to vary the remaining assignments.

10.6. Extended layer matching with Elm

A good way to assign times to meets is to group the meets into nodes, group the nodes into layers,
and assign times to the meets layer by layer. The advantage of doing it this way is that the meets
of one layer strongly constrain each other, because they share preassigned resources so must be
disjoint in time. Assigning times to the meets of one layer, then, is a key step.

Any initial assignment of times to the meets of one layer will probably require repair. But
repair is time-consuming, and it will help if the initial assignment has few defects—as a first
priority, few demand defects, but also few defects of other kinds. The method presented in this
section, calledextended layer matching, or Elm for short, is the author’s best method of finding
an initial assignment of times to the meets of one layer.

192 Chapter 10. Time Solvers

If all meets have duration 1 and minimizing ordinary demand defects is the sole aim, the
problem can be solved efficiently using weighted bipartite matching. Make each meet a node
and each time a node, and connect each meet to each time it may be assigned, by an edge whose
cost is the number of demand defects that assignment causes. Among all matchings with the
maximum number of edges, choose one of minimum cost and make the indicated assignments.

Elm is based on this kind of weighted bipartite matching, calledlayer matchingby the
author, making it good at minimizing demand defects. It isextendedwith ideas that heuristically
reduce other defects. Layer matching was calledmeta-matchingin the author’s early work,
because it operates above another matching, the global tixel matching.

Elm can be used without understanding it in detail, by calling

bool KheElmLayerAssign(KHE_LAYER layer,
KHE_SPREAD_EVENTS_CONSTRAINT sec, KHE_OPTIONS options);

KheElmLayerAssign finds an initial assignment of the meets of the child nodes oflayer to the
meets of the parent node oflayer, leaving any existing assignments unchanged, and returning
true if every meet oflayer is assigned afterwards. It works well with the reduced meet domains
installed by solvers such asKheSolnClusterAndLimitMeetDomains (Section 10.3.3) for
minimizing cluster busy times and limit idle times defects. It tries to minimize demand defects,
and if layer’s parent node has zones, it also tries to make its assignments meet and node regular
with those zones, which should help to minimize spread events defects. If thediversify option
of options (Section 8.4) istrue, it consults the solution’s diversifier, and its results may vary
with the diversifier. It does not repair its assignment, leaving that to other functions.

Parametersec is optional (may beNULL); a simple choice for it would be any spread events
constraint whose number of points of application is maximal. Ifsec is present, the algorithm
tries to assign the same number of meets to each ofsec’s time groups. To see why, consider an
example of the opposite. Suppose the events are to spread through the days, and the Wednesday
times are assigned eight singles, while the Friday times are assigned four doubles. It’s likely
that some events will end up meeting twice on Wednesdays and not at all on Fridays. Thesec

parameter acts only with low priority. It is mainly useful on the first layer, when there are no
zones and the segmentation is more or less arbitrary.

10.6.1. Introducing layer matching

This section introduces layer matching. Later sections describe the implementation. Suppose
some layer has three meets of duration 2 and two meets of duration 1, like this:

Thesechild meetshave to be assigned to non-overlapping offsets in the meets of the parent node
(theparent meets). Suppose there are three parent meets of duration 2 and three of duration 1:

and suppose (for the moment) that assignments are only possible between meets of the same
duration. Then a bipartite graph can represent all the possibilities:

10.6. Extended layer matching with Elm 193

The child meets (the bottom row)are the demand nodes,and the parent meets (the top row)are the
supply nodes. Each edge representsone potential assignment of one child meet. Not all edgesare
present: some are missing because of unequal durations, others because of preassignments and
other domain restrictions. For example, the last child meet above appears to be preassigned.

When one of the potential assignments is made, there is a change in solution cost. Each
edge may be labelled by this change in cost. Suppose that a matching of maximum size (number
of edges) is found whose cost (total cost of selected edges) is minimum. There is a reasonably
efficient algorithm for doing this. This matching is thelayer matching; it defines a legal assign-
ment for some (usually all) child meets, and its cost is a lower bound on the change in solution
cost when these meets are assigned to parent meets without any overlapping, as is required since
the child meets share a layer and thus presumably share preassigned resources.

The lower bound is only exact if each assignment changes the solution cost independently
of the others. This is true for many kinds of monitors, but not all, and it is one reason why the
lower bound produced by the matching is not exact. In fact, costs contributed by limit idle
times, cluster busy times, and limit busy times monitors only confuse layer matching. So for
each resource of the layer, any attached monitors of these kinds are detached at the beginning of
KheElmLayerAssign and re-attached at the end.

Parent meets usually have larger durations than child meets, allowing choices in packing
the children into the parents. The parent node typically represents the week, so it might have,
say, 10 meets each of duration 4 (representing 5 mornings and 5 afternoons), whereas the child
meets typically represent individual lessons, so they might have durations 1and 2. Asegmentof
parent meettarget_meet is a triple

(target_meet, offset, durn)

such that it is legal to assign a child meet of durationdurn to target_meet at offset. A
segmentationof the parent meets is a set of non-overlapping segments that covers all offsets of
all parent meets. It is the segments of a segmentation, not the parent meets themselves, that are
used as supply nodes. There may be many segmentations, but the layer matching uses only one.
This is the other reason why the lower bound is not exact.

A layer matching graphis a bipartite graph with one demand node for each meet of a
given layer, and one supply node for each segment of some segmentation of the meets of the
layer’s parent node. For each unassigned child meetmeet, there is one edge to each parent
segment whose duration equals the duration ofmeet and to whichmeet is assignable according
to KheMeetAssignCheck. The cost of the edge is the cost of the solution when the assignment
is made, found by making the assignment, callingKheSolnCost, then unassigning again. (Using
the solution cost rather than the change in cost ensures that edge costs are always non-negative,
as required behind the scenes.) For each assigned child meetmeet, a parent segment withmeet’s
target meet, offset, and duration is the only possible supply node that the meet can be connected
to; if present, the edge cost is 0.

194 Chapter 10. Time Solvers

A layer matchingis a set of edges from the graph such that no node is an endpoint of two
or more of the selected edges. Abest matchingis a layer matching of minimumcost(sum of
edge costs) among all matchings of maximumsize(number of edges).

The layer giving rise to the demand nodes consists of nodes, each of which typically
contains a set of meets for one course. This set of meets will typically want to be spread through
the cycle, not bunched together. Each meet generates a demand node, and a set of demand nodes
whose meets are related in this way is called ademand node group.

There is also a natural grouping of supply nodes, with eachsupply node groupconsisting of
those supply nodes which originated from the same parent meet. Thus, the supply nodes of one
group are adjacent in time.

It would be good to enforce the following rule: two demand nodes from the same demand
node group may not match with two supply nodes from the same supply node group (because
if they did, all chance of spreading out the demand nodes in time would be lost). There is no
hope of guaranteeing this rule, because there are cases where it must be violated, and because
minimizing cost while guaranteeing it appears to be an NP-complete problem. However, Elm
encourages it. When finding a minimum-cost matching, it adds an artificial increment to the cost
of each augmenting path that would violate it, thus making those paths relatively uncompetitive
and unlikely to be applied. The approach is purely heuristic, but it usually works well.

The overall structure of the layer matching graph is now clear. There are demand nodes,
each representing one meet of the layer, grouped into demand node groups representing courses.
There are supply nodes, each representing one segment of one meet of the parent node, grouped
into supply node groups representing the meets of the parent node. Edges between supply
nodes and demand nodes are not defined explicitly; they are determined by the durations and
assignability of the meets and segments.

10.6.2. The core module

This section describes thecore module, which implements the layer matching graph, including
maintaininga best matching. Elm alsohashelper modules,described in followingsections. They
have no behind-the-scenes access to the graph; they use only the operations described here.

The core module follows the previous description closely, except that it uses ‘demand’ for
‘demand node’, ‘demand group’ for ‘demand node group’, and so on—for brevity, and so that
‘node’always means an object of typeKHE_NODE. This Guide will do this too from now on.

Elm’s types and functions (apart fromKheElmLayerAssign) are declared in a header file of
their own, calledkhe_elm.h. So to access the functions described from here on,

#include "khe.h"
#include "khe_elm.h"

must be placed at the start of the source file.

We begin with the operations on typeKHE_ELM, representing one elm. An elm for a given
layer is created and deleted by functions

KHE_ELM KheElmMake(KHE_LAYER layer, KHE_OPTIONS options);
void KheElmDelete(KHE_ELM elm);

10.6. Extended layer matching with Elm 195

If the diversify option of options is true, then the layer’s solution’s diversifier is used to
diversify the elm. In addition to the elm itself,KheElmMake creates one demand group for each
child node oflayer, containing one demand for each meet of the child node. It also creates one
supply group for each meet of the layer’s parent node, containing one supply representing the
entire meet.KheElmDelete deletes all these objects along with the elm. The sets of meets in
the parent and child nodes should not change during the elm’s lifetime, although the state of one
meet (its assignment, domain, etc.) may change.

The layer and options may be accessed by

KHE_LAYER KheElmLayer(KHE_ELM elm);
KHE_OPTIONS KheElmOptions(KHE_ELM elm);

To access the demand groups, call

int KheElmDemandGroupCount(KHE_ELM elm);
KHE_ELM_DEMAND_GROUP KheElmDemandGroup(KHE_ELM elm, int i);

in the usual way. To access the supply groups, call

int KheElmSupplyGroupCount(KHE_ELM elm);
KHE_ELM_SUPPLY_GROUP KheElmSupplyGroup(KHE_ELM elm, int i);

An elm also holds a best matching as defined above. The functions related to it are

int KheElmBestUnmatched(KHE_ELM elm);
KHE_COST KheElmBestCost(KHE_ELM elm);
bool KheElmBestAssignMeets(KHE_ELM elm);

KheElmBestUnmatched returns the number of unmatched demands in the best matching.
KheElmBestCost returns its cost—not a solution cost, but a sum of edge costs, each of which is
a solution cost.KheElmDemandBestSupply, defined below, reportswhich supply a given demand
is matched with. To assign the unassigned meets ofelm’s layer according to the best matching,
callKheElmBestAssignMeets; it returnstrue if every meet is assigned afterwards. Elm updates
the best matching only when one of these four functions is called, for efficiency.

Elm has a ‘special node’which is begun and ended by calling

void KheElmSpecialModeBegin(KHE_ELM elm);
void KheElmSpecialModeEnd(KHE_ELM elm);

While the special mode is in effect,Elm assumes that edges can change their presence in the layer
matching graph but not their cost. So when updating edges in special mode, Elm only needs to
find whether each edge is present or not, which is much faster than finding costs as well.

To support splitting supplies so that their numbers in each time group of a spread events
constraint are approximately equal, these functions are offered:

void KheElmUnevennessTimeGroupAdd(KHE_ELM elm, KHE_TIME_GROUP tg);
int KheElmUnevenness(KHE_ELM elm);

KheElmUnevennessTimeGroupAdd instructselm to keep track of the number of supplies whose

196 Chapter 10. Time Solvers

starting times lie withintg. KheElmUnevenness returns the sum over all these time groups of
a quantity related to the square of this number. For a given set of supplies, this will be smaller
when they are distributed evenly among the time groups than when they are not.

Function

void KheElmDebug(KHE_ELM elm, int verbosity, int indent, FILE *fp);

produces a debug print ofelm onto fp with the given verbosity and indent. Demands are
represented by their meets, and supplies are represented by their meets, offsets, and durations. If
verbosity >= 2, the print includes the best matching. Function

void KheElmDebugSegmentation(KHE_ELM elm, int verbosity,
int indent, FILE *fp);

is similar except that it concentrates onelm’s segmentation.

Demand groups have typeKHE_ELM_DEMAND_GROUP. To access their attributes, call

KHE_ELM KheElmDemandGroupElm(KHE_ELM_DEMAND_GROUP dg);
KHE_NODE KheElmDemandGroupNode(KHE_ELM_DEMAND_GROUP dg);
int KheElmDemandGroupDemandCount(KHE_ELM_DEMAND_GROUP dg);
KHE_ELM_DEMAND KheElmDemandGroupDemand(KHE_ELM_DEMAND_GROUP dg, int i);

These returndg’s enclosing elm, the child node of the original layer that gave rise todg, dg’s
number of demands, and itsith demand.

Elm maintains edges between demands and supplies automatically. But if a demand’s meet
changes in some way (for example, if its domain changes), Elm has no way of knowing that this
has occurred. When the meets of the demands of a demand group change, the user must call

void KheElmDemandGroupHasChanged(KHE_ELM_DEMAND_GROUP dg);

to inform Elm that the edges touching the demands ofdg must be remade before being used.

A demand group may contain any number of zones. If there are none, then zones have
no effect. If there is at least one zone, then the demand group’s demands may match only with
supplies that begin in one of its zones. The valueNULL counts as a zone. Functions

void KheElmDemandGroupAddZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);
void KheElmDemandGroupDeleteZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);

add and delete a zone fromdg, including callingKheElmDemandGroupHasChanged. The value
of zone may beNULL. To check whetherdg contains a given zone, call

bool KheElmDemandGroupContainsZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);

To visit the zones of a demand group, call

int KheElmDemandGroupZoneCount(KHE_ELM_DEMAND_GROUP dg);
KHE_ZONE KheElmDemandGroupZone(KHE_ELM_DEMAND_GROUP dg, int i);

Function

10.6. Extended layer matching with Elm 197

void KheElmDemandGroupDebug(KHE_ELM_DEMAND_GROUP dg,
int verbosity, int indent, FILE *fp);

sends a debug print ofdg with the given verbosity and indent tofp.

Demands have typeKHE_ELM_DEMAND. To access their attributes, call

KHE_ELM_DEMAND_GROUP KheElmDemandDemandGroup(KHE_ELM_DEMAND d);
KHE_MEET KheElmDemandMeet(KHE_ELM_DEMAND d);

These return the enclosing demand group, and the meet that gave rise to the demand.

As explained above, when a demand’s meet changes in some way that affects the demand’s
edges, Elm must be informed. For a single demand, this is done by calling

void KheElmDemandHasChanged(KHE_ELM_DEMAND d);

This is called byKheElmDemandGroupHasChanged for each demand in its demand group. To find
out which supplyd is matched with in the best matching, call

bool KheElmDemandBestSupply(KHE_ELM_DEMAND d,
KHE_ELM_SUPPLY *s, KHE_COST *cost);

If d is matched with a supply in the best matching,KheElmDemandBestSupply sets*s to that
supply and*cost to the cost of the edge, and returnstrue; otherwise it returnsfalse. And

void KheElmDemandDebug(KHE_ELM_DEMAND d, int verbosity,
int indent, FILE *fp);

sends a debug print ofd with the given verbosity and indent tofp.

Supply groups have typeKHE_ELM_SUPPLY_GROUP. To access their attributes, call

KHE_ELM KheElmSupplyGroupElm(KHE_ELM_SUPPLY_GROUP sg);
KHE_MEET KheElmSupplyGroupMeet(KHE_ELM_SUPPLY_GROUP sg);
int KheElmSupplyGroupSupplyCount(KHE_ELM_SUPPLY_GROUP sg);
KHE_ELM_SUPPLY KheElmSupplyGroupSupply(KHE_ELM_SUPPLY_GROUP sg, int i);

These returnsg’s enclosing elm, the meet of the layer’s parent node that gave rise to it, its number
of supplies (segments), and itsith supply. And

void KheElmSupplyGroupDebug(KHE_ELM_SUPPLY_GROUP sg,
int verbosity, int indent, FILE *fp);

sends a debug print ofsg with the given verbosity and indent tofp.

Supplies have typeKHE_ELM_SUPPLY. To access their attributes, call

KHE_ELM_SUPPLY_GROUP KheElmSupplySupplyGroup(KHE_ELM_SUPPLY s);
KHE_MEET KheElmSupplyMeet(KHE_ELM_SUPPLY s);
int KheElmSupplyOffset(KHE_ELM_SUPPLY s);
int KheElmSupplyDuration(KHE_ELM_SUPPLY s);

KheElmSupplySupplyGroup is the enclosing supply group,KheElmSupplyMeet is the enclosing

198 Chapter 10. Time Solvers

supply group’s meet, andKheElmSupplyOffset andKheElmSupplyDuration return an offset
and duration within that meet, defining one segment.

To facilitate calculations with zones, each supply maintains the set of distinct zones that its
offsets lie in. These may be accessed by calling

int KheElmSupplyZoneCount(KHE_ELM_SUPPLY s);
KHE_ZONE KheElmSupplyZone(KHE_ELM_SUPPLY s, int i);

A NULL zone counts as a zone, soKheElmSupplyZoneCount is always at least 1.

To facilitate the handling of preassigned and previously assigned demands, Elm offers

void KheElmSupplySetFixedDemand(KHE_ELM_SUPPLY s, KHE_ELM_DEMAND d);
KHE_ELM_DEMAND KheElmSupplyFixedDemand(KHE_ELM_SUPPLY s);

KheElmSupplySetFixedDemand informselm that d is the only demand suitable for matching
with s, or if d is NULL (the default), that there is no restriction of that kind. Ifd != NULL, d’s
duration must equal the duration ofs. A call to KheElmDemandHasChanged(d) is included.
KheElmSupplyFixedDemand returnss’s current fixed demand, possiblyNULL.

To facilitate the handling of irregular monitors, a supply can be temporarily removed from
the graph (so that it does not match any demand) and subsequently restored:

void KheElmSupplyRemove(KHE_ELM_SUPPLY s);
void KheElmSupplyUnRemove(KHE_ELM_SUPPLY s);

KheElmSupplyRemove aborts if s has a fixed demand. A removed supply merely becomes
unmatchabled, it does not get deleted from node lists and so on. Function

bool KheElmSupplyIsRemoved(KHE_ELM_SUPPLY s);

reports whethers is currently removed.

WhenKheElmMake returns, there is one demand group for each child node, one demand for
each child meet, one supply group for each parent meet, and one supply for each supply group,
with offset 0 and duration equal to the duration of the meet. All this is fixed except that supplies
may be split and merged by calling

bool KheElmSupplySplitCheck(KHE_ELM_SUPPLY s, int offset, int durn,
int *count);

bool KheElmSupplySplit(KHE_ELM_SUPPLY s, int offset, int durn,
int *count, KHE_ELM_SUPPLY *ls, KHE_ELM_SUPPLY *rs);

void KheElmSupplyMerge(KHE_ELM_SUPPLY ls, KHE_ELM_SUPPLY s,
KHE_ELM_SUPPLY rs);

KheElmSupplySplitCheck returnstrue whens may be split so that one of the fragments has
the given offset and duration. If so, it sets*count to the total number of fragments that would
be produced, either 1, 2, or 3.KheElmSupplySplit is the same except that it actually performs
the split when possible, leavings with the given offset and duration. Splitting is possible when

10.6. Extended layer matching with Elm 199

KheElmSupplyFixedDemand(s) == NULL &&
KheElmSupplyOffset(s) <= offset &&
offset + durn <= KheElmSupplyOffset(s) + KheElmSupplyDuration(s)

This says thats is not fixed to some demand, and thatoffset anddurn define a set of offsets
lying within the set of offsets currently covered bys. Otherwise it returnsfalse.

If KheElmSupplyOffset(s) < offset, then a supply*ls is split off s at left, holding
the offsets fromKheElmSupplyOffset(s) inclusive tooffset exclusive; otherwise*ls is
set toNULL. If offset + durn < KheElmSupplyOffset(s) + KheElmSupplyDuration(s),
then a supply*rs is split off s at right, holding the offsets fromoffset + durn inclusive to
KheElmSupplyOffset(s) + KheElmSupplyDuration(s) exclusive; otherwise*rs is set to
NULL. The originals is left with offsets fromoffset inclusive tooffset + durn exclusive.

KheElmSupplyMerge undoes the correspondingKheElmSupplySplit. Either or both ofls
andrs may beNULL. No meet splitting or merging is carried out by these operations.

Finally,

void KheElmSupplyDebug(KHE_ELM_SUPPLY s, int verbosity,
int indent, FILE *fp);

sends a debug print ofs with the given verbosity and indent tofp.

10.6.3. Splitting supplies

The elm returned byKheElmMake has only a trivial segmentation, with one segment per parent
meet. Few or no demands will match with these supplies, because only demands and supplies of
equal duration match. So the initial supplies have to be split usingKheElmSupplySplit.

Elm has a helper module which splits supplies heuristically. It offers just one function:

void KheElmSplitSupplies(KHE_ELM elm, KHE_SPREAD_EVENTS_CONSTRAINT sec);

If the diversify option of elm’s options attribute istrue, its result varies depending on the
layer’s solution’s diversifier. Thesec parameter ofKheElmSplitSupplies may beNULL. If
non-NULL, KheElmSplitSupplies tries to find a segmentation in which each time group ofsec

covers the same number of segments, as explained forKheElmLayerAssign above.

KheElmSplitSupplies works as follows. Begin by handling demands whose meets are
preassigned or already assigned. For each such demand, split a supply to ensure that exactly
the right segment is present, and useKheElmSupplySetFixedDemand to fix the supply to the
demand. If the required split cannot be made, the demand remains permanently unmatched.

Sort the remaining demands by increasing size of their meets’domains (in practice this also
sorts by decreasing duration), breaking ties by decreasing demand. UseKheMeetAssignFix to
ensure that these meets cannot be assigned. This removes them from the matching to begin with
(strictly speaking, it prevents them from having any outgoing edges in the matching graph).

For each demand in turn, unfix its meet and observe the effect of this on the best matching.
If the size of the best matching increases by one, proceed to the next demand. Otherwise, the
demand has failed to match, and this must be corrected (if possible) by splitting segments of
larger duration into smaller segments that it can match with. For each supply whose duration

200 Chapter 10. Time Solvers

is larger than the duration of the demand, try splitting the supply in all possible ways into two
or three smaller segments such that at least one of the fragments has the same duration as the
demand. If there was at least one successful split, redo the best of them.

The best split is determined by an evaluation with five components:

1. The split must besuccessful: it must increase the size of the best matching by one. Only
successful splits are eligible for use; if there are none, the demand remains unmatched.

2. It is better to split a segment into two fragments than into three. For example,when splitting
a double from a meet of duration 4, it is better to take the first two times or the last two,
rather than the middle two, since the latter leaves fewer choices for future splits.

3. If the parent node has zones, it is desirable to use a segment overlapping only one zone, to
produce meet regularity (Section 5.4) with the layer used to create the zones.

4. The split should produce a best matching whose cost is as small as possible.

5. If sec != NULL, the split should encourage the evenness thatsec’s presence requests.

These are combined lexicographically: later criteria only apply when earlier ones are equal.
Meet regularity has higher priority than cost because cost can often be improved later, whereas
meet regularity once lost is lost forever.

After all demands are processed, if any supplies have duration larger than the duration of
all demands, split them into smaller pieces, preferably supplies regular with the zones, if any.
This adds more edges, and so may reduce the cost of the best matching, at no risk to its size. It is
important when timetabling layers of small duration, such as layers containing staff meetings.

10.6.4. Improving node regularity

When the parent node has zones,KheElmSplitSupplies produces good meet regularity but does
nothing to promote node regularity. This can be done by following it with a call to

void KheElmImproveNodeRegularity(KHE_ELM elm);

implemented by another Elm helper module. It does nothing when there are no zones. When
there are, it removes edges from the matching graph to improve the node regularity of the edges
with respect to the zones. If requested by thediversify option of elm’s options attribute, it
consults the solution’s diversifier, and the edges it removes vary with the diversifier.

The problem of removing edges from a layer matching graph to maximize node regularity
with zones while keeping the matching cost low may seem obscure, but it is one of the keys to
effective time assignment in high school timetabling. Bin packing is reducible to this problem,
so it is NP-complete. Even the small instances (up to ten nodes in each layer, say) that occur
in practice seem hard to solve to optimality. The author tried a tree search which would have
produced an optimal result, but could not make it efficient, even with several pruning rules. So
KheElmImproveNodeRegularity is heuristic.

Although many kinds of defects contribute to the edge costs that make up the matching
cost, in practice the cost is dominated by demand cost (including the cost of avoid clashes and

10.6. Extended layer matching with Elm 201

avoid unavailable times defects). Every unit of demand cost incurred when assigning a time
represents an unassignable resource at that time, implying that either the final solution will have
a significant defect, or else that the time assignment will have to be changed later.

However, not all demand costs are equally important. When the cost is incurred by a child
node with no children,all of the meets of that node at that time will have to be moved later,which
is very disruptive. An assignment scarcely deserves to be called node-regular if that is going to
happen. But when the cost is incurred by a child node with children, after flattening it is often
possible to remove the defect by moving just one meet, disrupting node regularity only slightly.
So it is important to give priority to nodes with no children.

This is done in two ways. First, the cost of edges leading out of meets whose nodes have
no children is multiplied by 10. Second, when evaluating alternatives while improving node
regularity, the cost of the best matching is divided into two parts: the total cost of edges leading
out of meets in nodes with no children (thewithout-children cost) and the total cost of the
remaining edges (thewith-children cost), and without-children cost takes priority.

The heuristic sorts the child nodes by decreasing duration. Nodes with equal duration are
sorted by increasing number of children. Although it is important to minimize without-children
cost, even at the expense of with-children cost, it would be wrong to maximize without-children
node regularity at the expense of with-children node regularity. Node regularity is generally
harder to achieve for nodes of longer duration, so they are handled first.

For each child node in sorted order, the heuristic generates a sequence of sets of zones. For
each set of zones, it reduces the matching edges leading out of the meets of the child node so that
they go only to segments whose times overlap with the times of the zones. A best set of zones is
chosen, the limitation of the child node’s meets to those nodes is fixed, and the heuristic proceeds
to the next child node.

The best set is the first one with a lexicographically minimum value of the triple

(without_children_cost, zones_cost, with_children_cost)

The without_children_cost and with_children_cost components are as defined above.
Thezones_cost component measures the badness of the set of zones. It is the number of zones
in the set (we are trying to minimize this number, after all), adjusted to favour zones of smaller
duration and zones already present in sets fixed on previously, to encourage the algorithm to use
up zones completely wherever possible.

The algorithm for generating sets of zones generates all sets of cardinality 1, then all sets of
cardinality 2, then one set containing every zone that the current best matching touches. This last
set is included to ensure that at least one set leading to a reasonable matching cost is tried. A few
optimizations are implemented, including skipping sets of insufficient duration, and skipping
zones known to be fully utilized already.

10.6.5. Handling irregular monitors

Each edge of the layer matching graph is assigned a cost by making one meet assignment and
measuring the solution cost afterwards. This amounts to assuming that the cost of each edge is
independent of which other edges are present in the best matching. Costs come from monitors,
and the truth of this assumption varies with the monitor type, as follows.

202 Chapter 10. Time Solvers

Assign time and prefer times costs. Independent when the cost function isLinear, which
it always is in practice for these kinds of monitors.

Split events and distribute split events costs. Not changed by meet assignments.

Spread events costs. Non-independent. Previous sections have addressed this problem, by
varying path costs to discourage two demands from one demand group from matching with
two supplies from one supply group, and by improving node regularity.

Link events costs. Not changed by meet assignments when handled structurally,which they
always are in practice.

Order events costs. Non-independent when both events lie in the current layer.

Assign resource, prefer resources, and avoid split assignments costs. Not changed by
meet assignments.

Avoid clashes costs. Independent, because clashes are never introduced within one layer.

Avoid unavailable times costs. Independent when the cost function isLinear.

Limit idle times, cluster busy times, and limit busy times costs. Non-independent when
present (when resources subject to them are preassigned in the layer’s meets).

Limit workload costs. Not changed by meet assignments.

Demand costs. Independent when they monitor clashes and unavailable times. More subtle
interactions can be non-independent, but most layer matchings are built when the timetable
is incomplete and subtle demand overloads are unlikely.

Order events, limit idle times, cluster busy times, and limit busy times monitors stand out as
needing attention. These will be calledirregular monitors.

At present, the author has no experience with order events monitors, so Elm does nothing
with them. The irregular monitors handled by Elm are those limit idle times, cluster busy times,
and limit busy times monitorsof the resourcesof the layer match’s layer which are attached at the
time the elm is created. The Elm core module stores these monitors in an array, accessible via

int KheElmIrregularMonitorCount(KHE_ELM elm);
KHE_MONITOR KheElmIrregularMonitor(KHE_ELM elm, int i);
void KheElmSortIrregularMonitors(KHE_ELM elm,
int(*compar)(const void *, const void *));

KheElmIrregularMonitorCount andKheElmIrregularMonitor visit them in the usual way.
KheElmSortIrregularMonitors sorts them;compar is a function suited to passing toqsort
when sorting an array of monitors. Core function

bool KheElmIrregularMonitorsAttached(KHE_ELM elm);

returnstrue if all irregular monitors are currently attached. By definition, this is true initially.

As a first step in handling the irregular monitors of its layer, Elm offers functions

void KheElmDetachIrregularMonitors(KHE_ELM elm);
void KheElmAttachIrregularMonitors(KHE_ELM elm);

10.6. Extended layer matching with Elm 203

to detach any irregular monitors that are not already detached, and attach any that are not already
attached.KheElmLayerAssign uses them to detach irregular monitors at the start and reattach
them at the end. This ensures that the best matching never takes them into account. It would
only cause confusion if it did.

For improving its performance when irregular monitors are present, Elm offers

void KheElmReduceIrregularMonitors(KHE_ELM elm);

If irregular monitors are attached, it detaches them. It installs the best matching’s assignments,
attaches irregular monitors, and remembers the solution cost. Then for each supplys, it detaches
irregular monitors, removess from the graph, installs the best matching’s assignments, attaches
irregular monitors, remembers the solution cost, and restoress to the graph. If none of the
removals improves cost, it returns irregular monitors to their original state of attachment and
terminates. Otherwise, it permanently removes the supply that produced the best cost and repeats
from the start.

Some optimizations avoid futile work. If removings would reduce the total duration of
supply nodes to below the total duration of demand nodes, or reduce the number of supplies of
s’s duration to below the number of demands ofs’s duration, the removal ofs is not tried. And
the function returns immediately if the layer has no irregular monitors.

KheElmReduceIrregularMonitors is a plausible way to attack limit idle times and limit
busy times defects, but it is not radical enough for cluster busy times defects. These are better
handled by other means, such asKheSolnClusterAndLimitMeetDomains (Section 10.3.3).

10.7. Time repair

This section presents the time solvers packaged with KHE that take an existing time assignment
and repair it (that is,attempt to improve it). However carefullyan initial time assignment is made,
it must proceed in steps, and it can never incorporate enough forward-looking information to
ensure that each step does not create problems for later steps. So a repair phase after the initial
assignment is complete seems to be a practical necessity.

10.7.1. Node-regular time repair using layer node matching

Suppose we have a time assignment with good node regularity, but with some spread and
demand defects. Repairs that move meets arbitrarily might fix some defects, but the resulting
loss of node regularity might have serious consequences later, during resource assignment. This
section offers one idea for repairing time assignments without sacrificing node regularity.

One useful idea is to make repairs which arenode swaps: swaps of the assignments of (the
meets of) entire nodes. The available swaps are quite limited, because the nodes concerned must
lie in the same layers and have the same number of meets with the same durations.

For any parent node, take any set of child nodes lying in the same layers whose meets are
all assigned. Build a bipartite graph in which each of these child nodes is one demand node, and
the set of assignments of its meets is one supply node. An assignment is a triple of the form

(target_meet, offset, durn)

204 Chapter 10. Time Solvers

as for layer matchings (Section 10.6), but here a supply node is a set of triples, not one triple.

For each case where a child node can be assigned to a set of triples, because the number
of triples and their durations match the node’s number of meets and durations, add an edge to
the graph labelled by the change in solution cost when the corresponding set of assignments is
made. Find a maximum matching of minimum cost in this graph and reassign the child nodes
in accordance with it. The existing assignment is one maximum matching, so this will either
reproduce that or find something which has a good chance of being better. Function

bool KheLayerNodeMatchingNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

applies these ideas to the child nodes ofparent_node, returningtrue if it considers its work to
have been useful, as is usual for time repair solvers. First, ifparent_node has no child layers
it callsKheNodeChildLayersMake to build them. Then it partitions the child nodes so that the
nodes of each partition lie in the same set of layers. Then, for each partition in turn, it builds
the weighted bipartite graph and carries out the corresponding reassignments. If the solution
cost does not decrease, the reassignments are undone. It continues cycling around the partitions
until n reassignments have occurred without a cost decrease, wheren is the number of partitions.
Finally, if it made layers to begin with it removes them. A related function is

bool KheLayerNodeMatchingLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

It starts with the child nodes oflayer rather than all the child nodes of its parent.

On a real instance,KheLayerNodeMatchingNodeRepairTimes found no improvements at
all after all layers were assigned. Applied after each layer after the first was assigned, it found
one improvement,which reduced the number of unassignable tixels by 1or 2. This improvement
was carried through to the final solution: the median number of unassigned tixels when solving
16 instances was reduced from about 9 to about 7, and there were modest reductions in spread
defects and split assignment defects as well. The extra run time was about 0.6 seconds.

10.7.2. Ejection chain time repair

Time solvers

bool KheEjectionChainNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

bool KheEjectionChainLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

use ejection chains (Chapter 12) to repair the assignments of the meets of the descendants of
the child nodes ofparent_node, or the assignments of the meets of the descendants of the child
nodes oflayer. For full details, consult Section 12.7.

10.7.3. Tree search layer time repair

Very large-scale neighbourhood (VLSN) search [1, 10] deassigns a relatively large chunk of the
solution, then reassigns it in a hopefully better way. If the chunk is chosen carefully, it may be

10.7. Time repair 205

possible to find an optimal reassignment in a moderate amount of time.

One well-known VLSN neighbourhood is the set of meetsof one layer (a set of meetswhich
must be disjoint in time, usually because they have a resource in common). For example, finding
a timetable for one university student is a kind of layer reassignment, with the choices of times
for the meets determined by when sections of the student’s courses are running. Function

bool KheTreeSearchLayerRepairTimes(KHE_SOLN soln, KHE_RESOURCE r);

reassigns the meets ofsoln currently assigned resourcer, using a tree search. Once the number
of nodes explored reaches a fixed limit, it switches to a simple heuristic, giving up the guarantee
of optimality to ensure that running time remains moderate. Function

bool KheTreeSearchRepairTimes(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
bool with_defects);

callsKheTreeSearchLayerRepairTimes for each resource insoln’s instance (or each of type
rt, if rt is non-NULL). If with_defects is true, these calls are only made for resources with
at least one resource defect, otherwise they are made for all resources. The rest of this section
describesKheTreeSearchLayerRepairTimes in detail.

If a tree search is given a high standard to reach, it will run quickly because many paths will
fail the standard and get pruned, and so it is quite likely to run to completion and reach that high
standard if it is reachable at all. If it is given a low standard, it will run more slowly and quite
possibly not run to completion. Either approach is legitimate, but a choice has to be made.

Because VLSN search is relatively slow, it seems best to use it near the end of a solve, when
there are few defects left to target.KheTreeSearchLayerRepairTimes is intended to be used
as a last resort in this way, when there is likely to be just one or two defects related to the layer
being targeted. Accordingly, it aims high, for an assignment with no defectsat all. It prunespaths
whenever it can see that there is a defect that cannot be corrected by further assignments.

The meets are first sorted into decreasing duration order and unassigned. Each is given a
current domain, which is initially its usual domain minus any starting times that would cause the
meet to overlap a time when any of its resources are unavailable. Then a traditional tree search
is carried out, which at each node of leveli assigns a time from its current domain to theith meet
in the sorted list. The best leaf is remembered and replaces the original set of assignments if its
solution cost is smaller. Three rules are used for pruning the tree.

First, any assignment which returnsfalse or causes the number of unmatched demand
tixels to exceed its value in the initial solution is rejected.

Second, after a fixed number of nodes is reached, new nodes are still explored, but only the
first assignment that does not increase the number of unmatched demand tixels is tried therein.

Third, a form of forward checking is used. Letm1 andm2 be meets of the layer, and lett1
andt2 be times. At the start, a set ofexclusionsis built, each of the form

(m1, t1) ⇒ ¬(m2, t2)

This means that ifm1 is assigned starting timet1, thenm2 may not be assigned starting timet2.
While the search is running, whenm1 is assignedt1 this exclusion is applied, removingt2 from the
domain ofm2. Whenm1 is unassigned later, the exclusion is removed (m2 must come later in the

206 Chapter 10. Time Solvers

list of meets to be assigned thanm1, so that at the momentm1 is assigned,m2 is not assigned).

Following is a list of true statements about various situations:

• Since the meets all share a resource, no two of the meets may overlap in time.

• Two meets linked by a spread events constraint cannot be assigned within the same time
group of that constraint, when that time group has aMaximum attribute of 1.

• Two meets linked by an order events constraint must be assigned in a certain chronological
order, possibly with a given separation.

• Given two meets with the same duration and the same resources,and monitored by the same
event monitors, it is safe (and useful for avoiding symmetrical searches) to arbitrarily insist
that the first one in the assignment list should appear earlier in the cycle than the second.

Each statement gives rise to exclusions, and all these exclusions are added, except that at present
a couple of shortcutsare being used: order eventsconstraintsare not currently taken into account,
and the symmetry breaking idea of the last point is being applied to a different set of pairs of
meets, namely those which are linked by a spread events constraint and have the same duration.

Exclusions are used in two ways. First, when a meet’s turn comes to be assigned, only
times in its current domain (its initial domain minus any exclusions) are tried. Second, each meet
keeps a count of the number of times in its current domain. If this number ever drops to 0, the
assignment that caused that to happen is rejected immediately.

On instance IT-I4-96, with limit 10000, this method improved the timetables of four
resources, reducing final cost from 0.00397 to 0.00390, and adding about 2 seconds to total run
time. There was wide variation in the completeness of the search: for some resources, every
possible timetable was tried; for others, there was only time to try timetables that assigned the
first meet to the first time. It did not reduce the 0.00067 cost of the best of 8 solutions, nor find
any improvementswhen solving instance AU-BG-98. A run with limit 1000000 improved a fifth
resource in IT-I4-96, and showed that many searches do reach even this quite large limit.

10.7.4. Meet set time repair and the fuzzy meet move

Another VLSN idea is to use a tree search to repair the assignments of an arbitrary (but small)
set of meets. Given a set of meets, build the set of all target meets they are assigned to, and for
each target meet, the set of offsets within it that they are running. The aim is to reassign the meets
optimally within these same target meets and offsets. The only pruning rule is that the number
of unmatched demand tixels may not exceed its initial value.

The functions that implement this idea are

KHE_MEET_SET_SOLVER KheMeetSetSolveBegin(KHE_SOLN soln, int max_meets);
void KheMeetSetSolveAddMeet(KHE_MEET_SET_SOLVER mss, KHE_MEET meet);
bool KheMeetSetSolveEnd(KHE_MEET_SET_SOLVER mss);

KheMeetSetSolveBegin makes a meet-set solver object which coordinates the operation.
KheMeetSetSolveAddMeet adds one meet to the solver, and may be called any number of times,
building up a set of meets. If the number of meets added reaches themax_meets parameter of

10.7. Time repair 207

KheMeetSetSolveBegin, further calls toKheMeetSetSolveAddMeet are allowed but ignored.
Finally,KheMeetSetSolveEnd uses a tree search to find an optimal reassignment of the meets to
(collectively) their original target meets and offsets, returningtrue if it reduced the cost of the
solution, and frees the memory used by the solver object. If the number of nodes in the search
tree exceeds a given fixed limit, the search switches to a simple linear heuristic at each remaining
tree node, losing the guarantee of optimality but ensuring that run times remain moderate.

As a first application of these functions, KHE offers

bool KheFuzzyMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset,
int width, int depth, int max_meets);

This may movemeet to target_meet at offset, but not necessarily. Instead, it selects a set
of meets likely to be affected by that move, includingmeet, and passes them all to the meet set
solver above for (hopefully) optimal reassignment. It returnstrue if and only if it changed the
solution, which will be if and only if it reduced the cost of the solution.

The point ofKheFuzzyMeetMove is that if the caller has identified this move as likely to be
useful, but with some uncertainty about its consequences, it allows the move to be tried, but with
adjustments in the neighbourhood to get the most out of it. These adjustments are not unlike
those made by Kempe meet moves, only more general and more costly in run time.

Two sets of meets are selected. To be in the first set, a meet has to be assigned to the same
target meet asmeet, at an offset lying betweenmeet’s current offset minuswidth, andmeet’s
current offset pluswidth. Furthermore, ifdepth is 1 (the smallest reasonable value), a selected
meet has to share a resource (assigned or preassigned) withmeet. If depth is 2, a selected meet
has to share a resource with a meet that would be selected when the depth is 1, and so on: the
depth signifies the maximum length of a chain of shared resources that must connect a selected
meet tomeet. The second set of meets is the same as the first, only defined usingtarget_meet

andoffset instead ofmeet’s current target meet and offset.

As for meet set time repair, at mostmax_meets meets will be selected. Ifwidth anddepth
are small, it is reasonable formax_meets to beINT_MAX.

10.8. Layered time assignment

The heart of time assignment when layer trees are used is to assign the meets of the child nodes
of a given parent node to the meets of the parent node. Alayered time assignmentis one which
groups the child nodes into layers and assigns them layer by layer. This is a good way to do it,
since the nodes of each layer strongly constrain each other (they must be disjoint in time).

KheElmLayerAssign (Section 10.6) is KHE’s main solver for assigning the meets of the
child nodes of one layer. But there is work to be done to prepare the way for calling this function,
beyond the structural work of building the layer tree. This section presents KHE’s functions for
carrying out this preparatory work and callingKheElmLayerAssign.

10.8.1. Layer assignments

When assigning layers it is useful to be able to record an assignment of the meets of a layer, for
undoing and redoing later. Marks and paths could do this, but they record every step. A layer

208 Chapter 10. Time Solvers

assignment algorithm could be very long and wandering, so it is better to record just its result.

Accordingly, KHE offers thelayer assignmentobject, with typeKHE_LAYER_ASST:

KHE_LAYER_ASST KheLayerAsstMake(void);
void KheLayerAsstDelete(KHE_LAYER_ASST layer_asst);
void KheLayerAsstBegin(KHE_LAYER_ASST layer_asst, KHE_LAYER layer);
void KheLayerAsstEnd(KHE_LAYER_ASST layer_asst);
void KheLayerAsstUndo(KHE_LAYER_ASST layer_asst);
void KheLayerAsstRedo(KHE_LAYER_ASST layer_asst);
void KheLayerAsstDebug(KHE_LAYER_ASST layer_asst, int verbosity,
int indent, FILE *fp);

KheLayerAsstMake andKheLayerAsstDelete make and delete one.KheLayerAsstBegin is
called before some algorithm for assigninglayer is run. It records which oflayer’s meets are
unassigned then.KheLayerAsstEnd is called after the algorithm ends. For each meet recorded
byKheLayerAsstBegin, it records the assignment of that meet.KheLayerAsstUndo undoes the
recorded assignments, andKheLayerAsstRedo redoes them.KheLayerAsstDebug produces a
debug print oflayer_asst ontofp.

10.8.2. A solver for layered time assignment

Time solver

bool KheNodeLayeredAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);

assigns the meets of the child nodes ofparent_node to the meets ofparent_node, calling
KheElmLayerAssign (Section 10.6) to assign them layer by layer. Existing assignments of the
meets affected may change. The implementation is described at the end of this section.

If parent_node is the cycle node,KheNodePreassignedAssignTimes should be called
first, to give priority to demands made by preassigned meets.

KheNodeLayeredAssignTimes is affected by three options. If thetime_node_regularity
option of options is true, it tries to make the assignments node-regular (Section 5.4). This
will usually be appropriate for the cycle node, but not for other nodes, since in practice they are
runaround nodes, and irregularity is wanted in them rather than regularity.

KheNodeLayeredAssignTimes usually assigns each layer in turn, in a heuristically chosen
order. But if thetime_layer_swap option istrue, it does something more interesting. For each
layer i other than the first and last, it (a) tries assigning and repairing layeri followed by layer
i + 1, then (b) tries assigning and repairing layeri + 1followed by layeri. If the solution cost after
(a) is less than after (b), it leaves (a)’sassignment of layeri in place and proceeds to the next layer;
otherwise it leaves (b)’s assignment of layeri + 1in place and proceeds to the next layer. So one
layer is assigned on each iteration, as usual, but it could be either the usual one or the next one.

The time_layer_repair option determines howKheNodeLayeredAssignTimes repairs
each layer after assigning it. Its type isKHE_OPTIONS_TIME_LAYER_REPAIR, defined by

10.8. Layered time assignment 209

typedef enum {
KHE_OPTIONS_TIME_LAYER_REPAIR_NONE,
KHE_OPTIONS_TIME_LAYER_REPAIR_LAYER,
KHE_OPTIONS_TIME_LAYER_REPAIR_NODE,
KHE_OPTIONS_TIME_LAYER_REPAIR_LAYER_BACKOFF,
KHE_OPTIONS_TIME_LAYER_REPAIR_NODE_BACKOFF,

} KHE_OPTIONS_TIME_LAYER_REPAIR;

The first three values request no repair, repair usingKheEjectionChainLayerRepairTimes

(Section 10.7.2), and repair usingKheEjectionChainNodeRepairTimes on the lay-
er’s parent. The last two values add to the previous two the use of exponential
backoff (Section 8.6) to ration the number of layers repaired. The default value is
KHE_OPTIONS_TIME_LAYER_REPAIR_LAYER.

The rest of this section describes the implementation ofKheNodeLayeredAssignTimes.

If parent_node has no layers,KheNodeLayeredAssignTimes first makes them, by calling
KheNodeChildLayersMake (Section 9.3.1). It then sorts the layers,assignsand optionally repairs
them, and ends withKheNodeChildLayersDelete if it called KheNodeChildLayersMake.

When sorting the layers, the first priority is to ensure that already assigned layers come
first. These are marked by assigning visit number 1to them. Among unvisited layers, a heuristic
rule is used: decreasing value of the sum of the duration and the duration of meets that have
already been assigned, minus the number of meets. The reasoning here is that layers with
larger durations are harder to assign, and they become even harder when many of their meets’
assignments are already decided on (since the algorithm does not change them); but, on the other
hand, the more meets there are, the smaller their durations must be for a given overall duration,
making assignment easier. Here is the layer comparison function; it may be called separately:

int KheNodeLayeredLayerCmp(const void *t1, const void *t2)
{
KHE_LAYER layer1 = * (KHE_LAYER *) t1;
KHE_LAYER layer2 = * (KHE_LAYER *) t2;
int value1, value2, demand1, demand2;
if(KheLayerVisitNum(layer1) != KheLayerVisitNum(layer2))
return KheLayerVisitNum(layer2) - KheLayerVisitNum(layer1);

value1 = KheLayerDuration(layer1) - KheLayerMeetCount(layer1) +
KheLayerAssignedDuration(layer1);

value2 = KheLayerDuration(layer2) - KheLayerMeetCount(layer2) +
KheLayerAssignedDuration(layer2);

if(value1 != value2)
return value2 - value1;

demand1 = KheLayerDemand(layer1);
demand2 = KheLayerDemand(layer2);
if(demand1 != demand2)
return demand2 - demand1;

return KheLayerParentNodeIndex(layer1) -
KheLayerParentNodeIndex(layer2);

}

210 Chapter 10. Time Solvers

As a last resort it compares total demand, then layer indexes, to give a non-zero result in all cases:
qsort’s specification is non-deterministic, which is best avoided, if the result is zero.

KheNodeLayeredAssignTimes sets thetime_vizier_node option tofalse before making
the call that repairs the first layer, and resets it to its original value afterwards. It’s a small point,
but a vizier node would be redundant when repairing the first layer.

Let thewhole-timetable monitorsbe the limit idle times, cluster busy times, and limit busy
times monitors. These depend on the whole timetable of their resource, or large parts of it. The
other resource monitors either depend on local parts of the timetable (avoid clashes and avoid
unavailable times monitors) or are independent of the timetable (limit workload monitors).

In practice, evaluating a whole-timetable monitor before its resource’s layer is assigned is
problematical, since it depends on the whole timetable, which does not exist then. For example,
a partial timetable may have idle times which could well be filled later when its resource’s other
meets are assigned times. Accordingly,KheNodeLayeredAssignTimes begins by detaching all
whole-timetable monitors of all resources in all its layers. Just before assigning each layer, it
attaches the whole-timetable monitors of the resources of the layer.

This detachment of whole-timetable monitors is similar to the detachment of irregular
monitors during the assignment of one layer by Elm (Section 10.6.5). Both detachments are
done because the monitors in question would not produce useful cost information if attached.
However, in the case of Elm that is because of the particular algorithm employed, whereas here
it is because of something more fundamental: the fact that only a partial timetable is present.

The remainder of this section describes the three extra things that are done when the
time_node_regularity option ofoptions is true.

First, when a meet from another layer is already assigned (because it is preassigned,
usually), it is good to make that same assignment to a meet of the same duration in the first layer,
for regularity between the two meets. Such an assignment to a meet of the first layer is called
a parallel assignment. If there is a node from another layer containing two or more assigned
meets, then it is good to make the corresponding parallel assignments within one node of the first
layer, for regularity between the nodes; and if two nodes from one layer contain assigned meets,
it is good to make the corresponding parallel assignments to distinct nodes of the first layer. The
layer solver that makes these parallel assignments to the meets of the first layer is called only
whentime_node_regularity is true, but it is also available separately:

bool KheLayerParallelAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

It makes parallel assignments tolayer heuristically, returningtrue if every assigned meet in
every sibling layer oflayer has a parallel assignment afterwards. It uses no options.

Second,KheElmLayerAssign takes a spread events constraint as an optional parameter.
Whentime_node_regularity is true, KheNodeLayeredAssignTimes searches the instance
for a spread events constraint with as many points of application as possible, and passes this
constraint (if any) toKheElmLayerAssign.

Third, and most important, whentime_node_regularity is true, after the first layer has
been assigned and optionally repaired,KheNodeLayeredAssignTimes uses the first layer’s
assignments to define zones in the parent node, by callingKheLayerInstallZonesInParent

(Section 5.4) andKheNodeExtendZones (Section 9.6). These zones encourage the following

10.8. Layered time assignment 211

calls toKheElmLayerAssign andKheEjectionChainLayerRepairTimes to find and preserve
zone-regular assignments.

10.8.3. A complete time solver

Time solver

bool KheCycleNodeAssignTimes(KHE_NODE cycle_node, KHE_OPTIONS options);

combines the ideas of this chapter into one solver that assigns the meets in the proper descendants
of cycle_node, assumed to be the cycle node.

After first assigning preassigned meets,KheCycleNodeAssignTimes assigns times layer
by layer usingKheNodeLayeredAssignTimes (Section 10.8.2). Then it removes any regularity
features (zones and interior nodes) installed earlier and returns.

KheCycleNodeAssignTimes is influenced by three options:time_cluster_meet_domains,
which causes meet domains to be clustered usingKheSolnClusterAndLimitMeetDomains

(Section 10.3.3) at the start and loosened when the regularity features are loosened;
time_tighten_domains, which causes resource domains to be tightened (Section
11.3.4) at the start and loosened at the end; andtime_node_repair, which causes
KheEjectionChainNodeRepairTimes (Section 10.7.2) to be called twice at the end, once
before and once after regularity features are removed. Other options influence the calls to
KheNodeLayeredAssignTimes.

Chapter 11. Resource Solvers

A resource solverassigns resources to tasks, or changes existing resource assignments. This
chapter presents the resource solvers packaged with KHE.

11.1. Specification

The recommended interface for resource solvers, defined inkhe.h, is

typedef bool (*KHE_TASKING_SOLVER)(KHE_TASKING tasking,
KHE_OPTIONS options);

It assigns resources to some of the tasks oftasking, influenced byoptions, returningtrue if
it changed, or at least usually changes, the solution. Taskings were defined in Section 5.5.

Except for preassignments, there is no reason to assign resources, at least in large numbers,
before times are assigned. Accordingly, a resource solver may choose to assume that all meets
have been assigned times. It may alter time assignments in its quest for resource assignments.

A split assignmentis an assignment of two or more distinct resources to the tasks monitored
by an avoid split assignments monitor. Apartial assignmentis an assignment of resources to
some of these same tasks, but not all. An assignment can be both split and partial.

11.2. The resource assignment invariant

If all tasks have duration 1, then the matching defines an assignment of resources to tasks which
maximizes the number of assignments. Although larger durations are common, and maximizing
the number of assignments is not the only objective,still it is clear from this fact that the matching
deserves a central place in resource assignment.

Accordingly, the author’s work in resource assignment [9] emphasizes algorithms that
preserve the following condition, called theresource assignment invariant:

The number of unmatchable demand tixels equals its initial value.

Assignments are permitted only when the number of unmatchable demand tixels does not
increase. This keeps the algorithmson a path that cannot lead to new violations of required avoid
clashes constraints, avoid unavailable times constraints, limit busy times constraints, and limit
workload constraints. In practice, most tasks can be assigned while preserving this invariant.

The invariant is not usually checked after each individual operation. Rather, a sequence of
related operations is carried out, and then the number of unmatchable demand tixels at the end
of the sequence is compared with the number at the start. If it has increased, the sequence of
operations needs to be undone. Such sequences were calledatomic sequencesin Section 4.10,
where the following code (using a mark object) was recommended for obtaining them:

212

11.2. The resource assignment invariant 213

mark = KheMarkBegin(soln);
success = SomeSequenceOfOperations(...);
KheMarkEnd(mark, !success);

When preserving the resource invariant, this needs to be changed to

mark = KheMarkBegin(soln);
init_count = KheSolnMatchingDefectCount(soln);
success = SomeSequenceOfOperations(...);
if(KheSolnMatchingDefectCount(soln) > init_count)
success = false;

KheMarkEnd(mark, !success);

This works even without the matching, since thenKheSolnMatchingDefectCount returns 0.

As a simple but effective aid to getting this right, this code is encapsulated in functions

void KheAtomicOperationBegin(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant);

bool KheAtomicOperationEnd(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant, bool success);

which may be placed before and after a sequence of operations, like this:

KheAtomicOperationBegin(soln, &mark, &init_count, resource_invariant);
success = SomeSequenceOfOperations(...);
KheAtomicOperationEnd(soln, &mark, &init_count, resource_invariant,
success);

Heremark and init_count are variables of typeKHE_MARK and int, not used for anything
else,resource_invariant is true if the operations must preserve the resource invariant to
be considered successful, andsuccess is their diagnosis of their own success, not including
checking the resource invariant.KheAtomicOperationEnd returnstrue if success istrue and
(if resource_invariant is true) the number of unmatchable demand tixels did not increase:

void KheAtomicOperationBegin(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant)

{

*mark = KheMarkBegin(soln);

*init_count = KheSolnMatchingDefectCount(soln);
}

bool KheAtomicOperationEnd(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant, bool success)

{
if(resource_invariant &&

KheSolnMatchingDefectCount(soln) > *init_count)
success = false;

KheMarkEnd(*mark, !success);
return success;

}

214 Chapter 11. Resource Solvers

The code is trivial, but useful because it encapsulates a common but slightly confusing pattern.

If the resource invariant is being enforced, there may be no need to include the cost of
demand monitors in the solution cost, since their cost cannot increase. They must continue to
monitor the solution, however, so detaching is not appropriate. Function

void KheDisconnectAllDemandMonitors(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);

disconnects all demand monitors (or all demand monitors which monitor entities of typert,
if rt is non-NULL) from all their parents, including the solution object if it is a parent. Thus, as
required, they continue to monitor the solution, but the costs they compute are not added to the
cost of any group monitor.KheSolnMatchingDefectCount still works, however, and there is
nothing to prevent them from being made children of other group monitors later.

11.3. Resource-structural solvers

A resource-structural solveris a solver that changes how tasks are organized, rather than actually
assigning resources. Arguably, the solvers presented in this section really belong in Chapter 9,
but the structural solvers presented there are basically about time, not resources.

11.3.1. Task bound groups

Task domains are reduced by adding task bound objects to tasks (Section 4.9.3). Frequently,
task bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of task bounds—but it is convenient to have a
standard for it, so KHE defines a typeKHE_TASK_BOUND_GROUP with suitable operations.

To create a task bound group, call

KHE_TASK_BOUND_GROUP KheTaskBoundGroupMake(void);

To add a task bound to a task bound group, call

void KheTaskBoundGroupAddTaskBound(KHE_TASK_BOUND_GROUP tbg,
KHE_TASK_BOUND tb);

To visit the task bounds of a task bound group, call

int KheTaskBoundGroupTaskBoundCount(KHE_TASK_BOUND_GROUP tbg);
KHE_TASK_BOUND KheTaskBoundGroupTaskBound(KHE_TASK_BOUND_GROUP tbg, int i);

To delete a task bound group, including deleting all the task bounds in it, call

bool KheTaskBoundGroupDelete(KHE_TASK_BOUND_GROUP tbg);

This function returnstrue when every call it makes toKheTaskBoundDelete returnstrue.

11.3.2. Task trees

What meets do for time, tasks do for resources. A meet has a time domain and assignment; a
task has a resource domain and assignment. Link events constraints cause meets to be assigned

11.3. Resource-structural solvers 215

to other meets; avoid split assignments constraints cause tasks to be assigned to other tasks.

There are differences. Tasks lie in meets, but meets do not lie in tasks. Task assignments do
not have offsets, because there is no ordering of resources like chronological order for times.

Since the layer tree is successful in structuring meets for time assignment, let us see what
an analogous tree for structuring tasks for resource assignment would look like. A layer tree is a
tree, whose nodes each contain a set of meets. The root node contains the cycle meets. A meet’s
assignment, if present, lies in the parent of its node. By convention, meets lying outside nodes
have fixed assignments to meets lying inside nodes, and those assignments do not change.

A task tree, then, is a tree whose nodes each contain a set of tasks. The root node contains
the cycle tasks (or there might be several root nodes, one for each resource type). A task’s
assignment, if present, lies in the parent of its node. By convention, tasks lying outside nodes
have fixed assignments to tasks lying inside nodes, and those assignments do not change.

TypeKHE_TASKING is KHE’s nearest equivalent to a task tree node. It holds an arbitrary set
of tasks, but there is no support for organizing taskings into a tree structure, since that does not
seem to be needed. It is useful, however, to look at how tasks are structured in practice, and to
relate this to task trees, even though they are not explicitly supported by KHE.

A task is assigned to a non-cycle task and fixed, to implement an avoid split assignments
constraint. Such tasks would therefore lie outside nodes (if there were any). When a solver as-
signs a task to a cycle task, the task would have to lie in a child node of a node containing the
cycle tasks (again, if there were any). So there are three levels: a first level of nodes containing
the cycle tasks;a second level of nodescontainingunfixed taskswanting to be assigned resources;
and a third level of fixed, assigned tasks that do not lie in nodes.

This shows that the three-way classification of tasks presented in Section 4.9.1, into cycle
tasks, unfixed tasks, and fixed tasks, is a proxy for the missing task tree structure. Cycle tasks
are first-level tasks, unfixed tasks are second-level tasks, and fixed tasks are third-level tasks.
KHE_TASKING is only needed for representing second-level nodes, since tasks at the other levels
do not require assignment. By convention, then, taskings will contain only unfixed tasks.

11.3.3. Task tree construction

KHE offers a solver for building a task tree holding the tasks of a given solution:

void KheTaskTreeMake(KHE_SOLN soln, KHE_TASK_JOB_TYPE tjt,
KHE_OPTIONS options);

Like any good solver, this function has no special access to data behind the scenes. Instead, it
works by calling basic operations and helper functions:

• It calls KheTaskingMake to make one tasking for each resource type ofsoln’s instance,
and it callsKheTaskingAddTask to add the unfixed tasks of each type to the tasking it
made for that type. These taskings may be accessed by callingKheSolnTaskingCount and
KheSolnTasking as usual, and they are returned in an order suited to resource assignment,
as follows. Taskings for whichKheResourceTypeDemandIsAllPreassigned(rt) istrue
come first. Their tasks will be assigned already ifKheSolnAssignPreassignedResources

has been called, as it usually has been. The remaining taskings are sorted by decreasing
order of KheResourceTypeAvoidSplitAssignmentsCount(rt) . These functions are

216 Chapter 11. Resource Solvers

described in Section 3.5.1. Of course, the user is not obliged to follow this ordering. It is a
precondition ofKheTaskTreeMake thatsoln must have no taskings when it is called.

• It callsKheTaskAssign to convert resource preassignments into resource assignments, and
to satisfy avoid split assignments constraints, as far as possible. Existing assignments are
preserved (no calls toKheTaskUnAssign are made).

• It callsKheTaskAssignFix to fix the assignments it makes. These may be removed later.

• It calls KheTaskSetDomain to set the domains of tasks to satisfy preassigned resources,
prefer resources constraints, and other influences on task domains, as far as possible.
KheTaskTreeMake never adds a resource to any domain, however; it either leaves a domain
unchanged, or reduces it to a subset of its initial value.

These elements interact in ways that make them impossible to separate. For example, a prefer
resources constraint that applies to one task effectively applies to all the tasks that are linked
to it, directly or indirectly, by avoid split assignments constraints. The two parameters not yet
mentioned,tjt andoptions, are explained below.

The implementation ofKheTaskTreeMake has two stages. The first creates one tasking for
each resource type ofsoln’s instance, in the order described, and adds to each the unfixed tasks
of its type. This stage can be carried out separately by repeated calls to

KHE_TASKING KheTaskingMakeFromResourceType(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt);

which makes a tasking containing the unfixed tasks ofsoln of typert, or of all types ifrt is
NULL. It aborts if any of these unfixed tasks already lies in a tasking.

The second stage is more complex. It applies public function

bool KheTaskingMakeTaskTree(KHE_TASKING tasking, KHE_TASK_JOB_TYPE tjt,
KHE_TASK_BOUND_GROUP tbg, KHE_OPTIONS options);

to each tasking made by the first stage. WhenKheTaskingMakeTaskTree is called from within
KheTaskTreeMake, its parameters other thantasking are inherited fromKheTaskTreeMake.

As specified forKheTaskTreeMake, KheTaskingMakeTaskTree assigns tasks and tightens
domains; it does not unassign tasks or loosen domains. Iftbg is non-NULL, any task bounds
created while tightening domains are added totbg. If the resource_invariant option of
options is true, only assignments and tightenings that preserve the resource assignment
invariant (Section 11.2) are kept. Tasks assigned to non-cycle tasks have their assignments fixed,
and cease to be unfixed tasks, so are deleted fromtasking.

The implementation ofKheTaskingMakeTaskTree imitates the layer tree construction
algorithm: it appliesjobs in decreasing priority order. There are fewer kinds of jobs, but the
situation is more complex in another way: sometimes, some kinds of jobs are wanted but not
others. The three kinds of jobs of highest priority install existing domains and task assignments,
and assign resources to unassigned tasks derived from preassigned event resources. These jobs
are always included; the first two always succeed, and so does the third unless the user has made
peculiar task or domain assignments earlier. The other kinds of jobs are optional, and parameter

11.3. Resource-structural solvers 217

tjt of KheTaskingMakeTaskTree says which of them are wanted. Its type is

typedef enum {
KHE_TASK_JOB_HARD_PRC = 1,
KHE_TASK_JOB_SOFT_PRC = 2,
KHE_TASK_JOB_HARD_ASAC = 4,
KHE_TASK_JOB_SOFT_ASAC = 8,
KHE_TASK_JOB_PARTITION = 16

} KHE_TASK_JOB_TYPE;

As the reader has probably guessed,tjt is actually a set.

If KHE_TASK_JOB_HARD_PRC is included intjt, a job is made for each point of application
of each required prefer resources constraint of non-zero weight. The priority of the job is the
combined weight of its constraint, and it attempts to reduce the domains of the tasks oftasking

monitored by the constraint’s monitors so that they are subsets of the constraint’s domain.
KHE_TASK_JOB_SOFT_PRC is the same, except that it requests jobs for non-required constraints.

If KHE_TASK_JOB_HARD_ASAC is included intjt, a job is made for each point of application
of each hard avoid split assignments constraint of non-zero weight. Its priority is the combined
weight of its constraint, and it attempts to assign tasks to each other so that all the tasks of the
job’s point of application of the constraint are assigned, directly or indirectly, to the same root
task. Again, only tasks lying intasking are affected.KHE_TASK_JOB_SOFT_ASAC is the same,
except that it requests jobs for soft constraints.

If KHE_TASK_JOB_PARTITION is included intjt, a very peculiar job, of minimal priority,
is included. The remainder of this section is devoted to explaining it.

We begin by explaining the circumstances in which it is useful. For definiteness, suppose
we are dealing with teachers, and that they have partitions (Section 3.5.1) which are their
faculties (English, Mathematics, Science, and so on). Some partitions may be heavily loaded
(that is, required to supply teachers for tasks whose total workload approaches the total available
workload of their resources) while others are lightly loaded.

Some tasks may be taught by teachers from more than one partition. Thesemulti-partition
tasksshould be assigned to teachers from lightly loaded partitions, and so should not overlap
in time with other tasks from these partitions.KHE_TASK_JOB_PARTITION tightens the domain
of each multi-partition task to one partition; the choice of partition is explained below. It is best
to do this after preassigned meets have been assigned, but before general time assignment. The
tightened domains encourage time assignment to avoid the undesirable overlaps.

After time assignment, the changes should be removed, since otherwise they constrain
resource assignment unnecessarily. A task bound group can be used to do this:

tighten_tbg = KheTaskBoundGroupMake(soln);
for(i = 0; i < KheSolnTaskingCount(soln); i++)
KheTaskingTightenToPartition(KheSolnTasking(soln, i),
tighten_tbg, options);

... assign times ...
KheTaskBoundGroupDelete(tighten_tbg);

KheTaskingTightenToPartition, defined below, wraps a call toKheTaskingMakeTaskTree.

218 Chapter 11. Resource Solvers

This job does nothing when the tasking has no resource type, or the tasks of its resource type
are all preassigned according toKheResourceTypeDemandIsAllPreassigned (Section 3.5.1),
or the resource type has no partitions, or its number of partitions is less than four or more than
one-third of its number of resources. Nothing useful can be done in these cases.

Tasks whose domains lie entirely within one partition are not touched. The remaining
multi-partition tasks are sorted by decreasing combined weight then duration, except that tasks
with adominant partitioncome first. A task with an assigned resource has a dominant partition,
namely the partition that its assigned resource lies in. An unassigned task has a dominant
partition when at least three-quarters of the resources of its domain come from that partition.

For each task in turn, an attempt is made to tighten its domain so that it is a subset of one
partition. If the task hasa dominant partition,only that partition is tried. Otherwise, the partitions
that the task’s domain intersects with are tried one by one, stopping at the first success, after
sorting them by decreasing average available workload (defined next).

Define theworkload supplyof a partition to be the sum, over the resourcesr of the partition,
of the number of times in the cycle minus the number of workload demand monitors forr in
the matching. Define theworkload demandof a partition to be the sum, over all taskst whose
domain is a subset of the partition,of the workload oft. Then theaverage available workloadof
a partition is its workload supply minus its workload demand,divided by its number of resources.
Evidently, if this is large, the partition is lightly loaded.

Each successful tightening increases the workload demand of its partition. This ensures that
equally lightly loaded partitions share multi-partition tasks equally.

In a task with an assigned resource, the dominant partition is the only one compatible
with the assignment. In a task without an assigned resource, preference is given to a dominant
partition, if there is one, for the following reason. Schools often have a fewgeneralist teachers
who are capable of teaching junior subjects from several faculties. These teachers are useful for
fixing occasional problems, smoothing out workload imbalances, and so on. But the workload
that they can give to faculties other than their own is limited and should not be relied on. For
example, suppose there are five Science teachers plus one generalist teacher who can teach junior
Science. That should not be taken by time assignment as a licence to routinely schedule six
Science meets simultaneously. Domain tightening to a dominant partition avoids this trap.

Tightening by partition works best when theresource_invariant option of options is
true. For example, in a case like Sport where there are many simultaneous multi-partition tasks,
it will then not tighten more of them to a lightly loaded partition than there are teachers in that
partition. Assigning preassigned meets beforehand improves the effectiveness of this check.

11.3.4. Other task tree solvers

This section documents some miscellaneous functions that reorganize task trees, represented by
taskings. They assume that only unfixed tasks lie in taskings, and they preserve this condition.
Some merely callKheTaskingMakeTaskTree, passing certain combinations of parameters;
others are separate algorithms.

The operation of tightening domains to a partition was discussed at some length above. For
convenience, this operation is packaged as function

11.3. Resource-structural solvers 219

bool KheTaskingTightenToPartition(KHE_TASKING tasking,
KHE_OPTIONS options);

It tightens the domains of some tasks, without any wholesale reconstruction of the task tree:

bool KheTaskingTightenToPartition(KHE_TASKING tasking,
KHE_OPTIONS options)

{
return KheTaskingMakeTaskTree(tasking, KHE_TASK_JOB_PARTITION,
options);

}

It is best if theresource_invariant option ofoptions is true here.

A good way to minimize split assignments is to prohibit them at first but allow them later.
To change a tasking from the first state to the second, call

void KheTaskingAllowSplitAssignments(KHE_TASKING tasking,
bool unassigned_only);

It unfixes and unassigns all tasks assigned to the tasks oftasking and adds them totasking.
If one of the original unfixed tasks is assigned (to a cycle task), the tasks assigned to it are as-
signed to that task, so that existing resource assignments are not forgotten. Ifunassigned_only

is true, these actions are only applied to the unassigned tasks oftasking. (This option
is included for completeness, but it is not recommended, since it leaves few choices open.)
KheTaskingAllowSplitAssignments preserves the resource assignment invariant.

If any room or any teacher is better than none, then it will be worth assigning any resource
to tasks that remain unassigned at the end of resource assignment. Function

void KheTaskingEnlargeDomains(KHE_TASKING tasking, bool unassigned_only);

permits this by enlarging the domains of the tasks oftasking and any tasks assigned to them
(and so on recursively) to the full set of resources of their resource types. Ifunassigned_only

is true, only the unassigned tasks oftasking participate in these changes. The tasks are visited
in postorder—that is, a task’s domain is enlarged only after the domains of the tasks assigned to
it have been enlarged—ensuring that the operation cannot fail.

11.3.5. Task groups

There are cases where two tasks are interchangeable as far as resource assignment is concerned,
because they demand the same kinds of resources at the same times. Thetask groupembodies
KHE’s approach to taking advantage of interchangeable tasks.

Thefull task setof an unfixed task is the task itself and all the tasks assigned to it, directly
or indirectly (all its followers), omitting tasks that do not lie in a meet. An unfixed task istime-
completeif each task of its full task set lies in a meet that has been assigned a time. Two time-
complete tasks aretime-equalif their full task sets have equal cardinality, and the two sets can
be sorted so that corresponding tasks have equal starting times, durations, and workloads. Two
unfixed tasks areinterchangeableif they are time-complete and time-equal, and their domains
are equal. When two resources are assigned to two interchangeable tasks, either resource can be

220 Chapter 11. Resource Solvers

assigned to either task and it does not matter which is assigned to which.

A task groupis a set of pairwise interchangeable tasks. Task groups occur naturally when
there are linked events, or when time assignments are regular. Virtually any resource assignment
algorithm can benefit from task groups. Assigning to a task group rather than to a task eliminates
symmetries that can slow down searching. A given resource can only be assigned to one task of
a task group, since its tasks overlap in time, so task groups help with estimating realistically how
many resources are available, and how much workload is open to a resource.

Objects of typeKHE_TASK_GROUP hold one set of interchangeable tasks, and objects of type
KHE_TASK_GROUPS hold a set of task groups. Such a set can be created by calling

KHE_TASK_GROUPS KheTaskGroupsMakeFromTasking(KHE_TASKING tasking);

It places every task oftasking into one task group. The task groups are maximal.

To remove a set of task groups (but not their tasks), call

void KheTaskGroupsDelete(KHE_TASK_GROUPS task_groups);

To access the task groups, call

int KheTaskGroupsTaskGroupCount(KHE_TASK_GROUPS task_groups);
KHE_TASK_GROUP KheTaskGroupsTaskGroup(KHE_TASK_GROUPS task_groups, int i);

To access the tasks of a task group, call

int KheTaskGroupTaskCount(KHE_TASK_GROUP task_group);
TASK KheTaskGroupTask(KHE_TASK_GROUP task, int i);

There must be at least one task in a task group, otherwise the task group would not have been
made. Task groups are not kept up to date as the solution changes, so if time assignments are
being altered the affected tasks cannot be relied upon to remain interchangeable.

The tasks of a task group have the same total duration, total workload, and domain, and
these common values are returned by

int KheTaskGroupTotalDuration(KHE_TASK_GROUP task_group);
float KheTaskGroupTotalWorkload(KHE_TASK_GROUP task_group);
KHE_RESOURCE_GROUP KheTaskGroupDomain(KHE_TASK_GROUP task_group);

KheTaskGroupTotalDuration is the value ofKheTaskTotalDuration shared by the tasks, not
the sum of their durations; and similarly forKheTaskGroupTotalWorkload.

For the convenience of algorithms that use task groups, function

int KheTaskGroupDecreasingDurationCmp(KHE_TASK_GROUP tg1,
KHE_TASK_GROUP tg2);

is a comparison function that may be used to sort task groups by decreasing duration.

Because the tasks of a task group are interchangeable, it does not matter which of them is
assigned when assigning resources to them. This makes the following functions possible:

11.3. Resource-structural solvers 221

int KheTaskGroupUnassignedTaskCount(KHE_TASK_GROUP task_group);
bool KheTaskGroupAssignCheck(KHE_TASK_GROUP task_group, KHE_RESOURCE r);
bool KheTaskGroupAssign(KHE_TASK_GROUP task_group, KHE_RESOURCE r);
void KheTaskGroupUnAssign(KHE_TASK_GROUP task_group, KHE_RESOURCE r);

KheTaskGroupUnassignedTaskCount returns the number of unassigned tasks intask_group;
KheTaskGroupAssignCheck checks whetherr can be assigned to a task oftask_group (by
finding the first unassigned task and checking there);KheTaskGroupAssign is the same, only
it actually makes the assignment, usingKheTaskAssign, if it can; andKheTaskGroupUnAssign
finds a task oftask_group currently assignedr, and unassigns that task.

The tasks of a task group may have different constraints, in which case assigning one may
change the solution cost differently from assigning another. This is handled heuristically as
follows. The first timeKheTaskGroupAssign returnstrue, it tries assigningr to each task of
the task group, notes the solution cost after each, and sorts the tasks into increasing order of this
cost. Then it and all later calls assign the first unassigned task in this order.

The usual debug functions are available:

void KheTaskGroupDebug(KHE_TASK_GROUP task_group, int verbosity,
int indent, FILE *fp);

void KheTaskGroupsDebug(KHE_TASK_GROUPS task_groups, int verbosity,
int indent, FILE *fp);

print task_group andtask_groups ontofp with the given verbosity and indent.

11.4. Most-constrained-first assignment

When each unfixed task has no followers, so that each demands a resource for a single interval
of time, as is usual with room assignment, a simple ‘most constrained first’heuristic assignment
algorithm that maintains the resource assignment invariant is usually sufficient to obtain a
virtually optimal assignment. Function

bool KheMostConstrainedFirstAssignResources(KHE_TASKING tasking,
KHE_OPTIONS options);

implements this algorithm. It attempts to assign each unassigned unfixed task oftasking,
leaving assigned ones untouched. For each such task, it maintains the set of resources that can
currently be assigned to the task without increasing the number of unmatchable demand tixels.
It repeatedly selects a task with the fewest number of such resources, assigns it if possible, and
repeats until all tasks have been handled.

The chosen assignment must preserve the resource assignment invariant. If no resources
satisfy that condition, the task remains unassigned. Among all resources that satisfy it, as a
first priority a resource whose assignment minimizesKheSolnCost is chosen, and as a second
priority, resources that have already been assigned to other tasks of the event resources of the
task and the tasks assigned to it are preferred. In this way, even when an avoid split assignments
constraint is not present, the algorithm favours assigning the same resource to all the tasks of a
given event resource, for regularity.

222 Chapter 11. Resource Solvers

In fact, KheMostConstrainedFirstAssignResources assigns task groups (Section
11.3.5), not individual tasks. Each task of a task group is assignable by the same resources, so
one list of suitable resources is kept per task group. At each step, a task group is selected for
assignment for which the number of suitable resources minus the number of unassigned tasks
is minimal.

When a resource is assigned to a task, it becomes less available, so its suitability for
assignment to its other task groups is rechecked. If it proves to be no longer assignable to some
of them, their priorities are changed. The task groups are held in a priority queue (Appendix
A.3), which allows their queue positions to be updated efficiently when their priorities change.

11.5. Resource packing

Topacka resource means to find assignments of tasks to the resource that make the solution cost
as small as possible, while preserving the resource assignment invariant, in effect utilizing the
resource as much as possible [9]. Function

bool KheResourcePackAssignResources(KHE_TASKING tasking,
KHE_OPTIONS options);

assigns resources to the unassigned tasks oftasking using resource packing, as follows.

The tasks are clustered into task groups (Section 11.3.5). Two numbers help to estimate the
difficulty of utilizing a resource effectively: thedemand durationand thesupply duration. A
resource’s demand duration is the total duration of the task groups it is assignable to. Its supply
duration is the number of times it is available for assignment: the cycle length,minus the number
of its workload demand monitors, minus the total duration of any tasks it is already assigned to.

The resources are placed in a priority queue, ordered by increasing demand duration minus
supply duration. That is, the less demand there is for the resource, or the more supply, the more
important it is to pack it sooner rather than later. In practice, part-time teachers come first in this
order, which is good, because they are difficult to utilize effectively.

The main loop of the algorithm removes a resource of minimum priority from the priority
queue and packs it. If this causes any task groups to become completely assigned, they are
unlinked from the resources assignable to them, reducing those resources’demand durations and
thus altering their position in the priority queue. This is repeated until the queue is empty.

Each resourcer is packed using a binary tree search: at each tree node, one available
task group is either assigned tor, or not. The task groups are taken in decreasing order of the
maximum, over all taskst of the task group, ofKheMeetDemand(m), wherem is the first unfixed
meet on the chain of assignments out of the meet containingt. This gives preference to tasks
whose meets are hard to move, reasoning that the leftovers will be given split assignments, and
repairing them may require moving their meets. The search tree has a moderate depth limit. At
the limit, the algorithm switches to a simple heuristic which assigns as many tasks as it can.

11.6. Split assignments

After solver functions such asKheMostConstrainedFirstAssignResources (Section 11.4)

11.6. Split assignments 223

andKheEjectionChainRepairResources (Section 11.8) have assigned resources to most tasks,
some tasks may remain unassigned. These will have to receive split assignments. Function

bool KheFindSplitResourceAssignments(KHE_TASKING tasking,
KHE_OPTIONS options);

reduces the cost of the solution as much as it can, by making split assignments to the unassigned
tasks oftasking while maintaining the resource assignment invariant. Any tasks which were
unassigned to begin with are replaced intasking by their child tasks.

At the core ofKheFindSplitResourceAssignments is a procedure which takes every pair
of resources capable of constituting a split assignment to some task and tries to assign them
greedily to the task, keeping the assignment that produces the lowest solution cost. However,
before entering on that,KheFindSplitResourceAssignments eliminates resources that cannot
be assigned even to one child task, makes assignments that are forced because there is only one
available resource (not forgetting that one forced assignment might lead to another, or that once
a resource has been assigned to one child task it makes sense to assign it to as many others as
possible), and divides each task into independent components (in the sense that no resource is
assignable to two components). In practice, much of what it does is more or less forced.

11.7. Kempe and ejecting task moves

KHE offers several functions in the area of Kempe and ejecting meet moves (Section 10.2.2),
but at present there is only one function in the area of Kempe and ejecting task moves:

bool KheTaskEjectingMoveResource(KHE_TASK task, KHE_RESOURCE r);

This attempts to movetask to r, unassigningr from all clashing tasks, and returnstrue if it
succeeds. Unlike the functions for ejecting meet moves, it does not consult the matching, nor
does it require the presence of any group monitor. Instead, it works as follows.

It callsKheResourceHardUnavailableTimeGroup(r) (Section 3.5.3) to determine when
r is unavailable, returningfalse if task is running at any of those times. Next, by consulting
r’s timetable monitor at the times oftask, it finds the tasks assignedr that clash withtask and
unassignsr from them. If any cannot be unassigned (because they are fixed or preassigned), it
returnsfalse. Finally, it callsKheTaskMoveResource(task, r) and returns what it returns.

Failed ejecting task moves leave the solution in its state at the point of failure, so need to
be used with marks. Ejecting task moves do not attempt to preserve the resource assignment
invariant, leaving that to higher-level solvers.

11.8. Ejection chain repair

Function

bool KheEjectionChainRepairResources(KHE_TASKING tasking,
KHE_OPTIONS options);

uses ejection chains (Chapter 12) to improve the solution by changing the assignments of the
tasks oftasking. For full details, consult Section 12.7.

224 Chapter 11. Resource Solvers

11.9. Resource pair repair

One idea for repairing resource assignments is to unassign all tasks assigned to two resources,
then try to reassign those tasks to the same two resources in a better way—an example of
very large-scale neighbourhood (VLSN) search [1, 10]. The search space, although formally
exponential in size, is often small enough to search completely, giving an optimal result.

11.9.1. The basic function

The basic function for carrying out this kind of repair is

bool KheResourcePairReassign(KHE_SOLN soln, KHE_RESOURCE r1,
KHE_RESOURCE r2, bool resource_invariant, bool fix_splits);

It knows that when one task is assigned to another, the two tasks must be assigned the same re-
source;and it believes that tasks that overlap in time must be assigned different resources. It does
not change task domains, fixed assignments, or assignments of tasks to non-cycle tasks. If it can
find a reassignment tor1 andr2 of the tasks currently assigned tor1 andr2 which satisfies these
conditions and givessoln a lower cost, it makes it and returnstrue; otherwise it changes nothing
and returnsfalse. If resource_invariant is true, only changes that preserve the resource
assignment invariant are allowed.KheResourcePairReassign accepts any resources, but it is
most likely to succeed on resources with similar capabilities that are involved in defects.

If fix_splits is true, the algorithm focuses on repairing split assignments, by forcing
tasks unassigned by the algorithm which are linked by avoid split assignments constraints of
non-zero cost to be assigned the same resource in the reassignment. This runs faster, because it
has fewer choices to try, but it may overlook other kinds of improvements.

Within the set of tasks assigned tor1 andr2 originally, there may be subsets which are not
assignable to two resources without introducing clashes. Clashes in the original assignments
can cause this, as can split assignments whenfix_splits is set. Such subsets are ignored by
KheResourcePairReassign; their original assignments are left unchanged.

11.9.2. A resource pair solver

Resource solver

bool KheResourcePairRepair(KHE_TASKING tasking, KHE_OPTIONS options);

calls KheResourcePairReassign for many pairs of resources. Theresource_invariant
arguments of all these calls are set to theresource_invariant option of options. Precisely
whatKheResourcePairRepair does depends on theresource_pair option ofoptions, which
has typeKHE_OPTIONS_RESOURCE_PAIR:

typedef enum {
KHE_OPTIONS_RESOURCE_PAIR_NONE,
KHE_OPTIONS_RESOURCE_PAIR_SPLITS,
KHE_OPTIONS_RESOURCE_PAIR_PARTITIONS,
KHE_OPTIONS_RESOURCE_PAIR_ALL

} KHE_OPTIONS_RESOURCE_PAIR;

11.9. Resource pair repair 225

If resource_pair is KHE_OPTIONS_RESOURCE_PAIR_NONE, it does nothing.

If resource_pair is KHE_OPTIONS_RESOURCE_PAIR_SPLITS, then for all pairs of dis-
tinct resources involved in all split assignments oftasking, KheResourcePairRepair calls
KheResourcePairReassign for those two resources, with thefix_splits parameter set to
true. These choices focus the solver on repairing split assignments.

If the value of resource_pair is KHE_OPTIONS_RESOURCE_PAIR_PARTITIONS, then
KheResourcePairReassign callsKheResourcePairRepair for each pair of resources in each
partition of the resource type oftasking, or in all resource types iftasking has no resource
type, with thefix_splits parameter set tofalse. Each resource type with no partitions is
treated as though all resources lie in a single shared partitition. These choices focus the solver on
improving resources’assignmentsgenerally. However the search space is often larger, increasing
the chance that the search will be cut short, losing optimality.

If resource_pair is KHE_OPTIONS_RESOURCE_PAIR_ALL, the behaviour is the same as for
KHE_OPTIONS_RESOURCE_PAIR_PARTITIONS except that partitions are ignored, so that there is a
call onKheResourcePairReassign for every pair of distinct resources of the types involved.

KheResourcePairRepair collects statistics about its calls toKheResourcePairReassign,
held in theresource_pair_calls, resource_pair_successes, andresource_pair_truncs
attributes ofoptions. Each timeKheResourcePairReassign is called,resource_pair_calls
is incremented. Each time it returnstrue, resource_pair_successes is incremented. And
each time it truncates an overlong search (at most once per call),resource_pair_truncs is
incremented. It is up to the caller to make sure these options are initialized and retrieved at the
right moments, using the usual functions for retrieving and setting options (Section 8.4.4).

11.9.3. Partition graphs

Resource pair repair is essentially about two-colouring a clash graph whose nodes are tasks and
whose edges are pairs of tasks that overlap in time. Although the basic idea is simple enough,
the details become quite complicated, especially when optimizing by removing symmetries in
the search. It has proved convenient to build on a separatepartition graphmodule, which is the
subject of this section. It finds the connected components of a graph (calledcomponentshere),
and, if requested, partitions components into twopartsby two-colouring them.

The module stores a graph whose nodes are represented by values of typevoid *. There
are operations for creating and deleting a graph, adding nodes to it, and visiting those nodes:

KHE_PART_GRAPH KhePartGraphMake(KHE_PART_GRAPH_REL_FN rel_fn);
void KhePartGraphDelete(KHE_PART_GRAPH graph);
void KhePartGraphAddNode(KHE_PART_GRAPH graph, void *node);
int KhePartGraphNodeCount(KHE_PART_GRAPH graph);
void *KhePartGraphNode(KHE_PART_GRAPH graph, int i);

Deleting a graph includesdeleting all its componentsand parts,but not itsnodes. These functions
and the others in this section are declared in include filekhe_part_graph.h.

To define the edges, the user passes in arelation functionof typeKHE_PART_GRAPH_REL_FN
which the module calls back whenever it needs to know whether two nodes are connected by an
edge. As the user would define it, this function looks like this:

226 Chapter 11. Resource Solvers

KHE_PART_GRAPH_REL RelationFn(void *node1, void *node2)
{
...

}

where typeKHE_PART_GRAPH_REL is

typedef enum {
KHE_PART_GRAPH_UNRELATED,
KHE_PART_GRAPH_DIFFERENT,
KHE_PART_GRAPH_SAME

} KHE_PART_GRAPH_REL;

ValuesKHE_PART_GRAPH_UNRELATED andKHE_PART_GRAPH_DIFFERENT are the usual options
for clash graphs, the first saying that there is no edge between the two nodes, the second that there
is an edge which requires the two nodes to be coloured with different colours. The third value,
KHE_PART_GRAPH_SAME, says that the two nodes must be coloured the same colour. It is used,
for example, when the two nodes represent tasks which are linked by an avoid split assignments
constraint, and thefix_splits option is in force.

After all nodes have been added, the user may call

void KhePartGraphFindConnectedComponents(KHE_PART_GRAPH graph);

to find the connected components, which may then be visited by

int KhePartGraphComponentCount(KHE_PART_GRAPH graph);
KHE_PART_GRAPH_COMPONENT KhePartGraphComponent(KHE_PART_GRAPH graph, int i);

The graph that a component is a component of may be found by

KHE_PART_GRAPH KhePartGraphComponentGraph(KHE_PART_GRAPH_COMPONENT comp);

and the nodes of a component may be visited by

int KhePartGraphComponentNodeCount(KHE_PART_GRAPH_COMPONENT comp);
void *KhePartGraphComponentNode(KHE_PART_GRAPH_COMPONENT comp, int i);

KhePartGraphFindConnectedComponents considers two nodes to be connected whenrel_fn

returnsKHE_PART_GRAPH_SAME or KHE_PART_GRAPH_DIFFERENT when passed those nodes.

If requested, the module will partition the nodes of a component into two sets, such that
two-colouring the component will give the nodes in one set one colour, and the nodes in the other
set the other colour. This gives exactly two ways to two-colour the component, which is all there
are, since once a colour is assigned to one node, its neighbours must be assigned the other colour,
their neighbours must be assigned the first colour, and so on. To carry out this partitioning, call

void KhePartGraphComponentFindParts(KHE_PART_GRAPH_COMPONENT comp);

After that, to retrieve the two parts, call

11.9. Resource pair repair 227

bool KhePartGraphComponentParts(KHE_PART_GRAPH_COMPONENT comp,
KHE_PART_GRAPH_PART *part1, KHE_PART_GRAPH_PART *part2);

If KhePartGraphComponentFindParts was able to partition the component into two parts,
KhePartGraphComponentParts returnstrue and sets*part1 and*part2 to non-NULL values;
otherwise it returnsfalse and sets them toNULL. To find a part’s enclosing component, call

KHE_PART_GRAPH_COMPONENT KhePartGraphPartComponent(
KHE_PART_GRAPH_PART part);

The nodes of a part may be visited by

int KhePartGraphPartNodeCount(KHE_PART_GRAPH_PART part);
void *KhePartGraphPartNode(KHE_PART_GRAPH_PART part, int i);

as usual.

11.9.4. The implementation of resource pair reassignment

This section describes the implementation ofKheResourcePairReassign. It builds two
partition graphs altogether,afirst graphwhich does the basic analysis,and asecond graphwhich
is used to find and remove symmetries in the first graph.

The same node type is used in both graphs. A node holds a set of tasks. A resource is
assignable to a nodewhen it is assignable to each task of the node. A resource is assignable to
a fixed task when it is assigned to that task (fixed tasks are never unassigned). A resource is
assignable to an unfixed task when it lies in the domain of that task. It is possible for neither,one,
or both resources to be assignable to a node. If neither is assignable, the node isunassignable,
otherwise it isassignable.

When a resource is assignable to a node, there are operations for assigning and unassigning
it. To assign it, assign it to each unfixed task of the node. To unassign it, unassign it from each
unfixed task of the node.

The first graph contains one node for each task initially assignedr1 or r2, containing just
that task. Thus, in the first graph there are no unassignable nodes. Given two nodes, the first
graph’s relation function first checks which resources are assignable to each. If there is no way
to assign the same resource to both nodes, it returnsKHE_PART_GRAPH_DIFFERENT. Otherwise,
if there is no way to assign different resources to the nodes, it returnsKHE_PART_GRAPH_SAME.
Otherwise, iffix_splits is true and the two nodes share an avoid split assignments monitor
of non-zero cost, it returnsKHE_PART_GRAPH_SAME. Otherwise, if the two nodes overlap in time,
it returnsKHE_PART_GRAPH_DIFFERENT. Otherwise it returnsKHE_PART_GRAPH_UNRELATED.

Next, the graph’s connected components are found and partitioned. It is easy to see,
referring to the relation function, that if a component was successfully partitioned there must be
at least one way (and possibly two ways) to assignr1 to the nodes of one part andr2 to the nodes
of the other part. So a component of the first graph is calledassignableif it was successfully
partitioned, andunassignableotherwise.

For each assignable component, the nodes of one part are merged into one node, and the
nodes of the other are merged into a second node. These two nodes are assignable to different
resources in one or two ways. For each unassignable component, all the nodes are merged into

228 Chapter 11. Resource Solvers

a single node. It does not matter whether this node is assignable or not; it is never assigned.

Next, the assignable components are sorted into increasing order of number of possible
assignments. Each of theC assignable components has 1 or 2 possible assignments. A tree
search is carried out which tries each of these on each component in turn. The total search
space size is at mostC2 . This is often small enough to search completely. For safety, the search
only explores both assignments until 512 tree nodes have been visited; after that it tries only one
assignment for each component. In the usual way, each time the tree search reaches a leaf it
compares its solution cost with the best so far, and if it is better (and if the resource assignment
invariant is preserved, if required) it takes a copy of its decisions. At the end, the cost of the best
solution found is compared with the initial solution cost, and if the best solution is better it is
installed; otherwise the initial solution is restored.

The search space often has symmetries which would waste time and cause the node limit
to be reached often enough to compromise optimality in practice if they were not removed. The
rest of this section describes them and howKheResourcePairReassign removes them.

Supposer1 andr2 are Mathematics teachers assigned to two Mathematics courses from
the same form, each split into 4 meets of the same durations, running simultaneously. This gives
4 components and a search space of size42 , yet clearly this could be reduced safely to 1. If two
of the simultaneous meets are made not simultaneous, the search space size can still be reduced
safely, to 2. Iffix_splits is true, each set of 4 meets is related, making 1 component and a
search space of size 2—still unnecessarily large when the meets are simultaneous.

A component issymmetricalif it makes no difference which of its two assignments is
chosen. In that case, its assignment choices can be reduced from 2 to 1 by arbitrarily removing
one, halving the search space size. But note the complicating factor in the Mathematicsexample:
one cannot arbitrarily remove one choice from each component, because some combinations of
choices lead to split assignments and others do not. Instead, a way must be found to first merge
the four components into one, which can then be assigned arbitrarily.

Symmetry arises when the two assignment choices of a component affect monitors in the
same way. They need to have the same effect on the state of monitors, so that no difference arises
when the monitors change state again later in response to changes outside the component.

The two choices always have the same effect on the state of event monitors (no effect at
all), and on the state of assign resources monitors, which care only whether tasks are assigned
resources, not which resources. As far as these kinds of monitors are concerned, all components
are symmetrical. Classify the remaining monitors into three groups: resource monitors, prefer
resources monitors, and avoid split assignments monitors.

A component isr-symmetrical, p-symmetrical, or s-symmetricalwhen it is assignable both
ways and they affect in the same way all resource, prefer resources, or avoid split assignments
monitors that monitor tasks of the component. (In particular, if there are no monitors of some
type, the component is vacuously symmetrical in that type.) Combinations of prefixes denote
conjunctions of these conditions. For example,symmetricalis shorthand forrps-symmetrical.

Although these definitions are clear in principle, they are rather abstract. An algorithm
needs concrete, easily computable conditions that imply the abstract ones and are likely to hold
in practice. Here are the concrete conditionsused byKheResourcePairReassign, assuming that
the component is assignable both ways.

11.9. Resource pair repair 229

Suppose that some component’s two parts run at the same times and have the same total
workload. Then the component is r-symmetrical, because only these things affect resource mon-
itors, except clashes—but component assignments have no clashes in themselves, and since the
two parts run at the same times, they have the same clashes with tasks outside the component.

Suppose that, for every prefer resources monitor of non-zero cost which monitors any task
of some component, eitherr1 andr2 are both preferred by the monitor’s constraint, or they are
both not preferred. Then the component is p-symmetrical.

Suppose that, for each task in some componentc which is monitored by an avoid split
assignments monitor of non-zero cost, every task monitored by that monitor either was not
assignedr1 or r2 originally, or else it lies inc. Then the component is s-symmetrical.

To prove this, take one avoid split assignments monitor, and partition the set of tasks mon-
itored by it into those that were not assignedr1 or r2 originally, and so are beyond the scope of
the reassignment (call themS1), and those that were (call themS2). If the tasks ofS2 lie within
two or more components, then which way those componentsare assigned doesmatter. But if they
lie within one component, then the cost of the monitor will be the same whichever assignment is
chosen. This is becauser1 andr2 do not appear among the resources assigned to the tasks ofS1
(if they did, those tasks would be inS2), so the assignments toS2 introduce fresh resources to the
monitor. If all the tasks ofS2 lie in one part of the component, one fresh resource is introduced
by both assignments; if some lie in one part and the others in the other, two fresh resources are
introduced by both assignments. Either way, the effect on the monitor is the same.

Whenfix_splits is true, all tasks which share an avoid split assignments monitor lie in
the same part, so in the same component. So every component is s-symmetrical in that case.

It is easy to check whether a component is rp-symmetrical. This is done as each component
is partitioned. Merely checking for s-symmetry is not enough: as illustrated by the Mathematics
example, several components may need to be merged (by merging their parts) to produce one
s-symmetrical component. This is done using the second partitioning graph, as follows.

The second-graph nodes are the merged nodes from the first-graph components. When two
nodes come from the same first-graph component,KHE_PART_GRAPH_DIFFERENT is returned by
the relation function. Otherwise, if they share an avoid split assignments monitor of non-zero
cost, it returnsKHE_PART_GRAPH_SAME. Otherwise it returnsKHE_PART_GRAPH_UNRELATED.

Two nodes representing the two parts of a first-graph component must lie in the same
second-graph component, because there is an edge between them. So each second-graph
component is a set of first-graph components linked by avoid split assignments constraints.

For each second-graph component, its first-graph components may be merged if it does
not contain an unassignable first-graph component, at most one of its first-graph components is
not rp-symmetrical, and it is partitionable. The two nodes of the merged component are built by
merging the nodes of each part of the second-graph component. If all the first-graph components
being merged are rp-symmetrical, the resulting component is rps-symmetrical,so either one of its
assignments may be removed. But component merges are valuable even without rps-symmetry.

230 Chapter 11. Resource Solvers

11.10. Resource rematching

Function

bool KheResourceRematch(KHE_TASKING tasking, KHE_OPTIONS options);

repairs the assignments of the tasks oftasking as follows.

Take each tasktk of tasking which is either unassigned, or assigned an unpreferred
resource, or part of a split assignment, or involved in a clash. Letsk be the set of times thattk is
running. Build the setSof all distinct (not necessarily disjoint) such sets of timessk.

The algorithm works for any set of timessk, but it is only tried on the sets of timessk in S,
because only those offer any realistic prospect of improvement. For each such set of timessk,
then, the algorithm proceeds as follows.

Build a bipartite graph as follows. There is one supply node for each resourceri (or each
resourceri of type KheTaskingResourceType(tasking), if that is non-NULL). There is one
demand node for each of these resourcesri, containing the set of tasksTi which lie intasking,
overlapsk in time, and are assigned tori. In addition, for each unassigned individual task which
lies intasking and overlapssk in time there is one demand node containing that task.

Unassign all tasks in all demand nodes. Join a supply nodes to a demand noded whens’s
resource can be assigned to all of the tasks ofd, and weight the edge by the cost of the solution
when that is done. Find a matching in this graph of maximum size and minimum total weight,
and use it to reassign all the tasks. If the resulting solution has smaller cost than the original, use
it; otherwise return to the original solution.

Rematching methods are often inexact [12], but the reassignment found by this rematching
is optimal, assuming that assigning is always better than not assigning. This can be seen by a
careful examination of the 16 constraint types: each is either unaffected by the reassignment, or
else its effect is independent for each resource/task pair, proving that the weights of the edges of
any matching are valid in combination as well as individually.

11.11. Trying unassignments

KHE’s solvers assume that it is always a good thing to assign a resource to a task. However,
occasionally there are cases where cost can be reduced by unassigning a task, because the
cost of the resulting assign resource defect is less than the cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSolnTryTaskUnAssignments(KHE_SOLN soln);

for use at the end. It tries unassigning each task ofsoln in turn. If any unassignment reduces
the cost ofsoln, it is not reassigned. The result istrue if any unassignments were kept.

11.12. Putting it all together

Three decisions face the designer of a resource solver. Should the solver work with split
assignments, or with unsplit ones? Should it preserve the resource assignment invariant, or not?
Should it respect the domains of tasks, or not? Fortunately, KHE makes it easy to write solvers

11.12. Putting it all together 231

that can be used with any combination of these three decisions, as follows.

Get unsplit assignments by building a task tree with avoid split assignments jobs. Allow
split assignmentsby callingKheTaskingAllowSplitAssignments (Section 11.3.4). Either way,
the solver assigns resources to unfixed tasks, without knowing or caring if they have followers.

By enclosing each attempt to change the solution inKheAtomicTransactionBegin and
KheAtomicTransactionEnd (Section 11.2), a solver can preserve the resource assignment
invariant, or not, depending on the value of a Boolean parameter.

If domains are to be respected, do nothing; if not, then before running the solver, call
KheTaskingEnlargeDomains (Section 11.3.4) to enlarge them to the full set of resources.

A sequence of three functions,

bool KheTaskingAssignResourcesStage1(KHE_TASKING tasking,
KHE_OPTIONS options);

bool KheTaskingAssignResourcesStage2(KHE_TASKING tasking,
KHE_OPTIONS options);

bool KheTaskingAssignResourcesStage3(KHE_TASKING tasking,
KHE_OPTIONS options);

packages this chapter’s ideas into a three-stage solver which assigns resources to the tasks of
tasking. Called in order, they take a ‘progressive corruption’ approach to the decisions just
described: they are spotless at first, but they slide into the gutter towards the end.

KheTaskingAssignResourcesStage1 first ensures that domains and assignments take
account of all constraints:

KheOptionsSetResourceInvariant(options, true);
tjt = KHE_TASK_JOB_HARD_PRC | KHE_TASK_JOB_SOFT_PRC |

KHE_TASK_JOB_HARD_ASAC | KHE_TASK_JOB_SOFT_ASAC;
KheTaskingMakeTaskTree(tasking, tjt, NULL, options);

Then it assigns resources to the unassigned unfixed tasks oftasking, using resource packing if
there are avoid split assignments constraints, and the simpler most constrained first algorithm
otherwise. This is followed by an ejection chain repair algorithm:

rt = KheTaskingResourceType(tasking);
if(rt == NULL || KheResourceTypeAvoidSplitAssignmentsCount(rt) > 0)
KheResourcePackAssignResources(tasking, options);

else
KheMostConstrainedFirstAssignResources(tasking, options);

KheEjectionChainRepairResources(tasking, options);

So far, there are no split assignments, the resource assignment invariant is preserved,and domains
are respected. The great majority of the tasks, probably, have been assigned resources.

KheTaskingAssignResourcesStage2 calls KheFindSplitResourceAssignments to
build split assignments, andKheTaskingAllowSplitAssignments to permit all tasks, assigned
or not, to be split. It then carries out ejection chain, rematching, and resource pair repairs:

232 Chapter 11. Resource Solvers

rt = KheTaskingResourceType(tasking);
if(KheResourceTypeAvoidSplitAssignmentsCount(rt) > 0)
{
KheFindSplitResourceAssignments(tasking, options);
KheTaskingAllowSplitAssignments(tasking, false);
KheEjectionChainRepairResources(tasking, options);
if(KheOptionsResourceRematch(options))
KheResourceRematch(tasking, options);

KheResourcePairRepair(tasking, options);
}

Since there are split assignments now, the ejection chain algorithm will try to unsplit them (it has
always had an augment function for this, but there have been no split assignments to trigger it
until now). It also tries to assign unassigned tasks, even at the cost of splitting assignments that
were previously unsplit. The calls toKheResourceRematch andKheResourcePairRepair only
act when permitted by the relevant options (Section 8.4).

KheTaskingAssignResourcesStage3 is very corrupt indeed:

KheOptionsSetResourceInvariant(options, false);
KheTaskingEnlargeDomains(tasking, true);
KheEjectionChainRepairResources(tasking, options);

The domains of the remaining unassigned tasks are enlarged to the full resource type using
KheTaskingEnlargeDomains, and the ejection chain algorithm is run yet again, this time
without preserving the resource assignment invariant. Enlarging domains makes sense only at
the very end, and will make a difference only if any room or any teacher is better than none.
Because of the removal of the invariant, this stage should be run only after the first two stages
have been run for each resource type.

Chapter 12. Ejection Chains
Ejection chains are sequences of repairs that generalize the augmenting paths from bipartite
matching. They are due to Glover [3], who applied them to the travelling salesman problem.

12.1. Introduction

An ejection chain algorithm targets one defect and tries a set of alternativerepairson it. A repair
could be a simple move or swap, or something arbitrarily complex. It removes the defect, but
may introduce new defects. If no new defects of significant cost appear, that is success. If just
one significant new defect appears, the method calls itself recursively to try to remove it; in this
way a chain of coordinated repairs is built up. If several significant new defects appear, or the
recursive call fails to remove the new defect, it undoes the repair and continues with alternative
repairs. It can also try to remove all the new defects, although that is not often useful.

Corresponding to the well-known function for finding an augmenting path in a bipartite
graph, starting from a given node, is this function, formulated by the author, for ‘augmenting’
(improving) a solution, starting from a given defect:

bool Augment(Solution s, Cost c, Defect d);

(KHE’s interface is somewhat different to this.)Augment has precondition

cost(s) >= c && cost(s) - cost(d) < c

If it can changes to reduce its cost to less thanc, it does so and returnstrue; if not, it leavess
unchanged and returnsfalse. The precondition implies that removingd without adding new
defects would be one way to succeed. Here is an abstract implementation ofAugment:

bool Augment(Solution s, Cost c, Defect d)
{
repair_set = RepairsOf(d);
for(each repair r in repair_set)
{
new_defect_set = Apply(s, r);
if(cost(s) < c)
return true;

for(each e in new_defect_set)
if(cost(s) - cost(e) < c && Augment(s, c, e))
return true;

UnApply(s, r);
}
return false;

}

It begins by finding a set of ways thatd could be repaired. For each repair, it applies it and

233

234 Chapter 12. Ejection Chains

receives the set of new defects introduced by that repair, looks for success in two ways, then
if neither of those works out it unapplies the repair and continues by trying the next repair,
returningfalse when all repairs have been tried without success.

Success could come in two ways. Either a repair reducescost(s) to belowc, or some new
defecte has cost large enough to ensure that removing it alone would constitute success, and a
recursive call targeted ate succeeds. Notice thatcost(s) may grow without limit as the chain
deepens, while there is a defecte whose removal would reduce the solution’s cost to belowc.

The key observation that justifies the whole approach is this: the new defects targeted by the
recursive calls are not known to have resisted attack before. It might be possible to repair one of
them without introducing any new defects of significant cost.

The algorithm stops at the first successful chain. An option for finding the best successful
chain rather than the first has been withdrawn, because of design problems in combining it with
ejection trees (Section 12.5.3). It isno great loss: it produced nothing remarkable,and ran slowly.
Another option, for limiting the disruption caused by the repairs, has also been withdrawn. It too
was not very useful. It can be approximated by limiting depth, as described next.

The tree searched byAugment as presented may easily grow to exponential size,which is not
the intention. The author has tried two methods of limiting its size, both of which seem useful.
They may be used separately or together.

The first method is to limit the depth of recursion to a fixed constant, perhaps 3 or 4. The
maximum depth is passed as an extra parameter toAugment, and reduced on each recursive call,
with value 0 preventing further recursion. Not only is this attractive in itself, it also supports
iterative deepening, in whichAugment is called several times on the same defect, with the depth
parameter increased each time. Another idea is to use a small depth on the first iteration of the
main loop (see below), and increase it on later iterations.

The second method is the one used by augmenting paths in bipartite matching. Just before
each call onAugment from the main loop, the entire solution is marked unvisited (by increment-
ing a global visit number, not by traversing the entire solution). When a repair changes some
part of the solution, that part is marked visited. Repairs that change parts of the solution that are
already marked visited are tabu. This limits the size of the tree to the size of the solution.

Given a solution and a list of its defects, the main loop cycles through the list repeatedly,
callingAugment on each defect in turn, withc set tocost(s). When the main loop exits, every
defect has been tried at least once without success since the most recent success, so no further
successful augments are possible, unless there is a random element withinAugment. Under
reasonable assumptions, this very clear-cut stopping criterion ensures that the whole algorithm
runs in polynomial time, for the same reason that hill-climbing does.

When there are several defect types, severalAugment algorithms are needed, one for each
defect type, dynamically dispatched on the type. The repairs are usually applied directly, rather
than indirectly via objects built to represent them.

Careful work is needed to maximize the effectivenessof ejection chains. Grouping together
monitors that measure the same thing is important, because it reduces the number of defects
and increases their cost, increasing the chance that a chain will be continued. Individual repair
operations should actually remove the defects that they are called to repair (the framework does
not check this), and should do whatever seems most likely to avoid introducing new defects.

12.2. Ejector construction 235

12.2. Ejector construction

KHE offersejectorobjects which provide a framework for ejection chain algorithms, reducing
the implementation burden to writing just the augment functions. The framework uses visit
numbers (Section 4.6), in the conventional way.

To support statistics gathering (Section 12.6), a single ejector object may be re-used many
times, even on different instances (although not in parallel—an ejector object is highly mutable
and cannot be shared by two or more threads). This makes it important to distinguish between
those parts of the ejector which are constant throughout its lifetime, and those parts which vary
from solve to solve. This section is concerned with the constant parts.

An ejector is constructed by a sequence of calls beginning with

KHE_EJECTOR KheEjectorMakeBegin(void);

and ending with

void KheEjectorMakeEnd(KHE_EJECTOR ej);

Its constant parts are set by calling the functions described in this section in between these two
calls. AfterKheEjectorMakeEnd is called the constant parts are fixed and cannot be changed.

It is also possible to construct an ejector by copying an existing ejector:

KHE_EJECTOR KheEjectorCopy(KHE_EJECTOR ej);

This returns a new ejector whose constant parts are the same asej’s. It is like a sequence of
calls beginning withKheEjectorMakeBegin and ending withKheEjectorMakeEnd, with calls in
between which install into the new ejector the same constant parts asej has. Function

void KheEjectorDelete(KHE_EJECTOR ej);

deletes an ejector when it is no longer needed.

The constant parts of an ejector object are a sequence ofmajor schedulesand a set of
augment functions. The major schedules control the detailed behaviour of each solve, while the
augment functions are callback functions passed in by the user, containing the repairs.

A major schedule is represented by an object of typeKHE_EJECTOR_MAJOR_SCHEDULE. It
contains a sequence ofminor schedules. A minor schedule is represented by an object of type
KHE_EJECTOR_MINOR_SCHEDULE. It contains two attributes:maximum depthandmay-revisit.
The entire main loop of the algorithm, which repeatedly tries to augment out of each defect until
no further improvements can be found, is repeated once for each major schedule in order. An
ejector with no major schedulesdoes nothing. Within each main loop, the augment for one defect
is tried once for each minor schedule of the current major schedule,until an augment succeeds in
reducing the cost of the solution or all minor schedules have been tried. A major schedule with
no minor schedules does nothing.

An ejector’s major schedules may be accessed at any time by

int KheEjectorMajorScheduleCount(KHE_EJECTOR ej);
KHE_EJECTOR_MAJOR_SCHEDULE KheEjectorMajorSchedule(KHE_EJECTOR ej, int i);

236 Chapter 12. Ejection Chains

in the usual way. To begin and end adding one major schedule, call

void KheEjectorMajorScheduleBegin(KHE_EJECTOR ej);
void KheEjectorMajorScheduleEnd(KHE_EJECTOR ej);

Its minor schedules are added by calls toKheEjectorMinorScheduleAdd (described below) in
between these calls, and may then be accessed by calling

int KheEjectorMajorScheduleMinorScheduleCount(KHE_EJECTOR_MAJOR_SCHEDULE ejm);
KHE_EJECTOR_MINOR_SCHEDULE KheEjectorMajorScheduleMinorSchedule(

KHE_EJECTOR_MAJOR_SCHEDULE ejm, int i);

in the usual way.

Minor schedules are added to a major schedule by calls to

void KheEjectorMinorScheduleAdd(KHE_EJECTOR ej,
int max_depth, bool may_revisit);

in between the calls toKheEjectorMajorScheduleBegin andKheEjectorMajorScheduleEnd.
The attributes of a minor schedule may be retrieved by

int KheEjectorMinorScheduleMaxDepth(KHE_EJECTOR_MINOR_SCHEDULE ejms);
bool KheEjectorMinorScheduleMayRevisit(KHE_EJECTOR_MINOR_SCHEDULE ejms);

Themax_depth attribute determines the maximum depth of recursion (the maximum number of
repairs allowed on one chain). Value 0 allows no repairs at all and is forbidden. Value 1 allows
augment calls from the main loop, but prevents them from making recursive calls, producing a
kind of hill climbing. Value 2 allows the calls made from the main loop to make recursive calls,
but prevents those calls from recursing. And so on.

Eachtree (rooted at one augment call in the main loop) gets a new global visit number,
making it free to change any part of the solution. Whenmay_revisit isfalse, each part of the
solution may be changed by at most one of the recursive calls within one tree; when it istrue,
each part may be changed by any number of them, although only once along any one chain.

Here are some examples. To allow up to two repairs on any chain, with revisiting:

KheEjectorMajorScheduleBegin(ej);
KheEjectorMinorScheduleAdd(ej, 2, true);
KheEjectorMajorScheduleEnd(ej);

To allow arbitrary-depth recursion, but no revisiting:

KheEjectorMajorScheduleBegin(ej);
KheEjectorMinorScheduleAdd(ej, INT_MAX, false);
KheEjectorMajorScheduleEnd(ej);

It is a bad idea to setmax_depth to a large value andmay_revisit totrue in the same schedule,
because the algorithm will then usually take exponential time. But settingmax_depth to a
small constant, or settingmay_revisit tofalse, or both, guarantees polynomial time. Another
interesting idea isiterative deepening, in which several depths are tried. For example,

12.2. Ejector construction 237

KheEjectorMajorScheduleBegin(ej);
KheEjectorMinorScheduleAdd(ej, 1, true);
KheEjectorMinorScheduleAdd(ej, 2, true);
KheEjectorMinorScheduleAdd(ej, 3, true);
KheEjectorMinorScheduleAdd(ej, INT_MAX, false);
KheEjectorMajorScheduleEnd(ej);

tries maximum depth 1, then 2, then 3, and finishes with arbitrary depth.

Here are two faster ways to add schedules:

void KheEjectorAddDefaultSchedules(KHE_EJECTOR ej);
void KheEjectorSetSchedulesFromString(KHE_EJECTOR ej,
char *ejector_schedules_string);

KheEjectorAddDefaultSchedules adds some major and minor schedules,chosen by the author
as reasonable defaults. At present it does this:

KheEjectorMajorScheduleBegin(ej);
KheEjectorMinorScheduleAdd(ej, 1, true);
KheEjectorMajorScheduleEnd(ej);
KheEjectorMajorScheduleBegin(ej);
KheEjectorMinorScheduleAdd(ej, INT_MAX, false);
KheEjectorMajorScheduleEnd(ej);

KheEjectorSetSchedulesFromString interprets its string as a sequence of instructions for
adding schedules toej, and follows the instructions. It supports tests that compare schedules.

The string contains a sequence of one or more major schedules separated by commas. Each
major schedule consists of a sequence of minor schedules, each represented by two characters.
The first character of each minor schedule is a digit oru, and defines the depth limit;u means un-
limited. The second is either+, meaning with revisiting, or-, meaning without it. For example,
"1+,u-" defines two major schedules. The first has one minor schedule with depth limit 1 and
revisiting; the second has one minor schedule with unlimited depth and no revisiting.

The other constant part of an ejector object is the set of augment functions, one function for
each kind of defect that the user wants the ejector to repair. These augment functions are written
by the user, as described in Section 12.4, and passed to the ejector by calls to

void KheEjectorAddAugment(KHE_EJECTOR ej, KHE_MONITOR_TAG tag,
KHE_EJECTOR_AUGMENT_FN augment_fn, int augment_type);

void KheEjectorAddGroupAugment(KHE_EJECTOR ej, int sub_tag,
KHE_EJECTOR_AUGMENT_FN augment_fn, int augment_type);

The first says that defects which are non-group monitors with tagtag should be handled by
augment_fn; the second says that defectswhich are group monitors with sub-tagsub_tag should
be handled byaugment_fn. Heresub_tag must be between 0 and 29 inclusive. Any values not
set are handled by doing nothing, as though an unsuccessful attempt was made to repair them.
Ejectors handle the polymorphic dispatch by defect type. Theaugment_type parameter is used
by statistics gathering (Section 12.6), and may be 0 if statistics are not wanted.

238 Chapter 12. Ejection Chains

12.3. Ejector solving

Once an ejector has been set up, the ejection chain algorithm may be run by calling

bool KheEjectorSolve(KHE_EJECTOR ej, KHE_GROUP_MONITOR start_gm,
KHE_GROUP_MONITOR continue_gm, KHE_OPTIONS options);

This runs the main loop of the ejection chain algorithm once for each major schedule, returning
true if it reduces the cost of the solution monitored bystart_gm andcontinue_gm.

The main loop repairs only the defective child monitors ofstart_gm, and the recursive
calls repair only the defective child monitors ofcontinue_gm. These two group monitors could
be equal, and either or both could be an upcast solution. Although it is not required, in practice
every child monitor ofstart_gm is also a child monitor ofcontinue_gm.

Just as an ejector is constructed by a sequence of calls enclosed inKheEjectorMakeBegin

andKheEjectorMakeEnd, so a solve is carried out by a sequence of calls beginning with

void KheEjectorSolveBegin(KHE_EJECTOR ej, KHE_GROUP_MONITOR start_gm,
KHE_GROUP_MONITOR continue_gm, KHE_OPTIONS options);

and ending with

bool KheEjectorSolveEnd(KHE_EJECTOR ej);

KheEjectorSolveEnd does the actual solving. FunctionKheEjectorSolve above just calls
KheEjectorSolveBegin andKheEjectorSolveEnd with nothing in between.

The only functions callable betweenKheEjectorSolveBegin andKheEjectorSolveEnd
(at least, the only ones that change anything) are

void KheEjectorAddMonitorCostLimit(KHE_EJECTOR ej,
KHE_MONITOR m, KHE_COST cost_limit);

void KheEjectorAddMonitorCostLimitReducing(KHE_EJECTOR ej,
KHE_MONITOR m);

The callKheEjectorAddMonitorCostLimit(ej, m, cost_limit) says that for a chain to end
successfully,not only must the solution cost be less than the initial cost, butKheMonitorCost(m)

must be no larger thancost_limit. KheEjectorAddMonitorCostLimitReducing(ej, m) is
the same except that the cost limit is initialized toKheMonitorCost(m), and if a successful chain
is found and applied which reducesKheMonitorCost(m) to below its current limit, that limit is
reduced to the newKheMonitorCost(m) for subsequent chains.

To visit theselimit monitors, call

int KheEjectorMonitorCostLimitCount(KHE_EJECTOR ej);
void KheEjectorMonitorCostLimit(KHE_EJECTOR ej, int i,
KHE_MONITOR *m, KHE_COST *cost_limit, bool *reducing);

The returned values are the monitor, its current cost limit, and whether that limit may be reduced.
Any number of limit monitors may be added, but large numbers will not be efficient.

Each time the ejector enters the main loop, it makes a copy ofstart_gm’s list of defects and

12.3. Ejector solving 239

sorts the copy by decreasing cost. If thediversify option (Section 8.4.1) istrue, ties are broken
differently depending on the value of the solution’s diversifier. If theejector_limit_defects

option is set to some integer other than its default value,INT_MAX, defects are dropped from the
end of the sorted list to ensure that there are no more thanejector_limit_defects of them.

Consider a defectd that the main loop of the ejection chain solver is just about to attempt
to repair. Suppose that the most recent change either to the solution or to the major schedule
occurred before the most recent previous attempt to repaird. Then, if the repair is deterministic,
the current attempt to repaird is certain to fail like the previous attempt did. Accordingly, it is
skipped. The implementation of this optimization uses visit numbers stored in monitors.

In practice, repairs are not deterministic, since, for diversity, KHE’s augment functions vary
the starting points of their traversalsof lists of repairs between calls. However, the author carried
out an experiment on a large instance (NL-KP-03), in which this optimization was turned off but
a check was made to see whether there were any cases where repairs which it would have caused
to be skipped were successful. Over 8 diversified solves there were 15 cases.

The following functions may be called whileKheEjectorSolve is running (that is, from
within augment functions):

KHE_GROUP_MONITOR KheEjectorStartGroupMonitor(KHE_EJECTOR ej);
KHE_GROUP_MONITOR KheEjectorContinueGroupMonitor(KHE_EJECTOR ej);
KHE_OPTIONS KheEjectorOptions(KHE_EJECTOR ej);
KHE_SOLN KheEjectorSoln(KHE_EJECTOR ej);
KHE_COST KheEjectorTargetCost(KHE_EJECTOR ej);
KHE_EJECTOR_MAJOR_SCHEDULE KheEjectorCurrMajorSchedule(KHE_EJECTOR ej);
KHE_EJECTOR_MINOR_SCHEDULE KheEjectorCurrMinorSchedule(KHE_EJECTOR ej);
bool KheEjectorCurrMayRevisit(KHE_EJECTOR ej);
int KheEjectorCurrDepth(KHE_EJECTOR ej);
int KheEjectorCurrAugmentCount(KHE_EJECTOR ej);

KheEjectorStartGroupMonitor, KheEjectorContinueGroupMonitor, and KheEjectorOptions

are start_gm, continue_gm, and options from KheEjectorSolve. KheEjectorSoln is
start_gm’s (and alsocontinue_gm’s) solution. KheEjectorTargetCost is the cost that the
chain must improve on in order to succeed (c in the abstract presentation above): the cost that
the solution had whenAugment was most recently called from the main loop, except when ejec-
tion trees are in use, as explained in Section 12.5.3.KheEjectorCurrMajorSchedule is the
current major schedule.KheEjectorCurrMinorSchedule is the current minor schedule, and
KheEjectorCurrMayRevisit is itsmay_revisit attribute—frequently needed within augment
functions,as will be seen.KheEjectorCurrDepth is the current depth (1when the augment func-
tion was called from the main loop,2 when called from an augment function called from the main
loop, etc.).KheEjectorCurrAugmentCount is the number of augments since this solve began.

12.4. How to write an augment function

An augment function has type

typedef void (*KHE_EJECTOR_AUGMENT_FN)(KHE_EJECTOR ej, KHE_MONITOR d);

240 Chapter 12. Ejection Chains

The parameters are the ejectorej passed toKheEjectorSolve, and the defectd that the augment
function is supposed to repair. It is a precondition thatd have non-zero cost and removing that
cost would make for a successful augment.

Augment functions often look like this, although not necessarily exactly:

void ExampleAugment(KHE_EJECTOR ej, KHE_MONITOR d)
{
KHE_ENTITY e; bool success; REPAIR r;
e = SomeSolnEntityRelatedTo(d);
if(!KheEntityVisited(e))
{
KheEntityVisit(e);
for(each r in RepairsOf(e))
{
KheEjectorRepairBegin(ej);
success = Apply(r);
if(KheEjectorRepairEnd(ej, 0, success))
return;

}
if(KheEjectorCurrMayRevisit(ej))
KheEntityUnVisit(e);

}
}

FunctionSomeSolnEntityRelatedTo usesd to identify some entity (node, meet, task, etc.) that
will be changed by the repairs, but that should only be changed if it has not already been visited
(tested by callingKheMeetVisited etc. from Section 4.6). FunctionRepairsOf builds a set of
alternative repairsr of e, andApply(r) stands for the code that applies repairr. In practice,
repairs just need to be iterated over and applied; an explicit set of them is not needed.

FunctionsKheEjectorRepairBegin andKheEjectorRepairEnd are supplied by KHE:

void KheEjectorRepairBegin(KHE_EJECTOR ej);
bool KheEjectorRepairEndLong(KHE_EJECTOR ej, int repair_type,
bool success, int max_sub_chains, bool save_and_sort,
void (*on_success_fn)(void *on_success_val), void *on_success_val);

bool KheEjectorRepairEnd(KHE_EJECTOR ej, int repair_type, bool success);

KheEjectorRepairEnd and KheEjectorRepairEndLong are the same except that
KheEjectorRepairEnd, the best choice in most circumstances, relieves the user of the burden
of supplying the usual values for the last four parameters, namely1, false, NULL, andNULL. If
other values are wanted for any of these parameters, thenKheEjectorRepairEndLong must be
called. Formax_sub_chains see Section 12.5.3; forsave_and_sort see Section 12.5.4; and
for on_success_fn andon_success_val see Section 12.5.5. ‘KheEjectorRepairEnd’ means
‘KheEjectorRepairEnd or KheEjectorRepairEndLong’ from here on.

Calls to KheEjectorRepairBegin and KheEjectorRepairEnd must occur in matching
pairs. A call toKheEjectorRepairBegin informsej that a repair is about to begin, and the
following call toKheEjectorRepairEnd informs it that that repair has just ended. The repair is

12.4. How to write an augment function 241

undone and redone (if required) behind the scenes byKheEjectorRepairEnd, using marks and
paths, so undoing is not the user’s concern.

Therepair_type parameter ofKheEjectorRepairEnd is used to gather statistics about
the solve (Section 12.6). It may be 0 if statistics are not wanted.

Thesuccess parameter tells the ejector whether the caller thinks the current repair was
successful. If it isfalse, the ejector undoes the repair and forgets that it ever happened. The
other parameters are ignored in that case. If it istrue, the ejector checks whether the repair
reduced the cost of the solution, whether there is a single new defect worth recursing on, and so
on. The writer of an augment function can forget that all this is happening behind the scenes.

If KheEjectorRepairEnd returnstrue, the ejector has decided that there is no point in
trying more repairs for the current defect. The reason for this decision is not the business of the
augment function; it must return without trying any more repairs (it is an error not to do this). In
that case it does not matter whether the entity is marked unvisited or not before exit.

12.5. Variants of the ejection chains idea

This section presents some variants of the basic ejection chains idea.

12.5.1. Defect promotion

Successful chains begin by repairing a defect which is one ofstart_gm’s children, and continue
by repairing defects which are children ofcontinue_gm. The intention is thatstart_gm should
monitor some region of the solution that has only just been assigned, so that there has been no
chance yet to repair its defects, whilecontinue_gm monitors the entire solution so far, or the part
of it that is relevant to repairing the defects ofstart_gm. These two regions may be the same,
which is whystart_gm andcontinue_gm may be the same group monitor; but when they are
different, the difference is important, as the following argument shows.

Suppose onlystart_gm is used. Then the ejector sets out to repair the right defects, but is
unable to follow chains of repairs into parts of the solution that have been assigned previously.
Or suppose onlycontinue_gm is used. If the children ofcontinue_gm are a superset of the
children ofstart_gm, as is always the case in practice, this does allow a full search, but at the
cost of trying again to repair many defects for which a previous repair attempt failed (those in
continue_gm which are not also instart_gm). This can waste a lot of running time.

At this point, however, an unexpected issue enters. Suppose a successful chain is found
which causes some childd of continue_gm to become defective, but which nevertheless
terminateswithout repairingd because it improves the overall solution cost. Here is a new defect,
a child of continue_gm not known to have been repaired previously, and thus worthy of being
targeted for repair; but if it is not also a child ofstart_gm, it won’t be.

Defect promotionaddresses this issue. When an ejection chain is declared successful, the
ejector examines the defects created by that chain’s last repair that are children ofcontinue_gm.
These come from the trace object in the usual way. It makes any of these that are not children of
start_gm into children ofstart_gm: they get dynamically added to the set of defects targeted by
the current solve. Of course, whenstart_gm andcontinue_gm are the same, it does nothing.

Defect promotion is optional, controlled by optionejector_promote_defects, whose

242 Chapter 12. Ejection Chains

default value istrue. On one run it reduced the final solution cost from 0.04571 to 0.03743,
while increasing running time from 286.84 seconds to 490.21 seconds—a substantial amount,
but nothing like what would have occurred ifstart_gm had been replaced bycontinue_gm.

12.5.2. Fresh visit numbers for sub-defects

It is common for a monitor to monitor several points in the solution. For example, a prefer
times monitor monitors several meets, all those derived from one point of application of the
corresponding prefer times constraint (one event). Arguably, having one monitor for each meet
would make more sense; but there is a problem with this, at least when the cost function is not
Linear, because then there is no well-defined value of the cost of such a monitor. A cost is only
defined after all the deviations of thesub-defectsat all the monitored points are added up.

The usual way to repair a defective monitor which monitors several points is to visit each
point, determine whether that point is a sub-defect, and try some repairs if so. When the repair is
at depth 1, it makes sense for the augment function to give a fresh visit number to each sub-defect,
so that the repair at each sub-defect is free to search the whole solution, as in this template:

for(i = 0; i < KheMonitorPointCount(m); i++)
{
p = KheMonitorPoint(m, i);
if(KheMonitorPointIsDefective(p))
{
if(KheEjectorCurrDepth(ej) == 1)
KheSolnNewGlobalVisit(soln);

if(KheMonitorPointTryRepairs(p))
return;

}
}

CallingKheSolnNewGlobalVisit opens up the whole solution for visiting. This is what would
happen if the monitor was broken into smaller monitors, one for each point. It is important,
however, not to callKheSolnNewGlobalVisit at deeper levels, since that amounts to allowing
revisiting, so it leads to exponential time searches.

Fresh visit numbers arenot assigned in this way within the augment functions supplied
with KHE. Instead, a more radical version of the idea is offered by theejector_fresh_visits

option. When set totrue, it causes

if(KheEjectorCurrDepth(ej) == 1)
KheSolnNewGlobalVisit(soln);

to be executed within each call toKheEjectorRepairBegin, opening up the entire solution, not
just to each sub-defect at depth 1, but to each repair of each sub-defect at depth 1.

12.5.3. Ejection trees

An ejection treeis like an ejection chain except that at each level below the first, instead of
repairing one newly introduced defect, it tries to repair several (or all) of the newly introduced

12.5. Variants of the ejection chains idea 243

defects, producing a tree of repairs rather than a chain.

Ejection trees are not likely to be useful often. It is true that the run time of an ejection
tree is limited as usual by the size of the solution, but its chance of success is lower than usual,
because it must repair several defects at the lower level to succeed at the higher level. If repairing
the first defect produces two new defects, repairing each of those produces two more, and so on,
then the result is a huge number of defects that must all be repaired successfully. And to make
a repair which introduces a defect and then repair that defect using an ejection tree is to spend a
lot of time on a defect that can be removed much more easily by undoing the initial repair.

However, when the original solution has a very awkward defect, the best option may be a
complex repair which usually introducesseveral new defects. For example, the best way to repair
a cluster busy times overload defect may be to unassign every meet on one of the problem days.
In that case, it makes sense to use an ejection tree at that level alone: that is, to try a repair that
introduces several defects, then try to repair them by finding an ejection chain for each.

Themax_sub_chains parameter ofKheEjectorRepairEndLong allows for ejection trees,
by specifying the maximum number of defects introduced by that repair that are to be repaired.
Different repairs may have different values ofmax_sub_chains. For example, the complex
cluster busy times repair could be tried only whenKheEjectorCurrDepth(ej) is 1, with
max_sub_chains set toINT_MAX. All other repairs could be given value 1 formax_sub_chains,
producing ordinary chains elsewhere.

A set of defects now has to be repaired, not necessarily just one. One option would have
been to change the interface ofAugment to pass this set to the user. This was not done, because
it would be a major change from the targeted repairs used by ejection chains. Instead, just as the
framework handles the dynamic dispatch by defect type, so it also accepts a whole set of defects
for repair and passes them one by one to conventionalAugment calls.

The remainder of this section explains the implementation of ejection trees (and indeed
ejection chains)by presenting a more detailed version of theAugment function than the one given
at the start of this chapter. One detail concerns the influence of monitor lower bounds. Define

Potential(d) = KheMonitorCost(d) - KheMonitorLowerBound(d)

The potential is the maximum improvement obtainable by repairingd, a quantity that turns out
to be more relevant here than cost alone.

Another detail concerns monitor cost limits,which require that the solution not change so as
to cause the cost of some given monitors to exceed given limits (Section 12.3). To handle them,
the interface ofAugment is changed to

bool Augment(Solution s, Cost c, Limits x, Defect d);

wherex is a set of monitor cost limits.Augment returnstrue if the value ofs afterwards is such
thats’s cost is less thanc and the limitsx are all satisfied. This condition is evaluated by

bool Success(Solution s, Cost c, Limits x)
{
return cost(s) < c && LimitsAllSatisfied(s, x);

}

244 Chapter 12. Ejection Chains

The precondition ofAugment(s, c, x, d) is changed to

!Success(s, c, x) && cost(s) - Potential(d) < c

Its postcondition isSuccess(s, c, x) if true is returned, and ‘s is unchanged’otherwise.

The new defects chosen for repair must beopen defects: defects whose cost increased
during the previous repair, as reported by the trace of that repair. Themax_sub_chains open
defects of largest potential, or all open defects if fewer thanmax_sub_chains open defects are
reported by the trace, are selected. In the code below, this selection is made by line

{d1, ..., dn} = SelectOpenDefects(new_defect_set, MaxSubChains(r));

where0 <= n <= MaxSubChains(r).

Here is the more detailed implementation ofAugment:

bool Augment(Solution s, Cost c, Limits x, Defect d)
{
repair_set = RepairsOf(d);
for(each repair r in repair_set)
{

new_defect_set = Apply(s, r);
if(Success(s, c, x))
return true;

if(NotAtDepthLimit())
{
{d1, ..., dn} = SelectOpenDefects(new_defect_set, MaxSubChains(r));
for(i = 1; i <= n; i++)
{
sub_c = c + Potential(d(i+1)) + ... + Potential(dn);
sub_x = (i < n ? {} : x); /* empty limit set except at end */
if(Success(s, sub_c, sub_x))

continue;
if(cost(s) - Potential(di) >= sub_c)

break;
if(!Augment(s, sub_c, sub_x, di))

break;
if(Success(s, c, x))

return true;
}

}
reset s to its state just before Apply(s, r);

}
return false;

}

As before, all of this except the loop that iterates over and applies repairs is hidden in calls to
KheEjectorRepairBegin andKheEjectorRepairEnd. It is easy to verify that this satisfies the
revised postcondition. The reset near the end is carried out by a call toKheMarkUndo.

After the usual test for success immediately after the repair, if the depth limit has not been

12.5. Variants of the ejection chains idea 245

reached the new code selectsn open defects for repair, then callsAugment recursively on each
in turn. The complicating factor is the choice of a target cost and set of limits for each recursive
call, denotedsub_c andsub_x above. Using the originalc andx, as is done with ejection chains,
would wrongly place the entire burden of improving the solution onto the first recursive call.

When repairingd1, the right cost target to shoot for is

sub_c = c + Potential(d2) + ... + Potential(dn);

The best that can be hoped for from repairingd2 is Potential(d2), the best that can be hoped
for from repairingd3 is Potential(d3), etc. So if the first recursiveAugment cannot reduce
cost(s) below the given value ofsub_c, there is little hope that after all the recursive augments
it will be reduced belowc. The same idea is applied for each of thedi.

When a recursive call toAugment changes the solution, somePotential(di) values may
change. So this code re-evaluatessub_c from scratch on each iteration of the inner loop, rather
than attempting to save time by adjusting the previous value ofsub_c.

The choice ofsub_x causes limits to be ignored except when carrying out the last augment.
This is in accord with the intention of monitor cost limits, which is to only check them at the end.
It would be a mistake to check them earlier. For example, the repair of the cluster busy times
defects described above is likely to violate a monitor cost limit when it deassigns meets. These
do need to be reassigned by the end, but they will not all be reassigned earlier.

After definingsub_c andsub_x but before the call toAugment, the code executes

if(Success(s, sub_c, sub_x))
continue;

if(cost(s) - Potential(di) >= sub_c)
break;

These lines ensure that the precondition of the recursiveAugment call holds at the time it is made.
If Success(s, sub_c, sub_x) holds, then the aim of that call has already been achieved, so
the algorithm moves on to the next one. It does not matter that it skips theSuccess(s, c, x)

test further on, because there has been such a test since the last time the solution changed. If
cost(s) - Potential(di) >= sub_c holds, then the algorithm has no real hope of beating
sub_c by repairingdi, and so no real hope of success at all, so it abandons the current repair.

Success(s, c, x) implies Success(s, sub_c, sub_x) throughoutAugment, because
sub_c >= c andsub_x is a subset ofx. This cannot be used to simplifyAugment, but it does
have one or two interesting consequences. For example, it applies transitively down through all
active calls toAugment, so whileSuccess(s, sub_c, sub_x) isfalse at any level of recursion,
the original aim of the ejection tree cannot be satisfied.

When repairingdn, sub_c == c and sub_x == x. This gives confidence thatAugment
could succeed, and shows that it reduces to the originalAugment whenMaxSubChains(r) == 1,
except for the different expression of how one open defect is selected.

The method described here finds the first chain that repairsd1, fixes it, and moves on tod2.
Representing the higher path by a solid arrow, the chains (successful or not) that repaird1 by
dashed arrows, and the chains (successful or not) that repaird2 by dotted arrows, the picture is

246 Chapter 12. Ejection Chains

Another possibility is to find the first chain that repairsd1, then try to find chains ford2, but if
that fails, to continue searching for other chains ford1:

This approach is implementable within the current framework, but it has not been tried. There
is no reason to think that it would be better.

12.5.4. Sorting repairs

Each repair is usually followed immediately by recursive calls which extend the chain, where
applicable. Setting thesave_and_sort parameter ofKheEjectorRepairEndLong to true

invokes a different arrangement. Paths representing the repairs are saved in the ejector without
recursion. After the last repair they are sorted into increasing order of the cost of the solutions
they produce, and each is tried in turn, just as though they had occurred in that sorted order [5].

In practice,save_and_sort would be given the same value for every repair of a given
defect. However, it is legal to use a mixture of values. Those given valuetrue will be saved,
those given valuefalse will be recursed on immediately in the usual way. If any of those lead
to success, that chain is accepted and any saved repairs are forgotten.

Only repairs with some hope of success are saved: those for which

Success(s, c, x) || (NotAtDepthLimit() &&
cost(s) - (Potential(d1) + ... + Potential(dn)) < c)

holds after the repair, in the terminology of Section 12.5.3.

The author’s experience withsave_and_sort has been disappointing. Chains can end
successfully anywhere in the search tree, and low solution cost at an intermediate point is not
a good predictor of a successful end. Every saved repair is executed once before sorting to
establish the solution cost after it, then undone. If the repair is tried later, it is executed again (by a
path redo). The significant benefit needed to justify this extra work does not seem to be there.

12.5.5. Adjustment on success

Suppose that, in order to encourage ejection chains to remove a cluster busy times defect, some
days when the resource will be busy are chosen, all meets assigned the resource outside those
days are unassigned, and repairs are tried which move those meets to the chosen days.

While the repairs are underway, it is desired to limit the domains of the resource’s meets
to the chosen days, to keep the repairs on track. So the repair altogether consists of unassigning

12.5. Variants of the ejection chains idea 247

some of the resource’s meets and adding a meet bound to each of the resource’s meets.

Whether the repair is successful or not, after it and the chains below it are finished, the
meet bound must be removed, since the domains of the meets are not supposed to be restricted
permanently. If the repair is unsuccessful, the meet bound is removed by the ejector as part of
undoing the repair. But if the repair is successful there is a problem, because it is not undone.

KheEjectorRepairEnd returnstrue to tell the user’s augment function to not generate
any more repairs. Although this is often because the repair just ended was successful, it is not so
always. So it would be a mistake to use thistrue result as the signal to do this kind of work.

Instead, cases like this may be handled by passing non-NULL values for theon_success_fn
andon_success_val parameters ofKheEjectorRepairEndLong. If the ejector subsequently
decides to not undo that repair, it will then call

on_success_fn(on_success_val)

and the user can ensure that this removes meet bounds or whatever is wanted.

The call toon_success_fn should not change the cost of the solution; in practice it is
limited to enlarging domains, unfixing, and so on. It works with all kinds of repairs and options,
includingsave_and_sort. It is made at a time when the associated repair has been done or
redone and not undone, but by no means directly after it is done or redone, since there may be
a long chain to execute after that before success can be established. It is an error to assume that
the state of the solution whenon_success_fn is called is its state at the end of the repair.

12.6. Gathering statistics

Ejectors gather statistics about their performance. This takes a negligible amount of time, as the
author has verified by comparing run times with preprocessor flagKHE_EJECTOR_WITH_STATS

in the ejector source file set to 0 (no statistics) and 1(all statistics). On two typical instances, the
increase in overall run time caused by gathering statistics was less than 0.1 seconds.

12.6.1. Options for choosing ejectors and schedules

Each ejector holds its own statistics, independently of other ejectors. Some statistics accumulate
across the entire lifetime of an ejector; they are never reset. This makes it possible, for example,
to measure the performance of time repair ejection chains and resource repair ejection chains
over an entire set of instances, by carrying out all time repairs in all instances using one ejector
and all resource repairs in all instances using another.

To facilitate marshalling multiple ejectors for these purposes,options objects (Section 8.4)
contain an array of ejectors, which may be set and retrieved as usual:

KHE_EJECTOR KheOptionsEjector(KHE_OPTIONS options, int index);
void KheOptionsSetEjector(KHE_OPTIONS options, int index,
KHE_EJECTOR ej);

A value is always defined for each non-negativeindex; each value has default valueNULL.
KheEjectionChainNodeRepairTimes uses ejector 0,KheEjectionChainLayerRepairTimes
uses ejector 1, andKheEjectionChainRepairResources uses ejector 2. Some or all of these

248 Chapter 12. Ejection Chains

may be the same ejector. In each case, if the ejector turns out to beNULL, the function makes a
new ejector with the default schedules, but does not add it tooptions.

It is not safe to pass a single value ofoptions to multiple threads when it contains (or will
contain) ejectors, since that would expose those ejectors to the risk of being used by multiple
threads in parallel, which they cannot handle.

It is up to the user to create ejectors and callKheOptionsSetEjector to add them to the
options object. This raises the question of what schedules to give to these ejectors. A set of
schedules is an option, so theoptions object has an option for it, whose value is a string:

char *KheOptionsEjectorSchedulesString(KHE_OPTIONS options);
void KheOptionsSetEjectorSchedulesString(KHE_OPTIONS options,
char *ejector_schedules_string);

Its default value is"1+,u-", for the meaning of which see Section 12.2.

KheOptionsSetEjectorSchedulesString does not set any ejector schedules, it merely
sets one option ofoptions, to a fresh copy of the string it is given. User code must set the actual
schedules, using helper functionKheEjectorSetSchedulesFromString (Section 12.2).

12.6.2. Statistics for analysing Kempe meet moves

The ejector itself does not maintain statistics for analysing Kempe meet moves. These are
stored inkempe_stats objects (Section 10.2.2), one of which is conveniently available from
optiontime_kempe_stats (Section 8.4.3). This object is passed to the calls toKempeMeetMove

made by the augment functions described in this chapter. Only Kempe meet moves which are
complete repairs on their own are passed this object, not Kempe meet moves combined with
other operations (meet splits and merges, for example). So by the end of an ejction chain run,
statistics about these Kempe meet moves will have been accumulated in thetime_kempe_stats

option of theoptions object passed to the ejection chain repairs.

12.6.3. Statistics describing a single solve

The statistics presented in this section make sense only for one call toKheEjectorSolveEnd. So
they are available only until the next call toKheEjectorSolveEnd, when they are reset.

An improvementis an ejection chain or tree, rooted in a defect examined by the main loop,
which is applied to the solution and reduces its cost. Each time an improvement is applied, four
facts about it are recorded. The number of improvements applied is returned by

int KheEjectorImprovementCount(KHE_EJECTOR ej);

and the four facts about theith improvement (counting from 0 as usual) are returned by

int KheEjectorImprovementNumberOfRepairs(KHE_EJECTOR ej, int i);
float KheEjectorImprovementTime(KHE_EJECTOR ej, int i);
KHE_COST KheEjectorImprovementCost(KHE_EJECTOR ej, int i);
int KheEjectorImprovementDefects(KHE_EJECTOR ej, int i);

These return the number of repairs in theith improvement (this tends to increase withi), the time

12.6. Gathering statistics 249

from the moment whenKheEjectorSolveEnd was called to the moment after the improvement
was applied, the solution cost afterwards, and the number of defects ofstart_gm afterwards.
Times are measured in seconds, to a precision much better than one second. There are also

KHE_COST KheEjectorInitCost(KHE_EJECTOR ej);
int KheEjectorInitDefects(KHE_EJECTOR ej);

which return the cost and number of defects whenKheEjectorSolve began.

12.6.4. Statistics describing multiple solves

The statistics presented in this section make sense across multiple calls toKheEjectorSolveEnd.
They are initialized when the ejector is created and never reset.

It is interesting to see how many repairs make up one improvement. Each time an
improvement occurs on any solve during the lifetime of the ejector, one entry in a histogram of
numbers of repairs is incremented. This histogram can be accessed at any time by calling

int KheEjectorImprovementRepairHistoMax(KHE_EJECTOR ej);
int KheEjectorImprovementRepairHistoFrequency(KHE_EJECTOR ej,
int repair_count);

KheEjectorImprovementRepairHistoMax returns the maximum, over all improvements
x, of the number of repairs that make upx, or 0 if there have been no improvements.
KheEjectorImprovementRepairHistoFrequency returns the number of improvements with
the given number of repairs. Also, functions

int KheEjectorImprovementRepairHistoTotal(KHE_EJECTOR ej);
float KheEjectorImprovementRepairHistoAverage(KHE_EJECTOR ej);

use this same basic information to find the total number of improvements, and the average
number of repairs per improvement when there is at least one improvement.

Another histogram, again with one element for each improvement, records the number of
calls toAugment since the most recent on in the main loop:

int KheEjectorImprovementAugmentHistoMax(KHE_EJECTOR ej);
int KheEjectorImprovementAugmentHistoFrequency(KHE_EJECTOR ej,
int augment_count);

int KheEjectorImprovementAugmentHistoTotal(KHE_EJECTOR ej);
float KheEjectorImprovementAugmentHistoAverage(KHE_EJECTOR ej);

This is helpful, for example, in deciding whether it would be useful to terminate a search after
some number of augments has failed to find an improvement. A method of doing this is build
into ejectors, but not offered as an official option at the moment.

Another interesting question is how successful the various augment functions and repairs
are. There are methodological issues here, however. For example, if one kind of repair is tried
before another, it has more opportunities to both succeed and fail than the other. If there are
several alternatives to choose from, the best test would be to compare the results of several
complete runs, one for each alternative. No statistical support is needed for that. But even after

250 Chapter 12. Ejection Chains

the best alternatives are chosen, there remains the question of whether each component is pulling
its weight. The statistics to be described now attempt to answer this question.

An augment typeis a small integer representing one kind of augment function. Arepair
typeis a small integer representing one kind of repair. FunctionsKheEjectorAddAugment and
KheEjectorAddGroupAugment assign an augment type to each augment function, and thus to
each call on an augment function. Each repair is followed by a call toKheEjectorRepairEnd

(Section 12.4), and itsrepair_type parameter assigns a repair type to that repair. Based on this
information, the ejector records the following statistics:

1. For each distinctaugment_type, the number of repairs made by calls on augment functions
with that augment type;

2. For each distinct(augment_type, repair_type) pair, the number of repairsof that repair
type made by calls on augment functions with that augment type;

3. For each distinctaugment_type, the number of successful repairs made by calls on
augment functions with that augment type;

4. For each distinct(augment_type, repair_type) pair, the number of successful repairs
of that repair type made by calls on augment functions with that augment type.

Only repairs with atrue value for thesuccess parameter ofKheEjectorRepairEndLong are
counted. When thesave_and_sort option is in use, not all saved repairs are counted, only those
redone after sorting. For the purposes of statisticsgathering,a repair is considered successful if it
causes its enclosingAugment function to returntrue, whether this happens immediately, or after
recursion, or after saving and sorting. The statistics may be retrieved at any time by calling

int KheEjectorTotalRepairs(KHE_EJECTOR ej, int augment_type);
int KheEjectorTotalRepairsByType(KHE_EJECTOR ej, int augment_type,
int repair_type);

int KheEjectorSuccessfulRepairs(KHE_EJECTOR ej, int augment_type);
int KheEjectorSuccessfulRepairsByType(KHE_EJECTOR ej, int augment_type,
int repair_type);

whereaugment_type andrepair_type are arbitrary non-negative integers. Based on these
numbers,a reasonable analysisof the effectivenessof the augment functionsand their repairscan
be made. For example, the effectiveness of an augment function can be measured by the ratio
of the third number to the first. Adding up the result ofKheEjectorTotalRepairsByType over
all values ofrepair_type produces the result ofKheEjectorTotalRepairs, and adding up the
result ofKheEjectorSuccessfulRepairsByType over all values ofrepair_type produces the
result ofKheEjectorSuccessfulRepairs.

12.6.5. Organizing augment and repair types

KheEjectorAddAugment andKheEjectorAddGroupAugment accept anyaugment_type values.
The user should define these values using an enumerated type. The following function may be
called any number of times during the ejector’s setup phase, to tell it what values to expect:

12.6. Gathering statistics 251

void KheEjectorAddAugmentType(KHE_EJECTOR ej, int augment_type,
char *augment_label);

This tells ej to expect calls toKheEjectorAddAugment and KheEjectorAddGroupAugment

with the given value ofaugment_type, and associates a label with that augment type. Labels
must be non-NULL; copies are stored, not originals. No checks are made that the values passed
via KheEjectorAddAugment and KheEjectorAddGroupAugment match those declared by
KheEjectorAddAugmentType. But if they do, then making tables of statistics is simplified by
calling the following functions afterwards.

To visit all the augment types declared by calls toKheEjectorAddAugmentType, call

int KheEjectorAugmentTypeCount(KHE_EJECTOR ej);
int KheEjectorAugmentType(KHE_EJECTOR ej, int i);

To retrieve the label corresponding to an augment type, call

char *KheEjectorAugmentTypeLabel(KHE_EJECTOR ej, int augment_type);

In this way, suitable values for passing toKheEjectorTotalRepairs and the other statistics
functions above can be generated, along with labels to identify the statistics.

The same functionality is offered for repair types.KheEjectorRepairBegin may be passed
any values forrepair_type, but the user knows which values will be passed, and the following
function may be called any number of times during the ejector’s setup phase to tell it this:

void KheEjectorAddRepairType(KHE_EJECTOR ej, int repair_type,
char *repair_label);

KheEjectorAddRepairType declares thatej can expect calls toKheEjectorRepairBegin
with the given value ofrepair_type, and associates a label with that repair type. Labels must
be non-NULL; copies are stored, not originals. No checks are made that the values passed via
KheEjectorRepairBegin match those declared byKheEjectorAddRepairType. But if they do,
then making tables of statistics is simplified by calling the following functions afterwards.

To visit all the repair types declared by calls toKheEjectorAddRepairType, call

int KheEjectorRepairTypeCount(KHE_EJECTOR ej);
int KheEjectorRepairType(KHE_EJECTOR ej, int i);

To retrieve the label corresponding to a repair type, call

char *KheEjectorRepairTypeLabel(KHE_EJECTOR ej, int repair_type);

There is no way to declare which combinations of augment type and repair type to expect. The
author handles this by ignoring cases whereKheEjectorTotalRepairsByType returns 0.

12.7. Ejection chain time and resource repair functions

In this section, the ejector objects described above are used to build three ejection chain time and
resource repair functions:

252 Chapter 12. Ejection Chains

bool KheEjectionChainNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

bool KheEjectionChainLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

bool KheEjectionChainRepairResources(KHE_TASKING tasking,
KHE_OPTIONS options);

KheEjectionChainNodeRepairTimes repairs the assignments of the meets of the descendants
of the child nodes ofparent_node, and KheEjectionChainLayerRepairTimes repairs the
assignments of the meets of the descendants of the child nodes oflayer. This is useful for
repairing the time assignments of a layer immediately after they are made, without wasting
time on earlier layers where repairs have already been tried and are very unlikely to succeed.
KheEjectionChainRepairResources repairs the assignments of the tasks oftasking.

All three functions make assignments as well as change them, so may be used to construct
solutions as well as repair them. However, there are better ways to construct solutions.

All three functions require certain monitor groupings, but they set them up and remove
them themselves. It is reasonable to worry about the time it takes to set up these group monitors.
To investigate this question, the author ran just the group monitor setup and removal parts of
function KheEjectionChainNodeRepairTimes 10000 times on a typical instance (BGHS98)
and measured the time taken. This was 31.35 seconds, or about 0.003 seconds per setup/remove.
This is not significant if it is done infrequently.

Although these functions target different parts of the solution, they share much of their
implementation. In particular, they call the same augment functions, although the detailed
behaviour of those functions depends on several options, some of which tailor them specifically
to time or resource repair. Optionejector_vizier_node determines whether a vizier node
(Section 9.5.4) is inserted at the top of the layer tree during time repair. Options which affect
the augment functions directly are described at the beginning of Section 12.7.5 below. The
following subsections describe the implementation in detail.

12.7.1. Limiting the scope of changes

Ejection chains work best when they are free to follow chains into any part of a solution, and
make any repairs that help. This freedom can conflict with the caller’s desire to limit the scope
of the changes they make, typically because initial assignments have not yet been made to some
parts of the solution, and an ejection chain repair should not anticipate them.

For example, suppose resourcer is preassigned to some tasks, but there are others that it
could be assigned to. The preassigned tasks go intor ’s timetable when their meets are assigned
times,and could then create resource defects, for example avoid unavailable timesdefects, that an
ejection chain time repair algorithm needs to know about. Suppose a limit busy times underload
defect is created (this is quite likely when the workload on any day first becomes non-zero), and
its augment function tries (among other things) to find unassigned tasks that it can assign tor to
increase its workload on that day. This is not done at present, but it is plausible. Then there will
be an unexpected burst of resource assignment in the middle of time assignment.

One romantic possibility is to ‘let a thousand flowers bloom’ and just accept such repairs.
The problem with this is that a carefully constructed initial assignment can be much better than

12.7. Ejection chain time and resource repair functions 253

the result of a set of uncoordinated individual repairs.

Another possibility is to fix the assignments of all variables beyond the scope of the current
phase of the solve to their current values, often null values. This is a very reliable approach, and
arguably the most truthful, because it says to the ejection chain algorithm, in effect, ‘for reasons
beyond your comprehension,you are not permitted to change these variables.’ But it suffers from
a potentially severe efficiency problem: a large amount of time could be spent in discovering a
large number of repairs, which all fail through trying to change fixed variables.

Yet another possibility is to have one ejector object for each kind of call (one for repairing
time assignments,another for repairing resource assignments,and so on), with different augment
functions. The augment functions for time repair would never assign a task, for example. This
was the author’s original approach, but as the code grew it became very hard to maintain.

At present the author is using the following somewhat ad-hoc ideas to limit the scope of
changes. They do the job at very little cost in code and run time.

The start group monitor is one obvious aid to restricting the scope of a call. For example,
time repair calls do not include event resource monitors in their start group monitors.

Many repairs move meets and tasks, but do not assign them. It seems that once a meet or
task has been assigned, it is always reasonable to move it during repair. So the danger areas are
augment functions that assign meets and tasks, not augment functions that merely move them.

Augment functions for assign time and assign resource defects must contain ‘dangerous’
assignments. But suppose that the assign time or assign resource monitor for some meet or task
is not in the start group monitor. Then a repair of that monitor cannot occur first on any chain;
and if the meet or task is unassigned to begin with, it cannot occur later either, since the monitor
starts off with maximum cost, so its cost cannot increase, and only monitors whose cost has in-
creased are repaired after the first repair on a chain. So assign time and assign resource augment
functions can be included without risk of the resulting time and resource assignments being out
of scope. This is just as well, since they are needed after ejecting meet and task moves.

If it can be shown, as was just done, that certain events will remain unassigned, then they
can have no other event defects, since those require the events involved to be assigned. Similarly,
unassigned event resources will never give rise to other event resource defects.

Another idea is to add options to the options object that control which repairs are tried. This
is as general as different ejector objects with different augment functions are, but, if the options
are few and clearly defined, it avoids the maintenance problems. If many calls on augment
functions achieve nothing because options prevent them from trying things, that would be an
efficiency problem, but there is no problem of that kind in practice.

The options object contains anejector_repair_times option, which whentrue allows
repairs that assign and move meets, and anejector_repair_resources option, which when
true allows repairs that assign and move tasks. It takes virtually no code or time to consult these
options; often, just one test at the start of an augment function is enough.

When moving a meet, its chain of assignments is followed upwards, trying moves at each
level. But if the aim is to repair only a small area (one runaround, say), then even if a repair
starts within scope, it can leave it as it moves up the chain. This has happened, and has caused
problems. So the options object contains anejector_limit_node option, of typeKHE_NODE. If
it is non-NULL, meet assignments and moves are not permitted outside its proper descendants.

254 Chapter 12. Ejection Chains

FunctionsKheEjectionChainNodeRepairTimes andKheEjectionChainLayerRepairTimes
set option ejector_repair_times to true, ejector_repair_resources to false, and
ejector_limit_node to the parent node, or toNULL if it is the cycle node. Thefalse value for
ejector_repair_resources solves the hypothetical problem, given as an example at the start
of this section, of limit busy times repairs assigning resources during time assignment.

FunctionKheEjectionChainRepairResources sets optionsejector_repair_times and
ejector_repair_resources to true, and optionejector_limit_node to NULL. Setting
ejector_repair_times to false here would be a reasonable alternative; it would prevent
repairs from trying meet moves in their quest to improve task assignments.

12.7.2. Correlation problems involving demand defects

Section 9.8 discusses the problem of correlated monitors, and how it can be solved by grouping.
Demand monitors obviously correlate with avoid clashes monitors: when there is a clash, there
will be both an avoid clashes defect and an ordinary demand defect. They also correlate with
avoid unavailable times, limit busy times, and limit workload monitors: when there is a hard
avoid unavailable times defect, for example, there will also be a demand defect. This section
explores several ways of handling these correlations, beginning with grouping.

Group the correlated monitors.Grouping is the ideal solution for correlation problems, but
it does not work here. There are two reasons for this.

First, although every avoid clashes defect has a correlated ordinary demand defect, unless
the resource involved is preassigned there is no way to predict which monitors will be correlated,
since that depends on which resource is assigned to the demand monitors’ tasks.

Second, grouping workload demand monitors with the resource monitors they are derived
from has a subtle flaw. A demand defect is really the whole set of demand monitors that
compete for the insufficient supply. (These sets are quite unpredictable and cannot themselves
be grouped.) A workload demand defect shows up, not in the workload demand monitor itself,
but in an ordinary demand monitor that competes with it. This is because the last demand tixel
to change its domain and require rematching is the one that misses out on the available supply,
and workload demand monitors never change their domains. So this grouping still leaves two
correlated defects ungrouped: the group monitor and the unmatched ordinary demand monitor.

If grouping does not work, then one of the correlated monitors has to be detached or
otherwise ignored. There are several ways to do this.

Detach demand monitors.This does not work, because no-one notices that six Science
meets are scheduled simultaneously when there are only five Science laboratories, and the
resulting time assignment is useless.

Attach demand monitors but exclude them from continue group monitors.This preventscor-
related monitors from appearing on defect lists,but both costscontinue to be added to the solution
cost, so removing the resource defect alone does not produce an overall improvement. The chain
terminates in failure; the ejector cannot see that repairing the resource defect could work.

Attach demand monitors but exclude them from the solution and continue group monitors;
add a limit monitor holding them.Then other monitors will be repaired, but no chain which
increases the total number of demand defects will be accepted. This has two problems.

First, it can waste time constructing chains which fall at the last hurdle when it is discovered

12.7. Ejection chain time and resource repair functions 255

that they increase demand defects. This is particularly likely during time repair: the six Science
meets problem could well occur and pass unnoticed for a long time.

Second, although it prevents demand defects from increasing, it does not repair them. This
rules it out for time repair, which is largely about repairing demand defects, but it may not matter
for resource repair. Resource repair cannot reduce the number of demand defectsunless it moves
meets: merely assigning resources reduces the domains of demand tixels, which cannot reduce
demand defects. Even moving meets is unlikely to reduce demand defectsduring resource repair,
since many of those moves will have been tried previously, during time repair.

Detach correlated resource monitors.Instead of detaching demand monitors, detach the
resource monitors they correlate with. Each kind of resource monitor is considered below. The
main danger here isinexactness: if some detached resource monitor is not modelled exactly by
the demand monitors that replace it, then some defects go undetected and unrepaired.

Detach all avoid clashes monitors.For every avoid clashes defect there is an ordinary
demand defect. The only inexactness is that avoid clashes monitors may have any weights,
whereas demand monitors have equal weight, usually 1 (hard). But avoid clashes constraints
usually have weight 1 (hard) or more, so this does not seem to be a problem in practice, given
that, as the specification says, hard constraint violations should be few in good solutions.

Detach avoid unavailable times monitors that give rise to workload demand monitors.
These are monitors with weight at least 1 (hard). The modelling here is exact apart from any
difference in hard weight, so again there is no problem in practice.

Detach limit busy times monitors that give rise to workload demand monitors.These are
monitors with weight at least 1 (hard) which satisfy the subset tree condition (Section 7.4.2).
Apart from the possible difference in hard weight, this is exact except for one problem: limit busy
times constraints can impose both a lower and an upper limit on resource availability in some set
of times, and workload demand monitors do not model lower limits at all.

This can be fixed by (conceptually) breaking each limit busy times monitor into two, an
underload monitor and an overload monitor, and detaching the overload monitor but not the
underload monitor. KHE expresses this idea in a different way, chosen because it also solves the
problem presented by limit workload monitors, to be discussed in their turn.

Limit busy times monitors have two attributes,Minimum andMaximum, such that less than
Minimum busy times is an underload,and more thanMaximum is an overload. Add a third attribute,
Ceiling, such thatCeiling >= Maximum, and specify that, with higher priority than the usual
rule, when the number of busy times exceedsCeiling the deviation is 0.

FunctionKheLimitBusyTimesMonitorSetCeiling (Section 6.6.5) may be called to set the
ceiling. Setting it toINT_MAX (the default value) produces the usual rule. Setting it toMaximum

is equivalent to detaching overload monitoring.

Detach limit workload monitors that give rise to workload demand monitors.Limit
workload monitors are similar to limit busy times monitors whose set of times is the entire cycle.
However, the demand monitors derived from a limit workload monitor do not necessarily model
even the upper limit exactly (Section 7.4.1). This problem can be solved as follows.

Consider a resource with a hard limit workload monitor and some hard workload demand
monitors derived from it, and suppose that all of these monitors are attached. As the resource’s
workload increases, it crosses from a ‘white region’ of zero cost into a ‘grey region’ where the

256 Chapter 12. Ejection Chains

limit workload monitor has non-zero cost but the workload demand monitors do not, and then
into a ‘black region’where both the limit workload monitor and the workload demand monitors
have non-zero cost. This black region is the problem.

The problem is solved by adding aCeiling attribute to limit workload monitors, as for
limit busy times monitors. FunctionKheLimitWorkloadMonitorSetCeiling (Section 6.6.6)
sets the ceiling. As before, the default value isINT_MAX. The appropriate alternative value is not
Maximum, but rather a value which marks the start of the black region, so that the limit workload
monitor’s cost drops to zero as the workload crosses from the grey region to the black region. In
this way, all workload overloads are reported, but by only one kind of monitor at any one time.

There is one anomaly in this arrangement: a repair that reduces workload from the black
region to the grey region does not always decrease cost. This is a pity but it is very much a
second-order problem, given that the costs involved are all hard costs, so that in practice repairs
are wanted that reduce them to zero. What actually happens is that one repair puts a resource
above the white zone, and this stimulates a choice of next repair which returns it to the white
zone. Repairs which move between the grey and black zones are possible but are not likely to
lie on successful chains anyway, so it does not matter much if their handling is imperfect.

The appropriate value forCeiling is the number of times in the cycle minus the total
number of workload demand monitors for the resource in question, regardless of their origin.
When the resource’s workload exceeds this value, there will be at least one demand defect, and
it is time for the limit workload monitor to bow out.

To summarize all this: there is some choice during resource repair, but detaching resource
monitors (with ceilings) always works, and it is the only method that works during time repair.

12.7.3. Primary grouping and detaching

To install and remove the primary groupings used by ejection chains, call

void KheEjectionChainPrepareMonitors(KHE_SOLN soln);
void KheEjectionChainUnPrepareMonitors(KHE_SOLN soln);

This includes detaching some resource monitors, as in the plan evolved in Section 12.7.2. This
section explains exactly whatKheEjectionChainPrepareMonitors does.

KheEjectionChainPrepareMonitors partitions the events ofsoln’s instance into classes,
placing events into the same class when following the fixed assignment paths out of their meets
proves that their meets must run at the same times. It then groups event monitors as follows.

Split events and distribute split events monitors.For each class, it groups together
the split events and distribute split events monitors that monitor the events of that class. It
gives sub-tagKHE_SUBTAG_SPLIT_EVENTS to any group monitors it creates. There is also a
KHE_SUBTAG_DISTRIBUTE_SPLIT_EVENTS subtag, but it is not used.

Assign time monitors.For each class, it groups the assign time monitors that monitor the
events of that class, giving sub-tagKHE_SUBTAG_ASSIGN_TIME to any group monitors.

Prefer times monitors.Within each class, it groups those prefer times monitors that
monitor events of that class whose constraints request the same set of times, giving sub-tag
KHE_SUBTAG_PREFER_TIMES to any group monitors.

12.7. Ejection chain time and resource repair functions 257

Spread events monitors.For each spread events monitor, it finds the set of classes that hold
the events it monitors. It groups attached spread events monitors whose sets of classes are equal,
giving sub-tagKHE_SUBTAG_SPREAD_EVENTS to any group monitors. Strictly speaking, only
monitors whose constraints request the same time groups with the same limitsshould be grouped,
but that check is not currently being made.

Link events monitors.Like split events monitors, these are usually handled structurally, so
it does nothing with them. They usually have provably zero fixed cost, so are already detached.

Order events monitors.For each order events monitor, it finds the sequence of classes that
hold the two events it monitors. It groups attached order events monitors whose sequences of
classes are equal, giving sub-tagKHE_SUBTAG_ORDER_EVENTS to any group monitors. Strictly
speaking,only monitorswhose constraints request the same event separationsshould be grouped,
but that check is not currently being made.

Next, KheEjectionChainPrepareMonitors partitions the event resources ofsoln’s
instance into classes, placing event resources into the same class when following the fixed
assignment paths out of their tasks proves that they must be assigned the same resources. It then
groups event resource monitors as follows.

Assign resource monitors.For each class, it groups the assign resource monitors of that
class’s event resources, giving sub-tagKHE_SUBTAG_ASSIGN_RESOURCE to any group monitors.

Prefer resources monitors.Within each class, it groups those prefer resources monitors that
monitor the event resources of that class whose constraints request the same set of resources,
giving sub-tagKHE_SUBTAG_PREFER_RESOURCES to any group monitors.

Avoid split assignments monitors.There seems to be no useful primary grouping of these
monitors, so nothing is done with them. They may be handled structurally, in which case they
will have provably zero fixed cost and will be already detached.

Students who follow the same curriculum have the same timetable. So for each resource
typert such that a call toKheResourceTypeDemandIsAllPreassigned(rt) (Section 3.5.1) shows
that its resources are all preassigned,KheEjectionChainPrepareMonitors groups the resource
monitors ofrt’s resources as follows.

Avoid clashes monitors.It groups those avoid clashes monitors derived from the same
constraint whose resources attend the same events, giving sub-tagKHE_SUBTAG_AVOID_CLASHES

to any group monitors.

Avoid unavailable times monitors.It groups avoid unavailable times monitors derived from
the same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG_AVOID_UNAVAILABLE_TIMES.

Limit idle times monitors. It groups limit idle times monitors derived from the same con-
straint whose resources attend the same events, giving sub-tagKHE_SUBTAG_LIMIT_IDLE_TIMES

to any group monitors.

Cluster busy times monitors.It groups cluster busy times monitors derived from the
same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG_CLUSTER_BUSY_TIMES.

Limit busy times monitors.It groups limit busy times monitors derived from the same con-
straint whose resources attend the same events, giving sub-tagKHE_SUBTAG_LIMIT_BUSY_TIMES

to any group monitors.

258 Chapter 12. Ejection Chains

Limit workload monitors.It groups limit workload monitors derived from the same con-
straint whose resources attend the same events, giving sub-tagKHE_SUBTAG_LIMIT_WORKLOAD to
any group monitors.

Fixed assignments between meets are taken into account when deciding whether two
resources attend the same events. As far as resource monitors are concerned, it is when the
resource is busy that matters, not which meets it attends.

KheEjectionChainPrepareMonitors also treats some resource monitors according to the
plan from Section 12.7.2, whether they are grouped or not:

• It detaches all attached avoid clashes monitors.

• For each attached avoid unavailable times monitorm for which a workload demand monitor
with originating monitorm is present (all hard ones, usually), it detachesm.

• For each attached limit busy times monitorm for which a workload demand monitor with
originating monitorm is present (all hard ones satisfying the subset tree condition of Section
7.4.2, usually), ifm’s lower limit is 0 it detachesm, otherwise it setsm’s ceiling attribute to
its maximum attribute, by callingKheLimitBusyTimesMonitorSetCeiling.

• For each attached limit workload monitorm for which a workload demand monitor with
originating monitorm is present (all hard ones, usually), it setsm’s ceiling attribute to the
cycle length minus the number of workload demand monitors form’s resource (regardless
of origin), or 0 if this is negative, by callingKheLimitWorkloadMonitorSetCeiling.

Section 12.7.2 has the reasoning.

Finally, KheEjectionChainPrepareMonitors groups demand monitors as follows. If a
limit monitor containing these monitors is wanted, a separate call is needed (Section 12.7.4).

Ordinary demand monitors.For each set of meets such that the fixed assignment paths
out of those meets end at the same meet, it groups the demand monitors of those meets’ tasks,
giving sub-tagKHE_SUBTAG_MEET_DEMAND to any group monitors. The reasoning is that the only
practical way to repair an ordinary demand defect is to change the assignment of its meet (or
some other clashing meet), which will affect all the demand monitors grouped with it here.

Workload demand monitors.These remain ungrouped. As explained in Section 12.7.2,
workload demand defects appear only indirectly, as competitors of ordinary demand defects.

12.7.4. Secondary groupings

Section 9.8 introduces the concept of secondary groupings. The three ejection chain functions
need secondary groupings built on primary groupings for their start group monitors (but not
their continue group monitors, since they use the solution object for that), and other secondary
groupings for their limit monitors. These are the subject of this section.

KheEjectionChainNodeRepairTimes uses the group monitor returned by

KHE_GROUP_MONITOR KheNodeTimeRepairStartGroupMonitorMake(KHE_NODE node);

as its start group monitor. The result has sub-tagKHE_SUBTAG_NODE_TIME_REPAIR. Its children
are monitors, or primary groupings of monitors where these are already present, of two kinds.

12.7. Ejection chain time and resource repair functions 259

First are all assign time, prefer times, spread events, order events, and ordinary demand monitors
that monitor the meets ofnode and its descendants, plus any meets whose assignments are fixed,
directly or indirectly, to them. Second are all resource monitors. Only preassigned resources are
assigned during time repair, but those assignments may cause resource defects which can only
be repaired by changing time assignments, just because the resources involved are preassigned.

KheEjectionChainLayerRepairTimes chooses one of the group monitors returned by

KHE_GROUP_MONITOR KheLayerTimeRepairStartGroupMonitorMake(
KHE_LAYER layer);

KHE_GROUP_MONITOR KheLayerTimeRepairLongStartGroupMonitorMake(
KHE_LAYER layer);

as its start group monitor, depending on optiontime_layer_repair_long. The result has
sub-tagKHE_SUBTAG_LAYER_TIME_REPAIR, with the same children as before, only limited to
those that monitor the meets and resources oflayer, or (if time_layer_repair_long is true)
of layers whose index number is less than or equal tolayer’s.

KheEjectionChainRepairResources uses the group monitor returned by

KHE_GROUP_MONITOR KheTaskingStartGroupMonitorMake(KHE_TASKING tasking);

for its start group monitor. The result has sub-tagKHE_SUBTAG_TASKING, and its children are
the following monitors (or primary groupings of those monitors, where those already exist): the
assign resource, prefer resources, and avoid split assignments monitors, and the six resource
monitors that monitor the tasks and resources oftasking. If the tasking is for a particular
resource type, only monitors of entities of that type are included.

To allow an ejection chain to unassign meets temporarily but prevent it from leaving meets
unassigned in the end, a limit monitor is imposed which rejects chains that allow the total cost of
assign time defects to increase. This monitor is created by calling

KHE_GROUP_MONITOR KheGroupEventMonitors(KHE_SOLN soln,
KHE_MONITOR_TAG tag, KHE_SUBTAG_STANDARD_TYPE sub_tag);

passingKHE_ASSIGN_TIME_MONITOR_TAG andKHE_SUBTAG_ASSIGN_TIME as tag parameters.

To prevent the number of unmatched demand tixels from increasing, when that is requested
by theresource_invariant option, the group monitor returned by function

KHE_GROUP_MONITOR KheAllDemandGroupMonitorMake(KHE_SOLN soln);

is used as a limit monitor. Its sub-tag isKHE_SUBTAG_ALL_DEMAND, and its children are all
ordinary and workload demand monitors. Primary groupings are irrelevant to limit monitors, so
these last two functions take no account of them.

12.7.5. Augment functions

The augment functions passed to the ejector are private to KHE. They are open to inspection in
the source code as usual. This section explains what they do in detail.

The augment functions consult several options. Three of them,ejector_repair_times,

260 Chapter 12. Ejection Chains

ejector_limit_node, andejector_repair_resources, are particularly important because
they limit the scope of repairs. They cannot be set by the user—or rather, they can, but that
would be futile because they are reset within the main functions. Any repair which assigns or
moves a meet first consultsejector_repair_times, and only proceeds if it istrue. It tries
moving each ancestor of the meet, since moving an ancestor will also move the original meet;
but if ejector_limit_node is non-NULL, it omits moves of meets lying within nodes which are
not proper descendants ofejector_limit_node. Any repair which assigns or moves a task first
consultsejector_repair_resources, and only proceeds if it istrue.

Here is the full list of repair operations executed by KHE’s augment functions.

Node swaps, which useKheNodeMeetSwap (Section 10.2.1) to swap the assignments of the
meets of two nodes. If theejector_nodes_before_meets option istrue, then if node swaps
are tried at all, they are tried before (rather than after) meet moves.

Basic and ejecting meet assignments and moves and Kempe meet moves, which move
meets (Section 10.2.2). Where it is stated that a Kempe meet move is tried, it is in fact tried only
when theejector_use_kempe_moves option (Section 8.4.5) isKHE_OPTIONS_KEMPE_YES, or is
KHE_OPTIONS_KEMPE_AUTO and the meet to be moved lies in at least one layer whose duration
is at least 80% of the duration of the cycle. Where it is stated that an ejecting meet assignment
or move is tried, it is in fact tried only when theejector_ejecting_not_basic option istrue,
otherwise a basic meet assignment or move is tried instead.

Fuzzy meet moves, which move meets in a more elaborate way (Section 10.7.4). These are
not mentioned below, but they are tried after Kempe and ejecting meet moves, although only
when theejector_use_fuzzy_moves option istrue and the current depth is 1.

Split moves, which split a meet into two and Kempe-move one of the fragments, andmerge
moves, which Kempe-move one meet to adjacent to another and merge the two fragments. As
well as being used to repair split defects, split moves are used similarly to fuzzy meet moves:
although not mentioned below, they are tried after Kempe and ejecting meet moves, but only
when theejector_use_split_moves option istrue and the current depth is 1. These Kempe
meet moves are not influenced by theejector_use_kempe_moves option.

Ejecting task assignments and moves, which assign or move a task to a given resource and
then unassign any clashing tasks (Section 11.7).

Ejecting task-set moves, which use ejecting task moves to move a set of tasks to a common
resource, succeeding only if all of the moves that change anything succeed.

Meet-and-task moves, which Kempe-move a meet at the same time as moving one of its
tasks, succeeding only if both moves succeed.

Each repair is enclosed in calls toKheEjectorRepairBegin andKheEjectorRepairEnd as
usual. In the more complex cases, such as the last two on the list above, thesuccess argument
of KheEjectorRepairEnd is set totrue only if all parts of the repair succeed. Some of the more
complex repairs are tried only when the current depth is 1, that is, when the defect being repaired
is truly present, not introduced by some other repair.

Some alternative repairs are naturally tried one after another. The ejecting task moves of
a given task to each resource in its domain is one example. Here are three less obvious, but
nevertheless very useful sequences of alternative repairs.

A Kempe/ejecting meet moveis a sequence of one or two alternative repairs, first a Kempe

12.7. Ejection chain time and resource repair functions 261

meet move, then an ejecting meet move with the same parameters. The ejecting meet move
is omitted when the Kempe meet move reports that it did only what a basic meet move would
have done, since in that case the ejecting move is identical to the Kempe move. This sequence
is similar to making an ejecting move and then, on the next repair, favouring a particular
reassignment of the ejected meet(s) which is likely to work well. Fuzzy and split moves may
follow the Kempe and ejecting meet moves, as explained above.

A resource underload repairfor resourcer and time groupg is a sequence of alternative
repairs which aim to increase the number of timesr is busy withing. Unlessg is the whole cycle,
for each task assignedr whoseoverlap(the number of times it is running withing) is less that its
duration, it tries all ejecting meet moves of the task’s meet which increase its overlap. After that
it tries an ejection tree repair like the one described below for cluster busy times defects, which
aims to empty out the entire time group—a quite different way to remove the defect.

A resource overload repairfor resourcer and time groupg is a sequence of alternative re-
pairs which aims to decrease the number of timesr is busy withing. First, for each task assigned
but not preassignedr whose overlap is non-zero, it tries all ejecting task moves of the task to its
domain’s resources. Then, for each task assigned (including preassigned)r whose overlap isnon-
zero, it tries all ejecting meet moves of the task’s meet which decrease the overlap.

Wherever possible,sequences of alternative repairschange the starting point of the traversal
of the alternatives on each call. For example, when trying alternative resources, the code is

for(i = 0; i < KheResourceGroupResourceCount(rg); i++)
{
index = (KheEjectorCurrAugmentCount(ej) + i) %
KheResourceGroupResourceCount(rg);

r = KheResourceGroupResource(rg, index);
... try a repair using r ...

}

The first resource tried depends on the number of augments so far,an essentially random number.
This simple idea significantly decreases final cost and run time.

Following is a description of what each augment function does when given a non-group
monitor with non-zero cost to repair. When given a group monitor with non-zero cost, since
the elements of a group all monitor the same thing in reality, the augment function takes any
individual defect from the group and repairs that defect.

Split events and distribute split events defects.Most events are split into meets of suitable
durations during layer tree construction, but sometimes the layer tree does not remove all these
defects, or a split move introduces one. In those cases, the split analyser (Section 9.7.1) from the
options object is used to analyse the defects and suggest splits and merges which correct them.
For each split suggestion, for each meet conforming to the suggestion, a repair is tried which
splits the meet as suggested. For each merge suggestion, for each pair of meets conforming to the
suggestion, four combined repairs are tried, each consisting of, first, a Kempe meet move which
bring the two meets together, and second, the merge of the two meets. The four Kempe moves
move the first meet to immediately before and after the second, and the second to immediately
before and after the first.

Assign time defects.For each monitored unassigned meet, all ejecting meet moves to a

262 Chapter 12. Ejection Chains

parent meet and offset that would assign the meet to a time within its domain are tried.

Prefer times defects.For each monitored meet assigned an unpreferred time, all
Kempe/ejecting meet moves to a parent meet and offset giving a preferred time are tried.

Spread events defects.For each monitored meet in an over-populated time group, all
Kempe/ejecting moves of the meet to a time group that it would not over-populate are tried; and
for each under-populated time group, for each meet whose removal would not under-populate its
time group, all Kempe/ejecting moves of it to the under-populated time group are tried.

Link events defects.These are not repaired; they are expected to be handled structurally.

Order events defects.These are currently ignored. It will not be difficult to find suitable
meet moves in the future.

Assign resource defects.For each monitored unassigned task, all ejecting assignments of
the task to resources in its domain are tried. Then if theejector_repair_times option permits,
all combinations of a Kempe meet move of the enclosing meet and an ejecting assignment of
the task to resources in its domain are tried.

Prefer resources defects.For each monitored task assigned an unpreferred resource, all
ejecting moves of the task to preferred resources are tried.

Avoid split assignments defects.For each resource participating in a split assignment there
is one repair: all involved tasksassigned that resource are unassigned,all involved tasks’domains
are restricted to the other participating resources, and a set of ejection chains is tried, each of
which attempts to reassign one of the unassigned tasks. The repair succeeds only if all these
chains succeed, making an ejection tree, not a chain. This is expensive and unlikely to work, so
it is only tried when the defect is a main loop defect or only one task needs to be unassigned.

Avoid clashes defects.Avoid clashes monitors are detached during ejection chain repair,
since their work is done by demand monitors. So there are no avoid clashes defects.

Avoid unavailable times defects.A resource overload repair (see above) for the monitored
resource and the unavailable times is tried.

Limit idle times defects.For each task assigned the monitored resource at the start or end of
a ‘day’ (actually, a time group being monitored), each Kempe/ejecting meet move of that task’s
meet such that the initial meet move reduces the number of idle times for that resource is tried.
Calculating this condition is not trivial, but the augment function does it exactly. Task moves
could help to repair limit idle times defects for unpreassigned resources, but in current data sets
the resources involved are usually preassigned, so task moves are not currently being tried.

After the repairs just given are tried, if the repair has depth 1 (if the defect was not created
by a previous repair on the current chain),a complex repair is tried which eliminatesall idle times
for one resource on one day. Take the meets assigned that resource on that day. A retimetabling
of those meets on that day with no clashes and no idle times is defined by a starting time for the
first meet and a permutation of the meets (their chronological order in the assignment). If there
arek meets ands starting times that don’t put the last meet off the end of the day, then there
ares ⋅ k! retimetablings in total. In practice this is a moderate number. For safety, only a limited
number of retimetablings is tried, by switching to a single permutation at each new node after a
fixed limit (currently 1000) is reached.

Cluster busy times defects.If the resource is busy in too few monitored time groups, all
ejecting meet moves are tried which move a meet which is not the only meet in a monitored time

12.7. Ejection chain time and resource repair functions 263

group (either because every monitored time group it overlaps with overlaps with at least one
other meet, or because it does not overlap with any monitored time groups) to a monitored time
group in which it is. If the resource is busy in too many monitored time groups, then for each
monitored time grouptg containing at least one meet, if the depth is 1 ortg contains exactly
one meet, all the meets intg are unassigned, andtg and all monitored time groups containing no
meets are removed from the domains of all meets assigned the resource. This is an ejection tree
repair if more than one meet is unassigned: all of the unassigned meets must be reassigned for
success. Theon_success_fn parameter ofKheEjectorRepairEndLong is used to ensure that
the domains are restored on success as well as on failure.

Limit busy times defects.For each set of times when the resource is underloaded (resp.
overloaded), a resource underload (resp. overload) repair of the resource at those times is tried.

Limit workload defects.If the resource is overloaded, a resource overload repair is tried,
taking the set of times to be the entire cycle. There is currently no repair for underloads.

Ordinary and workload demand defects.If the defect has a workload demand monitor
competitor (possibly itself, although workload demand monitors rarely fail to match), a resource
overload repair is tried for the workload demand monitor’s resource and the domain of its
originating monitor. If the defect has no workload demand defect competitor, all ejecting meet
moves of competitor meets to anywhere different are tried; but meets within vizier nodes are not
moved in this case, since that would only shift the problem to a different time.

Appendix A. Modules Packaged with KHE
This Appendix documents several modules packaged with KHE and used by it behind the scenes.
By including their header files the user may also use these modules.

A.1. The M module

M is a C module consisting of header filem.h and implementation filem.c. These are stored and
compiled with KHE, but they can be used separately. M offers macros and functions for memory
allocation, assertions, and variable-length typed generic arrays and symbol tables. The latter
come in two forms, one with keys of typechar *, the other with keys of typewchar_t *.

M itself contains no calls to synchronization operations, but it has been written with multi-
threading in mind, and it is thread-safe in the following sense. It is safe for query operations
(retrievals and traversals on an unchanging array or symbol table) to occur at the same time on
the same object within different threads. It is not safe for update operations (insertions and
deletions) to occur at the same time as either query or update operations within different threads.
This is the most that can be hoped for without explicit synchronization.

KHE uses M extensively behind the scenes. It is useful, too, when writing helper functions
and solvers,which is why it is documented here. To use M, simply includem.h. Includingkhe.h
does not automatically includem.h as well.

A.1.1. Memory allocation

M offers macro

MMake(x);

which assumes thatx is a variable of pointer type, and initializes it to point to some new memory
of the appropriate size. For example,

struct { int x; int y } pt;
MMake(pt);

setspt to point to two new words of memory. Conversely, for any pointerx set by calling
MMake(x) one may call

MFree(x);

to free the memory pointed to byx. The two macros are simple wrappers for themalloc() and
free() system calls;MMake is more convenient thanmalloc(), since it works out the size for
you, butMFree is identical withfree() and is included only for completeness.

264

A.1. The M module 265

A.1.2. Assertions

M also offers a useful assert function:

void MAssert(bool cond, char *fmt, ...);

If cond is true, this does nothing; but if it isfalse, it usesfprintf to print a message made
from fmt and the following parameters ontostderr, then aborts.

A.1.3. Variable-length arrays

M also offers variable-length arrays. These are not just arrays of void pointers. Instead, like
C’s native arrays, they are strongly typed: the C compiler will report an error if there is a type
mismatch. Each array may have elements of any one type, and that type may have any width.

The type of a variable-length array must be declared using atypedef. For example, the
following declarations already appear withinm.h:

typedef MARRAY(bool) ARRAY_BOOL;
typedef MARRAY(char) ARRAY_CHAR;
typedef MARRAY(wchar_t) ARRAY_WCHAR;
typedef MARRAY(short) ARRAY_SHORT;
typedef MARRAY(int) ARRAY_INT;
typedef MARRAY(int64_t) ARRAY_INT64;
typedef MARRAY(void *) ARRAY_VOIDP;
typedef MARRAY(char *) ARRAY_STRING;
typedef MARRAY(wchar_t *) ARRAY_WSTRING;

To gain access towchar_t and int64_t, m.h includes standard header files<wchar.h> and
<stdint.h>. Use oflong just leads to trouble, in the author’s experience, since its width varies
between 32-bit and 64-bit platforms, soint64_t, a standard 64-bit signed integral type, appears
here instead. Create your own array type by placing any type at all between the parentheses.

A variable of any of these types is a record (not a pointer to a record) holding three fields:
the current length, the current capacity, and a typed pointer to memory holding the elements. If
one array is assigned to another, the two arrays will have independent length and capacity fields,
yet share their content. This is only safe when the original is not used afterwards, or the array
remains constant. It was done this way because, in the author’s experience, an extensible array is
best kept private to one class or one function body; and in that case, there is no problem in having
its record lie directly in the class object or on the call stack, rather than in separately allocated
memory at the end of a pointer, and it is more efficient that way.

Although the record fields can be accessed directly by the user, they should not be. Instead,
only the following operations (which are generic macros for the most part) should be called. The
notationARRAY_X stands for a variable-length array whose elements have typeX.

void MArrayInit(ARRAY_X a);

Initialize a to the empty array. This must be called before any other operation ona. Macro

void MArrayFree(ARRAY_X a)

266 Appendix A. Modules Packaged with KHE

frees the memory used to hold the elements ofa. It does not freea itself;a is not a pointer.

int MArraySize(ARRAY_X a);

Return the number of elements currently stored ina. An integeri is a legal index ofa if
0 <= i < MArraySize(a), as usual in C. Array bounds are not checked by any M operation.

void MArrayClear(ARRAY_X a);

Clear the array, that is, set its current number of elements to 0.

void MArrayAddLast(ARRAY_X a, X x);
void MArrayInsert(ARRAY_X a, int i, X x);
void MArrayAddFirst(ARRAY_X a, X x);

Add x to the end ofa, insert it so that its index afterwards isi, or insert it at the front, shifting all
higher elements up one place to make room. The array will be resized if necessary.

X MArrayGet(ARRAY_X a, int i);
X MArrayFirst(a);
X MArrayLast(a);

Return thei’th element ofa, or the first, or the last.

void MArrayPut(ARRAY_X a, int i, X x);
X MArrayPreInc(ARRAY_X a, int i);
X MArrayPostInc(ARRAY_X a, int i);
X MArrayPreDec(ARRAY_X a, int i);
X MArrayPostDec(ARRAY_X a, int i);

Replace the existingi’th element ofa with x, or carry out the usual pre- and post-increment and
decrement operations on thei’th element ofa, returning the usual results. The last four apply
only to arrays of integral types.

void MArrayFill(ARRAY_X a, int len, X x);

If the length ofa is less thanlen, increase it tolen by repeatedly adding the valuex to the end;
otherwise do nothing. There is no way, using this or any other M operation, to cause any legal
index ofa to contain an undefined value.MArrayFill is a macro that evaluatesx repeatedly.

X MArrayRemove(ARRAY_X a, int i);
X MArrayRemoveFirst(ARRAY_X a);
X MArrayRemoveLast(ARRAY_X a);

Remove the element at indexi, or the first element, or the last element, shifting any higher
elements down one place to close up the gap, and returning the removed element as result.

void MArrayDropLast(ARRAY_X a);
void MArrayDropFromEnd(ARRAY_X a, int n);

Remove the last, or the lastn, elements ofa.

A.1. The M module 267

X MArrayRemoveAndPlug(ARRAY_X a, int i);
X MArrayRemoveFirstAndPlug(ARRAY_X a);

Remove the element at indexi, or the first element, but plug the gap quickly by moving the last
element into it instead of shifting; or if the removed element is the last element, just remove it.
Return the original last element, possibly but not usually the deleted element.

void MArrayAppend(ARRAY_X dest, ARRAY_X source, int i);

Append the elements ofsource to the end ofdest, leavingsource unchanged. Parameteri is
a variable used as an external cursor when scanningsource.

void MArraySwap(ARRAY_X a, int i, int j, X tmp);

Swap the elements ofa at positionsi andj. Parametertmp is a variable used to hold an element
temporarily while swapping.

void MArrayWholeSwap(ARRAY_X a, ARRAY_X b, ARRAY_X tmp);

Swap two whole arrays, that is, swap their structs.

void MArraySort(ARRAY_X a, int(*compar)(const void *, const void *));

Sorta by means of a call toqsort, usingcompar as the comparison function.

void MArraySortUnique(ARRAY_X a, int(*compar)(const void *, const void *));

Similar toMArraySort, except that after sorting, elements are removed until no two adjacent
elements return 0 when compared usingcompar. If this is done purely for uniqueifying, it is
common to implementcompar as a mere subtraction of two pointers. However, on a 64-bit
architecture this yields a 64-bit integer, and merely returning this cast toint, the return type of
compar, does not work. Use a conditional expression returning-1, 0, or 1 instead.

bool MArrayContains(ARRAY_X a, X x, int *pos);

If a containsx, return true and set*pos to the first occurrence ofx within a; otherwise
returnfalse, leaving*pos unchanged. The implementation usesmemcmp for the individual
comparisons, ensuring that elements of any width are handled correctly.

MArrayForEach(ARRAY_X a, X *x, int *i)
MArrayForEachReverse(ARRAY_X a, X *x, int *i)

These macros are iterators which iterate over the elements ofa, in forward or reverse order.
During each iteration,*x is one element ofa and*i is the index of*x in a. For example,

MArrayForEach(strings, &str, &i)
fprintf(stdout, "string %d: %s\n", i, str);

prints the elements of arraystrings. The use of& could be avoided, sinceMArrayForEach is
a macro; it has been included as a reminder thatMArrayForEach assigns values tostr andi (it
would have been necessary ifMArrayForEach had been a function). Both macros expand to

268 Appendix A. Modules Packaged with KHE

for(... ; ... ; ...)

and may be used syntactically in any way that this construct may be.

A.1.4. String factories

One handy use for variable-length arrays is for building up strings piece by piece, similarly to
open_memstream from POSIX-2008. The growing string is held in a variable-length array called
astring factory, added to as appropriate, and retrieved from the factory at the end.

M’s string factories come in two forms, one with elements of typechar calledARRAY_CHAR,
the other with elements of typewchar_t calledARRAY_WCHAR. Both these types appear in the
list of pre-declared array types given above. We’ll start withARRAY_CHAR.

void MStringInit(ARRAY_CHAR ac);

Initialize string factoryac. This is just a synonym forMArrayInit. While the string is being
constructed, the array just contains its elements, with no terminating’\0’.

void MStringAddChar(ARRAY_CHAR ac, char ch);
void MStringAddInt(ARRAY_CHAR ac, int i);
void MStringAddString(ARRAY_CHAR ac, char *s);

Add ch, i (formatted into a character sequence), ors to the end of the growing string.

void MStringPrintf(ARRAY_CHAR ac, size_t maxlen,
const char *format, ...);

Add the result ofsnprintf(-, maxlen, format, ...) to the end of the growing string.

char *MStringVal(ARRAY_CHAR ac);

Add a’\0’ to the end ofac, then return the string held in the factory. After you are finished
with the result ofMStringVal, you can reclaim memory by callingMArrayFree(ac) as usual,
or (equivalently, as it turns out) by callingfree on the result ofMStringVal.

There is also a separate function for copying a string into heap memory:

char *MStringCopy(char *s);

This is equivalent to making a string factory, addings to it, and returning the value; or ifs isNULL
it simply returnsNULL. A returned non-NULL value may be freed by a call tofree.

Here are thewchar_t versions of these functions:

void MWStringInit(ARRAY_WCHAR awc);
void MWStringAddChar(ARRAY_WCHAR awc, wchar_t ch);
void MWStringAddInt(ARRAY_WCHAR awc, int i);
void MWStringAddString(ARRAY_WCHAR awc, wchar_t *s);
void MWStringPrintf(ARRAY_WCHAR awc, size_t maxlen,
const wchar_t *format, ...);

wchar_t *MWStringVal(ARRAY_WCHAR awc);
wchar_t *MWStringCopy(wchar_t *s);

A.1. The M module 269

They work in exactly the same way, with just the obvious changes to names and types.

A.1.5. Symbol tables

A symbol table is a set ofentries, each of which consists of two parts, akeywhich is a string,
and avalue. In any one table the values must all have the same type, declared by the user (the C
compiler checks this). The declared type is arbitrary, and may have any width. Each table may
contain any number of entries. The basic operationsare to insert an entry and to retrieve the value
of an entry by giving its key.

As for arrays, and for the same reasons, M’s symbol tables are records, not pointers to
records. The implementation uses a linear probing hash table which doubles in size when it
reaches 80%capacity. This kind of hash table is essentially just an array (actually two arrays,one
for keys, one for values). At any moment, some of its elements contain entries, others do not.

The hardest part of implementing M was to find a way to resize the generic array of values
without falling foul of the C language’s strict aliasing rule, which states that pointers of different
types should never point to overlapping memory. My solution invokes the part of the rule that
says that pointers of typechar * are exempt from the rule, which is not a confidence-inspiring
state of affairs. If you find corrupted values in your symbol tables, try turning optimization off.
If that fixes the problem, then strict aliasing was the problem (please let me know).

M’s symbol tables come in two forms, one with keys of typechar * calledMTABLE, the
other with keys of typewchar_t * called MWTABLE. (File m.h also defines typesMTABLE_U
andMWTABLE_U, but they are for use behind the scenes. Do not use these names.)MTABLE is
documented here. For wide character string tables, replaceMTABLE with MWTABLE, MTable with
MWTable, andchar * with wchar_t * in what follows.

To define a symbol table type whose values have typePERSON, say, write this:

typedef MTABLE(PERSON) TABLE_PERSON;

In the following definitions (most of which are implemented by macros), typeTABLE_X stands
for any type defined by a typedef like the one just given, andX stands for the type (PERSON or
whatever) between the parentheses in that typedef.

void MTableInit(MTABLE_X table);

Initialize table to a new table, currently empty.

void MTableFree(MTABLE_X table);

Freetable (that is, free its arrays of keys and values).

void MTableInsert(MTABLE_X table, char *key, X value);

Insert a new entry with the given key and value intotable. It is not an error if there is already
an entry with the same key intable; in that case, the table simply stores both.

bool MTableInsertUnique(MTABLE_X table, char *key, X value, X *other);

If there is no entry with the given key intable, insert an entry with the given key and value and

270 Appendix A. Modules Packaged with KHE

returntrue. Otherwise, change nothing, set*other to the value of an existing entry with this
key, and returnfalse.

void MTableClear(MTABLE_T table);

Delete every entry fromtable.

int MTableHash(wchar_t *key)

Return the hash code (before reduction modulo the table size) used when searching forkey.

Retrieval comes in two forms. The first is the ‘contains’form,which merely reports whether
an entry with the given key is present:

bool MTableContains(MTABLE_X table, char *key, int *pos);
bool MTableContainsHashed(MTABLE_X table, int hash_code, char *key,
int *pos);

bool MTableContainsNext(MTABLE_X table, int *pos);

MTableContains returnstrue if table contains an entry with the given key, setting*pos to its
position in the table, orfalse if there is no such entry, in which case*pos is an empty position
in the table.MTableContainsHashed is the same, except that it assumes thathash_code is
the hash code ofkey as returned byMTableHash; passing it saves time when searching for the
same key in several tables.MTableContainsNext assumes that*pos is a non-empty position
of table; it searches the table beyond that point (wrapping around to the front if necessary) for
an entry with the same key as the one at that point. LikeMTableContains, it returnstrue or
false depending on whether it found such an entry, and it changes*pos to its new position, or
an empty position.

The second form of retrieval is the ‘retrieve’ form. It returns the value associated with the
given key, as well as saying whether the key is present:

bool MTableRetrieve(TABLE_X table, char *key, X *value, int *pos);
bool MTableRetrieveHashed(TABLE_X table, int hash_code, char *key,

X *value, int *pos);
bool MTableRetrieveNext(TABLE_X table, X *value, int *pos);

Apart from returning the value in*value when an entry is found, these functions are the same
as the corresponding ‘contains’versions.

void MTableDelete(MTABLE_X table, int pos);

Delete the entry oftable at positionpos. Herepos must contain an entry; for example, it could
be the position returned by a successful call toMTableRetrieve.

void MTableForEachWithKey(MTABLE_X table, char *key, X *value,
int *pos);

void MTableForEachWithKeyHashed(MTABLE_X table, int hash_code,
char *key, X *value, int *pos);

These are iterator macros which visit every entry with a given key. For example, to visit every

A.1. The M module 271

person called"fred" in tablepeople, the code is

MTableForEachWithKey(people, "fred", &person, &pos)
{

... visit person ...
}

On each iteration, this code setsperson to a person with name"fred", andpos to the position of
that person in the table.MTableForEachWithKeyHashed is the same except that the user supplies
the hash code as well, as forMTableRetrieveHashed.

A similar iterator macro visits every entry of the table:

void MTableForEach(MTABLE_X table, char **key, X *value, int *pos);

The entries will be visited in an essentially random order, as usual with hash tables. For example,
the following code will count the number of entries intable:

count = 0;
MTableForEach(table, &key, &value, &pos)
count++;

This number is rarely needed by applications so it is not maintained automatically.

Another fairly useless number is

int MTableSize(MTABLE_X table);

which is the current size of the hash table array. This will be somewhat larger than the current
number of entries. And here are a few final macros, of minor interest:

bool MTableOccupiedPos(MTABLE_X table, int pos);
char *MTableKey(MTABLE_X table, int pos);
X MTableValue(MTABLE_X table, int pos);
void MTableSetValue(MTABLE_X table, int pos, X value);

MTableOccupiedPos returnstrue when positionpos of table contains an entry.MTableKey
andMTableValue return the key and value of the entry at positionpos; they are undefined if there
is no entry atpos. MTableSetValue changes the value of the entry at positionpos. For example,
assuming that the table contains at least one entry with key"fred", the code

MTableContains(table, "fred", &pos);
MTableSetValue(table, pos, new_value);

changes the value of the first such entry tonew_value.

A.2. Variable-length bitsets

KHE comes with a C module called LSet for managing variable-length sets of smallish unsigned
integers implemented as bit vectors. The module consists of header filekhe_lset.h and
implementation filekhe_lset.c. These are stored and compiled with KHE, but they can also

272 Appendix A. Modules Packaged with KHE

be used separately. KHE uses LSet extensively behind the scenes (all its time groups, resource
groups, and event groups are represented both as arrays of elements and LSets of element index
numbers), and it is also occasionally useful when writing helper functions and solvers, which is
why it is documented here. To use LSet, simply includekhe_lset.h. Includingkhe.h does not
automatically includekhe_lset.h as well.

File khe_lset.h begins with these two type definitions:

typedef struct lset_rec *LSET;
typedef MARRAY(LSET) ARRAY_LSET;

The first defines the type of an LSet, and the second defines an array of LSets, as usual.

Internally, an LSet is represented by a pointer to astruct containing a length followed
by the bit vector itself. When an element needs to be added that would overflow the currently
allocated memory, the whole LSet is freed and a new one is returned. This is not particularly
convenient for the user of LSet but it is the most efficient way.

Functions

LSET LSetNew(void);
void LSetFree(LSET s);

create a new, empty LSet and free an LSet;

LSET LSetCopy(LSET s);

creates a fresh new LSet with the same value ass. Function

void LSetShift(LSET s, LSET *res, unsigned int k,
unsigned int max_nonzero);

takes two existing LSets,s and*res, and replaces the current value of*res by s with k added
to each of its elements, except that elements which would thereby have value greater than
max_nonzero are omitted. The old*res will be freed and a new one allocated if necessary. This
arcane function is used behind the scenes to calculate shifted time domains. Function

void LSetClear(LSET s);

clearss back to the empty set, and

void LSetInsert(LSET *s, unsigned int i);
void LSetDelete(LSET s, unsigned int i);

insert elementi (changing nothing ifi is already present) and delete it (changing nothing ifi is
already absent). The value ofi is arbitrary but very large values are obviously undesirable, since
the bit vectors then become very large.

void LSetAssign(LSET *target, LSET source);

replaces the current value of*target with the value ofsource, reallocating*target if
necessary. The value is a copy, there is no sharing anywhere in the LSet module.

The next three functions implement the set operations of union, intersection,and difference,

A.2. Variable-length bitsets 273

replacing their first parameter’s value with the result of the operation:

void LSetUnion(LSET *target, LSET source);
void LSetIntersection(LSET target, LSET source);
void LSetDifference(LSET target, LSET source);

The usual Boolean operations are available on LSets:

bool LSetEmpty(LSET s);
bool LSetEqual(LSET s1, LSET s2);
bool LSetSubset(LSET s1, LSET s2);
bool LSetDisjoint(LSET s1, LSET s2);
bool LSetContains(LSET s, unsigned int i);

These returntrue whens is empty, whens1 ands2 are equal, whens1 is a subset ofs2, when
s1 ands2 are disjoint, and whens containsi. Functions

unsigned int LSetMin(LSET s);
unsigned int LSetMax(LSET s);

return the smallest and largest elements ofs respectively, using an efficient table lookup on the
first or last non-zero byte. Both functions abort ifs is empty. Function

int LSetLexicalCmp(LSET s1, LSET s2);

returns a negative, zero, or positive result depending on whethers1 is lexicographically less than,
equal to, or greater thans2. Function

void LSetExpand(LSET s, ARRAY_SHORT *add_to)

assumes that*add_to is an initialized array, and adds the elements ofs to the array in increasing
order by repeated calls toMArrayAddLast. Function

char *LSetShow(LSET s);

returns a display ofs in static memory (so it is not thread-safe, but it does keep four separate
buffers, allowing it to be called several times in one line of debug output). Finally,

void LSetTest(FILE *fp);

tests the module and prints its results onto filefp.

A.3. Priority queues

When a solver needs to visit things in priority order, it is easiest to just put them in an array and
sort them. Occasionally, however, their priorities change as solving proceeds, and then, since
resorting after every change is not efficient, a priority queue is needed.

KHE comes with a C priority queue module called PriQueue, consisting of header file
khe_priqueue.h and implementation filekhe_priqueue.c. These are stored and compiled
with KHE, but can also be used separately. To use PriQueue, simply includekhe_priqueue.h.

274 Appendix A. Modules Packaged with KHE

Includingkhe.h does not automatically includekhe_priqueue.h as well. The implementation
uses a Floyd-Williams heap with back indexes. Each operation takesO(log(n)) time at most.

File khe_priqueue.h begins with these type definitions:

typedef struct khe_priqueue_rec *KHE_PRIQUEUE;

typedef int64_t (*KHE_PRIQUEUE_KEY_FN)(void *entry);
typedef int (*KHE_PRIQUEUE_INDEX_GET_FN)(void *entry);
typedef void (*KHE_PRIQUEUE_INDEX_SET_FN)(void *entry, int index);

The first defines the type of a PriQueue as a pointer to a private record in the usual way. The
others define the types of callback functions stored within the PriQueue and called by it.

An entryis one element of a priority queue. PriQueue is generic: its entries are represented
by void pointers and may have any type consistent with that. Each entry has akey, which is its
priority in the priority queue, and anindex, which is used internally by PriQueue to point to its
position in the priority queue. A typical entry type would look like this:

typedef struct my_entry_rec {
int64_t key; /* PriQueue key */
int index; /* PriQueue index */
...

} *MY_ENTRY;

where... stands for other fields. PriQueue needs to retrieve the key, and to retrieve and set the
index, which is what the three callback functions are for. Here they are for typeMY_ENTRY:

int64_t MyEntryKey(void *entry)
{
return ((MY_ENTRY) entry)->key;

}

int MyEntryIndex(void *entry)
{
return ((MY_ENTRY) entry)->index;

}

void MyEntrySetIndex(void *entry, int index)
{
((MY_ENTRY) entry)->index = index;

}

PriQueue sets the value of an entry’s index field to a positive integer during an insertion, and to
zero during a deletion. Accordingly, the user should initialize it to zero, and then it can be used
to determine whether the entry is currently in a priority queue or not.

To create a new PriQueue, call

KHE_PRIQUEUE KhePriQueueMake(KHE_PRIQUEUE_KEY_FN key,
KHE_PRIQUEUE_INDEX_GET_FN index_get,
KHE_PRIQUEUE_INDEX_SET_FN index_set);

A.3. Priority queues 275

For the example above, the call would be

KhePriQueueMake(&MyEntryKey, &MyEntryIndex, &MyEntrySetIndex);

Initially the queue is empty. To delete a priority queue when it is no longer needed, call

void KhePriQueueDelete(KHE_PRIQUEUE p);

To test whether a priority queue is empty or not, call

bool KhePriQueueEmpty(KHE_PRIQUEUE p);

To insert an entry, call

void KhePriQueueInsert(KHE_PRIQUEUE p, void *entry);

making sure that the entry’s key is defined beforehand; the index need not be, since it will be set
by PriQueue. Functions

void *KhePriQueueFindMin(KHE_PRIQUEUE p);
void *KhePriQueueDeleteMin(KHE_PRIQUEUE p);

return an entry with minimum key, assuming thatp is not empty, andKhePriQueueDeleteMin
removes the entry from the queue at the same time. Function

void KhePriQueueDeleteEntry(KHE_PRIQUEUE p, void *entry);

deletesentry from p; it must lie inp.

To update the priority of an entry, first change its key and then call

void KhePriQueueNotifyKeyChange(KHE_PRIQUEUE p, void *entry);

to informp that it has changed. This will changeentry’s order in the queue, moving it forwards
or backwards as required. Finally,

void KhePriQueueTest(FILE *fp);

tests the module and prints its results onto filefp.

A.4. XML handling with KML

KML is a C module for reading and writing XML. It consists of a header file calledkml.h, and
an implementation file calledkml.c. These are stored and compiled with the KHE module, and
khe.h includeskml.h. They can also be abstracted from it and used separately, althoughkml.c

does depend on theM memory module (Appendix A.1).

KHE uses KML to read and write XML. The KHE user encounters KML in exactly one
place: when reading an archive, an object of typeKML_ERROR is returned if there is a problem.

276 Appendix A. Modules Packaged with KHE

A.4.1. Representing XML in memory

TypeKML_ELT represents one node in an XML tree structure, including its label, attributes, and
children. The operations for querying aKML_ELT object are

int KmlLineNum(KML_ELT elt);
int KmlColNum(KML_ELT elt);
char *KmlLabel(KML_ELT elt);
KML_ELT KmlParent(KML_ELT elt);
int KmlAttributeCount(KML_ELT elt);
char *KmlAttributeName(KML_ELT elt, int index);
char *KmlAttributeValue(KML_ELT elt, int index);
int KmlChildCount(KML_ELT elt);
KML_ELT KmlChild(KML_ELT elt, int index);
bool KmlContainsChild(KML_ELT elt, char *label, KML_ELT *child_elt);
char *KmlText(KML_ELT elt);

KmlLineNum andKmlColNum return a line number and column number stored in the element,
presumably recording its position in some input file somewhere.KmlLabel returns the label of
the element, andKmlParent returns its parent element in the tree structure, orNULL if none.

KmlAttributeCount returns the number ofelt’s attributes, andKmlAttributeName and
KmlAttributeValue return itsindex’th attribute’s name and value. The first attribute has index
0. Negative indexes are allowed:-1 means the last attribute,-2 the second last, and so on.

KmlChildCount returns the number of children, andKmlChild returns theindex’th child,
again counting from 0 with negative indices allowed.KmlContainsChild returnstrue if elt

contains a child with the given label, setting*child_elt to the first such child if so.KmlText
returns the text which is the body of the element, possiblyNULL.

There are operations for constructingKML_ELT objects directly:

KML_ELT KmlMakeElt(int line_num, int col_num, char *label);
void KmlAddAttribute(KML_ELT elt, char *name, char *value);
void KmlAddChild(KML_ELT elt, KML_ELT child);
void KmlDeleteChild(KML_ELT elt, KML_ELT child);
void KmlAddText(KML_ELT elt, char *text);

The first creates a new element with the given line number, column number, and label; the second
adds an attribute; the next two add and delete a child; and the last adds text.KmlAddText actually
stores a malloced copy of the content of thetext parameter. It may be called repeatedly on one
elt, in which case the successive texts are concatenated.

When aKML_ELT object is just an intermediate representation on the path from an XML
file to the user’s data structure, it is no longer needed after the user’s data structure is built. The
memory occupied by it may be returned to the memory allocator for re-use by calling

void KmlFree(KML_ELT elt, bool free_attribute_values, bool free_text);

This freeselt and its descendants. Settingfree_attribute_values causes all attribute value
strings to be freed,and settingfree_text totrue causes all text to be freed. There are no options

A.4. XML handling with KML 277

for freeing the strings which label elements and name attributes,because there are usually shared.
These strings therefore leak.

The values passed toKmlAddAttribute are stored without copying. If they are literal
strings, or if they are transferred to the user’s data structure without copying, then freeing them
is not safe. On the other hand, the strings passed toKmlAddText are always copied into malloced
memory, so they are safe to free provided they are not transferred without copying into the user’s
data structure.

The following functions are useful when sorting out what to free:

char *KmlExtractAttributeValue(KML_ELT elt, int index);
char *KmlExtractText(KML_ELT elt);

They do what the corresponding operations without the wordExtract do, but they also clear
that part of the KML object:KmlExtractAttributeValue returns the attribute value but then
sets it toNULL within elt, and so on. Extracting those string parts of the KML tree that are used
within the user’s data structure makes them immune from freeing later.

In the trees returned byKmlReadFile andKmlReadString below, all attribute values and
text lie in malloced memory. The best policy in that case is to extract those strings that are to be
kept, and free the rest by setting thebool parametersofKmlFree totrue. KheArchiveRead does
this, for example.

A.4.2. Error handling and format checking

KML does not print any error messages; instead it reports an error by returning an object of type
KML_ERROR, containing the line number and column number of the point of error, plus a message
explaining what the problem was:

int KmlErrorLineNum(KML_ERROR ke);
int KmlErrorColNum(KML_ERROR ke);
char *KmlErrorString(KML_ERROR ke);

These objects can form the basis of error messages printed by the user. Most of the error strings
actually encountered are generated by the Expat parser which KML uses when reading a file.

KML’s operations for reading a file check only for well-formedness,not for conformance to
a legal document type definition, nor for high-level semantic constraints. During the conversion
from KML_ELT to the user’s own data structure, other errors may be uncovered, and it is conve-
nient to be able to report those as objects of typeKML_ERROR also. Accordingly, operation

KML_ERROR KmlErrorMake(int line_num, int col_num, char *fmt, ...);

is provided. It creates a new object of typeKML_ERROR, initializes it with the given line number,
column number, and formatted text (as forprintf), and returns it. There is also

KML_ERROR KmlVErrorMake(int line_num, int col_num, char *fmt, va_list ap);

which is toKmlErrorMake whatvprintf is toprintf, and

bool KmlError(KML_ERROR *ke, int line_num, int col_num, char *fmt, ...);

278 Appendix A. Modules Packaged with KHE

which is likeKmlErrorMake except that it sets*ke to the object it makes, and always returns
false. This is convenient for uses such as

if(bad_thing_discovered)
return KmlError(ke, line_num, col_num, "bad %s thing", str);

which bails out of a function that returns a boolean indicating whether all is well.

To check whether aKML_ELT object conforms to a document type definition, call:

bool KmlCheck(KML_ELT elt, char *fmt, KML_ERROR *ke);

If elt conforms to the definition expressed byfmt, thentrue is returned; otherwise,false is
returned and*ke is set to an object recording the nature of the error, including a line and column
number taken from eitherelt itself or one of its children, as appropriate.

Parameterfmt describes the attributes and children ofelt—not the label ofelt, which will
have already been checked by the timeelt is examined, nor the children’s children, which may
be checked by the user during a recursive traversal ofelt’s children. For example,

"+Reference : #Value"

says thatelt has an optional attribute whose name isReference, and exactly one child whose
label isValue and whose body must contain text denoting an integer (no children). The part
before the colon specifies attributes, and the part after it (if there is a colon at all) specifies chil-
dren. An initial+means optional,and an initial*means zero or more;neither means exactly one.
After that, an initial$means text (no children),and an initial#means text representing an integer
(again, no children); neither means that there may be children. Here is a longer example:

"Reference : +#Duration +Time +Resources"

The element must have exactly one attribute,Reference. It has up to three children,an optional
integerDuration, followed by an optionalTime, and finally an optionalResources. As
mentioned, the structure of the children may be checked by subsequent calls toKmlCheck.

A.4.3. Reading XML files

To read an XML file, call

bool KmlReadFile(FILE *fp, KML_ELT *res, KML_ERROR *ke,
char *end_label, char **leftover, int *leftover_len, FILE *echo_fp);

KmlReadFile readsfp, which must be open for reading UTF-8. If legal XML is found,*res is
set to a newKML_ELT object representing that XML, andtrue is returned. The operations of Ap-
pendix A.4.1may then be used to traverse*res. Otherwise,*ke is set to an error object recording
the file position and nature of the first error (reading stops there), andfalse is returned.

If end_label is NULL, KmlReadFile interprets the entire file, starting fromfp’s current
position, as XML. Ifend_label is non-NULL, it must be a string of length at least 1 and at most
1024, andKmlReadFile stops readingfp immediately after its first occurrence, or else at the end
of the file. For example,"</HighSchoolTimetableArchive>" is a suitableend_label.

For efficiency on large files,KmlReadFile readsfp one chunk at a time. Whenend_label

A.4. XML handling with KML 279

is non-NULL, KmlReadFile correctly handles the case of the first occurrence ofend_label

straddling two chunks, but the last chunk it reads will usually contain some of the characters that
follow end_label, and it has no way of pushing them back ontofp. So in that case,leftover
andleftover_len must also be non-NULL, and whenKmlReadFile returns,*leftover points
into the last chunk immediately afterend_label, and*leftover_len contains the number of
characters (possibly 0) from that point to the end of the chunk. The unconsumed remnant offp

consists of*leftover_len characters starting at*leftover, plus whatever still lies infp. A
’\0’ will not usually follow the leftover characters.

If echo_fp is non-NULL, it must be open for writing UTF-8, andKmlReadFile echoes every
character it reads toecho_fp, including leftover characters. This is useful for debugging.

Whenend_label is non-NULL, KmlReadFile cannot free the single 1024-byte buffer of
malloced memory it obtains and uses repeatedly to hold each chunk, sinceleftover points into
it. The caller cannot free it either, so it must leak.

It is also possible to read XML by scanning a string:

bool KmlReadString(char *str, KML_ELT *res, KML_ERROR *ke);

KmlReadString is like KmlReadFile except thatstr is read rather thanfp, and the XML is
expected to occupy the entire string.

Some XML files are so large that they need to be read one piece at a time. For this there is

bool KmlReadFileIncremental(FILE *fp, KML_ELT *res, KML_ERROR *ke,
char *end_label, char **leftover, int *leftover_len, FILE *echo_fp,
KML_ELT_FN elt_fn, void *impl, int max_depth);

The first seven parameters are as forKmlReadFile. Parameterelt_fn is a callback function
which gives sneak previews of theKML_ELT objects thatKmlReadFileIncremental is creating.
The user defineselt_fn like this:

void elt_fn(KML_ELT elt, KML_READ_INFO ri)
{
...

}

WhenKmlReadFileIncremental finishes reading an XML element and everything in it, and
creating the correspondingKML_ELT object and its descendants, it callselt_fn with elt set to
that object, andri set to an object containing other information, obtainable by calling

void *KmlReadImpl(KML_READ_INFO ri);
int KmlReadMaxDepth(KML_READ_INFO ri);
int KmlReadCurrDepth(KML_READ_INFO ri);

These return the values of theimpl andmax_depth parameters passed to the original call to
KmlReadFileIncremental, and the depth of the current element. There is also

void KmlReadFail(KML_READ_INFO ri, KML_ERROR ke);

A call on this from withinelt_fn or within functions called by it, directly or indirectly, causes

280 Appendix A. Modules Packaged with KHE

an immediate return fromKmlReadFileIncremental with valuefalse and the givenke. It is
implemented using thesetjmp andlongjmp functions; the jump context is stored inri.

Parametermax_depth of KmlReadFileIncremental limits the callbacks to those whose
depth parameter is at mostmax_depth. For example, settingmax_depth to -1 produces no
callbacks at all; setting it to0 produces a callback only on the outermost element; and so on.
Limiting depth is an efficient way to avoid most callbacks on insignificant quantities of data.

The main use for incremental reading is to grab part of the object tree,process it,and reclaim
the memory used by it. To reclaim its memory, place this at the end of the callback function:

KmlDeleteChild(KmlEltParent(elt), elt);
KmlFree(elt, ...);

Whenelt is the root of the whole document tree, this will causeKmlReadFileIncremental to
report error"0 outer units in input file". It works well on all other elements, however.
KmlReadFileIncremental callsKmlAddChild long before the callback, and will not notice if
elt is deleted and freed. It does not touch a non-rootelt after passing it to the callback.

A.4.4. Writing XML files

Writing an XML file begins with the creation of aKML_FILE object, by calling

KML_FILE KmlMakeFile(FILE *fp, int initial_indent, int indent_step);

Pointer typeKML_FILE, defined inkml.h, represents an XML file open for writing (never
reading). It holds a file pointer and a few attributes describing the state of the write, including a
current indent, used to produce neatly indented XML. Filefp must be open for writing UTF-8
characters;initial_indent is the initial indent, typically 0, andindent_step is the number of
spaces to indent at each level, typically 2 or 4.

When reading an XML file using KML it is necessary to first read the file into aKML_ELT

object, and then build the user data structure that is really wanted, while traversing theKML_ELT

object. The reverse procedure may be used for writing, by calling

void KmlWrite(KML_ELT elt, KML_FILE kf);

KmlWrite writeselt and its attributes and children recursively tokf. But it is also possible to
write directly to a file while traversing the user’s data structure, without usingKML_ELT objects.
To do this, the operations are

void KmlBegin(KML_FILE kf, char *label);
void KmlAttribute(KML_FILE kf, char *name, char *value);
void KmlPlainText(KML_FILE kf, char *text);
void KmlFmtText(KML_FILE kf, char *fmt, ...);
void KmlEnd(KML_FILE kf, char *label);

KmlBegin begins an object with the given label, andKmlEnd ends it. KML does not check that
the labels match, even though they must. Immediately after callingKmlBegin, any number of
calls toKmlAttribute are allowed; each adds one attribute, with the given name and value, to
the object just begun. After that,KmlPlainText may be called to add some text as the body of

A.4. XML handling with KML 281

the object, orKmlFmtText to add some formatted text as the body (wherefmt and the following
parameters are suitable for passing on tofprintf). KmlPlainText prints the characters&<>’"
in their escape sequence forms (& and so on);KmlFmtText does not, so it is best limited to
tasks that cannot generate such characters (printing numbers, etc.). Alternatively,any number of
nested calls toKmlBegin …KmlEnd may precede the matchingKmlEnd, to add children.

For convenience, three operations are offered which write an entire element in one call:

void KmlEltAttribute(KML_FILE kf, char *label, char *name, char *value);
void KmlEltPlainText(KML_FILE kf, char *label, char *text);
void KmlEltFmtText(KML_FILE kf, char *label, char *fmt, ...);

These are simple combinations of the functions above, only writing on one line (except newlines
in text). KmlEltAttribute writes an object with the given label and attribute, but no body.
KmlEltPlainText andKmlEltFmtText write an object with the given label, no attributes, and a
plain or formatted text body. A few other such functions are available, for which seekml.h.

Appendix B. Implementation Notes
This appendix documents aspects of the implementation of KHE. It is included mainly for the
author’s own reference; it is not needed for using KHE.

B.1. Source file organization

The KHE platform is organized in object-oriented style, with one C source file for each major
type. A type’s internals are visible only within its file, so that all access to them is via functions.
Headers for some of these functions appear inkhe.h, making them available to the end user.
Headers for others appear inkhe_interns.h, making them available only to the platform.

Although this section applies to all source files, it is motivated by the problemsof organizing
the source files of types defining parts of solutions. Some of these are quite large. For example,
khe_meet.c, which holds the internals of typeKHE_MEET, is over 5000 lines.

There is a canonical order for the types representing parts of solutions:KHE_SOLN,
KHE_MEET, KHE_MEET_BOUND, KHE_TASK, KHE_TASK_BOUND, KHE_MARK, KHE_PATH, KHE_NODE,
KHE_LAYER, KHE_ZONE, KHE_TASKING. The idea is to handle these types in this order whenever
appropriate—in this Guide for example.

Source files are organized internally by dividing them intosubmodules, which are segments
of the files separated by comments. Each submodule handles one aspect of the type. Here is a
generic list of the submodules appearing in any one file, in their order of appearance:

Type declaration
Simple attributes (back pointers,visit numbers,etc.)
Creation and deletion
Relations with objects of the same type (copy,split, etc.)
Relations with objects of different types
File reading and writing
Debug

Simple attributes are easily handled attributes that are not closely related to any following
categories. They may appear in separate submodules, or be grouped into one submodule. Each
relation is one submodule (counting opposite operations, such as split and merge, as part of one
relation), except that a large relation may be broken into several submodules. Relations with
different types appear in the canonical order defined above.

An attempt has been made to keep the submodules in the same order as their functions
are presented in this Guide, except for debugging. Some submodules have no defined position
according to this rule, because they are present only to support other submodules, and offer no
functions to the end user. Those are placed where they seem to fit best.

282

B.2. Relations between objects 283

B.2. Relations between objects

This section explains how KHE maintains relations between objects. Not every relation is
maintained as explained here, but it is the author’s aim to achieve that in time.

The most common relation,by far, is theone-to-manyrelation, in which one object is related
to any number of objects of the same or another type: one node contains any number of meets,
one meet contains any number of tasks, one meet is assigned any number of meets, and so on.

Let KHE_A be the type of the entity that there is one of, andKHE_B be the type of the
entity that there are many of. KHE implements the relation by placing one attribute, of type
ARRAY_KHE_B, in KHE_A, holding the manyKHE_B objects related toKHE_A, and two inKHE_B:

KHE_A a;
int a_index;

holding the oneKHE_A object related to this object, and this object’s index in that object’s array.
Any attributes of the relation, such as the offset attribute of the meet assignment relation, appear
alongside these two. In theKHE_A class file, functions

void KheAAddB(KHE_A a, KHE_B b);
void KheADeleteB(KHE_A a, KHE_B b);

are defined which add and delete elements of the relation, as well as the usualKheABCount and
KheAB functions which iterate over the array. In theKHE_B class file, functions

KHE_A KheBA(KHE_B b);
void KheBSetA(KHE_B b, KHE_A a);
int KheBAIndex(KHE_B b);
void KheBSetAIndex(KHE_B b, int a_index);

get and set thea anda_index attributes ofb, supporting constant time deletions. Instead of
searching forb in a’s array,a_index is used to find it directly. It is overwritten by the entity at the
end of the array,whose index is then changed. This assumes that the order of the array’selements
may be arbitrary, as is usually the case. The setter functions are private to the platform.

This plan allows aKHE_B object to be unrelated to anyKHE_A object (just set itsa attribute to
NULL), but does not supportmany-to-manyrelations, where aKHE_B object may be related to any
number ofKHE_A objects. On the rare occasions when KHE needs this kind of relation, it adapts
the familiar edge lists implementation of graphs: it defines a typeKHE_A_REL_B representing
one element of the many-to-many relation, and installs one one-to-many relation fromKHE_A to
KHE_A_REL_B, and another fromKHE_B to KHE_A_REL_B. This givesKHE_A_REL_B attributes

KHE_A a;
int a_index;
KHE_B b;
int b_index;

and places it in arrays in bothentity_a andentity_b. Now the operations for adding and
deleting an element of the relation must add or delete two one-to-many relations, as well as
creating or deleting oneKHE_A_REL_B object, which is done using a free list to save time.

284 Appendix B. Implementation Notes

B.3. Kernel operations

The promises made in connection with marks and paths, that all operations that change a solution
can be undone (except changes to visit numbers), and that undoing a deletion recreates the object
at its original address, have significant implications for the implementation.

The KHE platform has an inner layer called thesolution kernel, or just thekernel, consisting
of a set of private operations, calledkernel operations, which change a solution. Each kernel
operation has a name of the formKheEntityKernelOp, whereEntity is the data type and
Op is the operation. It is the kernel operations that are stored in paths. All operations (except
operations on visit numbers) change the solution only by calling kernel operations, so if those are
correctly done, undone, and redone, all operations will be correctly done, undone, and redone.

For the record, here is the complete list of kernel operations:

KheMeetKernelSetBack
KheMeetKernelAdd
KheMeetKernelDelete
KheMeetKernelSplit
KheMeetKernelMerge
KheMeetKernelMove
KheMeetKernelAssignFix
KheMeetKernelAssignUnFix
KheMeetKernelAddMeetBound
KheMeetKernelDeleteMeetBound
KheMeetKernelSetAutoDomain

KheMeetBoundKernelAdd
KheMeetBoundKernelDelete
KheMeetBoundKernelAddTimeGroup
KheMeetBoundKernelDeleteTimeGroup

KheLayerKernelSetBack
KheLayerKernelAdd
KheLayerKernelDelete
KheLayerKernelAddChildNode
KheLayerKernelDeleteChildNode
KheLayerKernelAddResource
KheLayerKernelDeleteResource

KheTaskKernelSetBack
KheTaskKernelAdd
KheTaskKernelDelete
KheTaskKernelSplit
KheTaskKernelMerge
KheTaskKernelMove
KheTaskKernelAssignFix
KheTaskKernelAssignUnFix
KheTaskKernelAddTaskBound
KheTaskKernelDeleteTaskBound

KheTaskBoundKernelAdd
KheTaskBoundKernelDelete

KheNodeKernelSetBack
KheNodeKernelAdd
KheNodeKernelDelete
KheNodeKernelAddParent
KheNodeKernelDeleteParent
KheNodeKernelSwapChildNodesAndLayers
KheNodeKernelAddMeet
KheNodeKernelDeleteMeet

KheZoneKernelSetBack
KheZoneKernelAdd
KheZoneKernelDelete
KheZoneKernelAddMeetOffset
KheZoneKernelDeleteMeetOffset

Each KheEntityKernelOp function has a companionKheEntityKernelOpUndo function.
KheEntityKernelOp carries out its operation and adds itself to the solution’s path, if present.
KheEntityKernelOpUndo undoes whatKheEntityKernelOp did, only without removing itself
from the solution’s path, since it is called by a function that has already done that.

B.3. Kernel operations 285

A redo must be identical to the original operation, because both can be inverted by calling
KheEntityKernelOpUndo and removing one record from the solution path. So there are no
KheEntityKernelOpRedo functions;KheEntityKernelOp functions are called instead.

Some operations come in opposing pairs (split and merge, fix and unfix, and so on), such
that doing one is the same as undoing the other, except that a do or redo adds a record to the
solution’s path, whereas an undo does not. In these cases the implementation contains one
private function calledKheEntityDoOp1 and another calledKheEntityDoOp2, whereOp1 and
Op2 are opposing pairs. These functions carry out the two operations without touching the so-
lution’s path. ThenKheEntityKernelOp1, KheEntityKernelOp2, KheEntityKernelOp1Undo,
and KheEntityKernelOp2Undo are each implemented by one call onKheEntityDoOp1 or
KheEntityDoOp2, plus an addition to the solution’s path if the operation is notUndo.

Operations that create and delete objects are awkward, as it turns out, so the rest of this
section is devoted to them. The meet split and merge operations are particularly awkward, so we
will start with the regular creation and deletion operations, generically namedKheEntityMake

andKheEntityDelete, and treat meet splitting and merging afterwards.

Solution objects are recycled through free lists held in the enclosing solution. When a new
object is needed, it is taken from the free list,or from the memory allocator if the free list is empty.
When an object is no longer needed, it is added to the free list. When the solution is deleted, and
only then, the objects on the free list are returned to the memory allocator. Free lists save time
handling extensible arrays within objects: the arrays of a free list object remain initialized.

An operation which obtains a new object from a memory allocator or free list cannot be
a kernel operation, because then a redo would not re-create the object at its previous memory
location. An operation which returns an object to a memory allocator or free list cannot be a
kernel operation,because an undo would not re-create the object at its previous memory location.
So only the part ofKheEntityMake which initializes the object and links it into the solution is
the kernel operation, and only the part ofKheEntityDelete which unlinks the object from the
solution is the kernel operation. This leads to this picture of the life cycle of a kernel object:

nonexist freelist unlinked linked

KheEntityDoMake

KheEntityDoMake

KheEntityUnMakeKheEntityUnMakeKheEntityDoGet

KheEntityDoGet

KheEntityUnGet KheEntityUnGetKheEntityDoAdd

KheEntityDoAdd

KheEntityUnAdd KheEntityUnAdd

Statenonexistmeans that the object does not exist;freelist means that it exists on a free list;
unlinkedmeans that it exists, not on a free list, not linked to the solution, but referenced from
somewhere on some path; andlinkedmeans that it exists and is linked to the solution.

KheEntityDoMake obtains a fresh object from the memory allocator and initializes its
private arrays.KheEntityUnMake does the opposite, returning the memory consumed by the
object and its private arrays to the memory allocator.

KheEntityDoGet obtains a fresh object from the free list, or fromKheEntityDoMake if the
free list is empty. Either way, the object’s arrays are initialized, although not necessarily empty.
Objects returned byKheEntityDoMake do not actually enter the free list.KheEntityUnGet does
the opposite, adding the object it is given to the free list. It does not callKheEntityUnMake.

KheEntityDoAdd initializes the unlinked object it is given, assuming that its private arrays
are initialized, although not necessarily empty (it clears them), and links it into the solution.

286 Appendix B. Implementation Notes

KheEntityUnAdd does the opposite, unlinking the object it is given from the solution.

The kernel operationsKheEntityKernelAdd and KheEntityKernelDelete and their
Undo companions are each implemented by one call toKheEntityDoAdd or KheEntityUnAdd,
plus an addition to the solution path if the function is not an undo.KheEntityKernelAdd

and KheEntityKernelDelete form an opposing pair, as defined above, except that
KheEntityKernelDelete may include a call toKheEntityUnGet as explained below.

The public function that creates a kernel object,KheEntityMake, is KheEntityDoGet

followed by KheEntityKernelAdd. The public function that deletes one,KheEntityDelete,
begins with kernel operations that help to unlink the object (unassignments and so on), then ends
with KheEntityKernelDelete.

These functions do not callKheEntityUnMake, since kernel objects are returned to the
memory allocator only when the entire solution is deleted. The function for deleting a solution
first calls user functions which delete all kernel objects and paths. This places all kernel objects
on the free list. It then traverses that list, passing each object toKheEntityUnMake.

An object can be referenced from the solution and from paths, and there is no simple rule
saying when to callKheEntityUnGet to add it to the free list. To solve this problem, an integer
reference count field is placed in each kernel object, counting the number of references to the
object. Not all references are counted. References from paths at points where the object is added
or deleted are counted. For example, in a path’s record of a meet split or merge, the reference
to the second meet is counted, but not the first. So reference counts increase when paths grow or
are copied, and decrease when paths shrink or are deleted. Also,KheEntityDoAdd adds 1 to the
count,andKheEntityUnAdd subtracts1. This summarizes references from the solution generally
in one unit of the count.

When the reference count falls to zero,KheEntityUnGet is called to return the object to the
free list. This could happen during a call toKheEntityUnAdd, or when a path shrinks: during a
call toKhePathDelete, or while undoing, which shrinks the solution’s main path.

An unlinkedobject could have come from the free list, and so could contain no useful
information. It would be a mistake forKheEntityDoAdd to assume that the object it is given has
passed throughKheEntityUnAdd and retains useful information from when it was previously
linked. Instead,KheEntityDoAdd must initialize every field of the object it is given, assuming
that its arrays are initialized, but not that they contain useful information.

An example of getting this wrong would be to try to preserve the list of tasks of a meet in
itstasks array when it is unlinked, in a mistaken attempt to ensure that they remain available for
when the meet is recreated. What really happens is that before deleting the meet,KheMeetDelete

deletes its tasks,so records of those task deletions appear on the solution path just before the meet
deletion. When an undo recreates the meet, it immediately goes on to recreate the tasks, without
any need for their preservation in the dormant meet.

A meet split is similar to a creation of the second meet, and a meet merge is similar to a
deletion of the second meet. The main new problem is that tasks need to be split and merged
too. So separate kernel operations are defined for splitting the meet itself and for splitting one
of its tasks, and conversely for merging two meets and for merging two of their tasks. The user
operation for meet splitting does a kernel meet split followed by a sequence of kernel task splits,
and the user operation for meet merging does the opposite.

B.3. Kernel operations 287

The key advantage of doing it this way is that tasks are stored explicitly in paths, and their
reference counters take account of this. So the usual method of handling the allocation and
deallocation of entities generally, described above, applies without change to the tasks created
and deleted by meet splitting and merging.

Meet bounds are related to meets in much the same way as tasks are. Once again, the kernel
meet split operation does not make meet bounds for the split-off meet; instead, they are made
by separate kernel meet bound creation operations, and thus will be undone before a meet split
is undone. Similarly, task

Paths have negligible time cost compared with the operations they record; and their space
cost is moderate, provided they are not used to record wandering methods like tabu search.
Reference counting as implemented here also costs very little: in time, a few simple steps, only
carried out when creating or deleting a kernel object, not each time the object is referenced; and
in space, one integer per kernel object.

B.4. Monitor updating

When the user executes an operation that changes the state of a solution, KHE works out the
revised cost. For efficiency, this must be done incrementally. This section explains how it is
done—but just for information: the functions defined here cannot be called by the user.

The monitors are linked into a network that allows state changing operations to flow
naturally to where they need to go. Only attached monitors are linked in; detached ones are
removed, so that no time is wasted on them. The full list of basic operations that affect cost is

KheMeetMake
KheMeetDelete
KheMeetSplit

KheMeetMerge
KheMeetAssign
KheMeetUnAssign

KheTaskMake
KheTaskDelete
KheTaskAssign
KheTaskUnAssign

Six originate inKHE_MEET objects, four inKHE_TASK objects. From there their impulses flow to
objects of three private types:

288 Appendix B. Implementation Notes

KHE_MEET KHE_EVENT_IN_SOLN

KHE_TASK KHE_EVENT_RESOURCE_IN_SOLN

KHE_RESOURCE_IN_SOLN
KheMeetMake

KheMeetMake
KheMeetDelete
KheMeetSplit
KheMeetMerge
KheMeetAssign
KheMeetUnAssign

Split

Split
Merge
AssignTime
UnAssignTime

Add

Add
Delete
Split
Merge
AssignTime
UnAssignTime

Add

Add
Delete
Split
Merge
AssignResource
UnAssignResource

Split

Split
Merge
AssignTime
UnAssignTime
AssignResource
UnAssignResource

KheTaskMake

KheTaskMake
KheTaskDelete
KheTaskAssign
KheTaskUnAssign

KHE_EVENT_IN_SOLN holds information about one event in a solution: the meets derived from
it (whereKheEventMeet gets its values from), a list of ‘event resource in solution’ objects, one
for each of its event resources, and a list of monitors, possibly including a timetable (timetables
are monitors).KHE_EVENT_RESOURCE_IN_SOLN holds information about one event resource in
a solution: the tasks derived from it, and a list of monitors.KHE_RESOURCE_IN_SOLN holds
information about one resource in a solution: the tasks it is currently assigned to, and a list of
monitors, usually including a timetable.

The connections are fairly self-evident. For example, ifKheMeetMake is called to make a
meet derived from a given instance event, then that event’s event in solution object needs to know
this, and theAdd operation (full nameKheEventInSolnAddMeet) informs it. KheMeetAssign
only generates anAssignTime call when the assignment links the meet, directly or indirectly, to
a cycle meet, assigning a time to it. Event resource in solution objects are not told about time
assignmentsand unassignments. Calls only pass from a task objecttask to a resource in solution
object whentask is assigned a resource.

The connections leading out ofKHE_EVENT_IN_SOLN are as follows:

B.4. Monitor updating 289

KHE_EVENT_IN_SOLN

KHE_SPLIT_EVENTS_MONITOR

KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR

KHE_ASSIGN_TIME_MONITOR

KHE_PREFER_TIMES_MONITOR

KHE_TIMETABLE_MONITOR

KHE_SPREAD_EVENTS_MONITOR

KHE_ORDER_EVENTS_MONITOR
Add

Add
Delete
Split
Merge

Add

Add
Delete
Split
Merge
AssignTime
UnAssignTime

Split events and distribute split events monitors do not need to know about time assignment and
unassignment. Based on the calls they receive, they keep track of meet durations and report cost
accordingly. Assign time and prefer times monitors are even simpler; they report cost depending
on whether the meets reported to them are assigned times or not.

Event timetables are used by link events constraints, which need to know the times when
the event’s meets are running, ignoring clashes, which is just what timetables offer.

A spread events monitor is connected to the event in solution objects corresponding to each
of the events it is interested in. It keeps track of how many meets from those events collectively
have starting times in each of its time groups, and calculates deviations accordingly. Spread
events monitors are not attached to timetables because, although their monitoring is similar,
there are significant differences: spread events monitor time groups come with upper and lower
limits, making them not sharable in general, and the quantity of interest is the number of distinct
meets that intersect each time group, not the number of busy times calculated by the time group
monitors attached to timetables.

An order events monitor is connected to the two event in solution objects corresponding to
the two events it is interested in. These keep track of the events’meets, including their number,
and the monitor itself keeps track of the number of unassigned meets. So determining whether
both events have at least one meet, and whether there are no unassigned meets, take constant
time. If both conditions are satisfied, the monitor traverses both sets of meets to calculate the
deviation and cost when a meet is added, deleted, or assigned a time. (In practice, events subject
to order events constraints do not split, so this too takes constant time.) The other operations are
faster: unassigning a time produces cost 0, and splitting and merging do not change the cost.

The connections leading out ofKHE_EVENT_RESOURCE_IN_SOLN are

290 Appendix B. Implementation Notes

KHE_EVENT_RESOURCE_IN_SOLN

KHE_ASSIGN_RESOURCE_MONITOR

KHE_PREFER_RESOURCES_MONITOR

KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR
Add

Add
Delete
Split
Merge
AssignResource
UnAssignResource

None of these monitors cares about time assignments and unassignments. Assign resource
monitors and prefer resources monitors are very simple, reporting cost depending on whether the
tasks passed to them are assigned or not.

An avoid split assignments monitor is connected to one event resource in solution object
for each event resource in its point of application. It keeps track of a multiset of resources, one
element for each assignment to each task it is monitoring, and its cost depends on the number of
distinct resources in that multiset.

The connections leading out ofKHE_RESOURCE_IN_SOLN are

KHE_RESOURCE_IN_SOLN

KHE_LIMIT_WORKLOAD_MONITOR

KHE_TIMETABLE_MONITOR
AssignResource

AssignResource
UnAssignResource

Split

Split
Merge
AssignTime
UnAssignTime
AssignResource
UnAssignResource

Limit workload constraints do not need to know about time assignments, evidently, but they also
do not need to know about splits and merges, since these do not change the total workload.

Calculating workloads is then very simple. Each meet receives a workload when it is
created, and when a resource is assigned, the workload limit monitors attached to its resource in
solution object are updated, and pass revised costs to the solution.

KHE_TIMETABLE_MONITOR receives many kinds of calls, some fromKHE_EVENT_IN_SOLN
and others fromKHE_RESOURCE_IN_SOLN. However, since it monitors the timetable of a set
of meets with assigned times, all these can be mapped to just two incoming operations,
which we callAddMeetAtTime and DeleteMeetAtTime. For example, a split maps to one
DeleteMeetAtTime and twoAddMeetAtTime calls. The outgoing operations are

B.4. Monitor updating 291

KHE_TIMETABLE_MONITOR

KHE_AVOID_CLASHES_MONITOR

KHE_LINK_EVENTS_MONITOR

KHE_TIME_GROUP_MONITOR
ChangeClashCount

ChangeClashCount
Flush

AssignTimeNonClash

AssignTimeNonClash
UnAssignTimeNonClash
Flush

An avoid clashes monitor is notified whenever the number of meets at any one time increases to
more than 1 or decreases from more than 1 (operationChangeClashCount above). It uses these
notifications to maintain its deviation. It updates the solution when aFlush is received from the
timetable at the end of the operation.

The other monitors are attached to the timetable at each time they are interested in, and are
notified when one of those times becomes busy (when its number of meets increases from 0 to
1) and when it becomes free (when its number of meets decreases from 1 to 0), by operations
AssignTimeNonClash andUnAssignTimeNonClash above.

A link events monitor is interested in all the times of all the timetables of the events in its
point of application. It is notified when any of these times becomes busy or free, and uses that
information to maintain, for each time, the number of its events that are busy at each time. Its
deviation, also maintained incrementally, is the number of times where some of its events, but
not all of them, are running.

A time group monitor monitors one time group within one timetable. It is attached to its
timetable at the times of its time group, so is notified when one of those times becomes busy or
free. It keeps track of the number of busy and idle times in its time group.

As an optimization, the number of idle times is calculated only when at least one limit
idle times monitor is attached to the time group monitor; otherwise the number is taken to be
0. A bit vectorV, holding the positions of the busy times in the time group being monitored, is
maintained. When the monitor is flushed, the number of idle times ofV is calculated as follows.
If V is empty, there are no idle times. Otherwise, the number of idle times is

max(V) − min(V) + 1− |V |

The first three terms give the total number of times from the first busy time to the last inclusive;
every non-busy time within that range is an idle time and conversely.

|V | is just the number of busy times, always maintained by the time group monitor, so
it is readily available. The calculation of min(V) and max(V) on a bit vector is a well-known
problem which never seems to attract adequate hardware support. KHE’s bit vector module
calculates min(V) by a linear search for the first non-zero word of the bit vector, followed by a
linear search for the first non-zero byte of that word, and finishing with a lookup in a 256-word
table, indexed by that byte, which returns the position of the first non-zero bit of that byte. The
same method, searching in the other direction, finds max(V).

Old and new values for the number of busy and idle times are stored, and when a flush is
received they are propagated onwards via operationChangeBusyAndIdle:

292 Appendix B. Implementation Notes

KHE_TIME_GROUP_MONITOR

KHE_AVOID_UNAVAILABLE_TIMES_MONITOR

KHE_LIMIT_IDLE_TIMES_MONITOR

KHE_CLUSTER_BUSY_TIMES_MONITOR

KHE_LIMIT_BUSY_TIMES_MONITOR
AddBusyAndIdle

AddBusyAndIdle
DeleteBusyAndIdle
ChangeBusyAndIdle

When a monitor is attached, functionAddBusyAndIdle is called instead, and when a monitor is
detached, functionDeleteBusyAndIdle is called instead.

An unavailable times monitor is connected to a time group monitor monitoring the
unavailable times. It receives an updated number of busy times fromChangeBusyAndIdle and
reports any change of cost to the solution.

A limit idle times monitor is connected to the time group monitors corresponding to the time
groups of its constraint. It receives updated idle counts from each of them, and based on them
it maintains its deviation.

A cluster busy times monitor is also connected to the time group monitors corresponding to
the time groups of its constraint. It is interested in whether the busy counts it receives from them
change from zero to non-zero, or conversely.

A limit busy times monitor is also connected to the time group monitors corresponding to
the time groups of its constraint. It receives updated busy counts from each of them, and based
on them it maintains its deviation.

References
[1] R. Ahuja, Ö. Ergun, J. Orlin, and A. Punnen. A survey of very large-scale neighbourhood

search techniques.Discrete Applied Mathematics123, 75–102 (2002).

[2] J. Csima and C. C. Gotlieb. Tests on a computer method for constructing school timetables.
Communications of the ACM7, 160–163 (1964).

[3] Fred Glover. Ejection chains, reference structures and alternating path methods for
traveling salesman problems.Discrete Applied Mathematics65, 223–253 (1996).

[4] C. C. Gotlieb. The construction of class-teacher timetables. InProc. IFIP Congress, pages
73–77, 1962.

[5] Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar. A case study for
timetabling in a Dutch secondary school. InPracticeand Theory of Automated Timetabling
VI (Sixth International Conference, PATAT2006, Czech Republic, August 2006, Selected
Papers), pages 267–279. Springer Lecture Notes in Computer Science 3867, 2007.

[6] Jeffrey H. Kingston. The KTS high school timetabling web site (Version 1.4), September
2006. URLhttp://www.it.usyd.edu.au/~jeff.

[7] Jeffrey H. Kingston. Hierarchical timetable construction. InPractice and Theory of Auto-
mated Timetabling VI (Sixth International Conference,PATAT2006,Brno,Czech Republic,
August 2006, Selected Papers), pages 294–307. Springer Lecture Notes in Computer Sci-
ence 3867, 2007.

[8] Jeffrey H. Kingston. The KTS high school timetabling system. InPractice and Theory of
Automated Timetabling VI (Sixth International Conference, PATAT2006, Czech Republic,
August 2006, Selected Papers), pages 308–323. Springer Lecture Notes in Computer
Science 3867, 2007.

[9] Jeffrey H. Kingston. Resource assignment in high school timetabling. InPATAT2008
(Seventh international conference on the Practice and Theory of Automated Timetabling,
Montreal,August 2008), 2008.

[10] Carol Meyers and James B. Orlin. Very large-scale neighbourhood search techniques in
timetabling problems. InPractice and Theory of Automated Timetabling VI (Sixth Interna-
tional Conference,PATAT2006,Brno,Czech Republic,August 2006,Selected Papers), pages
24–39. Springer Lecture Notes in Computer Science 3867, 2007.

[11] Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngäs, Cimmo Nurmi,
Gerhard Post, David Ranson, and Henri Ruizenaar. An XML format for benchmarks in
high school timetabling. InPATAT08 (Seventh international conferenceon the Practiceand
Theory of Automated Timetabling,Montreal,August 2008), 2008.

293

294 References

[12] Gerhard Post, Samad Ahmadi, and Frederik Geertsema. Cyclic transfers in school
timetabling.OR Spectrum34, 133–154 (January 2012).

[13] D. de Werra. Construction of school timetables by flow methods.INFOR – Canadian
Journal of Operations Research and Information Processing9, 12–22 (1971).

