The KHE Timetabling Platform
and Solvers

Jeffrey H. Kingston
jeff@it.usyd.edu.au

Version 2.3 (April 2019)

Contents

Part A: The Platform

Chapter 1. Introduction

Installation and use

The data types of KHE
Common operations :
KHE for employee schedullng

1.1.

1.2.
1.3.
1.4.

Chapter 2.
2.1.
2.2.

2.3.
2.4.
2.5.

2.6.
2.7.

Chapter 3.
3.1.
3.2.
3.3.
3.4.

3.5.

3.6.

3.7.

Archives and Solution Groups

Archives

Solution groups

Solution sets

Reading archives ..

Reading archives mcrementally

Reading archives from the command line
Writing archives and solution groups

Instances ..

Creating instances e e e
Visiting and retrieving the components of instances
Constraint density

Times

3.4.1. Time groups
3.4.2. Times
Resources

3.5.1.
3.5.2.
3.5.3.
3.5.4.
3.5.5.

Events

3.6.1.
3.6.2.
3.6.3.
3.6.4.

Resource types

Resource groups

Resources

Resource layers e e

Resource similarity and inferring resource partitions
Event groups

Events

Event resources
Event resource groups

Constraints

15
15
16
18
19
19
22
23
23
25
27
29
30
31
31
32
34
36
37

3.7.1.
3.7.2.
3.7.3.
3.7.4.
3.7.5.
3.7.6.
3.7.7.
3.7.8.
3.7.9.

3.7.10.
3.7.11.
3.7.12.
3.7.13.
3.7.14.
3.7.15.
3.7.16.
3.7.17.
3.7.18.

Assign resource constraints
Assign time constraints
Split events constraints
Distribute split events constraints
Prefer resources constraints
Prefer times constraints
Avoid split assignments constraints
Spread events constraints
Link events constraints
Order events constraints
Avoid clashes constraints
Avoid unavailable times constraints
Limit idle times constraints
Cluster busy times constraints
Limit busy times constraints
Limit workload constraints
Limit active intervals constraints
Limit resources constraints

Chapter 4. Solutions
4.1. Overview .
4.2. Top-level operations

4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.2.6.
4.2.7.

Creation, deletion, and copy

Solutions and arenas

Simple attributes

Diversification

Visit numbers e
Placeholder and invalid solutions
Traversing the components of solutions

4.3. Complete representation and preassignment conversion

4.4, Solution

4.5. Meets
45.1.
45.2.
45.3.
45.4,
455,

4.6. Tasks
4.6.1.

time, resource, and event groups

Splitting and merging
Assignment e
Cycle meets and time assignment
Meet domains and bounds
Automatic domains

Assignment

41
43
44
45
46
48
49
51
52
53
53
54
56
57
60
62
64
67

70
70
71
71
72
73
74
77
78
79
80
82
83
85
86
90
92
94
95
97

4.6.2. Cycle tasks and resource assignment 100

4.6.3. Taskdomainsandbounds 101
4.7. Marksand paths o o o 102
4.8. The solution invariant e 1 01

Chapter 5. Extra Types for Solving Y 10 [
5.1. Layer trees P 106
5.2. Nodes e e e e e dov
5.3. Layers e ¢ I §
5.4.Z0nes oo d e en e e e e w114
5.5. Taskings & & & & e e 116
5.6. Tasksets o oo e e e 117
57. Meetsets oo e e w119
5.8. Timesets« .« w0 e i e e e e e e .. 120
5.9. Resourcesets o ook e w122
5.10. Timeframes & & & & .« e .o . . . 125

Chapter 6. Solution Monitoring R 74
6.1. Measuring cost P 124)
6.2. Monitors o i e e e e e e e e .. 130
6.3. Attaching, detaching, and provably zero fixed cost P BC X
6.4. Event monitors O e 7

6.4.1. Splitevents monitors 135
6.4.2. Distribute split events monitors R G 15
6.4.3. Assigntime monitors 136
6.4.4. Prefertimes monitors 136
6.4.5. Spread events monitors Y R
6.4.6. Link events monitors 137
6.4.7. Order events monitors 138
6.5. Eventresource monitors & 138
6.5.1. Assign resource monitors 139
6.5.2. Prefer resources monitors 139
6.5.3. Avoid split assignments monitors v e e e e e ..o 139
6.5.4. Limitresourcesmonitors 140
6.6. Resource monitors O -
6.6.1. Avoid clashes monitors O
6.6.2. Avoid unavailable times monitors R IV 74
6.6.3. Limitidle times monitors 142
6.6.4. Cluster busy times monitors 143

6.7.

6.8.

Chapter 7.

7.1
7.2.
7.3.
7.4.

7.5.

7.6.

Chapter 8.

8.1.
8.2.
8.3.
8.4.
8.5.

8.6.

6.6.5. Limit busy times monitors

6.6.6. Limit workload monitors

6.6.7. Limit active intervals monitors
Timetable monitors .

6.7.1. Event timetable monitors

6.7.2. Resource timetable monitors
Group monitors

6.8.1. Basic operations on group monitors

6.8.2. Defects

6.8.3. Tracing

Matchings and Evenness

The bipartite matching problem

Setting up e

Ordinary supply and demand nodes

Workload demand nodes o
7.4.1. Constructing workload requwements

7.4.2. From workload requirements to workload demand nodes

Diagnosing failure to match Ce
7.5.1. Visiting unmatched demand nodes
7.5.2. Hall sets .

7.5.3. Finding competitors

Evenness monitoring

Part B: Solvers

Introducing Solvers
Keeping track of running time
Options, running time, and time limits
General solving
Parallel solving
Gathering statistics
8.5.1. Running time and date
8.5.2. Files of tables and graphs
8.5.3. Tables
8.5.4. Graphs
Exponential backoff

146
147
148
152
152
154
157
158
160
161

163
163
165
167
169
170
.17
172
172
173
174
175

179
179
181
183

185
187
187

188

188

190

191

Chapter 9. Time-Structural Solvers e e e e e e e e e e w194
9.1. Layer tree construction o o o . .. 104
9.1.1. Overview« « e e e e e e e e w195
9.1.2. Linking o o e e e e e o197
9.1.3. Splitting Y £ 1<
9.1.4. Layering e e e e e e e e e e 199
9.1.5. Merging 4 0[O
9.2. Time-equivalence - 0) |
9.3. Layers D24 0 2
9.3.1. Layer construction] 0 24
9.3.2. Layer coordination 2 § 72
9.4. Runarounds o e e e e e e e w205
9.4.1. Minimum runaround duratlon 21 0 153
9.4.2. Building runarounds 206
9.5. Rearranging nodes 24 0 1
9.5.1. Nodemerging & .+ o« & . . . 208
9.5.2. Node meet splitting and merging 208
9.5.3. Nodemoving o e e e e oo 209
9.5.4. Vizier nodes 24 0 1)
9.5.5. Flatteningo 211
9.6. Addingzones oo e e e e .. 212
9.7. Meet splittingand merging 212
9.7.1. Analysing split defects 2 24
9.7.2. Merging adjacent meets 2
9.8. Monitor attachment and grouping 214

Chapter 10. Time Solvers« .« « « o 217
10.1. Specification R~
10.2. Helper functions 2 <

10.2.1. Node assignment functions 218
10.2.2. Kempe and ejecting meet moves 21 K
10.3. Meet bound groups and domain reduction e e e e e e .. 226
10.3.1. Meetbound groups 226
10.3.2. Exposing resource unavailability e e e .. 226
10.3.3. Preventing cluster busy times and limit idle times defects . 227
10.4. Some basic time solvers c e e e e e ed e e e 230
10.5. Atime solver for runarounds 232
10.6. Extended layer matching with EIm 24 1
10.6.1. Introducing layer matching 234

Vi

10.7.

10.8.

Chapter 11

11.1.
11.2.
11.8.
11.4.
11.5.

11.6.
11.7.
11.8.
11.9.

Chapter 12
12.1.
12.2.
12.3.

12.4.
12.5.

10.6.2. The core module
10.6.3. Splitting supplies
10.6.4. Improving node regularity
10.6.5. Handling irregular monitors
Time repair e e e e e e e
10.7.1. Node-regular time repair using layer node matchlng
10.7.2. Ejection chain time repair
10.7.3. Tree search layer time repair S
10.7.4. Meet set time repair and the fuzzy meet move
Layered time assignment
10.8.1. Layer assignments e
10.8.2. A solver for layered time assignment
10.8.3. A complete time solver

Resource-Structural Solvers ..

Task bound groups

Task trees

Task tree construction

Tighten to partition oo

Grouping by resource constraints
11.5.1. Introduction to the implementation
11.5.2. Time-based grouping
11.5.3. Combinatorial grouping
11.5.4. Combination elimination
11.5.5. Profile grouping
Grouping by resource

The task grouper o

Other resource-structural solvers

Task groups

Resource Solvers
Specification
The resource assignment invariant : e
Unchecked, checked, ejecting, and Kempe task and task set moves
Frame operations for resource solvers

Resource assignment algorithms o

12.5.1. Satisfying requested task assignments

12.5.2. Most-constrained-first assignment

12.5.3. Resource packing

236
241
242
243
245
245
246
246
248
249
249
250
253

254
254
254
255
257
259
260
261
263
264
265
266
266
267
268

271

271
271

. 273
276
277
277
278

279

vii

12.5.4.

Split assignments

12.6. Resource matching

12.6.1.
12.6.2.
12.6.3.
12.6.4.
12.6.5.

A solver for resource matching
Implementing resource matching
Time sweep resource assignment
Time sweep with lookahead
Resource rematching repair

12.7. Ejection chain repair
12.8. Resource pair repair

12.8.1.
12.8.2.
12.8.3.
12.8.4.
12.8.5.
12.8.6.

The basic function

A resource pair solver

Partition graphs

The implementation of resource pair reassignment
A simpler resource pair repair

Resource pair swapping

12.9. Trying unassignments
12.10. Putting it all together

Chapter 13 Ejection Chains

Introduction

Ejector construction

Ejector solving o
How to write an augment function
Variants of the ejection chains idea

viii

13.1.
13.2.
13.3.
13.4.
13.5.

13.6.

13.7.

13.5.1.
13.5.2.
13.5.3.
13.5.4.
13.5.5.

Defect promotion o
Fresh visit numbers for sub-defects
Ejection trees

Sorting repairs

Adjustment on success

Gathering statistics

13.6.1.
13.6.2.
13.6.3.
13.6.4.
13.6.5.

Options for choosing ejectors and schedules
Statistics for analysing Kempe meet moves
Statistics describing a single solve

Statistics describing multiple solves
Organizing augment and repair types

Ejection chain time and resource repair functions

13.7.1.
13.7.2.
13.7.3.

Obtaining ejector objects
Limiting the scope of changes Ce
Correlation problems involving demand defects

279
280
281
284

288

290

291

292
293

293

293

294

296

299
301
301

302

304
304
306
309
311
312
313
313
314
318
318
319
319
319
319
320
322
323
326
326
328

13.7.4. Primary grouping and detaching P 10
13.7.5. Secondary groupings 333
13.7.6. Augment functions 334

13.7.7. Repair operations for nurse rostering G 1 ¥ £

Appendix A. Modules PackagedwithKHE 339
A.l. Arenas and arrays P 101 |
ALl Arenas o o e e e e e e e w339
A.1.2. Arenasets o o e e e e w340
Al.3. Arrays o e e e e w34
A.1.4. Versionstring & .« o o . . . 345
A.1.5. Howard’s memory allocator 345
A.2. Strings and symbol tables R 7 3
A2.1.Strings & & e e e e e ... 348
A.2.2. Abortandassert & & & & . . 350
A.2.3. Symboltables P 1510
A.2.4. Narrow strings and symbol tables e e e e e e .. 3583
A.2.5. Objecttablesandgroups 356
A.3. Variable-length bitsets 359
A.4. Shiftable sets P {1 |
A.5. Priorityqueues & o e e e e oo .. 364
A.6. XML handlingwith KML i e e e e e e ... 366
A.6.1. Representing XML inmemory 366
A.6.2. Error handling and format checking 367
A.6.3. Reading XML files P {6 1°)
A.6.4. Writing XML files G ¥ %4

Appendix B. Implementation Notes e e e e e e e e e e 374
B.1. Source file organization 374
B.2. Relations betweenobjects 375
B.3. Kernel operations O ¥ 4 ¢}
B.4. Monitor updating e G 4
B.5. Monitor attachment and unattachment O 1o X
B.6. The limit active intervals monitor 385
B.7. Anarenaandarenasetplan 387

References e e 389

Part A

The Platform

Chapter 1. Introduction

Some instances of high school timetabling problems, taken from institutions in several countries
and specified formally in an XML format called XHSTT, have recently become available [13].
For the first time, the high school timetabling problem can be studied in its full generality.

KHE is an open-source ANSI C library, released under the GNU public licence, which aims
to provide a fast and robust foundation for solving instances of high school timetabling problems
expressed in the XHSTT format. Users of KHE may read and write XML files, create solutions,
and add and change time and resource assignments using any algorithms they wish. The cost of
the current solution is always available, kept up to date by a hand-coded constraint propagation
network. KHE also offers features inherited from the author’s KTS system [6, 8], notably layer
trees and matchings, and solvers for several major sub-tasks.

KHE is intended for production use, but it is also a research vehicle, so new versions will
not be constrained by backward compatibility. Please report bugs tojefé@it.usyd.edu.au
will release a corrected version within a few days of receiving a bug report, wherever possible.

This introductory chapter explains how to install and use KHE, surveys its data types, and
describes some operations common to many types.

1.1. Installation and use

KHE has a home page, at
http://jeffreykingston.id.au/khe/

The current version of KHE is a gzipped tar file in that directory. The current version of this
documentation (a PDF file) is also stored there. The names of these files change with each
release; they are most easily downloaded using links on the home page.

Originally, ‘KHE’ stood for ‘Kingston’s High School Timetabling Engine’, but it now
covers all timetabling software released by me: the platform, the solvers, HSeval (which drives
the HSEval web site), my nurse rostering software, and anything else | release in the future. So
‘KHE’ no longer stands for anything, except possibly ‘Kingston’s Humungous Enterprise’.

| have used different kinds of version numbers over the years, but starting with Version 2.1
| am reverting to the traditional form, of a major release number and minor release number sepa-
rated by a dot. Each KHE release is a release of all my software under a single version number.

A program that incorporates the KHE platform can gain access to the current version
number by calling

char +KheVer si onNunber (voi d) ;
char =KheVersi onBanner (voi d);

For example, if Version 2.1is compiled into the program that calls these functions, their results
willbe"2.1" and"Version 2.1 (May 2018)".

1.1. Installation and use 3

To install KHE, download a release and unpack it ugimgzi p andt ar xf asusual. The
resulting directorykhe, contains a makefile, sonsec_x directories holding the source files of
KHE, and someloc_x directories holding the source files of this documentation. Consult the
makefile for information about what's what in the distribution, and how to install and use KHE.

Starting with Version 2.1, the KHE source files are divided into three parts: the platform
(whose interface is fil&he_pl at f or m h), the solverskhe_sol vers. h), and a main program.
This allows users to use only the platform, or it and the solvers, or those plus a main program.
The distribution also contains two source directories holding my nurse rostering software.

1.2. The data types of KHE

This section is an overview of KHE’s data types. The following chapters have the details.

TypeKHE_ARCHI VE represents one archive, that is, a collection of instances plus a collection
of solution groups. Typ&HE _SOLN_GROUP represents one solution group, that is, a set of
solutions of the instances of the archive it lies in. The word ‘solution’ is abbreviated to ‘soln’
wherever it appears in the KHE interface. Use of these types is optional: instances do not have
to lie in archives, and solutions do not have to lie in solution groups.

Type KHE_| NSTANCE represents one instance of the high school timetabling problem.
KHE_TI ME_GROUP represents a set of timeé&E_TI MVE represents one timé&HE_RESOURCE_TYPE
represents a resource type (typicalBacher Room Class or Studeny;, KHE_RESOURCE_GROUP
represents a set of resources of one type K&EJRESOURCE represents one resource.

Type KHE_EVENT_GROUP represents a set of event§iE EVENT represents one event,
including all information about its time. Typ€HE_EVENT_RESOURCE represents one resource
element within an event. Typ@iE_CONSTRAI NT represents one constraint. This could have any
of the constraint types of the XML format (it is their abstract supertype).

TypeKHE_SOLN represents one solution, complete or partial, of a given instance, optionally
lying within a solution group. Typ&HE_MEET represents one meet (KHE’'s commendably brief
name for what the XML format calls a solution event, split event, or sub-event: one event as it
appears in a solution), including all information about its time. Tkide TASK represents one
piece of work for a resource to do: one resource element within a meet.

KHE supports multi-threading by ensuring that each instance and its components (of
type KHE_I NSTANCE, KHE_TI ME_GROUP, and so on) is immutable after loading of the instance is
completed, and that operations applied to one solution object do not interfere with operations
applied simultaneously to another. Thus, after instance loading is completed, it is safe to create
multiple threads with differerdHE_SOLN objects in each thread, all referring to the same instance,
and operate on those solutions in parallel. No such guarantees are given for operating on the
same solution from different threads.

1.3. Common operations

This section describes some miscellaneous operations that are common to many data types.

Whenever KHE creates an object, any string-valued attributes of that object passed by the
user are not stored directly; instead, malloced copies are stored. If the object is later deleted, the
malloced copy is deleted along with it. Thus, whatever its origin, a string-valued attribute has

4 Chapter 1. Introduction

the same lifetime as the object itself.

Use of KHE often involves creating objects that contain references to KHE entities (objects
of types defined by KHE) alongside other information. Sometimes it is necessary to go back-
wards, from a KHE entity to a user-defined object. Accordingly, each KHE entity conthatka
pointerwhich the user is free to set and retrieve, using calls which look generically like this:

voi d KheEntitySet Back(KHE ENTITY entity, void xback);
voi d »KheEntityBack(KHE ENTITY entity);

All back pointers are initialized t8ULL. In general, KHE itself does not set back pointers. The
exception is that some solvers packaged with KHE set the back pointers of the solution entities
they deal with. This is documented where it occurs.

Timetables often contain symmetries of various kinds. In high school timetabling, the
student group resources of one form are often symmmetrical: they attend the same kinds of
events over the course of the cycle.

Knowledge of similarity can be useful when solving. For example, it might be useful to
timetable similar events attended by student group resources of the same form at the same time.
Accordingly, several KHE entities offer an operation of the form

bool KheEntitySimlar(KHE_ENTITY el, KHE_ENTITY e2);

which returns r ue if KHE considers that the two entities are similar. If they are the exact same
entity, they are always considered similar. In other cases, the definition of similarity varies with
the kind of entity, although it follows a common pattern: evidence both in favour of similarity
and against it is accumulated, and there needs to be a significant amount of evidence in favour,
and more evidence in favour than against. For example, an event containing no event resources
will never be considered similar to any event except itself, since positive evidence, such as
requests for the same kinds of teachers, is lacking.

Similarity is not a transitive relation in general. In other wordslifande2 are similar, and
e2 ande3 are similar, that does not imply that ande3 are similar. There is a heuristic aspect
to it that seems inevitable, although the intention is to stay on the safe side: to declare two entities
to be similar only when they clearly are similar.

Another operation that applies to many entities, albeit a humble one, is printing the current
state of the entity as an aid to debugging. The KHE operations for this mostly take the form

voi d KheEntityDebug(KHE_ENTITY entity, int verbosity,
int indent, FILE *fp);

They produce a debug print efiti ty ontof p.

Thever bosi ty parameter controls how much detail is printed. Any value is acceptable. A
zero or negative value always prints nothing. Every positive value prints something, and as the
value increases, more detail is printed, depending, naturally, on the kind of entity. Value 1 tries
to print the minimum amount of information needed to identify the entity, often just its name.

If i ndent is non-negative, a multi-line format is used in which each line begins with at least
i ndent spaces. If ndent is negative, the print appears on one line with no indent and no con-
cluding newline. Since space is limited, verbosity may be reduced witeEmt is negative.

1.3. Common operations 5

Many entities are organized hierarchically. Depending on the verbosity, printing an entity
may include printing its descendants. Their debug functions are passed a vahuefarwhich
is 2 larger than the value received (when non-negative), so that the hierarchy is represented in the
debug output by indenting. The debug print of one entity usually beging vatid ends with a
matching] , making it easy to move around the printed hierarchy using a text editor.

1.4. KHE for employee scheduling

Recent versions of KHE support the employee scheduling data format XESTT as well as the high
school timetabling format XHSTT. XESTT is the same as XHSTT except for a few extensions,
which are documented on the HSEval web site.

KHE knows whether it is dealing with XESTT or XHSTT, but it does not care—it supports
XESTT, which includes supporting XHSTT. When using KHE for high school timetabling,
several parameters of KHE functions have to be given values that indicate that the extensions
available in XESTT are not used. This mainly affects the operations for creating cluster busy
times and limit busy times constraints.

Chapter 2. Archives and Solution Groups

This chapter describes tKeE_ARCHI VE andKHE_SOLN_GROUP data types, representing archives
and solution groups as in the XML format. Their use is optional, since instances are not required
to lie in archives, and solutions are not required to lie in solution groups.

2.1. Archives

An archive is defined in the XML format to be a collection of instances together with groups
of solutions to those instances. There may be any number of instances and solution groups. To
create a new, empty archive, call

KHE ARCHI VE KheAr chi veMake(char =id, KHE MODEL nodel, HA ARENA SET as);

Parameterd is an identifier for the archive. It may b&LL, but only if the archive is not going

to be written. Parametendel says what problem the archive models, for which see just below.
Parametees is the thread arena set used for obtaining memory. Appendix A.1.2 introduces
arena sets, and Appendix B.7 explains why one arena set per thread is good. You can also pass
NULL for as, but there will be some loss of efficiency in memory allocation which could be
critical when handling large archives.

Although created to support the XHSTT high school timetabling model, KHE also supports
an extended version of XHSTT, used for nurse rostering. Accordingly KiypeVODEL is

t ypedef enum {
KHE_MODEL_HI GH_SCHOOL_TI METABLE,
KHE_MODEL_EMPLOYEE_SCHEDULE

} KHE_MODEL;

The model affects the initial tag read KijeAr chi veRead and written bykheAr chi veWi te,

which is <Hi ghSchool Ti net abl eAr chi ve> when it iSKHE_MODEL_HI GH_SCHOOL_TI METABLE
and<Enpl oyeeSchedul eAr chi ve> when it iSKHE_MODEL_EMPLOYEE SCHEDULE. Instances also
have a model, which must agree with the model of any archive they lie in. Thus, itis not possible
to mix instances with different models in one archive. Functions

char *KheArchi vel d(KHE_ARCHI VE ar chi ve);
KHE_MODEL KheAr chi veModel (KHE_ARCHI VE ar chi ve);

return these attributes of an archive. To set and retrieve the back pointer (Section 1.3), call

voi d KheAr chi veSet Back(KHE_ARCHI VE ar chi ve, void *back);
voi d *KheAr chi veBack(KHE_ARCHI VE archi ve);

Archive metadata may be set and retrieved by calling

2.1. Archives 7

voi d KheAr chi veSet Met aDat a(KHE_ARCHI VE ar chive, char =nane,

char *contributor, char xdate, char =description, char *remarks);
voi d KheAr chi veMet aDat a(KHE_ARCHI VE ar chi ve, char *xnane,

char *=xcontributor, char xxdate, char *xdescription, char =*remarks);

The valuesretrieved are copies of those passed in, as usual. The initial valuesldie alVhen
a metadata value is required when writing an archive,Nuhy or empty values are written as
"No nane","No contributor", etc. Thereis also

char *KheAr chi veMet aDat aText (KHE_ARCHI VE ar chi ve)
which returns a string containing the metadata as a paragraph of English text, for example
This archive is XHSTT-2014, assenbled by Gerhard Post on 2 March 2014.

The string lies in the archive’s arena and is deleted when the archive is deleted.

Initially an archive contains no instances and no solution groups. Solution groups are added
automatically as they are created, because every solution group lies in exactly one archive. An
instance may be added to an archive by calling

bool KheAr chi veAddl nst ance(KHE_ARCHI VE ar chi ve, KHE | NSTANCE i ns);

KheAr chi veAddl nst ance returnstrue if it succeeds in addingns to ar chive, andf al se
otherwise, which can either be becaasehi ve already contains an instance withs’s Id, or
because the instance and archive models differ. The instance will appear after any instances
already present. An instance may be deleted from an archive (but not destroyed) by calling

voi d KheAr chi veDel et el nst ance(KHE_ARCHI VE ar chive, KHE_I NSTANCE ins);

KheAr chi veDel et el nst ance aborts ifi ns is not inarchi ve. If there are any solutions for
ins inarchi ve, they are deleted too. The gap left by deleting the instance is filled by shuffling
subsequent instances up one place.

To visit the instances of an archive, call

i nt KheArchi vel nst anceCount (KHE_ARCHI VE archi ve);
KHE_| NSTANCE KheAr chi vel nst ance(KHE_ARCHI VE archive, int i);

The first returns the number of instancesirhi ve, and the second returns thigh of those
instances, counting from 0 as usual in C. There is also

bool KheArchi veRetrievel nstance(KHE ARCHI VE archive, char =xid,
KHE | NSTANCE i ns, int =*index);

If archi ve contains an instance with the given, this function set$ns to that instance and
i ndex to its index inar chi ve and returnsr ue; otherwise it setsi ns to NULL and+i ndex to
-1 and return$al se. And

bool KheArchi veCont ai nsl nst ance(KHE_ARCHI VE ar chi ve,
KHE | NSTANCE ins, int =*index);

is the function to call when the instance is given and just its index is needed.

8 Chapter 2. Archives and Solution Groups

For visiting the solution groups of an archive, call

i nt KheAr chi veSol nG oupCount (KHE_ARCHI VE ar chi ve);
KHE_SOLN_GROUP KheAr chi veSol nG oup(KHE_ARCHI VE archive, int i);

similarly to visiting instances. There is also

bool KheArchiveRetrieveSol nG oup(KHE_ARCHI VE archive, char =id,
KHE_SCOLN_GROUP =*sol n_group);

which retrieves a solution group lbyl.

2.2. Solution groups
A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool KheSol nG oupMake(KHE_ARCHI VE ar chi ve, char =id,
KHE_SOLN_GROUP *sol n_group);

Herear chi ve is compulsory, and the solution group is added to it. Parameltes the Id
attribute from the XML file; it is optional, wittNULL meaning absent, although it is compulsory
if archive is to be written later. If the operation is successful, thene is returned with
xsol n_group set to the new solution group; if not (which can only be becadss already the

Id of a solution group o#r chi ve), thenf al se is returned withrsol n_gr oup set toNULL.

To delete a solution group, including deleting it from its archive, call
voi d KheSol nG oupDel et e(KHE_SOLN_GROUP sol n_group);

The solutions withirsol n_gr oup are not deleted.
To set and retrieve the back pointer (Section 1.3) of a solution group, call

voi d KheSol nG oupSet Back(KHE_SOLN _GROUP sol n_group, void *back);
voi d *KheSol nG oupBack(KHE_SOLN GROUP sol n_group);

as usual. To retrieve the archive and Id, call

KHE_ARCHI VE KheSol nG oupAr chi ve(KHE_SOLN_GROUP sol n_group);
char *KheSol nGroupl d(KHE_SOLN_GROUP sol n_group);

Solution group metadata may be set and retrieved by calling

voi d KheSol nG oupSet Met aDat a(KHE_SCOLN _GROUP sol n_gr oup,
char xcontributor, char +date, char =description,
char =*publication, char xremarks);

voi d KheSol nG oupMet aDat a(KHE_SOLN_GROUP sol n_gr oup,
char *xcontributor, char xxdate, char xxdescription,
char *xpublication, char =*remarks);

As usual, copies of the strings are stored, not the originals. As for archive metadata, any of these
strings may b&ULL or empty. KHE substitutes valuéSo contributor”,"No date", etc.for

2.2. Solution groups 9

such values when writing an archive, or omits them altogether when XHSTT allows. Also,
char *KheSol nGr oupMet aDat aText (KHE_SOLN_GROUP sol n_group);

returns a string containing the metadata as a paragraph of English text. The string lies in the
solution group’s arena and will be deleted when the solution group is deleted.

Initially a solution group has no solutions. These are added and deleted by calling

voi d KheSol nGr oupAddSol n(KHE_SOLN_GROUP sol n_group, KHE SOLN sol n);
voi d KheSol nGroupDel et eSol n(KHE_SOLN_GROUP sol n_group, KHE_SOLN soln);

A solution can only be added when its instance lies in the solution group’s archive.
To visit the solutions of a solution group, call

i nt KheSol nG oupSol nCount (KHE_SOLN_GROUP sol n_group);
KHE_SOLN KheSol nGr oupSol n(KHE_SCLN_GRCOUP sol n_group, int i);

Solutions have no lds, so there iski@Sol nG oupRet ri eveSol n function. When solution is
deletedKheSol nG oupSol nCount decreases by 1, solutiorl becomes solution, and so on.
To visit the solutions of a solution group that solve a particular instance, call

KHE_SOLN_SET KheSol nG oupl nst anceSol nSet (KHE_SOLN GROUP sol n_group,
KHE_| NSTANCE i ns);

Or if the index of the instance in trs®l n_gr oup’s archive is known, one can call

KHE SOLN _SET KheSol nG oupl nst anceSol nSet Byl ndex(
KHE SOLN GROUP sol n_group, int index);

As described just beloWHE_SCLN_SET is a set of solutions. The set returned by these functions
holds the solutionsisol n_gr oup for the indicated instance. Itis storedsiol n_gr oup and must

not be modified by the user, except that it may be sorted. KHE updates it as solutions are added
and deleted from its enclosing solution group, and deletes it when its instance is deleted.

2.3. Solution sets

Like a solution group, a solution set contains a set of solutions. But, unlike a solution group, that
is all it contains: it is not considered to lie in any archive, and it has no Id and no metadata.

To create a new, empty solution set, and to delete it (but not its solutions), call
KHE_SOLN_SET KheSol nSet Make(HA ARENA a) ;

As usual it (but not its solutions) will be deleted whers deleted. There is also
voi d KheSol nSet Cl ear (KHE_SOLN_SET ss);

which empties ouss without deleting it. To add a solution, and to delete one, call

voi d KheSol nSet AddSol n(KHE_SCLN_SET ss, KHE_SCLN sol n);
voi d KheSol nSet Del et eSol n(KHE_SCLN_SET ss, KHE_SCLN sol n);

10 Chapter 2. Archives and Solution Groups

To find out if a solution set contains a given solution, call
bool KheSol nSet Cont ai nsSol n(KHE_SCLN_SET ss, KHE_SOLN soln, int xpos);

It returnst r ue if ss containssol n, settingpos to its index inss if so.
To visit the elements of a solution set, call

i nt KheSol nSet Sol nCount (KHE_SOLN_SET ss);
KHE_SOLN KheSol nSet Sol n(KHE_SOLN_SET ss, int i);

They have the order they were inserted in, unless this has been changed by calling either of

voi d KheSol nSet Sort (KHE_SOLN_SET ss,

i nt(*conpar)(const void *, const void *));
voi d KheSol nSet Sort Uni que(KHE_SOLN_SET ss,

i nt(*conpar)(const void *, const void *));

KheSol nSet Sort sorts the solutions according to comparison functiompar , which must be
suitable for passing tgsor t . KheSol nSet Sor t Uni que is the same, but afterwards it removes all
but one of each run of solutions for whichnpar returns 0.

One comparison function is already written, in one form that makes sense to people and
another that makes sensejtmrt :

i nt Khel ncreasi ngCost TypedCnp(KHE_SOLN sol n1, KHE SOLN sol n2);
i nt Khel ncreasi ngCost Cnp(const void *t1, const void *t2);

It sorts the solution set so that the solutions have increasing cost. Solutions with equal cost
have increasing running time. Invalid solutions are treated as though they have infinite cost, and
solutions with no running time recorded are treated as though they have infinite running time.

Finally,

voi d KheSol nSet Debug(KHE_SOLN_SET ss, int verbosity,
int indent, FILE *fp);

printsss ontof p with the given verbosity and indent.

2.4. Reading archives

KHE reads and writes archives in XHSTT, a standard XML format [13], and in XESTT, an
extension of XHSTT for employee scheduling problems [10, 11]. To read an archive, call

bool KheArchi veRead(FI LE *fp, HA ARENA SET as, KHE ARCH VE xarchi ve,
KM._ERROR *ke, bool audit_and fix, bool infer_resource partitions,
bool limt_busy recode, bool allow.invalid solns, FILE *xecho_fp);

File f p must be open for reading UTF-8, and it remains open after the call returns. If, starting
from its current positiorf,p contains a legal XML archive, the¢heAr chi veRead setstar chi ve

to that archive, passingas as its arena set parameter, akd to NULL and returnsr ue with f p

moved to the first character after the archive. If there was a problem reading the file, then it sets

2.4. Reading archives 11

xar chi ve to NULL and+ke to an error object and returhsl se. Any reports in the archive are
discarded without checking.

TypeKM._ERRCR is from the KML module packaged with KHE. A full description of the
KML module appears in Section A.6. Given an object of tipe_ERROR, operations

i nt Km ErrorLi neNum KM._ERROR ke);
i nt Kl ErrorCol Num KM._ERROR ke);
char =Km ErrorString(KM._ERRCOR ke);

return the line number, the column number, and a string description of the error.

KheAr chi veRead builds the archive using the functions of this guide; there is nothing
special about the archive it builds. The model, for the archive and instances, depends on the
initial tag: KHE_MODEL_H GH_SCHOOL_TI METABLE when itis<H ghSchool Ti net abl eAr chi ve>,
andKHE_MODEL_EMPLOYEE SCHEDULE when it is<Enpl oyeeSchedul eAr chi ve>.

Parametersaudi t _and_fix, infer_resource_partitions, and limt_busy recode
are passed on t&hel nst anceMakeEnd (Section 3.1). KheAr chi veRead builds complete
representations of the solutions it reads, callitgeSol nMakeConpl et eRepresentati on,
KheSol nAssi gnPr eassi gnedTi mes, and KheSol nAssi gnPr eassi gnedResour ces (Section
4.3), but noheSol nMat chi ngBegi n or KheSol nEvennessBegi n (Chapter 7).

Usually, if there are errors in the filgheAr chi veRead returnsf al se and sets ke to the
firsterror. Butifal I ow_i nval i d_sol ns ist r ue, then some errors lying in solutions are handled
differently: the erroneous solutions are converted to invalid placeholders (Section 4.2.6). Each
invalid placeholder solution contains its first error, and none of its errors dalise to be
returned or ke to be set. Not all errors, not even all errors lying in solutions, can be handled in
this way; those that cannot caugeAr chi veRead to returnf al se and set ke as usual.

KheAr chi veRead callsKm ReadFi | e (Section A.6.3), passiregho_f p toit. The characters
read are echoed twho_f p if it is non-NULL; it would normally beNULL.

2.5. Reading archives incrementally
A large archive may have to be read one solution at a time. For this, call

bool KheArchiveReadl ncrenental (FILE =fp, HA ARENA SET as,
KHE ARCHI VE *ar chive, KM._ERROR ke, bool audit_and fix,
bool infer _resource partitions, bool linit_busy recode,
bool allow.invalid solns, FILE xecho fp,
KHE ARCHI VE_FN archive _begin_fn, KHE ARCH VE FN archive_end fn,
KHE _SOLN _GROUP_FN sol n_group_begin_fn,
KHE SOLN GROUP_FN sol n_group_end_fn, KHE SOLN FN soln_fn, void *inpl);

The return value and the parameters updio_f p inclusive are as fokheAr chi veRead. The
remaining parameters are callback functions, except the lgst, which is not used by KHE

but is instead passed through to the calls on the callback functions. Any or all of the callback
functions may b&UULL, in which case the corresponding callbacks are not made.

Callback functionar chi ve_begi n_f n is called byKheAr chi veReadl ncrenent al at the

12 Chapter 2. Archives and Solution Groups

start of the archive. It must be written by the user like this:

voi d archive_begi n_fn(KHE ARCH VE archive, void *inpl)
{

}

Its ar chi ve parameter is set to the archive tiaeAr chi veReadl ncrenent al will eventually
build, the one it returns in itsar chi ve parameter; iténpl parameter contains the value of the
i npl parameter okheAr chi veReadl ncrement al . At the time of this callar chi ve contains its
Id, metadata, and model attributes, but no instances and no solution groups.

Callback functionarchive_end_fn is called at the end of the archive, just before
KheAr chi veReadl ncrement al itself returns:

voi d archive_end_fn(KHE ARCH VE archive, void *inpl)
{

}

When this function is calledgr chi ve contains all of its instances and solution groups. If
KheAr chi veReadl ncrenent al returng r ue, there has been one callbaclatahi ve_begi n_fn
and one tar chive_end_fn, if nonNULL.

Callback functiorsol n_gr oup_begi n_f n is called at the start of each solution group:
voi d sol n_group_begi n_f n(KHE_SOLN_GROUP sol n_group, void *inpl)

{

}

Itssol n_gr oup parameter is set to one of the solution groups that the final archive will eventually
contain, and it$ npl parameter is as before. At the time of this csdl, n_gr oup contains its

Id and MetaData, antheSol nG oupAr chi ve(sol n_group) returns the enclosing archive, but
there are no solutions Bol n_gr oup.

Callback functiorsol n_gr oup_end_f n is called at the end of each solution group:

voi d soln_group_end fn(KHE SOLN GROUP sol n_group, void *inpl)
{

}

At the time of this callsol n_gr oup contains all its solutions.
Finally, callback functiorsol n_f n is called after each solution is read:

voi d sol n_fn(KHE_SOLN sol n, void *inpl)
{

}

The solution is complete, aridieSol nSol nG oup(sol n) returns the enclosing solution group.

2.5. Reading archives incrementally 13

The purpose of incremental reading is to process the solutions as they are read, so that
they can be deleted and their memory reclaimed. For example, to replace each solution by a
placeholder, pas$JLL for all callbacks exceptol n_f n, which would be defined like this:

voi d sol n_fn(KHE_SCLN sol n, void *inpl)
{
i f(!KheSol nl sPl acehol der(soln))
KheSol nReduceToPl acehol der (sol n);

}

The test is needed only #l | ow_inval i d_sol ns is true. KheSol nReduceToPl acehol der
(Section 4.2.6) reclaims most of the memorysof n, leaving just thesol n object itself and a

few attributes, including its cost. In this way, the total memory cost is reduced to not much more
than the memory needed to hold the instances, but enough information is retained to support
operations which (for example) print tables of solutions and their costs.

Other applications might processl n in some way (print timetables, for example) before
finishing with a call takheSol nReduceToPl acehol der , or everkheSol nDel et e.

2.6. Reading archives from the command line

Reading an archive from the command line basically means opening the file named by a
command-line argument and callikgeAr chi veRead. Beyond that, there may be a need to
process the archive before using it, for example to remove its solution groups. Function

KHE ARCHI VE KheAr chi veReadFr omCommandLi ne(i nt argc, char xargv[],
int *pos, HA ARENA SET as, bool audit_and fix,
bool infer _resource partitions, bool limt _busy recode,
bool allow_ invalid_solns, FILE xecho fp);

offers a standard way to do that. Hereyc andar gv are exactly as they were passed to the main
program, andpos is an index intar gv, to a point where the name of an archive is expected.

KheAr chi veReadFr onCommandLi ne first opens the file whose nameaisgv| *pos] , calls
KheAr chi veRead, and incrementspos to inform the caller that the argument+gitos has been
processed. The name may-heneaning standard input. Then, while command-line arguments
beginning with- x, - i , - X, and- | follow the name, it modifies the in-memory version of the
archive as instructed by those arguments. Finally, it returns the archive,pgghmoved to the
index of the first unprocessed argument, cartge if the argument list becomes exhausted.

The-x,-i,-X and-| arguments have this syntax and meaning:

- x<i d>{, <i d>}
Delete instances (and their solutions) with the given Ids.

-i <i d>{, <i d>}
Include only instances (and their solutions) with the given Ids; delete all other instances.

- X<i d>{, <i d>}
Delete solution groups with the given Ids.

14 Chapter 2. Archives and Solution Groups

-1 <i d>{, <i d>}
Include only solution groups with the given Ids; delete all other solution groups.

As a special case X with no ids means to delete all solution groups.

Arguments x and-i may not be used together, and and- | may not be used together.
If there is a problenkheAr chi veReadFr omConmandLi ne prints a message and cadbs t (1) .

At present there is ngheAr chi veReadFr onCommandLi nel ncr ement al function combin-
ing KheAr chi veReadFr omConmandLi ne with KheAr chi veReadl ncrement al .

2.7. Writing archives and solution groups
To write an archive to a file, call
voi d KheArchi veWite(KHE ARCHI VE archive, bool with reports, FILE *fp);

File f p must be open for writing UTF-8 characters, and it remains open after the call returns. If
with_reports istrue, each written solution containsRaport section evaluating the solution.

If the archive’s model iKHE_MODEL_HI GH_SCHOOL_TI METABLE, the initial tag written td p
will be <H ghSchool Ti net abl eAr chi ve>. If the model isKHE_MODEL_EMPLOYEE SCHEDULE,
the initial tag will be<Enpl oyeeSchedul eAr chi ve>.

Ids and names are optional in KHE but compulsory when writing XML.: if any are missing,
KheAr chi veW i t e writes an incomplete file and aborts with an error message. They will all be
present whear chi ve was produced bitheAr chi veRead.

When an event has a preassigned time, there is a problem if one of its meets is not assigned
thattime. If the meetis assigned some other time (which is possible in KHE, although not easy),
then writing that time will cause the solution to be declared invalid when itisre-read. If the meet
is not assigned any time, then, whether or not the preassigned time is written, the meaning is that
the preassigned time is assigned, which is not the true state of the solution. The same problem
arises with preassigned event resources whose tasks are not assigned the preassigned resource.

Accordingly,KheAr chi veWi t e also writes an incomplete file and aborts with an error
message when it encounters a meet (or task) derived from a preassigned event (or event resource)
whose assigned time (or resource) is unequal to the preassigned time (or resource).

When writing solutionsigheAr chi veW i t e writes as little as possible. It does not write an
unassigned or preassigned task. It does not write a meet if its duration equals the duration of the
corresponding event, its time is unassigned or preassigned, and its tasks are not written according
to the rule just given (see also Section 4.3).

Two similar functions are
voi d KheArchi veW it eSol nG oup(KHE_ARCHI VE ar chi ve,

KHE SOLN_GROUP sol n_group, bool with reports, FILE *fp);
voi d KheArchi veWiteWthout Sol nGroups(KHE _ARCHI VE ar chive, FILE *fp);

They also writear chi ve, omitting all its solution groups, or all of them excegatl n_gr oup.
They have been superseded, in practic&khi®Ar chi veReadFr omCommandLi ne (Section 2.6).

Chapter 3. Instances

An instanceis a particular case of the high school timetabling problem, for a particular term
or semester of a particular school. This chapter describeg#hé NSTANCE data type, which
represents instances as defined in the XML format.

3.1. Creating instances
To make a new, empty instance, call

KHE_| NSTANCE Khel nst anceMakeBegi n(char =i d, KHE _MODEL nodel,
HA ARENA SET as);

Parameter d is the Id attribute from the XML file; it is optional, witNULL meaning absent.
Parametemodel isthe model, as fogkheAr chi veMake, andas is the thread arena set, also as for
KheAr chi veMake. Functions

char *Khel nst ancel d(KHE_I NSTANCE i ns) ;
KHE_MODEL Khel nst anceModel (KHE_| NSTANCE i ns);
retrieve these attributes.

For the convenience of functions that reorganize archives, an instance may lie in any
number of archives. To add an instance to an archive and delete it from an archive, call functions
KheAr chi veAddl nst ance and KheAr chi veDel et el nst ance from Section 2.1. To visit the
archives containing a given instance, call

i nt Khel nst anceAr chi veCount (KHE | NSTANCE i ns);
KHE ARCHI VE Khel nst anceAr chi ve(KHE I NSTANCE ins, int i);

in the usual way.
To set and retrieve the back pointeriafs, call

voi d Khel nst anceSet Back(KHE_| NSTANCE i ns, void *back);
voi d *Khel nst anceBack(KHE_I NSTANCE i ns) ;

as usual.
After the instance has been completed, using functions still to be defined, call

bool Khel nst anceMakeEnd(KHE | NSTANCE i ns, bool audit_and fix,
bool infer_resource partitions, bool linmit_busy recode,
char *xerror_nessage);

This must be done, single-threaded, before any solution is created. It checks the instance
and initializes various constant data structures used to speed the solution process. Parameter

15

16 Chapter 3. Instances

audi t _and_fi x is described just belownf er _resour ce_parti tions isthe subject of Section
3.5.5, and i ni t _busy_recode affects how limit busy times constraints are handled, so is de-
scribed in Section 3.7.1%hel nst anceMakeEnd setserror _nessage toNULL and returnsr ue
when it finds no problems; when there is something wrong it*satsor _message to an error
message describing the first problem and rettiahse. In principle the problem could be near-

ly anything, although at present the only problems detectethbynst anceMakeEnd are cases
where the time groups used by limit idle times constraints (Section 3.7.13) are not compact.

Even when an instance is formally valid, it may have features that suggest that something is
wrong, such as resources without avoid clashes constraints. utlien and_fi x istrue, KHE
audits the instance and fixes any problemsit finds. At present, it checks for pairs of events joined
by a link events constraint whose event constraints differ, and adds events as points of application
of those constraints to remove the differences. Other checks may be added in future.

Instance metadata may be set and retrieved by calling

voi d Khel nst anceSet Met aDat a(KHE | NSTANCE i ns, char *nane, char *contributor,
char xdate, char xcountry, char =description, char xremarks);

voi d Khel nst anceMet aDat a(KHE_| NSTANCE i ns, char xxnanme, char **contributor,
char xxdate, char xxcountry, char xxdescription, char xxremarks);

Copies of the strings passed in are stored, not the originals. As for archive and solution group
metadata, KHE allows any instance metadata objects or stringsNd_beor empty, and when
writing an instance it substitutes valueé® nane","No contri butor", etc., for such values, or
omits them altogether when XHSTT allows. Also,

char =Khel nst anceMet aDat aText (KHE_| NSTANCE i ns) ;

returns a string containing the metadata as a paragraph of English text. The string lies in the
instance’s arena and will be deleted when the instance is deleted.

3.2. Visiting and retrieving the components of instances

An instance may contain any number of time groups, times, resource types, event groups, events,
and constraints. These are added by the functions that create them, to be given later.

To visit all the time groups of an instance, or retrieve a time grouipdbgall

i nt Khel nstanceTi meG oupCount (KHE_I NSTANCE i ns);

KHE_TI ME_GROUP Khel nst anceTi neG oup(KHE_I NSTANCE ins, int i);

bool Khel nstanceRet ri eveTi meG oup(KHE_I NSTANCE i ns, char =id,
KHE_TI ME_GROUP *tQ);

The first returns the number of time groupsiims. The second returns theth time group,
counting from 0 as usual in C. The third searches for a time groupofivith the giveni d; if
found, it setst g to it and returnsr ue, otherwise it leavest g unchanged and returfsl se.

Only time groups created by user callst@Ti meG oupMake (Section 3.4.1) are found by
Khel nst anceTi meG oupCount , Khel nst anceTi meG oup, andKhel nst anceRetri eveTi neG oup.
Some other time groups are created automatically by KHE, but they are accessed in other ways.
They include one time group for each time, holding just that time; a time group holding the full

3.2. Visiting and retrieving the components of instances 17

set of times of the instance; and an empty time group. These last two are returned by

KHE_TI ME_GROUP Khel nst anceFul | Ti meG oup(KHE | NSTANCE i ns) ;
KHE_TI ME_GROUP Khel nst anceEnpt yTi meG oup(KHE | NSTANCE i ns);

Time groups may also be created during solving (Section 4.4). Those too are not accessible via
Khel nst anceTi neG oupCount , Khel nst anceTi meG oup, or Khel nst anceRet ri eveTi meG oup.

To visit all the times of an instance, or retrieve a time by Id, call

i nt Khel nst anceTi meCount (KHE_| NSTANCE i ns);
KHE_TI ME Khel nst anceTi me(KHE | NSTANCE ins, int i);
bool Khel nstanceRetri eveTi me(KHE_| NSTANCE i ns, char *id, KHE TIME *t);

These work in the same way as the functions above for visiting and retrieving time groups.
To visit all the resource types of an instance, or retrieve a resource tyjpk &l

i nt Khel nst anceResour ceTypeCount (KHE | NSTANCE i ns) ;

KHE RESOURCE_TYPE Khel nst anceResour ceType(KHE | NSTANCE ins, int i);

bool Khel nstanceRetri eveResour ceType(KHE | NSTANCE i ns, char xid,
KHE_RESOURCE_TYPE =*rt);

These work in the same way as the corresponding functions for visiting and retrieving time
groups and times. Resource types have operations which give access to their resource groups and
resources. For convenience there are also operations

bool Khel nst anceRet ri eveResour ceG oup(KHE_I NSTANCE i ns, char =*id,
KHE_RESOURCE_GROUP +*rg);

bool Khel nst anceRet ri eveResour ce(KHE_I NSTANCE i ns, char =*id,
KHE_RESOURCE =*r);

which search all the resource types of for a resource group or resource with the given It
is also possible to bypass resource types and visit all resources directly, by calling

i nt Khel nst anceResour ceCount (KHE_| NSTANCE i ns) ;
KHE_RESOURCE Khel nst anceResour ce(KHE_I NSTANCE ins, int i);

in the usual way. The resources will be visited in the order they were created.
To visit all the event groups of an instance, or to retrieve an event groug, logll
i nt Khel nst anceEvent G oupCount (KHE | NSTANCE i ns);
KHE_EVENT _GROUP Khel nst anceEvent Group(KHE_| NSTANCE ins, int i);
bool Khel nstanceRet ri eveEvent Group(KHE | NSTANCE i ns, char =id,
KHE_EVENT_GROUP *eg);
These work in the usual way.

Some event groups are created automatically by KHE, including one event group for each
event, holding just that event; an event group holding the full set of events of the instance; and
an empty event group. These last two are returned by

18 Chapter 3. Instances

KHE EVENT_GROUP Khel nst anceFul | Event G oup(KHE | NSTANCE i ns) ;
KHE EVENT _GROUP Khel nst anceEnpt yEvent G- oup(KHE | NSTANCE i ns) ;

Automatically defined event groups are not visited Kinel nst anceEvent G oupCount and
Khel nst anceEvent Group. Even more event groups may be created during solving. Those also
do not appear in the list of event groups of the original instance.

To visit the events of an instance, or to retrieve an eventbgall

i nt Khel nst anceEvent Count (KHE | NSTANCE i ns) ;
KHE_EVENT Khel nst anceEvent (KHE_| NSTANCE ins, int i);
bool Khel nstanceRet ri eveEvent (KHE | NSTANCE i ns, char *id, KHE EVENT xe);

Two reasons for visiting all events have already been taken care of, by functions

bool Khel nstanceAl | Event sHavePr eassi gnedTi mes(KHE | NSTANCE i ns) ;
i nt Khel nst anceMaxi munEvent Dur at i on(KHE_| NSTANCE i ns) ;

Khel nst anceAl | Event sHavePr eassi gnedTi mes returnst rue if all events have preassigned
times. Khel nst anceMaxi nunEvent Dur at i on returns the maximum event duration,®when
there are no events. In the usual representation of nurse rostering, their valuesaardl.

To visit the event resources of an instance, call

i nt Khel nst anceEvent Resour ceCount (KHE_I NSTANCE i ns) ;
KHE_EVENT _RESOURCE Khel nst anceEvent Resour ce(KHE_I NSTANCE ins, int i);

The event resources may also be visited via their events.
To visit all the constraints of an instance, or to retrieve a constraint pgall

i nt Khel nst anceConstrai nt Count (KHE | NSTANCE i ns);

KHE_CONSTRAI NT Khel nst anceConstrai nt (KHE_I NSTANCE ins, int i);

bool Khel nstanceRet ri eveConstrai nt (KHE_| NSTANCE i ns, char «id,
KHE_CONSTRAI NT *c);

These operations work in the usual way.

3.3. Constraint density

Within a given instance, théensityof a given kind of constraint is the number of applications

of constraints of that kind, divided by the number of places where constraints of that kind could
apply. The density is a floating-point number, usually between 0 and 1, although it can exceed
1, since constraints of the same kind may apply at one place. KHE offers functions

i nt Khel nstanceConst rai nt Densi t yCount (KHE_| NSTANCE i ns,
KHE_CONSTRAI NT_TAG constraint _tag);

i nt Khel nstanceConstrai nt Densi tyTot al (KHE_| NSTANCE i ns,
KHE_CONSTRAI NT_TAG constraint _tag);

returning the number of applications of constraints of kindst rai nt _t ag ini ns (thedensity
coun), and the number of places where constraints of that kind could apphsifthe density

3.3. Constraint density 19

total). The density is the quotient of these two quantities, unless the density total is O, in which
case the density is undefined, although it may be reported as 0.0 in that case. Precise definitions
of the density count and density total are given for each kind of constraint in Section 3.7.

The first time either of these functions is called for any valueafst rai nt _t ag, the
results of both functions are calculated for all valuesafst r ai nt _t ag and stored imns. So
multi-threaded calls on these functions are only safe if one single-threaded call is made first.

3.4. Times

3.4.1. Time groups
A time group, representing a set of times, is created and added to an instance by calling

bool KheTi neG oupMake(KHE | NSTANCE ins, KHE TI ME_GROUP_KI ND ki nd,
char *id, char =name, KHE TIME GROUP *tgQ);

This works like all creations of named objects do in KHEi if is nonNULL andi ns already
contains a time group with thig, it returnsf al se and creates nothing; otherwise it creates a
new time group, setd g to point to it, and returnsr ue.

Parameteki nd has type

t ypedef enum {
KHE_TI ME_GROUP_KI ND_ORDI NARY,
KHE_TI ME_GROUP_KI ND_WEEK,
KHE_TI ME_GROUP_KI ND_DAY,
KHE_TI ME_GROUP_KI ND_SQLN,
KHE_TI ME_GROUP_KI ND_AUTO

} KHE_TI ME_GROUP_KI ND;

KHE_TI ME_GROUP_KI ND_ORDI NARY is the usual kind. The XML format allows some time groups

to be referred to as Weeks and Days, although they do not differ from other time groups in any
other way. Value&HE_TI ME_GROUP_KI ND_WEEK and KHE_TI ME_GROUP_KI ND_DAY record this
usage; they matter only when reading and writing XML files, not when solving. The last two
values cannot be passedKoeTi meG oupMake, although they may be returned by function
KheTi neG oupKi nd below. KHE_TI ME_GROUP_KI ND_SOLN is the kind of time groups returned

by KheSol nTi meG oupEnd (Section 4.4), andHE_TI ME_GROUP_KI ND_AUTOis the kind of time
groups created automatically by KHE.

Theid andnane parameters may béJLL; they are used only when writing XML, when
they represent the compulsory Id and Name attributes of the time group. Irrespective of the order
time groups are created in, to conform with the XML rules, when writing time groups KHE writes
days first, then weeks, then ordinary time groups; it does not write any other time groups.

To set and retrieve the back pointertaf, call

voi d KheTi meG oupSet Back(KHE_TI ME_GROUP tg, void *back);
voi d *KheTi meG oupBack(KHE_TI ME_GROUP tgQ);

20 Chapter 3. Instances

in the usual way. The other attributes may be retrieved by calling

KHE_| NSTANCE KheTi meG oupl nst ance(KHE_TI ME_GROUP tg);
KHE_TI ME_GROUP_KI ND KheTi neGr oupKi nd(KHE_TI ME_GROUP tQ);
char =KheTi neG oupl d(KHE_TI ME_GROUP tg);

char *KheTi neG oupName(KHE TI ME_ GROUP tg);

Initially the time group is empty. There are several operations for changing its set of times:

voi d KheTi meG oupAddTi me(KHE_TIME GROUP tg, KHE TIME t);

voi d KheTi meG oupSubTi me(KHE_TIME GROUP tg, KHE TIME t);

voi d KheTi meG oupUni on(KHE TIME_GROUP tg, KHE TIME GROUP tg2);

voi d KheTi meG oupl ntersect (KHE_TI ME_ GROUP tg, KHE TI ME_ GROUP tg2);
voi d KheTi meG oupDi fference(KHE TI ME_GROUP tg, KHE TIME_GROUP tg2);

These add a time tog, remove a time, repladey’s set of times with its union or intersecton
with the set of times of g2, and with the difference dfg’s times and g2’s times. The first two
operations are treated as set operationghsdi meG oupAddTi me does nothing it is already
present, andheTi meG oupSubTi ne does nothing it is not already present.

Changes to the time groups of an instance are not allowedkhiéenst anceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct time
groups for their own use (Section 4.4).

In addition to time groups created by the user, many time groups are created automatically
by KHE, with such useful values as the full set of times of the cycle and the empty set of times
(Section 3.2), all singleton sets of times (Section 3.4), and various other values, associated with
constraints. All these time groups are created duheg nst anceMakeEnd, and in every case,

KHE first checks whether there is a user-defined time group with the desired value, and if so, it
uses that time group instead of creating a new one. When it does create a new time group, that
time group hagHE_TI ME_GROUP_KI ND_AUTOfor kind andNULL for Id and name, except that time
groups returned bkheTi meG oupNei ghbour may have an Id and name, as explained below.

The times of any time group are visited by

i nt KheTi neG oupTi meCount (KHE_TI ME_GROUP tg);
KHE_TI ME KheTi meGr oupTi me(KHE_TI ME_GROUP tg, int i);

These work in the same way as the visit functions for instances above. And

bool KheTi neG oupCont ai ns(KHE_TI ME_GROUP tg, KHE_TIME t, int *pos);
bool KheTi meG oupEqual (KHE_TI ME_GROUP tgl, KHE TIME_GROUP tg2);
bool KheTi meG oupSubset (KHE_TI ME_GROUP tgl, KHE TIME_GROUP tg2);
bool KheTi meG oupDi sj oi nt (KHE_TI ME_GROUP tgl, KHE TIME_GROUP tg2);

returnt r ue if t g containg (setting pos to its position in the time group), ifg1 andt g2 contain

the same times, if the times 6f1 are a subset of the times 0§2, and if the times of g1

andt g2 are disjoint. There is nothing to prevent two distinct time groups from containing the
same times.

Here are some miscellaneous time group functions. Function

3.4. Times 21

bool KheTi neG oupl sConpact (KHE _TI ME GROUP tQ);

returnst r ue whent g is compact when it is empty or there are no gaps in its times, taken in
chronological order. Function

i nt KheTi neG oupOverl ap(KHE TIME GROUP tg, KHE TIME time, int durn);

returns the number of times that a meet starting at with durationdur n overlaps with g.
A key function for KHE’s handling of time is

KHE_TI ME_GROUP KheTi meG oupNei ghbour (KHE_TIME_ GROUP tg, int delta);

It returns a time group containing’s times shifteddel t a places, whereel t a may be any
integer. KheTi meG oupNei ghbour (tg, 0), for example, is a time group with the same times
ast g, possibly but not necessarity itself; andKheTi meG oupNei ghbour (tg, -1) holds the
times that immediately precedg’s. The time group will be empty iflel t a is such a large
(positive or negative) number that all the times are shifted off the cycle.

Time group neighbours are created automatically by KHE. As explained above, KHE will
use existing user-defined time groups wherever possible, to avoid creating new ones. When
it does create a new one, it assigns it an Id and name. This is useful because, although time
group neighbours are never printed in XML files, names for them are needed when reporting
the calculation made by a monitor for a constraint with a Ndid-= Appl i esToTi meG oup. For
example, given time grougy with Id " Mon" and namé Monday" , if

KheTi meG oupNei ghbour (tg, 5)

has to be created it is assigned"lébn+5" and namé Monday+5". It is best to avoid giving
user-defined time groups names like these ones, although there can be no name clashes, strictly
speaking, because time group neighbours are not stored in any table indexed by Id or name.
Khel nst anceRet ri eveTi meG oup, for example, only retrieves user-defined time groups.

KheTi meGr oupNei ghbour accepts time groups returned byeTi meG oupNei ghbour ,
but the result can be odd. Suppog@ = KheTi neG oupNei ghbour (tg, 5) is called, and g
has 7 times butg2 has only 4, because 3 0§’s times shifted off the end. A subsequent call
to KheTi meG oupNei ghbour (t g2, -5) may return another time group with 4 times, but it is
more likely to return a time group equalttg. This is for efficiency: if, every time a time went
off either end, a whole new neighbourhood was constructed, then neighbourhood construction
would go on forever. There are no such peculiarities when times do not shift off either end.

To speed up loading nurse rostering instances with long cycles, the time group returned by
KheAvoi dUnavai | abl eTi mesConst r ai nt Unavai | abl eTi mes usually has no neighbourhood.
The same goes fakheAvoi dUnavai | abl eTi mesConst rai nt Avai | abl eTi mes, and also for
KheLi m t BusyTi mesConst r ai nt Domai n andKheLi mi t Wor k|l oadConst r ai nt Domai n. A callto
KheTi meG oupNei ghbour will abort with an error message if itis given one of these time groups.
The user should not worry about this until it happens; it probably never will.

As an aid to debugging, function

voi d KheTi meG oupDebug(KHE TI ME_ GROUP tg, int verbosity,
int indent, FILE *fp);

22 Chapter 3. Instances

printst g ontof p with the given verbosity and indent, as usual (Section 1.3). Verbosity 1 prints
either the Id of the time group, or the first and last time (at most) enclosed in braces.

3.4.2. Times

Atime is created and added to an instance by calling

bool KheTi neMake(KHE_|I NSTANCE i ns, char *id, char =nane,
bool break after, KHE TIME *t);

Asusual, d al se return value is only possible whed is nonNULL and already in use by another
time object. Parameterg andname may beNULL, and are used only when writing XML.

Parametebr eak_after says that a break occurs after this time, so that, for example,
an event of duration 2 could not begin here. This is not an XML feature; when representing
XML this parameter should always bhal se. Within KHE itself it is used only by function
KheSol nSpl i t Cycl eMeet and its associated operations (Section 4.5.3).

To set and retrieve the back pointer of a time, call functions

voi d KheTi meSet Back(KHE_TI ME t, void *back);
voi d *KheTi meBack(KHE_TIME t);

as usual. The other attributes are retrieved by

KHE_| NSTANCE KheTi mel nstance(KHE_TI ME t);
char *KheTi nel d(KHE_TI ME t);

char *KheTi neName(KHE_TI ME t);

bool KheTi neBreakAfter (KHE_TIME t);

i nt KheTi nmel ndex(KHE_TI ME t);

KheTi mel ndex returns an automatically generated index numbet fae: O for the first time

created, 1for the second, and so on. The times of an instance form a sequence, not a set, and must
be created in chronological order. This is unlike resources, events, etc., whose order of creation
does not matter. The XML format requires times to appear in this same order. Function

bool KheTi meHasNei ghbour (KHE TIME t, int delta);

returng r ue when there is a time whose index is the index plusdel t a, wheredel t a may be
any integer, negative, zero, or positive. Function

KHE_TI ME KheTi neNei ghbour (KHE TIME t, int delta);

returns this time when it exists, and aborts when it does not.

When calculating with the chronological ordering of time—deciding whether two meets
are adjacent, and so on—it is often best to KiTi mel ndex to obtain the indexes of the times
involved and work with them. However, these functions may help to avoid time indexes:

3.4. Times 23

bool KheTi meLE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neLT(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neGI(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi meGE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neEQ(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi meNE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);

They returrt r ue whenkheTi neNei ghbour (tinel, deltal)’stime indexis less than or equal
toKheTi meNei ghbour (tine2, delta2)’s,and soon. The neighbours need not exist; the func-
tions simply convert times into indexes and perform the indicated integer operations. Also,

i nt KheTinelnterval sOverlap(KHE_TIME tinmel, int durnl,
KHE TIME tinme2, int durn2);

takes two time intervals, one beginningtainel with durationdur n1, the other beginning at
t i me2 with durationdur n2, and returns the number of timeslying in both intervals. For example,
the result will be 0 when either interval ends before the other begins. Similarly,

bool KheTi nel nterval sOverl apl nterval (KHE_TIME tinel, int durnil,
KHE_TIME tinme2, int durn2, KHE_TIME +overlap_time, int *=overlap_durn);

returnstrue when KheTi nel nt erval sOver| ap is non-zero, and setsoverlap_time and
=over | ap_dur n to the starting time and duration of the overlap; otherwise it retuahse.

For convenience, a time group is available for each time, holding just that time. Function
KHE_TI ME_GROUP KheTi neSi ngl et onTi meG oup(KHE_TI ME t);

returns this time group. It cannot be changed.

3.5. Resources

3.5.1. Resource types

A resource type, representing one broad category of resources, such as the teachers or rooms, is
created and added to an instance in the usual way by the call

bool KheResour ceTypeMake(KHE_| NSTANCE ins, char *id, char =*nane,
bool has_partitions, KHE RESOURCE TYPE #rt);

Attributesi d andnane represent the optional XML Id and Name attributes as usual. Its back
pointer may be set and retrieved by

voi d KheResour ceTypeSet Back(KHE_RESOURCE TYPE rt, void xback);
voi d *KheResour ceTypeBack(KHE RESOURCE TYPE rt);

as usual, and its other attributes may be retrieved by

24 Chapter 3. Instances

KHE_| NSTANCE KheResour ceTypel nst ance(KHE_RESOURCE TYPE rt);
i nt KheResour ceTypel ndex(KHE_RESOURCE TYPE rt);

char *KheResour ceTypel d(KHE_RESOURCE TYPE rt);

char *KheResour ceTypeName(KHE_RESCURCE TYPE rt);

bool KheResourceTypeHasPartitions(KHE RESOURCE TYPE rt);

KheResour ceTypel ndex(rt) returnsthe index oft in the enclosing instance, that is, the value
of i for whichKhel nst anceResour ceType returnst .

Attributehas_partitions is not an XML feature, and should be given vaiaése when
reading an XML instance. It indicates that there is a unique partitioning of the resources of this
resource type, defined by a collection of specially marked resource groupsgatigéidns For
example, the resources of a student groups resource type might be partitioned into forms, or the
resources of a teachers resource type might be partitioned into faculties. When a resource type
has partitions, each of its resources must lie in exactly one partition.

Each resource type contains an arbitrary number of resource groups, representing sets
of resources of its type. Resource groups are added to a resource type automatically by the
functions that create them. To visit all the resource groups of a given resource type, or to retrieve
a resource group with a giveén from a given resource type, call

i nt KheResour ceTypeResour ceG oupCount (KHE_RESOURCE TYPE rt);
KHE_RESOURCE _GROUP KheResour ceTypeResour ceG oup(KHE_RESOURCE TYPE rt,
int i);
bool KheResourceTypeRetri eveResour ceG oup(KHE_RESOURCE_TYPE rt,
char *id, KHE RESOURCE_GROUP *rg);

These work in the usual way. The partitions of a resource type may be visited by

i nt KheResourceTypePartitionCount (KHE_RESOURCE TYPE rt);
KHE_RESQURCE_GROUP KheResour ceTypePartition(KHE_ RESOURCE TYPE rt, int i);

KheResour ceTypePartiti onCount returns O whemt does not have partitions.

Some resource groups are made automatically by KHE, including one resource group for
each resource, holding just that resource; a resource group holding the full set of resources of
the resource type; and an empty resource group. These last two are returned by

KHE_RESOURCE_GROUP KheResour ceTypeFul | Resour ceG oup(KHE_RESOURCE TYPE rt);
KHE_RESOURCE_GROUP KheResour ceTypeEnmpt yResour ceG oup(KHE_RESOURCE TYPE rt);

Automatically made resource groups are not visiteghi®Resour ceTypeResour ceG oupCount
and KheResour ceTypeResour ceG oup. Even more resource groups may be created during
solving, but those do not appear in the list of resource groups of the original instance.

To visit all the resources of a given resource type, or to retrieve a resource of a given
resource type biyd, call

i nt KheResour ceTypeResour ceCount (KHE_RESOURCE TYPE rt);
KHE_RESOURCE KheResour ceTypeResour ce(KHE_ RESOURCE TYPE rt, int i);
bool KheResourceTypeRetrieveResour ce(KHE RESOURCE TYPE rt,

char *id, KHE RESOURCE *r);

3.5. Resources 25

in the usual way.

Three functions, which should be called only after the instance is complete, are offered
for summarising how complex the task of assigning resources of a given type is. The values of
these functions are calculated as the instance is built and kept, so one call on any of them costs
practically nothing. The firstis

bool KheResour ceTypeDemandl sAl | Preassi gned(KHE_RESOURCE _TYPE rt);

It returnst r ue if every event resource of type is preassigned. In practice this is always true
for student group resource types, and often for teachers, but rarely for rooms. The second is

i nt KheResour ceTypeAvoi dSpl it Assi gnment sCount (KHE_RESCURCE TYPE rt);

It returns the number of points of application of avoid split assignments constraints that constrain
event resources of thistype. The larger this number is, the more difficult the resource assignment
problem for resources of this type is likely to be. Finally,

i nt KheResour ceTypelLi ni t Resour cesCount (KHE_RESOURCE TYPE rt);

returns the number of points of application of limit resources constraints that have this resource
type. See Section 12.6.3 for an application of this function.

3.5.2. Resource groups
A resource group is created and added to a resource type by the call

bool KheResour ceG oupMake(KHE RESOURCE TYPE rt, char *id, char *nane,
bool is_partition, KHE RESOURCE GROUP *rQ)

This function returngal se only wheni d is nonNULL and some other resource group of type
rt hasthis d. The resource group lies in resource typeavith the usuail d andnarre attributes.
Attributei s_parti tion is not an XML feature, and should be given vala¢se when reading

an XML instance. It may beérue only if attributehas_partitions of the resource group’s
resource type isr ue, in which case it indicates that this resource group is a partition, that is, one
of those resource groups which define the unique partitioning of the resources of that type.

To set and retrieve the back pointer of a resource group, call

voi d KheResour ceGr oupSet Back(KHE_RESOURCE GROUP rg, void *back);
voi d »KheResour ceG oupBack(KHE_RESOURCE _GROUP rg);

as usual. The other attributes may be retrieved by calling

KHE_RESOURCE _TYPE KheResour ceG oupResour ceType(KHE_RESOQURCE_GROUP rg);
KHE_| NSTANCE KheResour ceG oupl nst ance(KHE_RESOURCE _GROUP rg);

char *KheResour ceG oupl d(KHE_RESOURCE_GROUP rq);

char *KheResour ceG oupName(KHE_RESOURCE_GROUP rg);

bool KheResourceG oupl sPartition(KHE_RESOURCE GROUP rg);

KheResour ceG oupl nst ance returns the resource group’s resource type’s instance.

26 Chapter 3. Instances

Initially the resource group is empty. Several operations change its resources:

voi d KheResour ceG oupAddResour ce(KHE_RESOURCE GROUP rg, KHE RESOURCE r);

voi d KheResour ceG oupSubResour ce(KHE_RESOURCE GROUP rg, KHE RESOURCE r);

voi d KheResour ceG oupUni on(KHE_RESOURCE_GROUP rg, KHE RESOURCE GROUP rg2);

voi d KheResour ceG oupl nt ersect (KHE_RESOURCE GROUP rg, KHE RESOURCE GROUP rg2);
voi d KheResourceG oupDi fference(KHE_ RESOURCE GROUP rg, KHE RESOURCE GROUP rg2);

These add torg, remover, replacer g’s set of resources with its union or intersecton with

the set of resources 0fy2, and with the difference ofg’s resources andg2’s resources. All

the resources and resource groups involved must be of the same type. The first two operations
are treated as set operationskKeeResour ceG oupAddResour ce does nothing ifr is already
present, an#heResour ceG oupSubResour ce does nothing if is not already present.

These functions may not be used to alter resource groups which define partitions. When a
resource type has partitions, each of its resources is added to its partition when it is created.

Changes to the resource groups of an instance are not allowedraftest anceMakeEnd
is called, since instances are immutable after that point. However, solutions may construct
resource groups for their own use (Section 4.4).

There are also several operations for finding the cardinality of unions, intersections, etc.,
without changing anything:

i nt KheResour ceG oupUni onCount (KHE_RESOURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);

i nt KheResour ceG oupl nt er sect Count (KHE_RESOURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceG oupDi f f erenceCount (KHE_RESCURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceG oupSymretricDif ferenceCount (KHE_RESOURCE _GROUP r g,
KHE_RESOURCE_GROUP rg2);

Building symmetric differences is awkward, so at present there is no operation for it, only this
operation for finding its cardinality.

There are also predefined resource groups, for the complete set of resources of each
resource type and the empty set of resources of each type (see Section 3.5.1 for those), and one
for each resource of the instance, containing just that resource (Section 3.5). The resources in
predefined resource groups may not be changed.

The resources of any resource group are visited by

i nt KheResour ceG oupResour ceCount (KHE_RESOURCE _GROUP rg);
KHE_RESOURCE KheResour ceG oupResour ce(KHE_RESOURCE GROUP rg, int i);

These work in the usual way. And

3.5. Resources 27

bool KheResour ceG oupCont ai ns(KHE_ RESOURCE_GROUP rg, KHE RESOURCE r);

bool KheResour ceG oupEqual (KHE_RESOURCE GROUP rgl,
KHE_RESOURCE_GROUP rg2);

bool KheResour ceG oupSubset (KHE_ RESOURCE GROUP rgl,
KHE_RESOURCE_GROUP rg2);

bool KheResour ceG oupDi sj oi nt (KHE_ RESOURCE_GROUP r g1,
KHE_RESOURCE_GROUP rg2);

returnt r ue if rg containg , if rgl andr g2 contain the same resources, if the resourcegbf

form a subset of the resourcesraf2, and if the resources ofgl andr g2 are disjoint. Two
distinct resource groups may contain the same resources, so it is best not to apply the C equality
operator to resource groups.

There are also
i nt KheResour ceG oupTypedCnp(KHE_RESOURCE_GRCOUP r g1,

KHE_RESOURCE_GROUP rg2);
i nt KheResourceG oupCnp(const void *t1, const void *t2);

which are typed and untyped versions of a comparison function that may be used to sort an array
of resource groups into a canonical order. The precise order is not specified other than that a
return value of O indicates that the two resource groups are equal.

After a resource group is finalized, function
KHE RESOURCE_GROUP KheResour ceG oupPartiti on(KHE_RESOURCE GROUP rg);

may be called. If g is non-empty and its resources share a partition, the result is that partition,
otherwise the result iISULL. SinceKheResour ceG oupPartition is called when monitoring
evenness, for efficiency the result is precomputed and storeghvimen it is finalized.

As an aid to debugging, function

voi d KheResour ceG oupDebug(KHE_RESOURCE GROUP rg, int verbosity,
int indent, FILE *fp);

printsr g ontof p with the given verbosity and indent, as described for debug functions in general
in Section 1.3. Verbosity 1 prints the Id of the resource group in some cases, and the first and last
resource (at most) enclosed in braces in others.

3.5.3. Resources

A resource is created and added to its resource type by the call

bool KheResour ceMake(KHE RESOCURCE TYPE rt, char *id, char =*narme,
KHE_RESOQURCE_GROUP partition, KHE RESOURCE *r);

A resource type is compulsoryg andnane are the usual optional XML Id and Name.

Unlike KheResour ceG oupMake, which returng al se when itsi d parameter is nohLLL
and some other resource group of the same resource type already hasdieRdshur ceMake
returnd al se and setsr toNULL when its d parameter is nolWJLL and some other resouroé
any resource typalready has its Id. This is because predefined event resources are permitted to

28 Chapter 3. Instances

identify a resource by its Id alone, and so resource lds must be unique among all the resources of
the instance, not merely among resources of a given type.

Thepartition attribute is not an XML feature, and should be given valukeL when
reading an XML instance. It must be ndbkL if and only ifrt’s has_partiti ons attribute is
t rue, in which case its value must be a resource group of typehose s_par ti ti on attribute
Ist rue, and it indicates that the new resource lies in the specified partition. The new resource will
be added to the partition by this function, and no separate cB#istaur ceG oupAddResour ce
to do this is necessary or even permitted.

To set and retrieve the back pointer of a resource, call

voi d KheResour ceSet Back(KHE_RESOURCE r, void *back);
voi d *»KheResour ceBack(KHE_RESOURCE r);

as usual. The other attributes may be retrieved by the calls

KHE_| NSTANCE KheResour cel nst ance(KHE_RESOURCE r);

i nt KheResour cel nst ancel ndex(KHE_RESOURCE r);
KHE_RESOURCE TYPE KheResour ceResour ceType(KHE_RESOURCE r);
i nt KheResour ceResour ceTypel ndex(KHE_RESOURCE r);

char *KheResour cel d(KHE_RESOURCE r);

char *KheResour ceName(KHE_RESOURCE r);

KHE_RESOURCE GROUP KheResour cePartition(KHE RESOURCE r);

KheResour cel nst ance returnsr’s instance, andkheResour cel nst ancel ndex returnsr’s

index in that instance: the value offor which Khel nst anceResource(ins, i) returnsr.
KheResour ceResour ceType returnsr’s resource type, anheResour ceResour ceTypel ndex
returnsr’s index in that type: the value of for which KheResour ceTypeResource(rt, i)
returng . Unlike the index numbers of times, which indicate chronological order, resource index
numbers have no semantic significance. They are made available only for convenience.

A resource group is created automatically for each resayteelding justr. Function
KHE_RESOURCE_GROUP KheResour ceSi ngl et onResour ceG oup(KHE_RESOURCE r);

returns this resource group. This resource group may not be changed. To visit the resource
groups containing (not including automatically generated ones), call

i nt KheResour ceResour ceG oupCount (KHE_RESOURCE r) ;
KHE RESOURCE_GROUP KheResour ceResour ceG oup(KHE RESOURCE r, int i);

in the usual way.
The event resources thats preassigned to are made available by calling
i nt KheResour cePreassi gnedEvent Resour ceCount (KHE_RESOURCE r) ;

KHE_EVENT RESOURCE KheResour cePreassi gnedEvent Resour ce(KHE_RESOURCE r,
int i);

Naturally, the entire instance has to be loaded for these to work correctly. At present there is no
way to visit events containing event resource groups containing a given resource.

3.5. Resources 29

Some constraints apply to resources. When these constraints are created, they are added to
the resources they apply to. To visit all the constraints applicable to a given resource, call

i nt KheResour ceConst rai nt Count (KHE_RESOURCE r);
KHE_CONSTRAI NT KheResour ceConst rai nt (KHE_RESOURCE r, int i);

There may be any number of avoid clashes constraints, avoid unavailable times constraints, limit
idle times constraints, cluster busy times constraints, limit busy times constraints, limit workload
constraints, and limit active intervals constraints, in any order. There are also

KHE_TI ME_GROUP KheResour ceHar dUnavai | abl eTi meG oup(KHE_RESOURCE r) ;
KHE_TI ME_GROUP KheResour ceHar dAndSof t Unavai | abl eTi meG oup(
KHE RESOURCE r);

KheResour ceHar dUnavai | abl eTi neG oup returns the union of the domains of the required
unavailable times constraintsiof KheResour ceHar dAndSof t Unavai | abl eTi meGr oup doesthe

same, except that the domains of all unavailable times constraints are included. Both functions
return the empty time group when there are no applicable constraints.

These two public functions are used by KHE when calculating lower bounds:

bool KheResour ceHasAvoi dd ashesConst rai nt (KHE RESOURCE r, KHE COST cost);
i nt KheResour cePreassi gnedEvent sDurat i on(KHE_ RESOCURCE r, KHE COST cost);

KheResour ceHasAvoi dCl ashesConstrai nt returnst rue if some avoid clashes constraint of
combined weight greater thast applies tor ; KheResour cePr eassi gnedEvent sDur ati on
returns the total duration of events which are both preassigred either preassigned a time
or subject to an assign time constraint of combined cost greatectisan

As an aid to debugging, function

voi d KheResour ceDebug(KHE_RESOURCE r, int verbosity,
int indent, FILE *fp)

produces a debug print of resourcento filef p with the given verbosity and indent, as described
for debug functions in general in Section 1.3.

3.5.4. Resource layers

A resource layeis the set of events containing a preassignment of a given resowlbeh is

the subject of a hard avoid clashes constraint. A resource layer’s events may not overlap in time:
they must spread horizontally across the timetable, hence the term ‘layer’. Within a solution, the
meets derived from the events of one resource layer fospiwgion layer or justlayer.

Layers are important in high school timetabling, at least for student group resources, since
the total duration of their events is often close to the total duration of the cycle, and hence these
events strongly constrain each other. The following operations are available on the layer of

i nt KheResour ceLayer Event Count (KHE_RESOURCE r);
KHE EVENT KheResourcelLayer Event (KHE_RESOURCE r, int i);
i nt KheResour celLayer Durati on(KHE_RESOURCE r);

30 Chapter 3. Instances

The first two work together in the usual way to return the events of the resource layer. They
are sorted by increasing event index. If the resource is not preassigned to any events, or
has no required avoid clashes constraint, th&aResour ceLayer Event Count returns O.
KheResour ceLayer Dur at i on returns the total duration of the events of the layer. In the unlike-

ly case that is assigned to the same event twice, the event still appears only once in the list of
events of the layer, and contributes its duration only once to the layer duration.

3.5.5. Resource similarity and inferring resource partitions
Following the general approach introduced in Section 1.3, KHE offers function
bool KheResourceSim | ar (KHE_RESOURCE r1, KHE RESOURCE r?2);

which returng rue when resourcesl andr 2 are similar: when they lie in similar resource
groups and are preassigned to similar events. The exact definition is given below.

KheResour ceSi ni | ar often succeeds in recognising that student group resources from the
same form are similar, and that teacher resources from the same faculty are similar. However, it
needs positive evidence to work with. For example, when there are no student or teacher resource
groups, and each event contains one preassigned student group resource, one preassigned teacher
resource, and a request for one ordinary classroom, there is no basis for grouping the resources
and each will be considered similar only to itself.

Resource patrtitions (Section 3.5.1) are not part of the XML format. But they are useful
when solving, s&hel nst anceMakeEnd has an nf er _resource_partiti ons parameter which,
whent r ue, causes partitions to be added to each resource typgeat lacks them. Afterwards,
KheResour ceTypeHasPartitions(rt) will be true, KheResourceG ouplsPartition(rg)
will be true for some of the resource groups of, and KheResour cePartition(r) will
return a norULL partition for each resourage All this is exactly as though the partitions had
been entered explicitly, except that any specially created resource groups will not be visited by
KheResour ceTypeResour ceG oupCount andKheResour ceTypeResour ceG oup.

The algorithm for inferring resource partitionsis a simple application of resource similarity.
Build a graph in which each node correspondsto one resource, and an edge joins two nodes when
their resources are similar. The partitions are the connected components of this graph.

To decide whether two resources are similar or not, two non-negative integguesitiee
evidenceand thenegative evidencare calculated as explained below. The two resources are
similar if the positive evidence exceeds the negative evidence by at least two.

Evidence comes from two sources: the resource groups that the resources lie in, and the
events that the resources are preassigned to. A resource gradmissible(i.e. admissible
as evidence) if its number of resources is at least two and at most one third of the number
of resources of its resource type. Inadmissible resource groups are considered to contain no
useful information and are ignored. Each case of an admissible resource group containing both
resources counts as two units of positive evidence, and each case of an admissible resource group
containing one resource but not the other counts as one unit of negative evidence.

A definition of what it means for two events to be similar appears in Section 3.6.2. Each
case of an event preassigned one resource being similar to an event preassigned the other counts
as two units of positive evidence. Each case of an event preassigned one resource for which there

3.5. Resources 31

is no similar event preassigned the other counts as one unit of negative evidence. The cases are
distinct, in the sense that each event participates in at most one case.

3.6. Events

3.6.1. Event groups
An event group, representing a set of events, is created and added to an instance by calling

bool KheEvent G oupMake(KHE_I NSTANCE i ns, KHE_EVENT_GROUP_KI ND ki nd,
char xid, char *name, KHE_EVENT_GROUP *eg);

As usual, it return$al se only wheni d is nonNULL andi ns already contains an event group
with thisi d. To set and retrieve the back pointer, call

voi d KheEvent G oupSet Back(KHE_EVENT_GROUP eg, void *back);
voi d *KheEvent G oupBack(KHE_EVENT_GROUP eg);

as usual. The other attributes may be retrieved by the calls

KHE | NSTANCE KheEvent Groupl nst ance(KHE_EVENT_GROUP eg) ;
KHE_EVENT_GROUP_KI ND KheEvent G oupKi nd(KHE_EVENT_GROUP eg) ;
char xKheEvent G oupl d(KHE_EVENT _GROUP eg);

char *KheEvent G- oupName(KHE_EVENT _GROUP eg);

The event group kind is a value of type

t ypedef enum {
KHE_EVENT_GROUP_KI ND_COURSE,
KHE_EVENT_GROUP_KI ND_ORDI NARY

} KHE_EVENT_GROUP_KI ND;

The XML format allows some event groups to be referred to as Courses, although they do not
differ from other event groups in any other way. Ted attribute records this distinction; it is
only used by KHE when reading and writing XML files, not when solving.

Irrespective of the order event groups are created in, to conform with the XML rules, when
writing event groups KHE writes courses first, then ordinary event groups.

Initially the event group is empty. There are several operations for changing its events:

voi d KheEvent G oupAddEvent (KHE_EVENT _GROUP eg, KHE EVENT e);

voi d KheEvent G oupSubEvent (KHE_EVENT _GROUP eg, KHE EVENT e);

voi d KheEvent G oupUni on(KHE_EVENT GROUP eg, KHE EVENT_GROUP eg2);

voi d KheEvent G oupl ntersect (KHE EVENT _GROUP eg, KHE EVENT_GROUP eg2);
voi d KheEvent G oupDi f f erence(KHE_EVENT GROUP eg, KHE EVENT GROUP eg2);

These add an eventég, remove an event, replaeg’s set of events with its union or intersecton
with the set of events afg2, and with the difference odg’s events an@g2’s events. The first
two operations are treated as set operationghsBvent G oupAddEvent does nothing ife is

32 Chapter 3. Instances

already present, aritheEvent G oupSubEvent does nothing ik is not already present.

Changes to the event groups of an instance are not allowedaéierst anceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct event
groups for their own use (Section 4.4).

There are also predefined event groups, for the complete set of events of the instance and
for the empty set of events (Section 3), and one for each event of the instance, containing just
that event (Section 3.6). The events in predefined event groups may not be changed.

To visit the events of an event group, functions

i nt KheEvent Gr oupEvent Count (KHE_EVENT _GROUP eg) ;
KHE_EVENT KheEvent GroupEvent (KHE_EVENT _GROUP eg, int i);

are used in the usual way. And

bool KheEvent GroupCont ai ns(KHE_EVENT _GROUP eg, KHE EVENT e);

bool KheEvent G oupEqual (KHE_EVENT_GROUP egl, KHE_EVENT_GROUP eg2);
bool KheEvent GroupSubset (KHE_EVENT_GROUP egl, KHE EVENT_GROUP eg2);
bool KheEvent G oupDi sj oi nt (KHE_EVENT_GROUP egl, KHE_EVENT_GROUP eg2);

returnt r ue if eg containe, if egl andeg2 contain the same events, if the eventsgf are a
subset of the events @02, and if the events oégl andeg2 are disjoint. There is nothing to
prevent two distinct event groups from containing the same events.

Some constraints apply to event groups. When these are created, they are added to the event
groups they apply to. To visit all the constraints that apply to a given event group, call

int KheEvent G oupConst rai nt Count (KHE_EVENT_GROUP eg);
KHE_CONSTRAI NT KheEvent G oupConst rai nt (KHE_EVENT_GROUP eg, int i);

There may be any number of avoid split assignments constraints, spread events constraints, link
events constraints, and limit resources constraints, in any order. Function

voi d KheEvent G oupDebug(KHE_EVENT_GROUP eg, int verbosity,
int indent, FILE *fp);

produces a debug print @f ontof p with the given verbosity and indent, in the usual way.

3.6.2. Events

An event is created and added to an instance by calling

bool KheEvent Make(KHE | NSTANCE i ns, char =*id, char =name, char =*col or,
int duration, int workload, KHE TIME preassigned time, KHE EVENT xe);

This returng al se only if i d is nonNULL and is already thed of an event ofi ns. Parameter

col or is an optional color for use when printing timetables. If maht, its value must be a
legal Web colour "(#7CFC00" for example, or a colour name). A duration and workload are
compulsory (the XML specification states that a missing workload is taken to be equal to the
duration), but the preassigned time may\okeL. The back pointer is set and retrieved by

3.6. Events 33

voi d KheEvent Set Back(KHE_EVENT e, void *back);
voi d »KheEvent Back(KHE_EVENT e);

as usual, and the other attributes may be retrieved by

KHE | NSTANCE KheEvent | nst ance(KHE EVENT e€);
char x*KheEvent | d(KHE_EVENT e);

char x*KheEvent Nane(KHE_EVENT e);

char xKheEvent Col or (KHE_EVENT e);

i nt KheEvent Dur ati on(KHE_EVENT e);

i nt KheEvent Wr k|l oad(KHE_EVENT e);

KHE TI ME KheEvent Preassi gnedTi me(KHE_EVENT e);

There are two other useful query functions. First,
i nt KheEvent | ndex(KHE EVENT e);

returns the index number ef(0 for the first event inserted, 1 for the next, etc.). This number has
no timetabling significance; it is included merely for convenience. Second,

i nt KheEvent Demand(KHE_EVENT e);

returns thelemandf e, defined to be its duration multiplied by the number of its event resources
(in matching terms, the number of demand tixels). This is included as a measure of the overall
bulk of an event, useful for sorting events by estimated difficulty of timetabling.

Each event also contains any number of event resources. These are added to their events as
they are created. To visit them, call

i nt KheEvent Resour ceCount (KHE_EVENT e);
KHE_EVENT_RESOURCE KheEvent Resource(KHE_EVENT e, int i);

in the usual way. There is also

bool KheEvent Retri eveEvent Resour ce(KHE_EVENT e, char +role,
KHE_EVENT_RESQURCE *er);

which retrieves an event resource frerwith the giverr ol e. If there is such an event resource,
it sets+er to it and returnsrue. If not,er is not changed anfchl se is returned.

Each event also contains any number of event resource groups. These are added to their
events as they are created. To visit them, call

i nt KheEvent Resour ceG oupCount (KHE_EVENT e);
KHE_EVENT RESOURCE GROUP KheEvent Resour ceG oup(KHE EVENT e, int i);

as usual.
For convenience, an event group is created for each event, holding just that event. Call

KHE_EVENT _GROUP KheEvent Si ngl et onEvent Gr oup(KHE_EVENT event);

to retrieve this event group. Other events may not be added to it.

34 Chapter 3. Instances

Some constraints apply to events. When these constraints are created, they are added to the
events they apply to. To visit all the constraints applicable to a given event, call

i nt KheEvent Constrai nt Count (KHE_EVENT e);
KHE_CONSTRAI NT KheEvent Constrai nt (KHE EVENT e, int i);

There may be any number of assign time constraints, prefer times constraints, split events
constraints, and distribute split events constraints, in any order, except that an event with a
preassigned time cannot have assign time constraints and prefer times constraints.

Following the general pattern given in Section 1.3, function
bool KheEvent Si mil ar (KHE_EVENT el, KHE_EVENT e2);

returng r ue if el ande2 are similar: if they have the same duration and similar event resources.
The exact definition is as follows. An eveniadmissibléf it has one or more admissible event
resources. An eventresource is admissible if its hard domain (reflecting its prefer resources con-
straints and any preassignment) is an admissible resource group, as defined in Section 3.5.5. An
event is always similar to itself. Two distinct events are similar if they are admissible, have equal
durations, and their admissible event resources (taken in any order) have equal hard domains.

There is also

bool KheEvent Mer geabl e(KHE_EVENT el, KHE EVENT e2, int slack);

which returng r ue if el ande2 could reasonably be considered to be split fragments of a single
larger event: if their event resources correspond, ignoring differences in the order in which they
appear in the two events. $f ack is non-zerokheEvent Mer geabl e returnst r ue even if up

tosl ack event resources igil do not correspond with any event resourcedrand vice versa.

Two event resources correspond when they have the same resource type, the same preassigned
resource, equal hard domains as returnedKbgEvent Resour ceHar dDomai n, and equal
hard-and-soft domains as returneddbgEvent Resour ceHar dAndSof t Donai n. Like those two
functions KheEvent Mer geabl e can only be called after the instance is complete.

A reasonable way to decide whether two events must be disjoint in time is to call

bool KheEvent Shar ePr eassi gnedResour ce(KHE_EVENT el, KHE EVENT e2,
KHE_RESOQURCE =*r);

If el ande2 share a preassigned resource which has a required avoid clashes constraint, this
function returng r ue and sets to one such resource; otherwise it returakse and sets to
NULL. It should only be called after the instance is complete.

Function

voi d KheEvent Debug(KHE EVENT e, int verbosity, int indent, FILE *fp);

produces a debug print efontof p with the given verbosity and indent, in the usual way.

3.6.3. Event resources

An event resource is created and added to an event by the call

3.6. Events 35

bool KheEvent Resour ceMake(KHE EVENT event, KHE RESOURCE TYPE rt,
KHE_RESOURCE preassi gned_resource, char *role, int workload,
KHE_EVENT_RESOURCE =*er);

This returnd al se only when the optionalol e parameter (used only when writing XML) is
nonNULL and there is already an event resource wighient with this value forr ol e. Parameter
preassi gned_r esour ce is an optional resource preassignment and mayubk.

To set and retrieve the back pointer of an event resource, call

voi d KheEvent Resour ceSet Back(KHE_EVENT RESOURCE er, void *back);
voi d *KheEvent Resour ceBack(KHE_EVENT RESOURCE er);

as usual. The other attributes may be retrieved by

KHE_I NSTANCE KheEvent Resour cel nst ance(KHE_EVENT _RESOURCE er);

i nt KheEvent Resour cel nst ancel ndex(KHE_EVENT_RESOURCE er);

KHE_EVENT KheEvent Resour ceEvent (KHE_EVENT _RESOURCE er);

i nt KheEvent Resour ceEvent | ndex(KHE_EVENT_RESOURCE er);

KHE_RESOURCE _TYPE KheEvent Resour ceResour ceType(KHE_EVENT _RESOURCE er);
KHE_RESOURCE KheEvent Resour cePr eassi gnedResour ce(KHE_EVENT _RESOURCE er);
char *KheEvent Resour ceRol e(KHE_EVENT_RESOURCE er);

i nt KheEvent Resour ceWor kl oad(KHE_EVENT_RESOURCE er);

KheEvent Resour cel nst ance is the enclosing instanc&heEvent Resour cel nst ancel ndex is
the index ofer in that instance (the numbersuch thakhel nst anceEvent Resour ce(ins, i)
returnser). KheEvent Resour ceEvent is the enclosing evenkheEvent Resour ceEvent | ndex
is the index ofer in that event (the numbérsuch thakheEvent Resour ce(e, i) returnser).

Some constraints apply to event resources. When these are created, they are added to the
event resources they apply to. To visit the constraints that apply to a given event resource, call

i nt KheEvent Resour ceConst rai nt Count (KHE_EVENT_RESOURCE er) ;
KHE_CONSTRAI NT KheEvent Resour ceConst rai nt (KHE_EVENT_RESOURCE er, int i);

There may be any number of assign resource constraints, prefer resources constraints, and avoid
split assignments constraints, in any order, except that an event resource with a preassigned
resource cannot have assign resource constraints and prefer resources constraintsthif the
constraint is an avoid split assignments constraint, function

i nt KheEvent Resour ceConstrai nt Event G oupl ndex(KHE_EVENT RESOURCE er, int i);

may be called to find the event group index within that constraint that comtair(# returns- 1
if the i 'th constraint is not an avoid split assignments constraint.)
After the instance is complete but not before, functions

KHE RESOURCE_GROUP KheEvent Resour ceHar dDomai n(KHE_EVENT RESOURCE er) ;
KHE _RESOURCE_GROUP KheEvent Resour ceHar dAndSof t Domai n(KHE_EVENT RESOURCE er);

return domains suited & . The resource group returned KhyeEvent Resour ceHar dDonai n is
the intersection of the domains of the required prefer resources constraints, with weight greater

36 Chapter 3. Instances

than 0O, ofer and other event resources that share a required avoid split assignments constraint of
weight greater than O witér , either directly or indirectly via any number of intermediate event
resources. If any of these event resources is preassigned, then the singleton resource groups
containing the preassigned resources are intersected along with the other groups. The same is
true ofKheEvent Resour ceHar dAndSof t Donai n, except that both hard and soft prefer resources

and avoid split assignments constraints are used, producing smaller domains in general.

These functions are not recommended for use when solving,l§iatesk Tr eeMake offers
a more sophisticated way of initializing the domains of tas®Event Resour ceHar dDomai n
is used when deciding whether events are similar.

Also after the instance has ended, function

bool KheEvent Resour ceEqui val ent (KHE _EVENT RESOQURCE er 1,
KHE_EVENT _RESOURCE er 2) ;

may be called to decide whetherl ander 2 areequivalent Two event resources are equivalent
when they lie in the same event, and for every resourassigning toer 1 has the same cost as
assigning toer 2, becauser 1 ander 2 are monitored by equivalent constraints: constraints of
the same kinds with the same weights and other attributes (domains, basically) that affect cost.

The value returned byheEvent Resour ceEqui val ent is based on values computed
during Khel nst anceMakeEnd, soKheEvent Resour ceEqui val ent is very fast. To ensure that
Khel nst anceMakeEnd itself does not run slowly, only event resources that are adjacent in their
events are tested for equivalence, and for their constraints to be pronounced equivalent they
must appear in the same order. So wKiesEvent Resour ceEqui val ent returng r ue, the event
resources really are equivalent; but when it retéimise, they may or may not be equivalent.

Function

voi d KheEvent Resour ceDebug(KHE_EVENT _RESOURCE er, int verbosity,
int indent, FILE *fp);

produces a debug print ef ontof p with the given verbosity and indent, in the usual way.

3.6.4. Event resource groups
An event resource group is created and added to an event by the call

KHE EVENT RESOURCE GROUP KheEvent Resour ceG oupMake(KHE _EVENT event,
KHE_RESOURCE_GROUP rg);

Its attributes may be retrieved by calling

KHE_EVENT KheEvent Resour ceG oupEvent (KHE_EVENT RESOURCE _GROUP erg);
KHE_RESOURCE _GROUP KheEvent Resour ceG oupResour ceG oup(
KHE EVENT RESOURCE GROUP erg);

In addition to making a new event resource group obj&eEvent Resour ceG oupMake

calls KheEvent Resour ceMake once for each resource afg, with the resource for its

pr eassi gned_r esour ce parameter and the obvious valuesfor its other parameters. This satisfies
the semantic requirement that adding a resource group should be just like adding its resources

3.6. Events 37

individually. These added event resources appear on the list of event resources of the event just
like other event resources; they can be distinguished from them only by calling

KHE_EVENT _RESOURCE_GROUP KheEvent Resour ceEvent Resour ceGr oup(
KHE_EVENT RESOURCE er);

which returns the event resource group that caased be created when there is one, altiL

whener was created directly. For example, when printing XML files, KHE calls this function
once for each event resource, to decide whether it should be printed explicitly or omitted because
it is part of an event resource group. Function

voi d KheEvent Resour ceG oupDebug(KHE_EVENT RESOURCE GROUP er g,
int verbosity, int indent, FILE *fp);

produces a debug print ef g ontof p with the given verbosity and indent, in the usual way.

3.7. Constraints

Some attributes of constraints are common to all kinds of constraints; others vary from one kind
of constraint to another. Accordingly, KHE offers tyllE_ CONSTRAI NT, which is the abstract
supertype of all kinds of constraints, and one subtype of this type for each kind of constraint.

To set and retrieve the back pointer of a constraint object, call

voi d KheConstrai nt Set Back(KHE_CONSTRAI NT ¢, void *back);
voi d =»KheConst rai nt Back(KHE_CONSTRAI NT c);

as usual. To retrieve the other attributes common to all kinds of constraints, use functions

KHE_| NSTANCE KheConstrai nt | nst ance(KHE_CONSTRAI NT c¢);

char xKheConstrai nt|d(KHE_CONSTRAI NT c);

char xKheConstrai nt Name(KHE_CONSTRAI NT c);

bool KheConst rai nt Requi r ed(KHE_CONSTRAI NT ¢);

i nt KheConstrai nt Wi ght (KHE_CONSTRAI NT c);

KHE_COST KheConst r ai nt Conbi nedWei ght (KHE_CONSTRAI NT c);
KHE_COST_FUNCTI ON KheConst r ai nt Cost Funct i on(KHE_CONSTRAI NT c¢);
i nt KheConstraint | ndex(KHE_CONSTRAINT c);

KHE_CONSTRAI NT_TAG KheConst r ai nt Tag(KHE_CONSTRAI NT c);

KheConst rai nt | nstance returns the instancesheConst rai nt1d and KheConst r ai nt Nanme
return the constraint’s Id and Name (as usual, these are optional in KHE, needed only when
writing XML). KheConst rai nt Requi red istrue when the Required attribute is true.

KheConst r ai nt Wi ght is the weight given to violations of the constraint. As explained
in Section 6.1KheConstrai nt Conbi nedWéi ght is similar, except that hard constraints are
weighted more heavilykHE_COST is also defined therekheConst r ai nt Cost Functi on is the
cost function used when calculating the cost of deviations, of type

38 Chapter 3. Instances

t ypedef enum {
KHE_STEP_COST_FUNCTI ON,
KHE_LI NEAR_COST_FUNCTI ON,
KHE_QUADRATI C_COST_FUNCTI ON

} KHE_COST_FUNCTI ON;

KheConstrai nt | ndex returns an automatically generated index numbercfo® for the first
constraint created, 1 for the second, and so KimeConstrai nt Tag is the type tag which
determines which concrete kind of constraint this is, with type

t ypedef enum {
KHE_ASSI GN_RESOURCE_CONSTRAI NT_TAG,
KHE_ASSI GN_TI ME_CONSTRAI NT_TAG
KHE_SPLI T_EVENTS_CONSTRAI NT_TAG,
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT_TAG
KHE_PREFER_RESOURCES CONSTRAI NT_TAG,
KHE_PREFER_TI MES_CONSTRAI NT_TAG,
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT_TAG,
KHE_SPREAD_EVENTS_CONSTRAI NT_TAG,
KHE LI NK_EVENTS_CONSTRAI NT_TAG,
KHE_ORDER_EVENTS_CONSTRAI NT_TAG,
KHE_AVO D _CLASHES CONSTRAI NT_TAG
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT_TAG,
KHE_LI M T_I DLE_TI MES_CONSTRAI NT_TAG,
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT_TAG
KHE LI M T_BUSY_TI MES_CONSTRAI NT_TAG,
KHE LIM T_WORKLOAD CONSTRAI NT_TAG,
KHE LI M T_ACTI VE_I NTERVALS_CONSTRAI NT_TAG,
KHE_LI M T_RESOURCES_CONSTRAI NT_TAG,
KHE_CONSTRAI NT_TAG_COUNT

} KHE_CONSTRAI NT_TAG,

The last value is not a valid tag; it counts the number of constraints, allowing code of the form

for(tag = 0; tag < KHE CONSTRAI NT_TAG COUNT; tag++)

to be written which visits every tag, now and in the future.
The number of points of application of a constraint is returned by

i nt KheConstrai nt Appl i esToCount (KHE_CONSTRAI NT c);

For an assign resource constraint this is the total number of event resources; for a split events
constraint it is the total number of events plus the sizes of the event groups; and so on.

Given a tag, one can obtain a string representation of the constraint name by calling

char xKheConst rai nt TagShow(KHE_CONSTRAI NT_TAG t ag) ;
char xKheConst rai nt TagShowSpaced(KHE_CONSTRAI NT_TAG t ag) ;

The first returns an unspaced forf{si gnResour ceConstrai nt" and so on), the second

3.7. Constraints 39

returns a spaced formAssi gn Resource Constraint" and soon). Thereis also
KHE_CONSTRAI NT_TAG KheSt ri ngToConstrai nt Tag(char *str);

which implements the inverse function, from unspaced constraint names to constraint tags, and
char *KheCost Functi onShow(KHE_COST_FUNCTI ON cf) ;

which returns a cost function’s string representation, and

voi d KheConst rai nt Debug(KHE_CONSTRAINT ¢, int verbosity,
int indent, FILE *fp);

which produces a debug print ofontof p with the given verbosity and indent. This just calls
the appropriate debug function for the downcast valireAssi gnResour ceConst r ai nt Debug,
KheAssi gnTi neConst r ai nt Debug, and so on.

The names of the concrete subtypes themselves are

KHE_ASSI GN_RESOURCE_CONSTRAI NT
KHE_ASSI GN_TI ME_CONSTRAI NT

KHE_SPLI T_EVENTS_CONSTRAI NT

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT
KHE_PREFER_RESOURCES_CONSTRAI NT
KHE_PREFER_TI MES_CONSTRAI NT

KHE_AVO D_SPLI T_ASS| GNVENTS_CONSTRAI NT
KHE_SPREAD_EVENTS_CONSTRAI NT

KHE_LI NK_EVENTS_CONSTRAI NT
KHE_ORDER_EVENTS_CONSTRAI NT

KHE_AVOl D_CLASHES_CONSTRAI NT

KHE_AVOl D_UNAVAI LABLE_TI MES_CONSTRAI NT
KHE_LI M T_I DLE_TI MES_CONSTRAI NT
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT
KHE_LI M T_BUSY_TI MES_CONSTRAI NT

KHE_LI M T_WORKLOAD_CONSTRAI NT

KHE_LI M T_ACTI VE_| NTERVALS_CONSTRAI NT
KHE_LI M T_RESOURCES_CONSTRAI NT

Downcasting and upcasting betweéit_CONSTRAI NT and each of these subtypes, using C casts,
isa normal part of the use of KHE. Alternatively, since C casts can also be used for unsafe things,
explicit functions are offered for upcasting:

40

KHE CONSTRAI NT KheFr omAssi gnResour ceConst rai nt (
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢);

KHE CONSTRAI NT KheFr omAssi gnTi meConst r ai nt (
KHE_ASSI GN_TI ME_CONSTRAI NT c¢);

KHE CONSTRAI NT KheFrontpl it Event sConstrai nt (
KHE_SPLI T_EVENTS_CONSTRAI NT c);

KHE CONSTRAI NT KheFronDi stributeSplitEventsConstraint(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c);

KHE CONSTRAI NT KheFr onPr ef er Resour cesConst rai nt (
KHE_PREFER_RESOURCES_CONSTRAI NT c);

KHE CONSTRAI NT KheFr onPr ef er Ti mesConst rai nt (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE CONSTRAI NT KheFr omAvoi dSpl i t Assi gnnment sConst rai nt (
KHE_AVO D _SPLI T_ASSI GNMENTS_CONSTRAI NT c);

KHE CONSTRAI NT KheFr onfSpr eadEvent sConst rai nt (
KHE_SPREAD EVENTS_CONSTRAI NT c);

KHE CONSTRAI NT KheFr onli nkEvent sConst r ai nt (
KHE_LI NK_EVENTS_CONSTRAI NT c¢);

KHE CONSTRAI NT KheFr onOr der Event sConst rai nt (
KHE_ORDER_EVENTS_CONSTRAI NT c);

KHE CONSTRAI NT KheFr omAvoi dC ashesConst rai nt (
KHE_AVO D_CLASHES_CONSTRAI NT c);

KHE _CONSTRAI NT KheFr omAvoi dUnavai | abl eTi nesConst rai nt (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c);

KHE CONSTRAI NT KheFronli mit1dl eTi mesConstrai nt (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);

KHE CONSTRAI NT KheFr onC ust er BusyTi mesConst rai nt (
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

KHE CONSTRAI NT KheFronli mi t BusyTi mesConst rai nt (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);

KHE CONSTRAI NT KheFr onli mi t Wor kl oadConst r ai nt (
KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);

KHE CONSTRAI NT KheFronli m t Acti vel nterval sConst rai nt (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢);

KHE CONSTRAI NT KheFronli mi t Resour cesConst rai nt (
KHE_LI M T_RESOURCES_CONSTRAI NT c);

and for downcasting:

Chapter 3. Instances

3.7. Constraints 41

KHE_ASSI GN_RESOURCE_CONSTRAI NT

KheToAssi gnResour ceConst r ai nt (KHE_CONSTRAINT c¢);
KHE_ASSI GN_TI ME_CONSTRAI NT

KheToAssi gnTi meConstrai nt (KHE_CONSTRAI NT c);
KHE_SPLI T_EVENTS_CONSTRAI NT

KheToSpl i t Event sConst rai nt (KHE_CONSTRAI NT ¢);
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT

KheToDi stributeSplitEventsConstraint (KHE CONSTRAI NT c);
KHE_PREFER_RESOURCES_CONSTRAI NT

KheToPr ef er Resour cesConst rai nt (KHE_CONSTRAI NT ¢);
KHE_PREFER_TI MES_CONSTRAI NT

KheToPr ef er Ti mesConst rai nt (KHE_CONSTRAI NT ¢);
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT

KheToAvoi dSpl it Assi gnment sConst rai nt (KHE_CONSTRAI NT c);
KHE_SPREAD_EVENTS_CONSTRAI NT

KheToSpr eadEvent sConst r ai nt (KHE_CONSTRAI NT c¢);
KHE_LI NK_EVENTS_CONSTRAI NT

KheToLi nkEvent sConst rai nt (KHE_CONSTRAI NT c);
KHE_ORDER_EVENTS_CONSTRAI NT

KheToOr der Event sConst rai nt (KHE_CONSTRAI NT ¢);
KHE_AVO D_CLASHES CONSTRAI NT

KheToAvoi dd ashesConst rai nt (KHE_CONSTRAI NT ¢);
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT

KheToAvoi dUnavai | abl eTi mesConstrai nt (KHE_CONSTRAI NT c);
KHE LI M T_I DLE_TI MES_CONSTRAI NT

KheToLi ni t1dl eTi mesConst rai nt (KHE_CONSTRAINT c¢);
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT

KheTod ust er BusyTi mesConst r ai nt (KHE_CONSTRAI NT ¢);
KHE LI M T_BUSY_TI MES_CONSTRAI NT

KheToLi ni t BusyTi mesConst r ai nt (KHE_CONSTRAINT c¢);
KHE LI M T_WORKLOAD CONSTRAI NT

KheToLi nmi t Wr kl oadConst rai nt (KHE_CONSTRAI NT c¢);
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT

KheToLi mi t Acti vel nterval sConstrai nt (KHE_CONSTRAI NT c);
KHE_LI M T_RESOURCES_CONSTRAI NT

KheToLi nmi t Resour cesConst rai nt (KHE_CONSTRAINT c¢);

The downcasting functions check that their parameter is of the correct type, and abort if not.

3.7.1. Assign resource constraints
An assign resource constraint is created and added to an instance by

bool KheAssi gnResour ceConstrai nt Make(KHE | NSTANCE i ns, char =id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
char *role, KHE_ASSI GN_ RESOURCE_CONSTRAI NT *c);

This accepts the attributes common to all constraints, followed by an optioha) which is

42 Chapter 3. Instances

specific to this kind of constraint. As usual, if successful it retirs, setting+c to the new
constraint; if not (which can only be becauseis nonNULL and equal to the Id of an existing
constraint ofi ns), then it return$ al se, setting:c to NULL.

The attributes common to all kinds of constraints may be retrieved by upcasting to
KHE_CONSTRAI NT and calling the relevant operations on that type. The attribute specific to assign
resources constraints may be retrieved by calling

char *KheAssi gnResour ceConst rai nt Rol e(KHE_ASSI GN_RESOURCE CONSTRAI NT c);

Initially the constraint has no points of application. There are two ways to add them. The first
Is to giveNULL for r ol e, then add the event resources that this constraint applies to by calling

voi d KheAssi gnResour ceConst r ai nt AddEvent Resour ce(
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT_RESOURCE er);

as often as necessary. Itis an error to call this function vehexontains a preassigned resource,
since assign resource constraints do not apply to event resources with preassigned resources. To
visit the event resources of call

i nt KheAssi gnResour ceConst rai nt Event Resour ceCount (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);

KHE_EVENT_RESOURCE KheAssi gnResour ceConst rai nt Event Resour ce(
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

as usual.

The second way to add event resources, used when reading XML files, is to givéidhon-
value forr ol e, then add events and event groups. To add events and visit them, the calls are

voi d KheAssi gnResour ceConst rai nt AddEvent (
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT e);

i nt KheAssi gnResour ceConst rai nt Event Count (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);

KHE_EVENT KheAssi gnResour ceConst rai nt Event (
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

To add event groups and visit them, the calls are

voi d KheAssi gnResour ceConst r ai nt AddEvent G oup(
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT_GROUP egQ);
i nt KheAssi gnResour ceConstrai nt Event G oupCount (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);
KHE_EVENT _GROUP KheAssi gnResour ceConstrai nt Event G oup(
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

When this is done, KHE stores the events and event groups in the constraint so that they can be
written out again correctly later, but it also works out which event resources the constraint applies
to and callheAssi gnResour ceConst r ai nt AddEvent Resour ce for each of them, taking due

note of the XML rule that it does not apply when an event does not contain an event resource
with the specified role, or when such an event resource has a preassigned resource.

3.7. Constraints 43

Function

voi d KheAssi gnResour ceConst r ai nt Debug(KHE_ASSI GN_RESOURCE_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the assign resources constraints of an instance (Section 3.3) is
their number of their points of application divided by the number of event resources without
preassigned resources.

3.7.2. Assign time constraints
An assign time constraint is created and added to an instance by

bool KheAssi gnTi neConst rai nt Make(KHE_I NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_ASSI GN_TI ME_CONSTRAI NT *c);

As usual, if successful it returns ue, setting=c to the new constraint; if not (which can only
be becaused is nonNULL and equal to the Id of an existing constrainti o), then it returns
fal se, setting-c toNULL. The attributes may be retrieved by upcastingHe_CONSTRAI NT and
calling the relevant operations on that type.

The points of application of an assign time constraint are events, and the XML file allows
them to be given individually and in groups. To add individual events and visit them, call

voi d KheAssi gnTi meConstrai nt AddEvent (KHE_ASSI GN_TI ME_CONSTRAI NT c,
KHE_EVENT e);

i nt KheAssi gnTi neConst rai nt Event Count (KHE_ASSI GN_TI ME_CONSTRAI NT ¢);

KHE_EVENT KheAssi gnTi meConst rai nt Event (KHE_ASSI GN_TI ME_CONSTRAI NT c,
int i);

To add groups of events and visit them, call

voi d KheAssi gnTi meConst r ai nt AddEvent G oup(KHE_ASSI GN_TI ME_CONSTRAI NT c,
KHE_EVENT_GROUP eg);

i nt KheAssi gnTi neConstrai nt Event G oupCount (
KHE_ASSI GN_TI ME_CONSTRAI NT c¢);

KHE_EVENT_GROUP KheAssi gnTi meConst r ai nt Event Group(
KHE_ASSI GN_TI ME_CONSTRAINT ¢, int i);

The XML specification states that assign time constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function

voi d KheAssi gnTi meConst rai nt Debug(KHE_ASSI GN_TI ME_CONSTRAI NT c,
int verbosity, int indent, FILE *=fp);

44 Chapter 3. Instances

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the assign times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.3. Split events constraints
A split events constraint is created and added to an instance by

bool KheSplitEvent sConstrai nt Make(KHE_I NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
int min duration, int max_duration, int mn_anmount,
i nt max_anmount, KHE SPLIT_EVENTS_CONSTRAI NT *c);

in the usual way. Most of the attributes may be retrieved by upcastikgeta®ONSTRAI NT and
calling the relevant operation on that type. The exceptions are

int KheSplitEventsConstraint M nDuration(KHE SPLI T_EVENTS CONSTRAINT c);
i nt KheSplitEventsConstraint MaxDuration(KHE SPLI T_EVENTS CONSTRAINT c);
i nt KheSplitEventsConstrai nt M nAnount (KHE _SPLI T_EVENTS_CONSTRAI NT ¢);
i nt KheSplitEvent sConstrai nt MaxAnount (KHE SPLI T_EVENTS_CONSTRAI NT c¢);

which return the various attributes specific to split events constraints.

The points of application are events, and, as for assign time constraints, these may be added
and visited individually:

voi d KheSplitEvent sConstrai nt AddEvent (KHE_SPLI T_EVENTS CONSTRAI NT c,
KHE_EVENT e);
i nt KheSplitEvent sConstraint Event Count (KHE_SPLI T_EVENTS_CONSTRAINT c¢);
KHE_EVENT KheSpl it Event sConstrai nt Event (KHE_SPLI T_EVENTS_CONSTRAI NT c,
int i);
and also in groups:
voi d KheSplitEvent sConstrai nt AddEvent G oup(
KHE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheSplitEventsConstraint Event G oupCount (
KHE_SPLI T_EVENTS_CONSTRAI NT c);
KHE_EVENT_GROUP KheSpl it Event sConstrai nt Event G oup(
KHE_SPLI T_EVENTS_CONSTRAINT ¢, int i);
All the events are linked to the constraint, unlike for assign time constraints.
Function
voi d KheSplitEvent sConstrai nt Debug(KHE_SPLI T_EVENTS_CONSTRAI NT c,
int verbosity, int indent, FILE *=fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the split events constraints of an instance (Section 3.3) is their
number of points of application divided by the total number of events.

3.7. Constraints 45

3.7.4. Distribute split events constraints
A distribute split events constraint is created and added to an instance by

bool KheDi stributeSplitEventsConstraint Make(KHE | NSTANCE ins, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
int duration, int mninmm int maxinm
KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT *c);

in the usual way. Most of the attributes may be retrieved by upcastikgetdCONSTRAI NT and
calling the relevant operation on that type. The exceptions are

int KheDistributeSplitEventsConstraintDuration(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c);

int KheDistributeSplitEventsConstraintM ni mun(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c);

int KheDistributeSplitEventsConstraintMaxi mun
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c);

which return the various attributes specific to distribute split events constraints.

The points of application are events, and, as for split events constraints, these may be added
and visited individually:

voi d KheDi stributeSplitEventsConstraint AddEvent (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE_EVENT e);
i nt KheDistributeSplitEventsConstraint Event Count (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c¢) ;
KHE_EVENT KheDi stribut eSplitEvent sConstraint Event (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAINT ¢, int i);

and also in groups:

voi d KheDi stributeSplitEventsConstraint AddEvent G- oup(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE EVENT_GROUP eg);
i nt KheDistributeSplitEventsConstraintEvent G oupCount (
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c);
KHE EVENT_GROUP KheDi stri buteSplitEvent sConstraint Event G oup(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAINT ¢, int i);

All the events are linked to the constraint.
Function
voi d KheDi stributeSplitEventsConstraint Debug(
KHE DI STRI BUTE _SPLI T_EVENTS CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the distribute split events constraints of an instance (Section 3.3)
Is their number of points of application divided by the total number of events.

46 Chapter 3. Instances

3.7.5. Prefer resources constraints

A prefer resources constraint is created and added to an instance by

bool KhePref er Resour cesConst rai nt Make(KHE_| NSTANCE i ns, char xid,
char *name, bool required, int weight, KHE COST_FUNCTION cf,
char *role, KHE PREFER RESOURCES CONSTRAI NT xc);

As usual, the only reason for returnifgl se is thatid is nonNULL and there is already a
constraint ini ns with this id. Most of the attributes may be retrieved by upcasting to
KHE_CONSTRAI NT and calling the relevant operations on that type; the exceptioni & which

is retrieved by calling

char =KhePr ef er Resour cesConst rai nt Rol e(KHE_PREFER RESOURCES_CONSTRAI NT c);

since it is specific to this constraint type.

In the XML specification, the resources that make up the domain of the constraint may be
added in groups or individually. To add them in groups, and to visit the groups, call

bool KhePref er Resour cesConst rai nt AddResour ceG oup(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);

i nt KhePref er Resour cesConst rai nt Resour ceGr oupCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c) ;

KHE_RESOURCE GROUP KhePr ef er Resour cesConst r ai nt Resour ceG oup(
KHE_PREFER_RESOURCES_CONSTRAINT ¢, int i);

Thebool result type ofkhePr ef er Resour cesConst r ai nt AddResour ceG oup (and other func-
tions below) is explained at the end of this section. To add and visit resources individually, call

bool KhePref er Resour cesConst r ai nt AddResour ce(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE RESOURCE r);

i nt KhePref er Resour cesConst rai nt Resour ceCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c);

KHE_RESOURCE KhePr ef er Resour cesConst rai nt Resour ce(
KHE_PREFER_RESOURCES_CONSTRAINT ¢, int i);

After the instance is complete, but not before, function

KHE_RESOURCE _GROUP KhePr ef er Resour cesConst r ai nt Domai n(
KHE_PREFER_RESOURCES_CONSTRAI NT c¢) ;

returns the domain af as a single resource group. If exactly one resource group or one resource
was added, this resource group will be that resource group or the automatically created singleton
resource group for that resource; otherwise it will be created by taking the union of everything
added. Thisresource group may be used like any other, except for a problem in one special case:
when no resource groups or resources are added, the domain is not only an empty resource group
but also has &ULL resource type.

The points of application of prefer resources constraints are event resources, and they
are handled in the same way as for assign resource constraints. That is, one can load the event

3.7. Constraints 47

resources directly by havingNuLL value forr ol e and calling

bool KhePref er Resour cesConst rai nt AddEvent Resour ce(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_RESOURCE er);

i nt KhePref er Resour cesConst r ai nt Event Resour ceCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c);

KHE EVENT RESCURCE KhePr ef er Resour cesConst rai nt Event Resour ce(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

or load them indirectly by loading events:

bool KhePr ef er Resour cesConst rai nt AddEvent (
KHE_PREFER_RESOURCES_ CONSTRAI NT ¢, KHE_EVENT e);

i nt KhePref er Resour cesConst rai nt Event Count (
KHE_PREFER _RESOURCES_CONSTRAI NT c¢)

KHE_EVENT KhePr ef er Resour cesConst r ai nt Event (
KHE_PREFER _RESOURCES CONSTRAINT ¢, int i);

and event groups:

bool KhePref er Resour cesConst r ai nt AddEvent G oup(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_GROUP eg,
KHE EVENT =probl em event);

i nt KhePref er Resour cesConst rai nt Event G oupCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c¢) ;

KHE_EVENT _GROUP KhePr ef er Resour cesConst r ai nt Event Gr oup(
KHE_PREFER_RESOURCES_CONSTRAINT ¢, int i);

WhenKhePr ef er Resour cesConst r ai nt AddEvent Gr oup returnsf al se, probl em event is set
to the first event that caused the problem. The rules for skipping inappropriate events are as for
assign resource constraints.

The resources, resource groups, and event resources of a prefer resources constraint all have
a resource type attribute. All these resources types must be equal. This is why the operations
above for adding a resource, resource group, event resource, event, or event group alvblave a
result type: they all returhal se and add nothing if the operation would add an entity with a
different resource type from something added previously.

Function
voi d KhePr ef er Resour cesConst r ai nt Debug(KHE_PREFER_RESOURCES CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of prefer resources constraints (Section 3.3) is the number of points
of application divided by the number of event resources without preassigned resources.

48 Chapter 3. Instances

3.7.6. Prefer times constraints

A prefer times constraint is created and added to an instance by

bool KhePref er Ti mesConst rai nt Make(KHE | NSTANCE i ns, char *id,
char xname, bool required, int weight, KHE COST_FUNCTION cf,
int duration, KHE PREFER TI MES CONSTRAI NT *c);

As usual, the only possible reason for returrfiabse is thati d isnonNULL and there is already a
constraintin ns with thisi d. A duration is optional;to not give one (meaning that the constraint
applies for all durations), use the special vattie_ANY_DURATI ON, a synonym for 0.

Most of the attributes may be retrieved by upcastingHb CONSTRAI NT and calling the
relevant operations on that type; the exceptiatursat i on, which is retrieved by calling

i nt KhePreferTi mesConst raint Durati on(KHE_PREFER_TI MES_CONSTRAI NT ¢);

since it is specific to this constraint type.

In the XML specification, the times that make up the domain of the constraint may be added
in groups or individually. To add them in groups, and to visit the groups, call

voi d KhePr ef er Ti mesConst rai nt AddTi neG oup(
KHE_PREFER_TI MES_CONSTRAI NT ¢, KHE_TI ME_GROUP tg);

i nt KhePreferTi nesConstrai nt Ti nreG oupCount (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE_TI ME_GROUP KhePr ef er Ti mesConst r ai nt Ti mneGr oup(
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

To add and visit times individually, call

voi d KhePref er Ti mesConst rai nt AddTi me(
KHE_PREFER_TI MES_CONSTRAI NT ¢, KHE_TIME t);

i nt KhePreferTi mesConstraint Ti meCount (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE_TI ME KhePr ef er Ti mesConst r ai nt Ti me(
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

After the instance is complete, but not before, function

KHE_TI ME_GROUP KhePr ef er Ti mesConst r ai nt Donmai n(
KHE_PREFER TI MES_CONSTRAI NT c);

returns the domain af as a single time group. If exactly one time group or one time was added,
this time group will be that time group or the automatically created singleton time group for that
time; otherwise it will be created by taking the union of everything added. This time group may
be used like any other.

The points of application of prefer times constraints are events, and they can be added and
visited individually:

3.7. Constraints 49

voi d KhePr ef er Ti mesConst rai nt AddEvent (
KHE_PREFER _TI MES_CONSTRAI NT ¢, KHE EVENT e);

i nt KhePrefer Ti nesConst rai nt Event Count (
KHE_PREFER _TI MES_CONSTRAI NT c);

KHE_EVENT KhePr ef er Ti mesConst r ai nt Event (
KHE_PREFER TI MES CONSTRAINT ¢, int i);

or in groups:

voi d KhePr ef er Ti mesConst r ai nt AddEvent Gr oup(
KHE_PREFER_TI MES_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);

i nt KhePref er Ti nesConst rai nt Event Gr oupCount (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE_EVENT _GROUP KhePr ef er Ti mesConst r ai nt Event Gr oup(
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

The XML specification states that prefer times constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function

voi d KhePr ef er Ti mesConst r ai nt Debug(KHE_PREFER TI MES CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the prefer times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.7. Avoid split assignments constraints
An avoid split assignments constraint is created and added to an instance by

bool KheAvoi dSpl it Assi gnment sConst rai nt Make(KHE_I NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
char *role, KHE AVO D SPLI T_ASSI GNMENTS_CONSTRAI NT *c);

As usual, the attributes may be retrieved by upcastingHe CONSTRAI NT and calling the
relevant operation on that type, except that to retrieve ¢he attribute the call is

char *KheAvoi dSpl it Assi gnment sConst rai nt Rol e(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT c¢) ;

Ther ol e attribute may béWULL.

The handling of the points of application of an avoid split assignments constraint is
somewhat complex, because one point of application is fundamentally a set of event resources
(the XML file identifies each set by an event group and a role), so that the points of application
overall form a set of sets of event resources. We will first explain how to add these points of
application when reading an XML file, and then how to do it directly.

50 Chapter 3. Instances

When reading an XML file, a noRULL r ol e is passed, and then each event group is added
in the usual way. To add an event group and to visit the event groups, the calls are

bool KheAvoi dSpl it Assi gnment sConst rai nt AddEvent G oup(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg,
KHE EVENT =probl em event);

i nt KheAvoi dSpl it Assi gnment sConst rai nt Event Gr oupCount (
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT c¢) ;

KHE_EVENT _GROUP KheAvoi dSpl it Assi gnnent sConst r ai nt Event Group(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAINT ¢, int i);

Behind the scenes, the appropriate event resources are retrieved from the events of each event
group and added automatically, so that nothing further needs to be dori@l sA result
returned byKheAvoi dSpl i t Assi gnment sConst r ai nt AddEvent Group indicates that one of the

events ofeg does not contain an event resource with the required\abh-+ ol e. In this case,

«probl em event will contain the first event oég with this problem on return.

When the instance is not derived from an XML file it may be more convenient to add
event resources directly. For the sake of this casles may beNULL, and theeg parameter of
KheAvoi dSpl i t Assi gnment sConst r ai nt AddEvent G oup may also beNULL. If either iSNULL,
event resources are not added automatically.

To add event resources manually, and to visit event resources (whether added automatically
or manually), the calls are

voi d KheAvoi dSpl it Assi gnment sConstrai nt AddEvent Resour ce(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAINT ¢, int eg_i ndex,
KHE_EVENT_RESOURCE er);
i nt KheAvoi dSpl it Assi gnment sConst r ai nt Event Resour ceCount (
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAINT ¢, int eg_index);
KHE_EVENT_RESOURCE KheAvoi dSpl it Assi gnment sConst r ai nt Event Resour ce(
KHE_AVO D _SPLI T_ASSI GNVENTS_CONSTRAINT ¢, int eg_index, int er_index);

These functions add an event resource tcethe ndex’th point of application ofc, return the
number of event resources at that point, and returerthendex’th event resource at that point.
They define the required set of sets of event resources.

Usually, constraints are added to the instance and to the entities they apply to. For avoid
split assignments constraints this would mean adding the constraint to the instance and the event
groups. This is done, but, for convenience, each avoid split assignments constaint is also added
to each of its event resources.

Function

voi d KheAvoi dSplit Assi gnnent sConst rai nt Debug(
KHE_AVO D _SPLI T_ASSI GNVENTS_CONSTRAI NT ¢,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density (Section 3.3) is the number of event resources in all points of
application divided by the number of event resources without preassigned resources.

3.7. Constraints 51

3.7.8. Spread events constraints
A spread events constraint is created and added to an instance by

bool KheSpreadEvent sConst rai nt Make(KHE | NSTANCE i ns, char =xid,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_TI ME_SPREAD ts, KHE_SPREAD EVENTS_ CONSTRAI NT xc);

where typeKHE_TI ME_SPREAD is explained below. Most of the attributes may be retrieved by
upcasting taKHE_CONSTRAI NT and calling the relevant operation on that type. The exception is

KHE_TI ME_SPREAD KheSpr eadEvent sConstrai nt Ti meSpr ead(
KHE_SPREAD EVENTS_CONSTRAI NT c¢);

which returns the time spread. TygHE_TI ME_SPREAD is an object which describes the time
groups that the constraint requires the event group to spread through, and the limits on the
number of events that may touch each time group. Time spread objects are immutable, and may
be shared among any number of constraints. To create a time spread object, call

KHE_TI ME_SPREAD KheTi meSpr eadMake(KHE | NSTANCE i ns) ;
Initially this has no time groups. To add them, call

voi d KheTi meSpr eadAddLi mi t edTi meG oup(KHE_TI ME_SPREAD t s,
KHE_LI M TED_TI ME_GROUP | tg):

repeatedly. To retrieve the limited time groups of a time spread, call

i nt KheTi meSpreadLi nmit edTi neG oupCount (KHE_TI ME_SPREAD | ts);
KHE_LI M TED_TI ME_GROUP KheTi meSpr eadLi it edTi meG oup(
KHE_TI ME_SPREAD Its, int i);

An object of typeKHE_LI M TED_TI ME_GROUP contains what one element of a time spread needs:
a time group plus a minimum and maximum number of events. It may be created by calling

KHE LI M TED TI ME_GROUP KheLi ni t edTi neG oupMake(KHE_TI ME_GROUP t g,
int mnimm int maxinum;
and functions

KHE_TI ME_GROUP KhelLi nit edTi meG oupTi mneG oup(KHE_LI M TED_TI ME_GROUP 1tQ);

int KheLim tedTi meG oupM ni mun{ KHE_LI M TED_TI ME_GROUP | tQ);

i nt KheLi i t edTi meG oupMaxi mum{ KHE_LI M TED_TI ME_GROUP | tg);
retrieve its attributes.

Two other operations on time spreads, available only after the instance is complete, provide
information that may be useful to solvers:

bool KheTi meSpreadTi meG oupsDi sj oi nt (KHE_TI ME_SPREAD ts);
bool KheTi meSpreadCover s\Wol eCycl e(KHE_TI ME_ SPREAD ts);

KheTi meSpr eadTi meG oupsDi sj oi nt returnst r ue when the time groups dfs’s limited time

52 Chapter 3. Instances

groups are pairwise disjoinkheTi meSpr eadCover s\Wol eCycl e returng r ue when every time
of the cycle appears in at least one of the time groups sflimited time groups.

Spread events apply to event groups; the operations for adding and visiting them are
voi d KheSpreadEvent sConst rai nt AddEvent G oup(

KHE_SPREAD_EVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheSpreadEvent sConst rai nt Event GroupCount (

KHE_SPREAD_EVENTS_CONSTRAI NT c¢);

KHE_EVENT _GROUP KheSpr eadEvent sConstrai nt Event G oup(
KHE_SPREAD EVENTS _CONSTRAINT ¢, int i);

as usual.
Function
voi d KheSpreadEvent sConst rai nt Debug(KHE_SPREAD EVENTS CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the spread events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.9. Link events constraints

A link events constraint is created and added to an instance by

bool KheLi nkEvent sConst rai nt Make(KHE_I NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_LI NK_EVENTS_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting-# CONSTRAI NT and calling the relevant
operation on that type. One point of application of a link events constraint is an event group; one
constraint may contain any number of these. The operations for adding them are

voi d KheLi nkEvent sConstrai nt AddEvent Group(KHE_LI NK_EVENTS_ CONSTRAI NT c,
KHE_EVENT_GROUP eg);
i nt KheLi nkEvent sConst rai nt Event G- oupCount (KHE_LI NK_EVENTS_ CONSTRAI NT c);
KHE_EVENT _GROUP KheLi nkEvent sConstrai nt Event G oup(
KHE_LI NK_EVENTS_CONSTRAINT c, int i);

as usual.
Function

voi d KheLi nkEvent sConstrai nt Debug(KHE LI NK_EVENTS CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the link events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7. Constraints 53

3.7.10. Order events constraints

An order events constraint is created and added to an instance by

bool KheOrder Event sConst rai nt Make(KHE | NSTANCE i ns, char =id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_ORDER_EVENTS_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting- CONSTRAI NT and calling the relevant
operation on that type.

One point of application of an order events constraint is a pair of instance events, together
with integer minimum and maximum separations. To add one point of application, call

voi d KheOr der Event sConst rai nt AddEvent Pai r (KHE_ORDER_EVENTS CONSTRAI NT c,
KHE_EVENT first _event, KHE EVENT second_event, int mn_separation,
int max_separation);

Both mi n_separ ati on andnax_separ ati on must be non-negative. Infinity, the default value
of max_separ ati on in the XML format, is implemented by passihiyT_MAX.

To retrieve the number of points of application and the attributes of each, call

i nt KheOrder Event sConst rai nt Event Pai r Count (
KHE_ORDER_EVENTS_CONSTRAI NT c);

KHE_EVENT KheOr der Event sConst rai nt Fi r st Event (
KHE_ORDER _EVENTS CONSTRAINT ¢, int i);

KHE_EVENT KheOr der Event sConst rai nt SecondEvent (
KHE_ORDER _EVENTS CONSTRAINT ¢, int i);

i nt KheOrder Event sConstrai nt M nSepar at i on(
KHE_ORDER _EVENTS CONSTRAINT ¢, int i);

i nt KheOrder Event sConst rai nt MaxSepar at i on(
KHE_ORDER _EVENTS CONSTRAINT ¢, int i);

in the usual way. The value &heOr der Event sConst rai nt Event Pai r Count (¢) is the same
as the value okheConst r ai nt Appl i esToCount ((KHE_CONSTRAINT) c).

Function

voi d KheCOr der Event sConst rai nt Debug(KHE_ORDER EVENTS CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the order events constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events.

3.7.11. Avoid clashes constraints

An avoid clashes constraint is created and added to an instance by

54 Chapter 3. Instances

bool KheAvoi dd ashesConst rai nt Make(KHE_| NSTANCE i ns, char xid,
char xname, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE _AVO D CLASHES CONSTRAINT =*c);

as usual. The attributes may be retrieved by upcastirgHEo CONSTRAI NT and calling the
relevant operation on that type.

Avoid clashes constraints apply to resource groups and resources. To add and visit resource
groups, the operations are

voi d KheAvoi dd ashesConst rai nt AddResour ceG oup(
KHE_AVO D_CLASHES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);
i nt KheAvoi dCl ashesConst rai nt Resour ceG oupCount (
KHE_AVO D_CLASHES_CONSTRAI NT c¢)
KHE_RESOURCE_GROUP KheAvoi dCl ashesConst r ai nt Resour ceG oup(
KHE_AVO D _CLASHES CONSTRAINT ¢, int i);

while to add and visit resources the operations are

voi d KheAvoi dd ashesConst rai nt AddResour ce(
KHE_AVO D_CLASHES CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheAvoi dCl ashesConst r ai nt Resour ceCount (
KHE_AVO D_CLASHES CONSTRAINT c);

KHE_RESOURCE KheAvoi dd ashesConst rai nt Resour ce(
KHE_AVO D_CLASHES CONSTRAINT c, int i);

These all work in the usual way.
Function

voi d KheAvoi dd ashesConst rai nt Debug(KHE_AVO D _CLASHES CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the avoid clashes constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.12. Avoid unavailable times constraints

An avoid unavailable times constraint is created and added to an instance by

bool KheAvoi dUnavai | abl eTi nesConst rai nt Make(KHE_| NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_AVQO D_UNAVAI LABLE_TI MES_CONSTRAI NT =*c);

in the usual way. To add the resource groups and resources defining the points of application,
and to visit them, call

3.7. Constraints 55

voi d KheAvoi dUnavai | abl eTi mesConst r ai nt AddResour ceG oup(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rQ);
i nt KheAvoi dUnavai | abl eTi mesConst r ai nt Resour ceG oupCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢);
KHE_RESOURCE_GROUP KheAvoi dUnavai | abl eTi nesConst r ai nt Resour ceG oup(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAINT ¢, int i);

for resource groups and

voi d KheAvoi dUnavai | abl eTi mesConst r ai nt AddResour ce(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheAvoi dUnavai | abl eTi nesConst r ai nt Resour ceCount (
KHE_AVO D_UNAVAI LABLE _TI MES_CONSTRAI NT c¢);

KHE_RESOURCE KheAvoi dUnavai | abl eTi mesConst rai nt Resour ce(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAINT ¢, int i);

for individual resources. The XML format allows the unavailable times themselves to be defined
by both time groups and times. To add time groups and visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddTi meG oup(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT ¢, KHE TIME_GROUP tgQ);
i nt KheAvoi dUnavai | abl eTi mesConst rai nt Ti meG oupCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c);
KHE_TI ME_GROUP KheAvoi dUnavai | abl eTi nesConstrai nt Ti meG oup(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAINT ¢, int i);

To add individual times and visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddTi me(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAINT ¢, KHE TIME t);

i nt KheAvoi dUnavai | abl eTi nesConst rai nt Ti meCount (
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT c¢);

KHE_TI ME KheAvoi dUnavai | abl eTi mesConst r ai nt Ti me(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAINT ¢, int i):;

These functions all work in the usual way. Function

KHE TI ME_GROUP KheAvoi dUnavai | abl eTi mesConst rai nt Unavai | abl eTi mes(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c);

returns a time group containing the union of the time groups and timesaoid

KHE_TI ME_GROUP KheAvoi dUnavai | abl eTi nesConst rai nt Avai | abl eTi mes(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT ¢) ;

returns a time group containing the complement of those times. Both functions may be called
only after construction of the instance is complete. The time groups they return will usually not
have neighbourhoods (Section 3.4.1). Thisis not likely to cause problems.

Function

56 Chapter 3. Instances

voi d KheAvoi dUnavai | abl eTi mesConst r ai nt Debug(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the avoid unavailable times constraints of an instance (Section
3.3) is the number of points of application divided by the number of resources.

3.7.13. Limitidle times constraints

A limit idle times constraint is created and added to an instance by

bool KheLimitldl eTi mesConstrai nt Make(KHE | NSTANCE i ns, char =id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
int mnimm int maxinum KHE LIM T | DLE TI MES CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting-& CONSTRAI NT and calling the relevant
operation on that type; the exceptions are

int KheLimitldl eTinmesConstraintM nimum KHE_LIM T_I DLE_TI MES_CONSTRAI NT c¢);
int KheLimitldl eTimesConstraint Maxi mum(KHE_LIM T_I DLE_TI MES_CONSTRAI NT c¢);

which are specific to this kind of constraint.
A limit idle times constraint requires time groups, which are added and visited by calling

voi d KheLinitldleTi mesConstrai nt AddTi meG oup(
KHE_LIM T_I DLE_TI MES_CONSTRAI NT ¢, KHE TIME_GROUP tQ);
int KheLinmtldleTi mesConstraintTi meG oupCount (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);
KHE_TI ME_GROUP KhelLi nmit1dl eTi nesConstraint Ti meG oup(
KHE_LIM T_I DLE_TI MES_CONSTRAINT ¢, int i);

After the instance ends, the following queries are available:

bool KheLimtldl eTi mesConstraintTi meG oupsDi sj oi nt (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);

bool KheLi mtldl eTi mesConstraint Ti meG oupsCover Whol eCycl g(
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);

They returrt r ue when the time groups af are pairwise disjoint, and when their union covers
the whole cycle.

A limit idle times constraint also requires the resource groups and resources which define
its points of application. Resource groups are added and visited by calling

3.7. Constraints 57

voi d KheLimitldleTi mesConst rai nt AddResour ceG oup(
KHE_ LI M T_I DLE_TI MES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rQ);
i nt KheLimtldleTi mesConstrai nt Resour ceG oupCount (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT ¢);
KHE_RESOURCE_GROUP KheLi mitIdl eTi mesConstrai nt Resour ceG oup(
KHE LIM T_I DLE_TIMES_CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLimitldleTi mesConstrai nt AddResour ce(
KHE_LIM T_I DLE_TI MES_CONSTRAI NT ¢, KHE RESOURCE r);

int KheLinitldleTi msConstraint ResourceCount (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c¢);

KHE_RESOURCE KheLi mi t1dl eTi mesConstrai nt Resour ce(
KHE_LIM T_I DLE_TI MES_CONSTRAINT ¢, int i);

in the usual way.
Function

voi d KheLinitldleTi mesConstrai nt Debug(KHE_LIM T_I DLE_TI MES_CONSTRAI NT c,
int verbosity, int indent, FILE xfp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the limit idle times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.14. Cluster busy times constraints
A cluster busy times constraint is created and added to an instance by

bool KheC usterBusyTi mesConst rai nt Make(KHE_| NSTANCE i ns, char +id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE TI ME_ GROUP applies to tg, int mninum int maxi num
bool allow zero, KHE_CLUSTER BUSY_TI MES CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting- CONSTRAI NT and calling the relevant
operation on that type; the exceptions are

KHE_TI ME_GROUP Khed ust er BusyTi mesConst r ai nt Appl i esToTi mneG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);
i nt KheC ust erBusyTi nesConstrai nt M ni num(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);
i nt KheC ust er BusyTi nesConst rai nt Maxi mum(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);
bool KheCd usterBusyTi mesConstrai nt Al | owZer o(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg mustbeNULL andal | ow _zer o must bef al se. There is also

58 Chapter 3. Instances

bool KheC ust erBusyTi mesConstrai ntLi mtBusyRecode(
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

It returnst r ue whenc is a recoded limit busy times constraint, for which see Section 3.7.15.
After the instance is complete, functions

i nt KheC ust er BusyTi nesConstrai nt Appl i esToO f set Count (
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

i nt KheC ust er BusyTi nesConstrai nt Appl i esToOf f set (
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

may be used to visit tha@pplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. lippl i es_t o_t g isempty, there are no offsets. Otherwiset [Ebe the
firsttime inappl i es_to_t g. There is one offset for each timhe in appl i es_t o_t g, including

t 0, such that whekheTi el ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in c, the result is a legal time index.

A cluster busy times constraint requires time groups, which are added and visited by

voi d Khed ust er BusyTi mesConst rai nt AddTi meG oup(

KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE TIME_GROUP tg, KHE_POLARITY po);
i nt Khed ust er BusyTi nesConst rai nt Ti meG oupCount (

KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢);
KHE _TI ME_GROUP Khed ust er BusyTi mesConstrai nt Ti meGoup(

KHE_CLUSTER BUSY_TI MES CONSTRAINT ¢, int i, int offset, KHE_POLARITY *po);

where typeKHE_POLARI TY is

t ypedef enum {
KHE_NEGATI VE,
KHE_POSI TI VE

} KHE_PCOLARITY;

In the high school model, the polarity mustkide_POSI Tl VE. When visiting, to get the original
time groups, setf f set to 0; to get the time groups being monitored by monitpiset it to
KheCd ust er BusyTi mesMoni t or O f set (m) .

Convenience functions

bool KheCd usterBusyTi mesConstraint Al | Positive(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT ¢);

bool KheCd usterBusyTi mesConstraint Al | Negat i ve(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢);

returnt r ue when all of the time groups added so far have polafify PCSI Tl VE, or all have
polarityKHE_NEGATI VE. In real instances one of these two functions will usually retucre. In
nurse rostering the main exceptions are constraints that implement unwanted patterns. Also,

3.7. Constraints 59

bool O usterBusyTi mesConstrai nt Ti meG oupsDi sj oi nt (
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

bool C usterBusyTi mesConstrai nt Ti meG oupsCover Wol eCycl e(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

returnt rue when the time groups af are pairwise disjoint, and when their union covers the
whole cycle. These functions should only be called after the instance is complete.

To add the resource groups and resources defining the points of application, use

voi d Khed ust er BusyTi mesConstrai nt AddResour ceG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rgQ);

i nt KheC ust er BusyTi nesConst rai nt Resour ceG oupCount (
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

KHE_RESOURCE GROUP KheC ust er BusyTi mesConst r ai nt Resour ceG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

for resource groups and

voi d KheC ust erBusyTi nesConst rai nt AddResour ce(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheC ust er BusyTi nesConst rai nt Resour ceCount (
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c);

KHE_RESOURCE KheC ust er BusyTi nesConst r ai nt Resour ce(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

for individual resources.

For employee scheduling only, to add and retrieve a value representing the number of time
groups preceding this constraint, calkedh Jeff Kingston'’s paper on history [10], call

voi d Khed ust er BusyTi mesConst rai nt AddHi st or yBef or g(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int val);

i nt KheC ust er BusyTi nesConstrai nt Hi st or yBef or g(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

WhenkKhed ust er BusyTi mesConst r ai nt AddHi st or yBef or e is not called, the value is 0.
For employee scheduling only, to add and retrieve a value representing the number of time
groups following this constraint, calledin the history paper, call

voi d Khed ust er BusyTi mesConstrai nt AddHi st or yAf t er (
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int val);

i nt KheC usterBusyTi nesConstraint H storyAfter(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c);

Whenkhed ust er BusyTi mesConst r ai nt AddHi st or yAf t er is not called, the value is O.

For employee scheduling only, to add and retrieve a value for one resource representing the
number of active time groups preceding this constraint, calledthe history paper, call

60 Chapter 3. Instances

voi d Khed ust er BusyTi nesConst rai nt AddHi st or y(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r, int val);
i nt KheC ust erBusyTi mesConstrai nt Hi story(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

Whenkhed ust er BusyTi mesConst r ai nt AddHi st ory is not called for some, the value is O.

KHE does not check that resources in history calls are points of applicatmnlbéborts
if any conflicting history values are received.

Function

voi d Khed ust er BusyTi mesConstrai nt Debug(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a cluster busy times constrasits total number
of resources multiplied byheC ust er BusyTi mesConstrai nt Appl i esToCf f set Count (c) .
The constraint density of the cluster busy times constraints of an instance (Section 3.3) is their
total number of points of application divided by the number of resources in the instance.

3.7.15. Limit busy times constraints
A limit busy times constraint is created and added to an instance by

bool KheLi mi t BusyTi mesConstrai nt Make(KHE_| NSTANCE i ns, char +id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_TI ME_GROUP applies_to_tg, int minimm int maxi num
bool allow zero, KHE LIM T_BUSY_TI MES_CONSTRAI NT *c);

Most of these attributes may be retrieved by upcastingHe CONSTRAI NT and calling the
relevant operation on that type. The exceptions are

KHE_TI ME_GROUP KhelLi mi t BusyTi nesConst rai nt Appl i esToTi meG oup(
KHE_LIM T_BUSY_TI MES_CONSTRAI NT c);
i nt KheLi m t BusyTi mesConst rai nt M ni mum(
KHE_LIM T_BUSY_TI MES_CONSTRAI NT c¢);
i nt KheLi m t BusyTi mesConst rai nt Maxi mum(
KHE_LIM T_BUSY_TI MES_CONSTRAI NT c¢);
bool KheLi mi t BusyTi mesConstrai nt Al | owZer of
KHE_LIM T_BUSY_TI MES_CONSTRAI NT c¢);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg mustbeNULL andal | ow_zer o must bef al se.

After the instance is complete, functions

3.7. Constraints 61

i nt KheLi m t BusyTi mesConstrai nt Appl i esToOf f set Count (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢):

i nt KheLi nm t BusyTi mesConstrai nt Appl i esToO f set (
KHE_LI M T_BUSY_TI MES_CONSTRAINT ¢, int i);

may be used to visit tha@pplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. ldppl i es_t o_t g isempty,there are no offsets. Otherwiset, [Ebe the
first time inappl i es_to_t g. There is one offset for each time in appl i es_t o_t g, including

t 0, such that whekheTi mel ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in ¢, the result is a legal time index.

A limit busy times constraint requires time groups, which are added and visited by

voi d KheLi mi t BusyTi mesConst r ai nt AddTi meG oup(
KHE_LIM T_BUSY_TI MES_CONSTRAI NT ¢, KHE TIME_GROUP tgQ);
int KheLi m t BusyTi mesConstrai nt Ti meG oupCount (
KHE_LI'M T_BUSY_TI MES_CONSTRAI NT c);
KHE_TI ME_GROUP KhelLi nmi t BusyTi nesConstrai nt Ti meG oup(
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int offset, int i);

To get the original time groups, s#&tf set to 0; to get the time groups monitored by monitgr
set it toKheLi mi t BusyTi mesMoni tor Of f set (m) .

After the instance is complete, these two functions may be called:

KHE_TI ME_GROUP KhelLi mi t BusyTi nesConst r ai nt Domai n(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢):

bool KheLi m t BusyTi nesConstrai ntLi m t sWol eCycl e(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT ¢):

KheLi m t BusyTi mesConst r ai nt Domai n returns thedomainof c: the union of its time groups.

It may be used like any time group, except that it may have no neighbourhood (Section 3.4.1).
This function should probably not exist; it is irrelevant to solving, because the limits are applied
to each time group separatelithelLi mi t BusyTi nesConstrai nt Li mi t sWhol eCycl e returns

t rue whenc contains a time group equal to the whole cycle.

A limit busy times constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

voi d KheLi mi t BusyTi nesConst rai nt AddResour ceG oup(
KHE_ LI M T_BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rQ);
i nt KheLi m t BusyTi mesConst rai nt Resour ceG oupCount (
KHE_ LI M T_BUSY_TI MES_CONSTRAI NT ¢);
KHE_RESOURCE_GROUP KhelLi mi t BusyTi mesConst r ai nt Resour ceG oup(
KHE_ LI M T_BUSY_TIMES CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

62 Chapter 3. Instances

voi d KheLi m t BusyTi nesConst rai nt AddResour ce(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT ¢, KHE RESOURCE r);
i nt KheLi m t BusyTi mesConst r ai nt Resour ceCount (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);
KHE RESOURCE KheLi m t BusyTi mesConst r ai nt Resour ce(
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int i);

in the usual way.
Function

voi d KheLi m t BusyTi nesConst rai nt Debug(KHE LI M T_BUSY_TI MES CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit busy times constraiig its total number
of resources multiplied bigheLi mi t BusyTi mesConst r ai nt Appl i esToOf f set Count (¢) . The
constraint density of the limit busy times constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

Khel nst anceMakeEnd (Section 3.1) has ki i t _busy_recode option which affects limit
busy times constraints. When it is false they are handled in the usual way. When it is true,
some limit busy times constraints are replaced by equivalent cluster busy times constraints when
solving. Their monitors are more flexible in some ways; for example, they accept cutoff limits.

What happens, precisely, is this. For each time group of each limit busy times constraint that
has a minimum limit, a cluster busy times constraint is added to the instance which has the exact
same meaning as the limit busy times constraint does on that time group. (It has a singleton time
group for each time of the time group, and the same limits and cost function.) This constraint
appears on lists of constraints in the usual way, but if the instance is printed out later it is omitted
from the print. Furthermore, when a solution object is created, monitors are created for the
cluster busy times constraints but not for the original limit busy times constraints.

3.7.16. Limit workload constraints

A limit workload constraint is created and added to an instance by

bool KheLi m t Wor kl oadConst r ai nt Make(KHE_| NSTANCE i ns, char «id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE TI ME_GROUP applies_to tg, int minimum int maxi num
bool allow zero, KHE LIM T _WORKLOAD _CONSTRAI NT =*c);

Most of these attributes may be retrieved by upcastingHe CONSTRAI NT and calling the
relevant operation on that type. The exceptions are

KHE TI ME_GROUP KheLi m t Wr kl oadConst rai nt Appl i esToTi neG oup(

KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);
i nt KheLi m t Wr kl oadConstrai nt M ni mum(KHE_LI M T_WORKLOAD CONSTRAI NT c);
i nt KheLi m t Wr kl oadConst rai nt Maxi munm(KHE_LI M T_WORKLOAD CONSTRAI NT c);
bool KheLi m t Wr kl oadConstrai nt Al | owZer o(

KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);

3.7. Constraints 63

which are specific to this kind of constraint. In the high school timetabling model,
appl i es_to_tg must beNULL andal | ow_zer o must bef al se.

After the instance is complete, functions

i nt KheLi m t Wr kl oadConst r ai nt Appl i esToOf f set Count (
KHE_LIM T_WORKLOAD CONSTRAINT c);

i nt KheLi m t Wor kl oadConst r ai nt Appl i esToOf f set (
KHE_LIM T_WORKLOAD CONSTRAINT ¢, int i);

may be used to visit tha@pplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. ldppl i es_t o_t g isempty, there are no offsets. Otherwiset ebe the
first time inappl i es_to_t g. There is one offset for each time in appl i es_t o_t g, including

t 0, such that wherkheTi mel ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in ¢, the result is a legal time index.

A limit workload constraint has optional time groups (not permitted in the high school
model), which are added and visited by

voi d KheLi m t Wor kl oadConst r ai nt AddTi neG oup(
KHE_LI M T_WORKLOAD_CONSTRAI NT ¢, KHE_TIME_GROUP tQ);
i nt KheLi m t Wr kl oadConst rai nt Ti meG oupCount (
KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);
KHE TI ME_GROUP KheLi m t Wr kl oadConst rai nt Ti mreG oup(
KHE_LIM T_WORKLOAD CONSTRAINT ¢, int offset, int i);

To get the original time groups, s#tf set t00;to get the time groups monitored by monitpset

it to KheLi mi t Wor kI oadMoni t or O f set () . Adding no time groups is semantically equivalent

to adding one time group holding all the times of the instance. Sowhen no time groups are added,
after the instance is finalize#heLi mi t Wor kl oadConst r ai nt Ti meG oupCount (c¢) is 1, and

KheLi m t Wor kl oadConstrai nt Ti neG oup(c, 0, 0) is Khel nstanceFul | Ti meG oup(i ns).
Nevertheless, in this special cageAr chi veW i t e does not write any time groups.

Also after the instance is complete, these two functions may be called:

KHE_TI ME_GROUP KhelLi mi t Wor kl oadConst r ai nt Domai n(
KHE_ LI M T_WORKLOAD_ CONSTRAI NT c¢)

bool KheLi m t Wor kl oadConst rai nt Li mi t s\Wol eCycl e(
KHE_ LI M T_WORKLOAD CONSTRAI NT c¢);

KheLi mi t Wor kl oadConst r ai nt Donai n returns thedomainof c: the union of its time groups.

If no time groups were added, it returns the set of all the times in the instance. This time group
may be used like any other, except that it might have no neighbourhood (Section 3.4.1). This
function should probably not exist; it is irrelevant to solving, because the limits are applied to
each time group separateligheLi m t Wor kI oadConst r ai nt Li mi t sWhol eCycl e returnstrue

whenc contains a time group equal to the whole cycle.

A limit workload constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

64 Chapter 3. Instances

voi d KheLi m t Wor kl oadConst r ai nt AddResour ceG oup(
KHE_LI M T_WORKLOAD CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);

i nt KheLi m t Wr kl oadConst r ai nt Resour ceGr oupCount (
KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);

KHE RESOURCE_GROUP KhelLi mi t Wor kl oadConst r ai nt Resour ceG oup(
KHE_LIM T_WORKLOAD CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLi mi t Wor kl oadConst r ai nt AddResour ce(
KHE LIM T_WORKLOAD CONSTRAI NT ¢, KHE_RESOURCE r);
i nt KheLi nm t Wor kl oadConst r ai nt Resour ceCount (
KHE_LI M T_WORKLOAD CONSTRAI NT ¢);
KHE_RESOURCE KheLi mi t Wor kl oadConst r ai nt Resour ce(
KHE_LI M T_WORKLOAD CONSTRAINT ¢, int i);

in the usual way.
Function

voi d KheLi mi t Wr kl oadConst r ai nt Debug(KHE_LI M T_WORKLOAD CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit workload constrains its total number
of resources multiplied byheLi m t Wor kl oadConst r ai nt Appl i esToOf f set Count (¢) . The
constraint density of the limit workload constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

3.7.17. Limit active intervals constraints

Limit active intervals constraints are allowed only wiltE_MODEL_EMPLOYEE_SCHEDULE.
Although they have their own semantics, syntactically they are almost the same as cluster busy
times constraints: the only differences are the change of name and the absaricedér o.

A limit active intervals constraint is created and added to an instance by

bool KheLi m t Acti vel nt erval sConstrai nt Make(KHE_| NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_TI ME_GROUP applies_to_tg, int mnimm int maxi num
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcastingHe CONSTRAI NT and calling the relevant
operation on that type; the exceptions are

3.7. Constraints 65

KHE_TI ME_GROUP KhelLi mit Acti vel nt erval sConstrai nt Appl i esToTi meG oup(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

i nt KheLinmtActivelnterval sConstraintM ni mun(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

i nt KheLinm tActivel nterval sConstrai nt Maxi mun(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

which are specific to this kind of constraint.
After the instance is complete, functions

i nt KheLim tActivelnterval sConstraintAppliesToO fset Count (
KHE_LI M T_ACTI VE_| NTERVALS _CONSTRAI NT c);

int KheLimtActivelnterval sConstraintAppliesToO fset (
KHE_LI M T_ACTI VE_I NTERVALS _CONSTRAINT c, int i);

may be used to visit thapplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. lippl i es_t o_t g isempty, there are no offsets. Otherwiset [Ebe the
firsttime inappl i es_to_t g. There is one offset for each timhe in appl i es_t o_t g, including

t 0, such that whekheTi mel ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in ¢, the result is a legal time index.

A limit active intervals constraint requires time groups, which are added and visited by

voi d KheLim t Activel nterval sConstrai nt AddTi meG oup(
KHE LI M T_ACTI VE_| NTERVALS_CONSTRAI NT ¢, KHE TI ME_GROUP t g,
KHE_POLARI TY po);

i nt KheLinm tActivelnterval sConstraintTi meG oupCount (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

KHE_TI ME_GROUP KhelLim t Activel nterval sConstrai nt Ti meG oup(
KHE_LI M T_ACTI VE_I NTERVALS CONSTRAINT ¢, int i, int offset,
KHE_POLARI TY *po);

where typeKHE_POLARI TY is as for cluster busy times constraints. When visiting, to get the
original time groups, setf f set to 0; to get the time groups being monitored by monitpset
it to KheLi mi t Activel nterval shonitorOffset(n).

Convenience functions

bool KheLimitActivel nterval sConstraint Al Positive(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT c);

bool KheLi mitActivel nterval sConstraint Al |l Negative(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT c);

returnt r ue when all of the time groups added so far have poldfity POSI Tl VE, or all have
polarity KHE_NEGATI VE. In real instances it is almost certain that one of these will ratuve.

To add the resource groups and resources defining the points of application, use

66 Chapter 3. Instances

voi d KheLim tActivelnterval sConstrai nt AddResour ceG oup(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);
i nt KheLimtActivelnterval sConstraint Resour ceG oupCount (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢);
KHE RESOURCE_GROUP KhelLi mit Acti vel nt erval sConst rai nt Resour ceG oup(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAINT ¢, int i);

for resource groups and

voi d KheLimitActivel nterval sConstrai nt AddResour ce(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢, KHE_RESOURCE r);
i nt KheLintActivelnterval sConstraint Resour ceCount (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;
KHE_RESOURCE KheLi mi t Acti vel nt erval sConst rai nt Resour ce(
KHE_LI M T_ACTI VE_I NTERVALS _CONSTRAINT ¢, int i);

for individual resources.

To add and retrieve a value representing the number of time groups preceding this
constraint, callea, in Jeff Kingston’s paper on history [10], call

voi d KheLi m t Activel nterval sConstrai nt AddH st or yBef or e(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAINT ¢, int val);

i nt KheLim tActivel nterval sConstraintH storyBefore(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT c);

WhenkKheLi mi t Acti vel nt er val sConst r ai nt AddHi st or yBef or e is not called, the value is 0.

To add and retrieve a value representing the number of time groups following this
constraint, called, in the history paper, call

voi d KheLim t Activel nterval sConstrai nt AddHi st or yAft er (
KHE_LI M T_ACTI VE_| NTERVALS _CONSTRAINT ¢, int val);

int KheLimtActivelnterval sConstraintHistoryAfter(
KHE_LI M T_ACTI VE_| NTERVALS _CONSTRAI NT c);

WhenKheLi mi t Acti vel nt er val sConst rai nt AddHi st or yAf t er is not called, the value is O.

To add and retrieve a value for one resource representing the number of active time groups
preceding this constraint, callegin the history paper, call

voi d KheLimitActivel nterval sConstrai nt AddHi st or y(

KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢, KHE_RESOURCE r, int val);
i nt KheLinmtActivelnterval sConstraintHi story(

KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢, KHE_RESOURCE r);

WhenkKheLi mi t Acti vel nt er val sConst rai nt AddHi st ory is not called for , the value is O.

KHE does not check that resources in history calls are points of applicatmnlbéborts
if a history value is given twice in the same constraint.

Function

3.7. Constraints 67

voi d KheLimit Activel nterval sConstrai nt Debug(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit active intervals constraiistits number
of resources timekheLi mi t Acti vel nt erval sConst rai nt Appl i esToOf f set Count (¢) . The
constraint density of the limit active intervals constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

3.7.18. Limit resources constraints

Limit resources constraints are allowed only Wit MODEL_EMPLOYEE_SCHEDULE.
A limit resources constraint is created and added to an instance by

bool KheLi mi t Resour cesConst rai nt Make(KHE_| NSTANCE i ns, char xid,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
int mnimm int maxi num KHE LI M T_RESOURCES_CONSTRAI NT =*c);

Most of these attributes may be retrieved by upcastingHe CONSTRAI NT and calling the
relevant operation on that type; the exceptions are

int KheLi m t ResourcesConstraint M ni mum KHE_LI M T_RESOURCES_CONSTRAI NT c);
int KheLi m t Resour cesConst rai nt Maxi mum KHE_LI M T_RESOURCES_CONSTRAI NT c);

which are specific to this kind of constraint. These values are optional in XESTT files; a missing
minimum is represented by 0, and a missing maximum is represented biyAX.

To add and visit the resource groups and resources required by this constraint, call

bool KheLi m t Resour cesConstrai nt AddResour ceG oup(
KHE_LI M T_RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);
i nt KheLi m t Resour cesConst rai nt Resour ceG oupCount (
KHE_LI M T_RESOURCES_CONSTRAI NT c);
KHE RESOURCE_GROUP KhelLi mi t Resour cesConst rai nt Resour ceG oup(
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int i);

and

bool KheLi m t Resour cesConstrai nt AddResour ce(
KHE_LI M T_RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE r);
i nt KheLi m t Resour cesConst r ai nt Resour ceCount (
KHE_LI M T_RESOURCES_CONSTRAI NT c);
KHE RESOURCE KheLi m t Resour cesConst rai nt Resour ce(
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int i);

After the instance has ended, function

KHE_RESOURCE_GROUP KheLi mi t Resour cesConst rai nt Domai n(
KHE LI M T_RESOURCES_CONSTRAI NT c);

68 Chapter 3. Instances

returns a resource group containing the union of all these resource groups and resources (which
must all have the same type). Thereis also

KHE_RESOURCE GROUP KhelLi mi t Resour cesConst r ai nt Domai nConpl enent (
KHE_LI M T_RESOURCES_CONSTRAINT c);

which returns the complement of the domain, that is, the set of resources of the same type as the
domain that are not in it.

To add and visit the event groups which are this constraint’s points of application, call

voi d KheLi m t Resour cesConst r ai nt AddEvent G oup(
KHE_LI M T_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheLi m t Resour cesConstrai nt Event G oupCount (
KHE_LI M T_RESOURCES_CONSTRAI NT c);
KHE_EVENT_GROUP KhelLi mi t Resour cesConst rai nt Event G oup(
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int i);

XESTT also allows individual events to be given, interpreted as singleton event groups. When
KHE reads an XESTT file, an individual events added by a call to

KheLi m t Resour cesConst rai nt AddEvent Group(c, KheEvent Si ngl et onEvent G oup(e));

When KHE writes an XESTT file, it makes two passes over the list of event groups, first writing
all event groups whose number of events is not 1, then writing all event groups whose number
of eventsis 1, the latter written as individual events rather than as event groups.

To add and visit the roles of the constraint, call

voi d KheLi m t Resour cesConst rai nt AddRol e(

KHE LI M T_RESOURCES CONSTRAINT c, char =*role);
i nt KheLi m t Resour cesConstrai nt Rol eCount (

KHE LI M T_RESOURCES_CONSTRAINT c);
char *KheLi m t Resour cesConstrai nt Rol e(

KHE_LI M T_RESOURCES_CONSTRAINT ¢, int i);

In practice, these should all be distinct, but no-one is checking.

Although the points of application are described as event groups, at the implementation
level they are really sets of event resources. There is a way to bypass event groups and roles
and create these sets of event resources directly. First, to create one point of application, call
KheLi m t Resour cesConst r ai nt AddEvent Gr oup with NULL for the event group. Then call

voi d KheLi ni t Resour cesConst rai nt AddEvent Resour ce(
KHE_LI M T_RESOURCES _CONSTRAINT ¢, int eg_index, KHE EVENT_RESOURCE er);

to add an event resources to #e i ndex’th point of application. Instances containing points
of application created in this way cannot be written.

To visit the event resources of the i ndex’th point of application, call

3.7. Constraints 69

i nt KheLi m t Resour cesConst rai nt Event Resour ceCount (
KHE LI M T_RESOURCES CONSTRAINT c, int eg_index);
KHE_EVENT_RESOURCE KheLi m t Resour cesConst r ai nt Event Resour ce(
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int eg_index, int er_index);

Before the instance ends, these functions only visit the event resources added by
KheLi mi t Resour cesConst r ai nt AddEvent Resour ce. After the instance ends, they also visit
the event resources defined by the event group (if present) and roles.

Function
voi d KheLi mi t Resour cesConst rai nt Debug(KHE LI M T_RESOURCES CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit resources constraint is its number of event
groups. The constraint density of the limit resources constraints of an instance is the number
of event resources in all points of application divided by the number of event resources without
preassigned resources.

Chapter 4. Solutions

4.1. Overview

A solution is represented by an object of tygp_SCLN (‘solution’is always abbreviated to ‘soln’

in the KHE interface). Any number of solutions may exist and be operated on simultaneously.
Instances are immutable after creation, and operations that change instances only assemble them,
they do not disassemble them. In contrast, each operation that changes a solution is paired with
one that changes it back. This supports not just the assembly of a fixed solution, such as one read
from a file, but also the changes and testing of alternatives needed when solving an instance.

Within each solution ar&HE_MEET objects representing meets (also called split events or
sub-events), each of which may be assigned a timeKHRdIASK objects representing the re-
source elements of meets, each of which may be assigned a resource. Although most meets are
derived from events and most tasks are derived from event resources, these derivations are op-
tional. Only meets and tasks that are so derived are considered part of the solution to the original
instance, but other meets and tasks may be present to help with solving. Several meets may be
derived from one event; these are the split events or sub-events of that event in the solution.

At all times, the solution (however incomplete it may be) has a definite numeosl
a 64-bit integer measuring the badness of the solution which is always available via function
KheSol nCost (Chapter 6). It may be used to guide the search for good solutions.

A solution must obey a condition called tkelution invariantthroughout its lifetime; this
is an unbreakable constraint. A precise statement of the solution invariant appearsin Section 4.8.
Every operation that changes a solution in a way that could violate the invariant is implemented
with two functions, which look generically like this:

bool KheQperationCheck(...);
bool KheOperation(...);

The two functions accept the same inputs and return the same value in a given solution state. The
first returnd r ue if the change would not violate the invariant, but itself changes nothing. The
second also returrig ue if the change would not violate the invariant, but in that case it also
makes the change. It changes nothing if the change would violate the invariant.

The relationship between the solution invariant and the constraints of the original instance is
rather subtle. Should a constraint be incorporated into the invariant, so that no solution (not even
a partial solution) will ever violate it? KHE leaves this question to the user. Some operations do
incorporate constraints into the solution invariant, but those operations are all optional.

Some aspects of solution entities that may be changed have operations of the form

voi d KheEntityAspect Fi x(ENTITY e);
voi d KheEntityAspect UnFi X(ENTITY e);
bool KheEntityAspect|sFixed(ENTITY e);

70

4.1. Overview 71

The first fixes that aspect of the entity—prevents later operations from changing it; the second
removes the fix; the third returngue when the fix is in place. Initially everything is unfixed.
Fixing a fixed aspect, and unfixing an unfixed aspect, do nothing. When the current value of
some aspect will remain unchanged for a long time, fixing that aspect may have a significant
efficiency payoff. This is because fixing detaches attached monitors (Chapter 6) whose cost is
0 and cannot change while the current fixes are in place, which can save a lot of time. Unfixing
attaches those unattached monitors which could have non-zero cost given the unfix.

There are three levels of operations. At the lowest levellasic operationswhich
carry out basic queries and changes to a solution, such as assigning or unassigning the time of
a meet. Above them areelper functionswhich implement commonly needed sequences of
basic operations, such as swaps. Some helper functions utilize optimizations that make them
significantly more efficient than the equivalent sequences of basic operations.

At the highest level arsolvers which make large-scale changes to solutions. A complete
algorithm for solving an instance is a solver, but so are operations with more modest scope, such
as assigning times to the meetings of one form, assigning rooms, and so on.

KHE supplies many solvers, documented in later chapters, and the user is free to write
others. As a matter of good design, solvers should not have behind-the-scenes access to KHE'’s
data structures; they should use only the operations described in this guide and made available
by header fil&khe_pl at f or m h. They may of course call other solvers. The solvers supplied
by KHE follow this rule.

4.2. Top-level operations
This section presents functions that operate on objects okiypeSOLN. Later sections present
functions that operate on the components of solutions (meets, tasks, and so on).
4.2.1. Creation, deletion, and copy
To create a solution for a given instance, initially with no meets or tasks, call
KHE_SOLN KheSol nMake(KHE_ | NSTANCE ins, HA ARENA SET as);

Khel nst anceMakeEnd(i ns) must have been called and returned befbesSol nMake is called.
Parameteas may beNULL; for the effect of passing a nofiLL value, see Section 4.2.2 below.

To deletesol n and everything in it, and remove it from its solution groups, if any, call
voi d KheSol nDel et e(KHE_SOLN sol n);

The memory consumed Bol n and everything in it will be freed. Each solution lies in its
own memory arena, allowing its deletion to be carried out very efficiently: just delete its arena.
Actually, there are two arenas, one holding sleén object, the other holding everything else.
This is needed in case the user chooses to reduce a solution to a placeholder (Section 4.2.6).

Another way to create a solution is

KHE_SCLN KheSol nCopy(KHE_SOLN sol n, HA ARENA SET as);

72 Chapter 4. Solutions

It returns a copy ool n. Parameteas is as forkheSol nMake. The copy is exact except that it
does not lie in any solution groups. Immutable elements, such as anything from the instance, and
time, resource, and event groups created within the solution, are shared, as are back pointers.

Copying is useful when forking a solution process part-way through: the original solution
may continue down one thread, and the copy, which is quite independent, may be given to the
other thread. Care is needed in one respect, however: it is not safe to make two copies of one
solution simultaneously, even though the original solution is unaffected by copying it. This is
because the copy algorithm uses temporary forwarding pointers in the objects of the solution.

Even semantically unimportant things, such as the order of items in sets, are preserved by
KheSol nCopy. If the same solution algorithm is run on the original and the copy, and it does
not depend on anything peculiar such as elapsed time or the memory addresses of its objects,
it should produce the same solution. The author has verified thishfgkener al Sol ve2014
(Section 8.3). Diversity can be obtained by changing the copy’s diversifier (Section 4.2.4).

The specification ofisort states that when two elements compare equal, their order in the
finalresultisundefined. Sothe author hastried to eliminate all such casesin the comparison func-
tions packaged with KHE. Index numbers, returned by functions sughed&et Sol nl ndex
andKheTaskSol nl ndex, are useful for breaking ties consistently as a last resort.

As an aid to debugging, function
voi d KheSol nDebug(KHE_SOLN soln, int verbosity, int indent, FILE *fp);

prints information about the current solution onto filewith the given verbosity and indent,

as described for debug functions in general in Section 1.3. Verbosity 1 prints just the instance

name and current cost, verbosity 2 adds a breakdown of the current cost by constraint type (only
constraint types with non-zero cost are printed), verbosity 3 adds debug prints of the solution’s

defects (Section 6.2), and verbosity 4 prints further details.

4.2.2. Solutions and arenas

Solutions can take up a lot of memory, and memory allocation and deallocation can become a
serious bottleneck. KHE has a strategy for mitigating this problem. The idea is not to delete the
arenas used by solutions and solvers, but rather, within each thread separately, to recycle them.

This is done by creating one arena set(Appendix A.1.2) per thread, and passagyto
each call takheSol nMake made by the thread. Then the arenas needed to construct the solution
are taken fromas when it has them, and only created afresh whernis empty. When the
solution is deleted or made into a placeholder, each axemhich is no longer needed is not
freed. Instead, it is added &s after callingHaAr enaRecycl e(a) . If as is passed to other calls
to KheSol nMake made by the same thread, these arenas will be used to store those solutions.

KHE does not make the mistake of sharing one arena set across threads. That would require
arena sets to be lockable, which they are not. Appendix B.7 has more on these kinds of issues.

Solvers can participate in this efficient form of recycling too. Instead of creating an arena
afresh by a call tblaAr enaMake, a solver can call

HA_ARENA KheSol nAr enaBegi n(KHE_SCLN sol n);

This will extract an arena frosol n’s arena set if it is notNJLL and non-empty; otherwise it will

4.2. Top-level operations 73

return an arena created ByAr enaMake. When the arena is no longer required and its memory
can be made available for other uses, the solver can call

voi d KheSol nArenaEnd(KHE_SOLN sol n, HA ARENA a);

If sol n has a norNULL arena set, this callseAr enaRecycl e(a) and adds the recycled arena to
that set. Otherwise it calldaAr enaDel et e. This is a convenient interface for solvers to use to
obtain the arenas they need, without having to worry about the details of arena recycling.

For completeness, there are functions to set and retrieve a solution’s arena set:

voi d KheSol nSet ArenaSet (KHE_SCLN sol n, HA ARENA SET as);
HA ARENA SET KheSol nAr enaSet (KHE_SOLN sol n);

Hereas may beNULL. Appendix B.7 documents one use for these functions, although the
ordinary user of KHE is unlikely to need them.

4.2.3. Simple attributes

A solution may lie in any number of solution groups. To add it to a solution group and delete
it from a solution group, use functiorseSol nG oupAddSol n andKheSol nG oupDel et eSol n
from Section 2.2. To visit the solution groups containsiogn, call

i nt KheSol nSol nG oupCount (KHE_SOLN sol n);
KHE_SOLN_GROUP KheSol nSol nG oup(KHE_SOLN sol n, int i);

in the usual way.
A solution is always for a particular instance, fixed when the solution is created. Function

KHE_| NSTANCE KheSol nl nst ance(KHE_SOLN sol n);

returns the instance that the solution is for.

A solution has an optional Description attribute which may contain arbitrary text saying
what is distinctive about the solution. This attribute may be set and retrieved by calling

voi d KheSol nSet Descri pti on(KHE_SOLN sol n, char =description);
char +KheSol nDescri pti on(KHE_SOLN sol n);

The default value iSULL, meaning no description.

A solution also has an optional RunningTime attribute giving the wall clock time to produce
the solution, in seconds. This attribute may be set and retrieved by calling

voi d KheSol nSet Runni ngTi me(KHE_SOLN sol n, float running time);
bool KheSol nHasRunni ngTi me(KHE_SCLN sol n, float *running_tine);

If KheSol nSet Runni ngTi ne has been called, theédmeSol nHasRunni ngTi ne returnst r ue with
xrunni ng_ti ne set to the most recent value passedigSol nSet Runni ngTi me. Otherwise it
returng al se with *runni ng_ti me setto- 1. 0. It would be impossible for KHE to ensure that
the value stored in this field is honest, and it does not try to.

There is also a function for comparing two solutions by their running times. It comesin two

74 Chapter 4. Solutions

versions, one which makes sense to people, and another which makes sgnsé:to

i nt KheSol nl ncreasi ngRunni ngTi neTypedCnp(KHE_SCLN sol n1, KHE SOLN sol n2);
i nt KheSol nl ncreasi ngRunni ngTi neCnp(const void *t1, const void =t2);

Solutions without a running time are treated as though they have a very large running time.

Solution objects and their components have back pointers in the usual way. These may be
changed at any time. To set and retrieve the back pointer of a solution object, call

voi d KheSol nSet Back(KHE_SQOLN sol n, void *back);
voi d *KheSol nBack(KHE_SOLN sol n);

as usual.

4.2.4. Diversification

One strategy for finding good solutions is to find many solutions and choose the best. This only
works when the solutions are diverse, creating a need to find ways to produce diversity.

Each solution contains a non-negative intedjeersifier. Its initial value is 0, but it may be
set and retrieved at any time by

voi d KheSol nSet Di versifier(KHE_SOLN soln, int val);
i nt KheSol nDi versifier(KHE_SOLN sol n);

When solutions are created that need to be diverse, each is given a different diversifier. When an
algorithm reaches a point where it could equally well follow any one of several paths, it consults
the diversifier when making its choice.

Suppose the diversifier has valdiand a point is reached where there @aadternatives, for
somec = 1 A simple approach is to choose the alternative (counting from 0), where

i =d %c;

We call a functiorD(d, c) which returns an integers.t.0 <i < c adiversification function

How should we choose diversifiers and diversification functions to ensure that we really
do get diversity? One possibility is to start with a random integer and change it using a random
number generator, passing the current value as seed, each time the diversifier is consulted. But
there is no way to analyse the effect of this, so instead we are going to examine what happens
when the diversifiers are fixed successive integers starting from O.

What we want is a little hard to grasp. Suppose that, at some points in the algorithm, it
is offered a choice between 1 alternative; at others, there are 2 alternatives, and so on, with a
maximum ofn alternatives. For a given diversifier, there araifferent functions of the number
of choices. Ideally we would want all of these functions to turn ug @egries over its range.

Itis not obvious, but it is a fact that the modulus function above does turn up every function
whennis 1, 2 or 3, but whem is 4 it produces 12 distinct functions, only half the possible 24
functions, as the following tables, obtained by runrkhg - d4, show:

4.2. Top-level operations 75

d| 1 2 d|] 1 2 3 d| 1 3 4
L T T T S S
0| 0 O O] 0 0 O O] 0 0 0 O
1] 0 1 1] 0 1 1 1] 0o 1 1 1
- 2] 0 0 2 2] 0 0 2 2
3] 0 1 0 3] 0 1 0 3
4] 0 0 1 4] 0 0 1 O
5] 0 1 2 5] 0 1 2 1
B I e 6] 0 0 0 2
71 0 1 1 3
8] 0 0 2 O
9] 0 1 0 1
0] 0 0 1 2
11] o0 1 2 3

12| 0 0 O O (sane as 0)

13] 0 1 1 1 (sane as 1)

14| 0 0 2 2 (sane as 2)

15| 0 1 0 3 (sane as 3)

16| 0O O 1 O (sane as 4)

171 0 1 2 1 (sane as b)

18| 0O 0O O 2 (sane as 6)

19| 0 1 1 3 (sane as 7)

20 0 O 2 0 (sane as 8)

21| 0 1 0 1 (same as 9)

221 0 0 1 2 (same as 10)

23] 0 1 2 3 (same as 11)

Each row is one value af, and each column is one value@fWhat this means is that if, during
the course of one run, no more than 4 choices are offered at any one point, then only 12 distinct
solutions can emerge, no matter how many are begun.

The most natural diversification function which produces distinct outcomes is probably
(d/ fact(c - 1)) %c

wheref act is the factorial function. (To avoid overflow, in practice one stops multiplying as
soon as the value exceetl} Each line is something like the binary representatiod, @hly in
a factorial number system rather than binary:

Chapter 4. Solutions

1 2 3 4

d |

76

2

1

d |
e

[%2]
s
D)
-
e
-
© O
)
D ©
— C
= S
=
Qo
e
= O
S 9
(D)
c u
= £
> O
c O
" n
g 2
CO000O0O0OAAAAATANNNNNNMNONOHM®O M , %..L T OHNMNMOAANMNMOANNMNMOANM MO ANMO
1 .IO 1 1
.
COdANNOOAAANNOOAANNOO o N A m.m M I OAddANOOAANNOOAAANNOOAANNO
CO '
OHOHOHAOAO A0 HAOHOHO A0 —HO HO — < = N 1 OHOHOHAO A0 A0 A0 AOHAOHAO —AO —H O .
1 u 1 1
= .
OO0 O0O00O00000O000O000O0O00O0OO0O | n_V.vO o 4 1 0000000000000 000000O0O00OO |
[aS [1
— e __ 4 <c oo =¥ S 1
'
OCHANMINONODNOANMIINONDDO A NM S_m — T I OANMNTINON~NDODOANMIEODONODDNO —ANM |
AdAdAdAdAdAAAANNNN n_Vpn — \ AddddAdAddAd A NNNN ,
.2 .s - , .
)
T2
cc
oo °
cCoHdANN = = = M OHdHdNNO |
[al [[
© Q
OHdOHO o = o © N 1 OHOHOH
1 at Y— 1 1
—_— 1
coocococo . ;Hw X 4 000000 .
1 1 1
i £ o i
oOHANMmS WO o= * " T odANMS O
' .
| 8a 5 g :
= QO (&)
[@ R . o]
o
o 2 (&) o
O - ”m ~ — N O
_ =g - <o _ _
. .
oo . nn o =2 4 loco.
1 n O — = 1 1
i = = i i
Il_ me -~ > |_||_
o - . o = T O
' o o c 1 1
1 hu N 1 1
=5 K=
o —
S5 9 3}
mn o o

4.2. Top-level operations 77

and is diverse up to = 8at least. Function
i nt KheSol nDi versifierChoose(KHE_SOLN soln, int c);

implements this function, returning a non-negative integer lesscthan

It is quite reasonable faeveryalgorithm faced with an arbitrary choice to diversify. It is
easy to do, and it provides a continual prodding towards diversity that should drive solutions with
different diversifiers further and further apart as solving continues, always provided that there
are sufficiently many choices.

4.2.5. Visit numbers

Some algorithms, such as tabu search and ejection chains, need to know whether some part of
the solution has changed recently. KHE supports this with a systefsibhumbers

A visit number is just an integer stored at some point in the solution. The KHE platform
initializes visit numbers (to 0) and copies them, but does not otherwise use them. The user is free
to set their values in any way at any time, using operations that look generically like this:

voi d KheSol nEntitySet Vi sitNun{ KHE_SCLN ENTITY e, int num;
int KheSol nEntityVisitNum KHE_SOLN_ENTITY e);

But there is also a conventional way to use visit numbers, as follows.

The solution object containggobal visit numbewhich is used differently from the others.
The following operations are applicable to it:

voi d KheSol nSet G obal Vi si t Nun{ KHE_SCLN sol n, int num;
i nt KheSol nd obal Vi si t Num KHE_SOLN sol n);
voi d KheSol nNewd obal Vi si t (KHE_SOLN sol n);

The first two operations are not usually used directly. The third increases the global visit number
by one. This new value has not previously been assigned to any visit number.

The visit numbers of other solution entities should never exceed the global visit number.
The operations for other solution entities look generically like this:

voi d KheSol nEntitySet Vi si t Num(KHE_SOLN_ENTITY e, int num;
int KheSol nEntityVisitNum KHE_SOLN_ENTITY e);

bool KheSol nEntityVisited(KHE_SOLN_ENTITY e, int slack);
voi d KheSol nEntityVisit(KHE_SOLN_ENTITY e);

voi d KheSol nEntityUnVisit(KHE_SCLN ENTITY e);

TypeSOLN_ENTI TY is fictitious and so are these functions; they just display the standard pattern.
The first two are the standard ones. The third returns the value of the condition

KheSol nVi si t Nun{soln) - KheSol nEntityVisitNume) <= slack

wheresol n is the solution containing. The fourth sets’s visit number to its solution object’s
visit number, and the last sets it to one less than its solution’s visit number.

These operations may be used to implement tabu search efficiently as follows. Suppose for

78 Chapter 4. Solutions

example that a change to the assignmemteet is to remain tabu until at leastbu_| en other
changes have been made. The code for this is

i f(!'KheMeetVisited(neet, tabu_len))

{
KheSol nNewMi si t (KheMeet Sol n(neet)) ;

KheMeet Vi si t (meet) ;
change the assignnent of neet

}

To ensure that everything is visitable initially, call
KheSol nSet Vi si t Nun(sol n, tabu_len);

It is easy to generalize this code to other operations.

One form of the ejection chains algorithm requires that once a meet (or other entity) has
been changed during the current visit, it must remain tabu until a new visit is started in the outer
loop of the algorithm. The code for thisis

i f(!'KheMeetVisited(neet, 0))

{
KheMeet Vi si t (meet) ;

change the assignnent of neet

}

A variant of this idea makaset tabu to recursive calls, but not tabu for the entire remainder of
the current visit. The code for this is

i f(!'KheMeetVisited(neet, 0))

{
KheMeet Vi si t (meet) ;

change the assignnent of meet and recurse ...
KheMeet UnVi sit (neet);

}

Only meets in the direct line of the recursion are tabu.

4.2.6. Placeholder and invalid solutions

A solution can be converted tgdaceholder solutiofy calling
voi d KheSol nReduceToPl acehol der (KHE_SOLN sol n);

This deletes everything belawl n: all its meets, all its tasks, and so on. It cannot be undone. It
reclaims a great deal of memory, which is the point of it, but it makés unusable except that
the following functions remain available and return their previous values:

4.2. Top-level operations 79

char xKheSol nDescri pti on(KHE_SOLN sol n);

voi d *KheSol nBack(KHE_SCLN sol n);

KHE_| NSTANCE KheSol nl nst ance(KHE_SOLN sol n);

i nt KheSol nSol nG oupCount (KHE_SOLN sol n);
KHE_SOLN_GROUP KheSol nSol nGroup(KHE_SOLN sol n, int i);
voi d *KheSol nl nmpl (KHE_SOLN sol n);

i nt KheSol nDi versifier(KHE_SOLN sol n);

i nt KheSol nVi si t Num(KHE_SOLN sol n);

KHE_COST KheSol nCost (KHE_SOLN sol n);

The functions defined below within this section also remain available. For example, placeholder
solutions may be used to build a table of solutions showing their costs; but they cannot be used
to find cost breakdowns by constraint type, or to print timetables, and so on.

To find out whether a solution is a placeholder, function
bool KheSol nl sPI acehol der (KHE_SOLN sol n);

may be called. In practice this will usually be clear anyway from the algorithmic context.

A placeholder solution can also be ewalid solution meaning that it was converted to a
placeholder because it was invalid. In practice, this would only happen when reading a solution
from an archive (Section 2.4). Function

bool KheSol nl sl nval i d(KHE_SCLN sol n);
returng r ue if sol nisinvalid, and function
KM._ERROR KheSol nl nval i dErr or (KHE_SCLN sol n);

returns the first error that rendersd! n invalid, or NULL if sol n is not invalid. For type
KM._ERROCR, see Section A.6.2.

Function

voi d KheSol nReduceTol nval i d(KHE_SOLN sol n, KM._ERRCR ke) ;

may be called to convert an ordinary solution, or a non-invalid placeholder solution, into an
invalid solution whose error ise. This function is offered only for completeness: there seems
to be no reason for the user to ever call it.

4.2.7. Traversing the components of solutions

A solution has many components: principally tasks and meets, but also other objects. They can
all be visited, using the functions defined in this section.
To visit the meets of a solution, in an unspecified order, call

i nt KheSol nMeet Count (KHE_SOLN sol n);
KHE_MEET KheSol nMeet (KHE_SOLN soln, int i);

The meets visited include theycle meetslescribed in Section 4.5.3. To visit the meets of a
solution derived from a given event, call

80 Chapter 4. Solutions

i nt KheEvent Meet Count (KHE_SOLN sol n, KHE EVENT e);
KHE MEET KheEvent Meet (KHE SCLN soln, KHE EVENT e, int i);

The first returns the number of meets derived fo(possibly 0), and the second returnsitth
of these meets, in an unspecified order.
To visit the tasks of a solution, in an unspecified order, call

i nt KheSol nTaskCount (KHE_SOLN sol n);
KHE_TASK KheSol nTask(KHE_SOLN soln, int i);

To visit the tasks derived from a given event resource, call

i nt KheEvent Resour ceTaskCount (KHE_SOLN sol n, KHE EVENT_ RESOURCE er);
KHE_TASK KheEvent Resour ceTask(KHE SOLN sol n, KHE EVENT RESOURCE er,
int i);
There is one for each meet derived from the event contagting
A solution may also containodesandtaskings as explained in Chapter 5. To visit the
nodes in an unspecified order, call

i nt KheSol nNodeCount (KHE_SCLN sol n);
KHE_NCDE KheSol nNode(KHE_SOLN soln, int i);

To visit the taskings, call

i nt KheSol nTaski ngCount (KHE_SCLN sol n);
KHE TASKI NG KheSol nTaski ng(KHE_SOLN soln, int i);

in the usual way.

4.3. Complete representation and preassignment conversion

A solution is acomplete representatiomhen it satisfies the following two conditions:

. For each evert of the solution’s instance, the total duration of the meets derived ériam
equal to the duration of;

. For each event resouree of the solution’s instance, each meet derived from the event
containinger contains a task derived froam .

Complete representation does not rule out extra meets or tasks. It has nothing to do with being
a complete solution, in the sense of assigning a time to every meet and a resource to every task.

KHE does not require a solution to be a complete representation, since that would be too
restrictive when building and modifying solutions. However, the cost it reports for a solution is
correct only when that solution is a complete representation. This is because, behind the scenes,
KHE needs to be able to see a meet with no assigned time in order for it to realize that an assign
time constraint is being violated, and similarly for the other constraints.

There is a standard procedure, part of the XML specification, for converting a solution into

4.3. Complete representation and preassignment conversion 81

a complete representation:

1. Foreach evertof the solution’s instance, if there are no meets derived &otihen insert
one meet whose duration is the duratiorepfnd whose assigned time is the preassigned
time of e, or is absent it has no preassigned time. Initially, this meet contains no tasks, but
that may be changed by the third rule.

2. If nowthereis an evemtsuch that the total duration of the meets derived feasnot equal
to the duration ok, then that is an error and the XML file is rejected.

3. For each event resouree of each everg of the instance, for each meet derived frenif
that meet does not contain a task derived feonpthen add one. Its assigned resource is the
preassigned resource @f if there is one, or is absentéfr has no preassigned resource.

This procedure, minus the conversions from preassignments to assignments, is implemented by

bool KheSol nvakeConpl et eRepr esent ati on(KHE_SCLN sol n,
KHE EVENT =*probl em event);

For each ever, it finds the total duration of the meets derived fremlf that is greater than

the duration ofe it returnsf al se with *probl em event set toe. If it is less, then one meet
derived frome is added whose duration makes up the difference. The domain of this meet
has the usual default value: the preassigned timeibfany, or else the largest legal domain,
KheSol nPacki ngTi meG oup(sol n) (Section 4.5.3). Then, within each meet derived from an
event, just created or not, it adds a task for each event reseuraet already represented. The
domain of this task has the usual default value: the preassigned resoarcé afy, or else the
largest legal domairheResour ceTypeFul | Resour ceGroup(rt) , wherert iser’s resource type.

KheSol nMakeConpl et eRepresent ati on has two uses. The first is iKheAr chi veRead
(Section 2.4), which applies it to each solution it reads, as the XML specification requires, and
then calls these two public functions to convert preassignments into assignments:

voi d KheSol nAssi gnPr eassi gnedTi mes(KHE_SCLN sol n);
voi d KheSol nAssi gnPreassi gnedResour ces(KHE_SOLN sol n,
KHE_RESOURCE_TYPE rt);

KheSol nAssi gnPr eassi gnedTi mes assigns the obvious time to each preassigned unassigned
meet.KheSol nAssi gnPr eassi gnedResour ces assignsthe obviousresourceto each preassigned
unassigned task of type (any type ifrt isNULL).

The second use fdtheSol nMakeConpl et eRepr esent ati on is to build a solution from
scratch, ready for solving. The solution returnedHingSol nMeke has no meets except for
the initial cycle meet, and it has no taskéeSol nMakeConpl et eRepr esent ati on is a very
convenient way to add both. When solving, it is usually called immediatelylgfeSiol nVake
andKheSol nSpl it Cycl eMeet (Section 4.5.3). The solution changes as solving proceeds, but it
remains a complete representation throughout, except perhaps during brief reconstructions. A
call to KheSol nAssi gnPr eassi gnedResour ces is also a good idea, since it does no harm and
ensures that resource constraints involving preassigned resources will contribute to the cost of
the solution as soon as the meets they are preassigned to are assigned times. On the other hand,
it may be better not to assign preassigned times at this point; Section 10.4 has the alternatives.

82 Chapter 4. Solutions

4.4. Solution time, resource, and event groups

Groups are important in solving. A solver needs to be able to construct its own, since the ones
declared in the instance might not be enough. (Conceivably, a solver could need its own times
and resources as well, but that possibility is not currently supported.) Accordingly, the following
functions are provided for constructing a time group while solving:

voi d KheSol nTi meGr oupBegi n(KHE_SOLN sol n);

voi d KheSol nTi meG oupAddTi me(KHE_SOLN soln, KHE TIME t);

voi d KheSol nTi meG oupSubTi me(KHE_SOLN soln, KHE TIME t);

voi d KheSol nTi meG oupUni on(KHE_SOLN sol n, KHE TI ME_GROUP tg2);

voi d KheSol nTi meG oupl nt er sect (KHE_SOLN sol n, KHE TI ME_ GROUP tg2);
voi d KheSol nTi meG oupDi f f erence(KHE_SOLN soln, KHE TI ME_GROUP tg2);
KHE_TI ME_GROUP KheSol nTi mneGr oupEnd(KHE_SOLN sol n);

The first operation begins the process; the next five do what the corresponding operations for
instance time groups do, and the last operation returns the finished time group. Its kind will be
KHE_TI ME_GROUP_KI ND_ORDI NARY, and its d andnarme attributes will beNULL.

A similar set of operations constructs a resource group:

voi d KheSol nResour ceGr oupBegi n(KHE_SCLN sol n, KHE RESOURCE TYPE rt);

voi d KheSol nResour ceGr oupAddResour ce(KHE_SCLN sol n, KHE_RESOURCE r);

voi d KheSol nResour ceGroupSubResour ce(KHE_SCLN sol n, KHE_RESOURCE r);

voi d KheSol nResour ceGroupUni on(KHE_SCLN sol n, KHE_RESOQURCE_GROUP rg2);

voi d KheSol nResour ceG oupl ntersect (KHE_SOLN sol n, KHE_RESQURCE _GROUP rg2);
voi d KheSol nResour ceG oupDi f f er ence(KHE_SOLN sol n, KHE _RESOURCE_GROUP rg2);
KHE_RESOURCE_GROUP KheSol nResour ceG oupEnd(KHE_SOLN sol n);

and an event group:

voi d KheSol nEvent G oupBegi n(KHE_SOLN sol n);

voi d KheSol nEvent G oupAddEvent (KHE_SOLN sol n, KHE_EVENT e);

voi d KheSol nEvent GroupSubEvent (KHE_SCLN sol n, KHE EVENT e);

voi d KheSol nEvent G oupUni on(KHE_SOLN sol n, KHE_EVENT_GROUP eg2);

voi d KheSol nEvent G- oupl nt er sect (KHE_SOLN sol n, KHE_EVENT_GROUP eg2);
voi d KheSol nEvent G oupDi f f erence(KHE_SCLN sol n, KHE_EVENT_GROUP eg2);
KHE_EVENT_GROUP KheSol nEvent G oupEnd(KHE_SCLN sol n);

All the usual operations may be applied to these groups. The functioruses a factory

object instead of the group itself, to ensure that groups are complete and immutable (apart from
their back pointers) by the time they are given to the user. Groups are deleted when their solution
is deleted. They know which instance they are for, but the instance, being immutable after
creation, is not aware of their existence.

Within one solution, when calls tgheSol nTi meG oupEnd return groups containing the
same elements, the objects returned are the same too. This is done using a hash table of time
groups. It allows the user to experiment with many time groups, without worrying about their
memory cost. This is not being done for resource and event groups yet; it should be.

4.5. Meets 83

4.5. Meets

A meet is created by calling
KHE_MEET KheMeet Make(KHE_SCLN sol n, int duration, KHE_EVENT e);

This creates and addsgol n a new meet of the given duration, which must be at least &.idf
nonNULL, it indicates that this meet is derived from eventnitially the meet contains no tasks;
they must be added separately. A meet may be deleted from its solution by calling

voi d KheMeet Del et e(KHE_MEET neet);

Any tasks withinmeet are also deleted. Heet is assigned to another meet, or any other meets
are assigned to it, all those assignments are removed. The meet is also deleted from any node
(Section 5.2) it may lie in.

The back pointer of a meet may be set and retrieved by

voi d KheMeet Set Back(KHE_MEET meet, void xback);
voi d *KheMeet Back(KHE_MEET neet);

and the visit number by

voi d KheMeet Set Vi si t Nun{ KHE_MEET neet, int num;
int KheMeet Vi sit Num(KHE_MEET neet) ;

bool KheMeet Vi sited(KHE_MEET neet, int slack);
voi d KheMeet Vi sit (KHE_MEET neet);

voi d KheMeet UnVi si t (KHE_MEET neet);

as usual. The other attributes of a meet are accessed by

KHE_SOLN KheMeet Sol n(KHE_MEET neet) ;

i nt KheMeet Sol nl ndex(KHE_MEET neet);

i nt KheMeet Dur ati on(KHE_MEET neet) ;
KHE_EVENT KheMeet Event (KHE_MEET neet) ;

These return the enclosing solutioret ‘s index in that solution (that is, the valueiofor which

KheSol nMeet (sol n, i) returnsneet), its duration, and the event thetet is derived from
(possiblyNULL). Index numbers change when meets are deleted (the hole left by the deletion of
a meet, if not last, is plugged by the last meet), so care is needed. There is also

bool KheMeet | sPreassi gned(KHE_MEET neet, TIME *tine);

which returns r ue whenkheMeet Event (nmeet) ! = NULL and that event has a preassigned time;
meet is called goreassigned medat that case. Ifime ! = NULL, thenti ne is set to the event's
preassigned time ifeet is preassigned, and MJLL otherwise.

When deciding what order to assign meets in, it is handy to have some measure of how
difficult they are to timetable. Functions

i nt KheMeet Assi gnedDur ati on(KHE_MEET neet) ;
i nt KheMeet Demand(KHE_MEET neet);

84 Chapter 4. Solutions

attempt to provide thiskneMeet Assi gnedDur at i on is the duration ofreet if itis assigned, or 0
otherwise.KheMeet Denand(neet) isthe sum, overeet and all meets assignedrteet , directly

or indirectly, of the product of the duration of the meet and the number of tasks it contains. This
value is stored in the meet and kept up to date as solutions change, so aktelMeet Denand

costs almost nothing.

A task is added to its meet when it is created, and removed from its meet when it is deleted.
To visit the tasks of a meet, call

i nt KheMeet TaskCount (KHE_MEET neet);
KHE_TASK KheMeet Task(KHE_MEET neet, int i);
bool KheMeet RetrieveTask(KHE MEET nmeet, char =role, KHE TASK *task);
bool KheMeet Fi ndTask(KHE MEET neet, KHE EVENT RESOURCE er,
KHE TASK =t ask);

The first two traverse the tasks. The order of tasks within meets is not significant, and it may
change astasks are created and deldédegVeet Ret r i eveTask retrieves a task which is derived
from an event resource with the giveal e, if present.KheMeet Fi ndTask is similar, but it looks

for a task derived from event resoumae rather than for a role. There are also

bool KheMeet Cont ai nsResour cePr eassi gnnent (KHE_MEET neet,
KHE_RESOURCE r, KHE TASK *task);

bool KheMeet Cont ai nsResour ceAssi gnment (KHE_MEET neet ,
KHE_RESOURCE r, KHE_TASK *task);

which returnt r ue if neet contains a task preassigned or assignesktting«t ask to one if so.
Here a task is considered to be preassigned if it is derived from a preassigned event resource.

A meet contains an optionaksignmentwhich assigns the meet to a particular offset in
another meet, thereby fixing its time relative to the starting time of the other meet,tand a
domainwhich restricts the times it may start at to an arbitrary subset of the times of the cycle.
These attributes are described in detail in later sections.

A meet may optionally be contained in one node (Chapter 5). Functions
KHE_NCODE KheMeet Node(KHE_MEET neet);
i nt KheMeet Nodel ndex(KHE_MEET neet);

return the node containinget , and the index ofreet in that node, oNULL and- 1 if none.
As an aid to debugging, function

voi d KheMeet Debug(KHE_MEET neet, int verbosity, int indent, FILE *fp);

printsneet ontof p with the given verbosity and indent (for which see Section 1.3). Verbosity 1
prints just an identifying name; verbosity 2 adds the chain of assignments leadingneat of

The name is usually the name et 's event, between quotes. If there is more than one
meet corresponding to that event, this will be followed by a colon and the nunfoemhich
KheEvent Meet (sol n, e, i) equalsreet. Alternatively,ifneet isa cycle meet (Section 4.5.3),
the name is its starting time (a time name or else an index) between slashes.

4.5. Meets 85

4.5.1. Splitting and merging
A meet may be split into two meets whose durations sum to the duration of the original meet:

bool KheMeet Split Check(KHE_MEET meet, int durationl, bool recursive);
bool KheMeet Split(KHE MEET neet, int durationl, bool recursive,
KHE_MEET +neet 1, KHE_MEET xmeet 2);

These functions follow the pattern described earlier for operations that might violate the solution
invariant, in that both returtr ue if the split is permitted. The second actually carries out the
split, setting«neet 1 and=*neet 2 to the new meets if the split is permitted, and leaving them
unchanged if not. The original meeget , is undefined after a successful split, unlesst 1

or neet 2 is set to&neet (this may seem dangerous, but it does what is wanted whether the split
succeeds or not). The split meet may be a cycle meet, in which case so are the two fragments.

The first new meetsneet 1, has duratiordur ati onl, and the second,neet 2, has the
remaining duration. Parametarr at i onl must be such that both meets have duration at least 1,
otherwise both functions abort. Their back pointers are set to the back poimgtofIf neet
is assigned,neet 1 has the same target meet and offseteas , while* meet 2 has the same target
meet, but its offset igur at i onl larger, making the two meets adjacent in time.

If recursiveistrue, any meets assignedreet that span the split point will also be split,
into one meet for the part overlappirgeet 1 and one for the part overlappingeet 2. This
process proceeds recursively as deeply as required.

The two split functions returtr ue if these two conditions hold:
» Eitherrecursive istrue, or else no meets assignedeet span the split point.

* The meets resulting from each split have copies of the meet bounds (Section 4.5.4) of the
meets they are fragments of. Nevertheless their domains usually change, owing to meet
bounds with specifidur ati on attributes. This must cause no incompatibilities with the
domains of other meets connected to them by assignments, allowing for offsets. When a
cycle meet (Section 4.5.3) splits, the two fragments have the appropriate singleton domains.
Domain incompatibilities cannot occur in that case.

If these conditions holdeet is said to besplittableatdur ati onl.

When a meet splits, its tasks split too. This produces what is typically required when
assigning rooms: the fragments are free to be assigned different resources. The other possibility,
where the fragments are required to be assigned the same resource, can be obtained by assigning
the fragmentary tasks to each other. This must be done separately.

The next two functions are concerned with merging two meets into one:
bool KheMeet Mer geCheck(KHE_MEET neet 1, KHE MEET neet 2);

bool KheMeet Merge(KHE MEET neet 1, KHE MEET neet2, bool recursive,
KHE MEET =*neet);

Parameterseet 1 andneet 2 become undefined after a successful merge, untessis set to
&reet 1 or &neet 2.

If recursive istrue, after mergingreet 1 andneet 2, KheMeet Mer ge searches for pairs of

86 Chapter 4. Solutions

meets, one formerly assigned to the endedt 1, the other formerly assigned to the beginning
of meet 2, which are mergeable accordingKioeMeet Mer geCheck, and merges each such pair.
This process proceeds recursively as deeply as requihedieet Mer geCheck hasna ecur si ve
parameter because its result does not depend on whether the merge is recursive.

The functions returir ue if all these conditions hold:
. The two meets are distinct.

* The two meets have the same valu&ioéMeet | sCycl eMeet (Section 4.5.3).
* The two meets have the same valu&ioéMeet Event , possiblyNULL.
e The two meets have the same valu&KioéMeet Node, possiblyNULL.

* The two meets are both either assigned to the same meet, or not assigned. If assigned, the
offset of one (it may be either) must equal the offset plus duration of the other, ensuring they
are adjacent in time. Cycle meets, although never assigned, must also be adjacent in time.

* Thetwo meets have the same number of tasks, and the order of their tasks may be permuted
so that corresponding tasks are compatible. Two tasks are compatible when they have the
same taskings, domains, event resources, and assignments.

* The result meet takes over the meet bounds (Section 4.5.4) of one of the meets being
merged. Nevertheless its domain usually changes, owing to meet bounds with non-zero
dur ati on attributes. This must cause no incompatibilities with the domains of other meets
connected to it by assignments, allowing for offsets. When cycle meets (Section 4.5.3)
merge, the result meet has the singleton domain of the chronologically first meet. Domain
incompatibilities cannot occur in that case.

If all these conditions holdyeet 1 and neet 2 are said to bemergeable These conditions
usually hold trivially when merging the results of a previous split. The merged meet’s attributes
(including its meet bounds and the order of its tasks) may come from e#bet or neet 2; the
choice is deliberately left unspecified, and the user must not depend on it.

It is now clear whykheMeet Mer geCheck does not need eecur si ve parameter: because
none of the conditions just given depend on whether the merge is recursive. Recursive merges
are only attempted whetheMer geCheck says they will succeed. So instead of preventing the
top-level merge, an unacceptable recursive merge simply does not happen.

4.5.2. Assignment

KHE’s basic operations do not include assigning a time to a meet. A meetis either unassigned or
else assigned to another meet at a given offset, fixing the starting times of the two meets relative
to each other, but not assigning a specific time to either. For exampik,i$f assigned to?

at offset 2, then whatever tinme® eventually starts atil will start two times later. Of course,
ultimately meets need to be assigned times. This is done by assigning them to special meets
calledcycle meetg§Section 4.5.3).

Assigning one meet to another suppdrsrarchical timetablingin which several meets
are timetabled relative to each other, then the whole group is timetabled into a larger context, and

4.5. Meets 87

so on. One simple application is in handling link events constraints. Assigning all the linked
events except one to that exception guarantees that the linked events will be simultaneous; the
time eventually assigned to the exception becomes the time assigned to all.

The fundamental meet assignment operations are

bool KheMeet MoveCheck(KHE_MEET neet, KHE MEET target _neet, int offset);
bool KheMeet Move(KHE_MEET neet, KHE MEET target _neet, int offset);

KheMeet Move changes the assignment ofet from whatever it is now td ar get _rmeet at
of fset. If target _nmeet iSNULL, the move is an unassignment aridiset is ignored.

These functions follow the usual pattern, returriinge if the move can be carried out, with
KheMeet Move actually doing it if so. They returtr ue if all of the following conditions hold:

e KheMeet Assi gnl sFi xed (see below) returnisal se.
* Theneet parameter is not a cycle meet.

* The move actually changes the assignment: eittweget _meet iSNULL andneet 's current
assignment is noRULL, ort ar get _nmeet is nonNULL andneet 's current assignment is not
totarget neet atoffset.

» Theoffset parameter is in range: ifarget _nmeet is nonNULL, thenoffset >= 0 and
of fset <= KheMeetDuration(target neet) - KheMeetDuration(neet);

o If target_meet is nonNULL, then the time domain (Section 4.5.4) tafr get _neet is a
subset of the time domain atet , allowing for offsets.

* The node rule (Section 4.8) would not be violated if the move was carried out.

If all these conditions hold, themeet is said to bemoveableto t arget _neet at of f set .
Returningf al se when the move changes nothing reflects the practical reality that no solver
wants to waste time on such moves.

KHE offers several convenience functions basedr@Meet MoveCheck andKheMeet Move.
For assigning a meet there is

bool KheMeet Assi gnCheck(KHE_MEET nmeet, KHE MEET target neet, int offset);
bool KheMeet Assi gn(KHE_MEET neet, KHE MEET target neet, int offset);

Assigning is the same as moving except thegtt is expected to be unassigned to begin with, and
KheMeet Assi gnCheck andKheMeet Assi gn returnf al se if not. For unassigning there is

bool KheMeet UnAssi gnCheck(KHE _MEET neet);
bool KheMeet UnAssi gn(KHE_MEET neet);

Unassigning is the same as moving\té L. For swapping there is

bool KheMeet SwapCheck(KHE_MEET neet1, KHE MEET neet 2);
bool KheMeet Swap(KHE_MEET neet1l, KHE_MEET neet 2);

A swap is two moves, one aieet 1 to whatevereet 2 is assigned to, and the otherrafet 2 to

88 Chapter 4. Solutions

whatevemeet 1 is assigned to. It succeeds whenever those two moves succeed.

KheMeet Swap has two useful properties. First, exchanging the order of its parameters never
affects what it does. Second, the code fragment

i f(KheMeet Swap(neetl, neet2))
KheMeet Swap(meet 1, neet2);

leaves the solution in its original state whether the swap occurs or not.
A variant of the swapping idea callddock swappings offered:

bool KheMeet Bl ockSwapCheck(KHE_MEET neet 1, KHE_MEET neet2);
bool KheMeet Bl ockSwap(KHE_MEET neet 1, KHE_MEET neet 2) ;

Block swapping is the same as ordinary swapping except that it treats one very special case in

a different way: the case when both meets are initially assigned to the same meet, at different

offsets which cause them to be adjacent, but not overlapping, in time. In this case, both meets

remain assigned to the same meet afterwards, and the later meet is assigned the offset of the
earlier one, but the earlier one is not necessarily assigned the offset of the later one. Instead, it

is assigned that offset which places it adjacent to the other meet.

For example, when swapping a meet of duration 1assigned to the first time on Monday with
a meet of duration 2 assigned to the second time on Mottialyket Bl ockSwap would move
the first meet to the third time on Monday, not the second time. Thisis much more likely to work
well when the two meets have preassigned resources in common. It is the same as an ordinary
swap when the meets have the same duration, but it is different when their durations differ. The
two useful properties of ordinary swaps also hold for block swaps.

A meet’s assignment may be retrieved by calling

KHE_MEET KheMeet Asst (KHE_MEET neet);
i nt KheMeet Asst OF f set (KHE_MEET neet);

These return the meet theeet is assigned to, and the offset into that meet. If there is no
assignment, the values returned el and- 1.

Although a meet may only be assigned to one meet, any number of meets may be assigned
to a meet, each with its own offset. Functions

i nt KheMeet Assi gnedToCount (KHE_MEET target neet);
KHE_MEET KheMeet Assi gnedTo(KHE_MEET target _neet, int i);

visit all the meets that are assigned to a given meet, in an unspecified order which could change
when a meet is assigned to or unassigned franget _neet . (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.)

Given that a meet can be assigned to another meet at some offset, it follows that a chain of
assignments can be built up, from one meet to another and another and so on. Function

KHE MEET KheMeet Root (KHE MEET neet, int xoffset _in_root);

returns theoot of neet : the last meet on the chain of assignments leading ootetf. It also

4.5. Meets 89

setsrof f set _i n_root to the offset ofreet in its root meet, which is just the sum of the offsets
along the assignment path. One function which testet Root is

bool KheMeet Overl| ap(KHE MEET neetl, KHE MEET neet 2);

This returng rue if neet 1 andmeet 2 can be proved to overlap in time, because they have the
same root meet, and their offsets in that root meet and durations make them overlap. Also,

bool KheMeet Adj acent (KHE_MEET neet1, KHE MEET neet2, bool *swap);

returnst rue if meet 1 andneet 2 can be proved to be immediately adjacent in time (but not
overlapping), because they have the same root meet, and their offsets in that root meet and
durations make them adjacent. If so, it also set&p totrue if meet 2 precedeseet 1, and to

fal se otherwise. Again, the meets are required to have the same root meet. This implies that
a meet assigned to the end of one cycle meet (Section 4.5.3) is not reported to be adjacent to a
meet assigned to the start of the next cycle meet. Thisis usually what is wanted in practice.

Meet assignments may be fixed and unfixed, by calling

voi d KheMeet Assi gnFi x(KHE_MEET neet) ;
voi d KheMeet Assi gnUnFi x(KHE_MEET neet) ;
bool KheMeet Assi gnl sFi xed(KHE_NMEET neet) ;

Any attempt to change the assignmenteét will fail while the fix is in place. When several
events are linked by a link events constraint, assigning the meets of all but one of them to the
meets of that one and fixing those assignments, or assigning the meets of all of them to some
other set of meets and fixing those assignments, has a significant efficiency payoff.

A call to KheMeet MoveCheck(meet, target_neet, offset) returnsfal se irrespective
of target _meet andof f set whenneet is a cycle meet or its assignment is fixed. Function

bool KheMeet | sMbvabl e(KHE_MEET neet);

returng r ue when neither of these conditions holds, so #m&tveet MoveCheck can be expected
to returnt r ue for at least some target meets and offsets.

Two similar functions follow chains of fixed assignments:

KHE_MEET KheMeet Fi r st Movabl e(KHE_MEET neet, int xoffset _in_result);
KHE_MEET KheMeet Last Fi xed(KHE_MEET neet, int *xoffset in_result);

KheMeet Fi r st Movabl e returns the first meeton the chain of assignments out mfet such

that KheMeet | sMovabl e(m) holds. If there is no such meet it returNdLL. It is used when
changing the time assigned teet : this can be done only by changing the assignment of
KheMeet Fi r st Movabl e(meet) , or of a movable meet further along the chain, and this is only
possible when the result is ndbkL. KheMeet Last Fi xed returns the last meet on the chain of
fixed assignments out atfeet ; that is, it follows the chain of assignments outrnaet until it
reaches a meet whose target meBtis. or whose assignment is not fixed, and returns that meet.
Its result is always nofULL, and could be a cycle meet. Itis used to decide whether two meets
are fixed to the same meet, directly or indirectly. In both functions, the result cout¢béself,
and+of f set _i n_resul t is set to the offset ofreet in the result, if norNULL.

90 Chapter 4. Solutions

4.5.3. Cycle meets and time assignment

Even if most meets are assigned to other meets, there must be a way to associate a particular
starting time with a meet eventually. Rather than having two kinds of assignment, one to a meet
and one to a time, which might conflict, KHE has a special kind of meet callydla meet A

cycle meet has typeHE_MEET as usual, and it has many of the properties of ordinary meets. But

it is also associated with a particular starting time (and its domain is fixed to just that time and
cannot be changed), and so by assigning a meet to a cycle meet one also assigns a time.

A cycle meet cannot be assigned to another meet; its assignment is fikédl tand cannot
be changed. Cycle meets may be split (their offspring are also cycle meets) and merged. They
may even be deleted, but that is not likely to ever be a good idea.

The user cannot create cycle meetsdirectly. Instead, one cycle meetis created automatically
whenever a solution is created. The starting time ofithigl cycle meeis the first time of the
cycle, and its duration is the number of times of the cycle. When solving, it is usual to split the
initial cycle meet into one meet for each block of times not separated by a meal break or the end
of a day, to prevent other meets from being assigned times which cause them to span these breaks.
A function for this appears below. When evaluating a fixed solution, it is usual to not split the
initial cycle meet, since the other meets already have unchangeable starting times and durations,
and splitting the initial cycle meet might prevent them from being assigned to cycle meets.

To find out whether a given meet is a cycle meet, call
bool KheMeet | sCycl eMeet (KHE_MEET neet);

Cycle meets appear on the list of all meets contained in a solution. They are not stored separately
anywhere. So the way to find them all is

for(i =0; i < KheSolnMeetCount(soln); i++)

{
neet = KheSol nMeet (soln, i);

i f(KheMeet|sCycl eMeet (neet))
visit _cycle nmeet(meet);

}

However, cycle meets are usually near the front of the list, so this can be optimized as follows:

ti me_count = Khel nstanceTi meCount (KheSol nl nstance(sol n));

durn = 0;
for(i =0; i < KheSol nMeetCount(soln) && durn < time_count; i++)
{

meet = KheSol nMeet (soln, i);

i f(KheMeetlsCycl eMeet (nmeet))
{

visit_cycle_neet(nmeet);
durn += KheMeet Duration(meet);
}
}

The loop terminates as soon as the total duration of the cycle meets visited reaches the number

4.5. Meets 91

of times in the instance.

Solutions offer several functions whose results depend on cycle meets. They notice when
cycle meets are split, and adjust their results accordingly. Functions

KHE_MEET KheSol nTi neCycl eMeet (KHE_SCLN sol n, KHE_TIME t);
int KheSol nTi neCycl eMeet O f set (KHE_SCOLN soln, KHE_TIME t);

return the unique cycle meet running at timend the offset of within that meet. Function
KHE TI ME_GROUP KheSol nPacki ngTi meGr oup(KHE_SOLN sol n, int duration);

returns a time group containing the times at which a meet of the given duration may begin. For
example, if the initial cycle meet has not been sgtigSol nPacki ngTi meG oup(sol n, 2) will
contain every time except the last in the cycle; if the initial cycle meet has been split into one
meet for each day, it will contain every time except the last in each day; and so on.

As mentioned earlier,when solving it is usual to split the initial cycle meet into one fragment
for each maximal block of times not spanning a meal break or end of day. The XML format
does not record this information, but solver

voi d KheSol nSplitCycl eMeet (KHE_SOLN sol n);

is able to infer it, as follows. Say that two eventssof n's instance are related if they share

a required link events constraint with non-zero weight. Find the equivalence classes of the
reflexive transitive closure of this relation. For each class, examine the required split events
constraints with non-zero weight of the events of the class to determine what durations the meets
derived from the events of this class may have. Also determine whether the starting time of the
class is preassigned, because one of its events has a preassigned time.

For each permitted duration, consult the required prefer times constraints of non-zero
weight of the events of the class to see when its meets of that duration could begin. Ifra meet
with duration 2 can begin at timie there cannot be a break after titméf a meetmwith duration
3 can begin at time, there cannot be a break after titner after the time following , if any;
and so on. Accumulating all this information for all classes determines the set of times which
cannot be followed by a break. All other times can be followed by a break, and the initial cycle
event is split at these times, and also at times where a break is explicitly allowed by function
KheTi meBr eakAf t er from Section 3.4.2.

These functions move a meet to a time, following the familiar pattern:

bool KheMeet MoveTi meCheck(KHE MEET nmeet, KHE TIME t);
bool KheMeet MoveTi me(KHE_MEET meet, KHE TIME t);

They work by converting into a cycle meet and offset, via functioigeSol nTi neCycl eMeet
andKheSol nTi meCycl eMeet Of f set above, and callingheMeet MoveCheck andKheMeet Move.
Meets may also be assigned to cycle meets directly, ubielget Move and the rest. The direct
route is more convenient in general solving, since time assignment is then not a special case.

The following functions are also offered:

92 Chapter 4. Solutions

bool KheMeet Assi gnTi meCheck(KHE_MEET meet, KHE TIME t);
bool KheMeet Assi gnTi me(KHE_MEET nmeet, KHE TIME t);

bool KheMeet UnAssi gnTi meCheck(KHE_MEET neet);

bool KheMeet UnAssi gnTi me(KHE_MEET neet) ;

KHE_TI ME KheMeet Asst Ti ne(KHE_MEET neet) ;

The first four are wrappers fdtheMeet Assi gnCheck, KheMeet Assi gn, KheMeet UnAssi gnCheck,
andkheMeet UnAssi gn. KheMeet Asst Ti ne follows the assignments oket as far as possible, and
if it arrives in a cycle meet, it returns the starting timeneét ; otherwise it returnsiULL.

45.4. Meet domains and bounds

Each meet contains a time group calleditgnain retrievable by calling
KHE_TI ME_GROUP KheMeet Donai n(KHE_MEET neet) ;

When a meet is assigned a time, that time must be an element of its domain.

More precisely, the solution invariant says thaét 's domain must be a superset of the
domain of the meet it is assigned to, if any, adjusted for offsets. So, given a chain of assignments
beginning atreet and ending at a cycle meet, the domaimeét must be a superset of the
domain of the cycle meet, adjusted for offsets. Since the domain of a cycle meetis a singleton set
defining a time, the time assignedneet by this chain of assignments liesiaet 's domain.

Meet domains cannot be set directly. Insteaget boundbjects influence them. This
may seem unnecessarily complicated, but meet bounds have several major advantages over
setting domains directly, including allowing restrictions on domains to be added and removed
independently, and doing the right thing when meets split and merge.

When meets split and merge, their durations change, and this usually requires a change of
domain. For example,a meet of duration 2 cannot be assigned the last time on any day, but if itis
split, the fragments may be. Accordingly, a meet bound object stores a whole set of time groups,
one for each possible duration. Only one time group influences a meet’s domain at any moment:
the one corresponding to the meet’s current duration. But the others remain in reserve for when
the meet’s duration is changed by a split or merge.

To create a meet bound object, call

KHE_MEET_BOUND KheMeet BoundMake(KHE_SOLN sol n,
bool occupancy, KHE TIME_GROUP dft _tg);

See below for theccupancy anddft _t g parameters. To delete a meet bound object, call

bool KheMeet BoundDel et eCheck(KHE_MEET BOUND mb) ;
bool KheMeet BoundDel et e(KHE_MEET_BOUND nb) ;

This includes deletingb from each meet it is added to, and is permitted when all of those
deletions are permitted, accordingdweMeet Del et eMeet BoundCheck, defined below.

To retrieve the attributes defined when a meet bound is created, call

4.5. Meets 93

KHE_SOLN KheMeet BoundSol n(KHE_MEET_BOUND nb) ;
bool KheMeet BoundQccupancy(KHE_MEET _BOUND nb) ;
KHE_TI ME_GROUP KheMeet BoundDef aul t Ti meG oup(KHE_MEET_BOUND nb) ;

These are rarely accessed in practice.

As mentioned above, a meet bound is supposed to define a time group for each possible
duration. These time groups can be set manually by making any number of calls to

voi d KheMeet BoundAddTi neG oup(KHE_MEET _BOUND b,
int duration, KHE TIME GROUP tQ);

Each declares that whe is applied to a meet of the givelur at i on, it restricts its domain to
be a subset afg. They may be retrieved by

KHE_TI ME_GROUP KheMeet BoundTi neGr oup(KHE_MEET BOUND nb, int duration);

In both functionsgdur at i on may be any positive integer, provided it is not unreasonably large.
Two calls toKheMeet BoundAddTi meG oup with the samedur ati on are pointless, but if they
occur, the second takes effect. There is no need to specify a time group for every possible
duration: durations other than those covered by call&hte\eet BoundAddTi meGroup are
assigned time groups using thecupancy anddft _t g arguments oKheMeet BoundMake. To
explain them we need to delve deeper.

There are really two kinds of domains. Those we have dealt with so far may be called
starting-time domain®ecause they restrict the starting times of meets. They are appropriate, for
example, when expressing prefer times and spread events constraints (which constrain starting
times) structurally. The others may be caltetupancy domainbecause they restrict the whole
set of times a meet occupies, not just its starting time. For example, a meet of duration 2 should
not start immediately before a time when one of its resources is unavailable: the complement of
a resource’s set of unavailable times is an occupancy domain, not a starting-time domain.

KHE works directly only with starting-time domains, not occupancy domains, so what is
needed is a function to convert an occupancy domain into a starting-time domain:

KHE_TI ME_GROUP KheSol nStarti ngTi meG oup(KHE_SOLN sol n, int duration,
KHE_TI ME_GROUP tQ);

This returns the set of times that a meet of the given duration could start without any part of
it lying outsidet g. In other words, it accepts occupancy domiagrand returns the equivalent
starting-time domain for a meet of the given duration. Wtherat i on is 1, the result is justg.
Asdurati on increases the result shrinks, eventually becoming empty.

To return to meet bounds. Whencupancy is f al se, the time group used by the meet
bound for durations not set explicitlydt _t g. It may be best to set all durations explicitly in
this case. Whenccupancy istrue, the value used for any unspecified duration is

KheSol nSt arti ngTi meG oup(sol n, duration, dft_tg);

These values could be passed explicitly, but this way they can be (and are) created only when
needed, and there is no need to know the maximum duration. For exama\ej ledbl e_t g be
the set of times that some resource is available. Then the meet bound created by

94 Chapter 4. Solutions

KheMeet BoundMake(sol n, true, available tg);

ensures that a meet lies entirely within this set of times, whatever duration it has.

A meetmmay have any number of meet bounds. Its domain is the intersection, over all
its meet boundsb, of KheMeet BoundTi meG oup(nb, KheMeet Duration(m), or the full cycle if
none. A meet bound may be added to any number of meets. To add a meet bound, call

bool KheMeet AddMeet BoundCheck(KHE_MEET neet, KHE_MEET _BOUND nb) ;
bool KheMeet AddMeet Bound(KHE_MEET neet, KHE_MEET _BOUND mb) ;

These follow the usual form, returningue when the addition is permitted (when the change
in neet ’'s domain it causes does not violate the solution invariant), igMeet AddMeet Bound
actually carrying out the addition in that case. To delete a meet bound from a meet, call

bool KheMeet Del et eMeet BoundCheck(KHE_MEET neet, KHE MEET BOUND nb);
bool KheMeet Del et eMeet Bound(KHE_MEET neet, KHE MEET BOUND nb);

This too is not always permitted, because it may increase’s domain, which may violate the
solution invariant with respect to the domains of meets assignezkto

While a meet bound is added to at least one meet, it is not permitted to change its time
groups (that is, calls tsheMeet BoundAddTi neG oup are prohibited).

To visit the meet bounds added to a given meet, call

i nt KheMeet Meet BoundCount (KHE_MEET neet) ;
KHE MEET BOUND KheMeet Meet Bound(KHE_MEET neet, int i);

as usual. To visit the meets to which a given meet bound has been added, call

i nt KheMeet BoundMeet Count (KHE_MEET _BOUND nb) ;
KHE_MEET KheMeet BoundMeet (KHE_MEET BOUND nb, int i);

The relationship between meets and meet bounds is a many-to-many one.

When a meet is split, its meet bounds are added to both fragments; and when two meets
are merged, one (either) of the two sets of meet bounds is used for the merged meet. Although
the meet bounds are the same, the durations change, so the domains may change too. Splits and
merges are only permitted when the new domains do not violate the solution invariant.

Adding a meet bound to a meet has some cost in run time, but is fast enough to use within
solvers. Meet bound objects are obtained from free lists held in the solution object. Time groups
are immutable during solving and may be shared.

WhenKheMeet Make makes a meet derived from an event with a preassigned time, it adds
to the meet a meet bound whose default time group is the singleton time group containing that
time. No other special arrangements are made for meets derived from preassigned events.

4.5.5. Automatic domains

Cycle meets have fixed singleton domains, and meets derived from events can also be assigned
fixed domains, based on their durations and the constraints that apply to them.

4.5. Meets 95

When solving hierarchically there may be other meets, lying at intermediate levels, for
which there is no obvious fixed domain. Instead, the domain of such a meet needs to be the
largest domain consistent with the domains of the meets assigned to it: the intersection of those
domains, allowing for offsets, or the full set of times if no meets are assigned to it.

As meets are assigned to and unassigned from such a meet, its domain changes automatical-
ly. Atany moment it does have a domain, however, defined by the rule just given, and thisdomain
must satisfy the solution invariant as usual.

A newly created meet has a fixed domain. To convert it to the automatic form, call

bool KheMeet Set Aut oDonai nCheck(KHE_MEET neet, bool automatic);
bool KheMeet Set Aut oDonai n(KHE_MEET neet, bool automatic);

Assigningt r ue to aut omat i ¢ gives the meet an automatic domain. This will rettiahse if

meet is a cycle meet, or ifreet is derived from an event or contains tasks, as discussed below.
Assigningf al se returns the meet to a fixed domain. Meet bounds are not affected by automatic
domains; what is affected is whether they are used to construct the domain or not.

KheMeet Domai n returnsNULL when the meet has an automatic domain. It is important not
to mistake this for ‘having no domain, a concept not defined by KHE. Function

KHE_TI ME_GROUP KheMeet Descendant sDomai n(KHE_MEET neet) ;

returns the intersection of the domains of the descendamgofincludingreet itself, adjusted

for offsets, or the full time group if there are no such meets or they all have automatic domains.
It may thus be used to find the true domain of a meet WKiheiveet Donai n returnsNULL. It is
relatively slow and not intended for use during solving.

When a meet with an automatic domain is split, its two fragments have automatic domains.
When two meets are joined, they must both either have automatic domains or not; and if both do,
then the joined meet has an automatic domain.

A meet with an automatic domain may not be derived from an event, and it may not have
tasks. These two conditions are naturally satisfied by the kinds of meets that need automatic
domains. They are necessary, since otherwise KHE would be forced to maintain explicit
domains as meets are assigned and unassigned, which would not be efficient. Asitis, automatic
domains are implemented by having the domain test bypass meets whose domains are automatic,
as though each such meet was replaced by the collection of meets assigned to it.

4.6. Tasks

A task is a demand for one resource. lItis created by calling

KHE_TASK KheTaskMake(KHE_SOLN sol n, KHE_RESOURCE TYPE rt,
KHE_MEET neet, KHE_EVENT RESOURCE er):

The task lies irsol n and has resource typé. When parametereet is nonNULL, the task

lies withinneet , representing a demand for one resource, of typat the times wheneet is
running. Whemeet isNULL, the task still demands a resource, but at no times, making it useful
only as a target for the assignment of other tasks, as explained below.

96 Chapter 4. Solutions

Parameteer may be norNULL only whenneet is nonNULL and derived from some event
e. Inthat casegr must be one oé’s event resources. Its presence causes the task to consider
itself to be derived from event resouree

When first created, a meet has no tasks. They must be created separately by calls to
KheTaskMake. FunctiorkheSol nMakeConpl et eRepr esent at i on (Section 4.3) doesthis. When
a task’s enclosing meet splits, the task splits too. And when two meets merge, their tasks must
be compatible and are merged pairwise, inversely to the split.

A task contains an optionassignmento another task, and sesource domairwhich
restricts the resources it may be assigned to an arbitrary subset of the resources of itstype. These
attributes are described in detail in later sections.

A task may be deleted by calling
voi d KheTaskDel et e(KHE_TASK t ask);

This removes the task from its meet, if any, and unassigns any assignments involving the task.
The back pointer of a task may be set and retrieved by

voi d KheTaskSet Back(KHE TASK task, void xback);
voi d *KheTaskBack(KHE TASK t ask);

as usual, and the usual visit number operations are available:

voi d KheTaskSet Vi si t Num(KHE_TASK task, int nunj;
int KheTaskVisitNum KHE_TASK t ask);

bool KheTaskVi sited(KHE _TASK task, int slack);
voi d KheTaskVi sit (KHE_TASK t ask);

voi d KheTaskUnVi sit (KHE_TASK task);

The attributes of a task related to its meet may be retrieved by

KHE_MEET KheTaskMeet (KHE_TASK t ask);
int KheTaskMeet | ndex(KHE_TASK t ask);
int KheTaskDuration(KHE_TASK t ask);
fl oat KheTaskWorkl oad(KHE_TASK t ask);

If there is no meetheTaskMeet returnsNULL andKheTaskDur ati on andKheTaskWr ki oad
return 0. If there is a meet and event resoukbeTaskWr kil oad returns the workload of the
task, defined in accord with the XML format’s definition to be

d(meejw(er)

w(task) = o

whered(mee}is the duration of ask’s meetw(er) is the workload of ask’s event resource, and
d(e) is the duration of ask’s meet’s event. See below for the similar and more generally useful
KheTaskTot al Dur at i on andkheTaskTot al Wor kl oad operations. There is also

fl oat KheTaskWor kl oadPer Ti me(KHE_TASK t ask);

which returns the workload per time(er)/ d(e). This is used when evaluating limit workload

4.6. Tasks 97

constraints, so for efficiency it is calculated just once when the task is created, and stored in the
task. Other attributes of a task may be accessed by

KHE_SCLN KheTaskSol n(KHE_TASK t ask);

int KheTaskSol nl ndex(KHE_TASK t ask);

KHE_RESOURCE_TYPE KheTaskResour ceType(KHE_TASK t ask);
KHE_EVENT_RESOURCE KheTaskEvent Resour ce(KHE_TASK t ask);

These return the solution containingsk, the index oft ask in its solution (the value of for
whichKheSol nTask(sol n, i) returnd ask), the task’s resource type, and its event resource (if
any). Index numbers may change when tasks are deleted (what actually happens is that the hole
left by the deletion of a task, if not last, is plugged by the last task), so care is needed. Also,

bool KheTaskl sPreassi gned(KHE TASK task, KHE RESOURCE *r);

returnst rue when KheTaskEvent Resource(task) !'= NULL and that event resource has a
preassigned resourgesk is called gpreassigned tasik that case. If ! = NULL, then+r is set
to the event resource’s preassigned resourcasik is preassigned, and MJLL otherwise.

Two tasks are said to legjuivalentwhen, if they were assigned and those assignments were
swapped, effectively nothing would change. Function

bool KheTaskEqui val ent (KHE_TASK t askl, KHE TASK task2);

returnst rue whentaskl andtask2 are derived from equivalent event resources according

to KheEvent Resour ceEqui val ent (Section 3.6.3), their enclosing meets must have the same
duration and the same assigned time (which coultiUbé), their domains are equal, and their
child tasks are pairwise equivalent. What the tasks are currently assigned to, if anything, has no
influence on whether they are equivalent.

Ideally the specification would say that there must be some matching of the two sets of child
tasks such that each matched pair is equivalent. However that would require sorting the child
tasks in some non-trivial way and has not been implemente#h&askEqui val ent is similar
to KheEvent Resour ceEqui val ent in that when it returnsr ue, the tasks really are equivalent,
but when it return$al se, they may or may not be equivalent.

A task may lie in aasking which is an arbitrary set of tasks (Section 5.5). Functions

KHE_TASKI NG KheTaskTaski ng(KHE_TASK t ask);
int KheTaskTaski ngl ndex(KHE_TASK t ask);

return the tasking containingisk and the index of ask in that tasking, oNULL and- 1 if the
task does not lie in a tasking. Finally,

voi d KheTaskDebug(KHE_TASK task, int verbosity, int indent, FILE *fp);

produces the usual debug printtafsk ontof p with the given verbosity and indent.

4.6.1. Assignment

Just as KHE assigns one meet to another meet, not to a time, so it assigns one task to another task,
not to a resource. Accordingly, the assignment operations for tasks parallel those for meets, the

98 Chapter 4. Solutions

main difference being that there is no offset.
The fundamental task assignment operations are

bool KheTaskMoveCheck(KHE TASK task, KHE TASK target task);
bool KheTaskMove(KHE _TASK task, KHE TASK target task);

KheTaskMve changes the assignmenttafsk totarget _task. If target _task is NULL, the
move is an unassignment. These operations follow the usual pattern, refuainiegand chang-
ing nothing if they cannot be carried out. Here is the full list of reasons why this could happen:

» task’s assignment is fixed;

» task isacycle task (Section 4.6.2);

the move changes nothingar get _t ask is the same asask’s current assignment;

» target_task is nonNULL and the resource domain (Section 4.6.3) afget _t ask is not
a subset of the resource domairt abk.

As for meet moves, returnirigdl se when the move changes nothing reflects the practical reality
that no solver wants to waste time on such moves.

KHE offers several convenience functions based@TaskMveCheck andKheTaskMve.
For assigning a task there is

bool KheTaskAssi gnCheck(KHE_TASK task, KHE_TASK target _task);
bool KheTaskAssi gn(KHE_TASK task, KHE TASK target _task);

Assigning is the same as moving except thestk is expected to be unassigned to begin with, and
KheTaskAssi gnCheck andKheTaskAssi gn returnf al se if not. For unassigning there is

bool KheTaskUnAssi gnCheck(KHE_TASK t ask) ;
bool KheTaskUnAssi gn(KHE_TASK t ask);

Unassigning is the same as movingttd L. For swapping there is

bool KheTaskSwapCheck(KHE TASK taskl, KHE TASK task2);
bool KheTaskSwap(KHE _TASK taskl, KHE TASK task2);

A swap is two moves, one dfaskl to whatevett ask2 is assigned to, and the other todsk?2
to whatevet askl is assigned to. It succeeds whenever those two moves succeed. As for meet
swaps, exchanging the parameters changes nothing, and code fragment

i f(KheTaskSwap(taskl, task2))
KheTaskSwap(taskl, task2);

leaves the solution in its original state whether the swap occurs or not.
A task’s assignment may be retrieved by calling

KHE_TASK KheTaskAsst (KHE_TASK t ask) ;

If there is no assignmemtilLL is returned. Although a task may only be assigned to one task,

4.6. Tasks 99

any number of tasks may be assigned to a task. Functions

i nt KheTaskAssi gnedToCount (KHE TASK target task);
KHE_TASK KheTaskAssi gnedTo(KHE_TASK target task, int i);

visit all the tasks that are assigned tw get _t ask, in an unspecified order which could change
when a task is assigned or unassigned ftamget _t ask. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.) Functions

int KheTaskTot al Dur ati on(KHE_TASK t ask);
fl oat KheTaskTot al Wor kl oad(KHE_TASK t ask);

return the total duration and workloadtdsk and the tasks assigned to it, directly or indirectly.
These functions are usually more appropriate raTaskDur at i on andKheTaskWr ki oad.

Given that a task can be assigned to another task, a chain of assignments can be built up,
from one task to another and so on. Function

KHE_TASK KheTaskRoot (KHE_TASK t ask);

returns theoot of t ask: the last task on the chain of assignments leading ouésf, possibly
t ask itself. The resultis neveMULL, but it could be a cycle task (Section 4.6.2). Function

KHE_TASK KheTaskPr oper Root (KHE_TASK t ask);

is like KheTaskRoot except that it excludes assignments to cycle tasks from the chain of
assignments it follows. The result is a cycle task only wheek itself is a cycle task.

The next two functions are offered as an aid to solvers, to help them to decide whether they
should try to assign a resource to a given task, or not:

bool KheTaskAssi gnment HasCost (KHE_TASK t ask);
bool KheTaskNonAssi gnnent HasCost (KHE_TASK t ask);

KheTaskAssi gnment HasCost returnd r ue when assigning a resource sk would have a cost,
because ask, or some task assigned directly or indirectly to it, is subject to a prefer resources
constraint with non-zero cost and an empty domé&ireTaskNonAssi gnment HasCost returns

true when not assigning a resourcettask would have a cost, becausesk, or some task
assigned directly or indirectly to it, is subject to an assign resource constraint with non-zero cost,
or to a limit resources constraint with a non-zero minimum limit and non-zero cost. The limit
resources constraint would not always generate a cost wadsnis not assigned; if all of the
tasks it monitors were not assigned, however, it would.

Task assignments may be fixed and unfixed as usual, by calling

voi d KheTaskAssi gnFi x(KHE_TASK t ask) ;
voi d KheTaskAssi gnUnFi x(KHE _TASK t ask);
bool KheTaskAssi gnl sFi xed(KHE_TASK t ask) ;

The assignment ofask cannot be changed while the fix is in place. When several tasks are
linked by an avoid split assignments constraint, assigning all but one of them to that one and fix-
ing those assignments, or assigning all of them to some other task and fixing those assignments,

100 Chapter 4. Solutions

has a significant efficiency payoff. Function
KHE_TASK KheTaskFi r st UnFi xed(KHE_TASK t ask);

returns the first task on the chain of assignments otuési whose assignment is not fixed (pos-
siblyt ask), orNULL if none. A solver can change the resource assigneastoonly by changing
the assignment dfheTaskFi r st UnFi xed(t ask) , or of a task further along the chain.

4.6.2. Cycle tasks and resource assignment

Just as meets are assigned times by assigning them, directly or indirectly, to cycle meets, so tasks
are assigned resources by assigning them, directly or indirecttyde tasks A cycle task

has typeKHE_TASK as usual, and it has many of the properties of ordinary tasks. But it is also
associated with a particular resource (and its domain is fixed to just that resource and cannot be
changed), and so by assigning a task to a cycle task one also assigns a resource.

The user cannot create cycle tasks directly. Instead, one cycle task is created automatically
for each resource whenever a solution is created. Thefiesihst anceResour ceCount tasks
of a solution are its cycle tasks, in the order the resources appear in the instance. Function

bool KheTaskl sCycl eTask(KHE_TASK t ask);
returng r ue whent ask is a cycle task. Function
KHE_TASK KheSol nResour ceCycl eTask(KHE_SCLN sol n, KHE_RESOURCE r);

returns the cycle task representimm sol n.
These functions move a task to a resource, following the familiar pattern:

bool KheTaskMoveResour ceCheck(KHE TASK task, KHE RESOURCE r);
bool KheTaskMoveResour ce(KHE TASK task, KHE RESOURCE r);

They first produce a target task. fifis nonNULL this is the cycle task returned by function
KheSol nResour ceCycl eTask above, otherwise it iSULL. Then they calkheTaskMveCheck
andKheTaskMve. Tasks may also be assigned to cycle tasks directly, ibieitpskMove etc.

The following functions are also offered:

bool KheTaskAssi gnResour ceCheck(KHE TASK task, KHE RESOURCE r);
bool KheTaskAssi gnResource(KHE TASK task, KHE RESOURCE r);

bool KheTaskUnAssi gnResour ceCheck(KHE TASK t ask);

bool KheTaskUnAssi gnResour ce(KHE TASK t ask);

KHE RESOURCE KheTaskAsst Resour ce(KHE TASK t ask);

The first four are wrappers fatheTaskAssi gnCheck, KheTaskAssi gn, KheTaskUnAssi gnCheck,
andkheTaskUnAssi gn. KheTaskAsst Resour ce follows the assignments ofsk as far as possible.
If it arrives at a cycle task, it returns the resource represented by that task, else itKeturns

To find the tasks assigned a given resource, either directly or indirectly via other tasks, call

i nt KheResour ceAssi gnedTaskCount (KHE_SCLN sol n, KHE_RESOURCE r);
KHE_TASK KheResour ceAssi gnedTask(KHE_SOLN sol n, KHE_RESOURCE r, int i);

4.6. Tasks 101

When a resourceis assigned to a task, the task and all tasks assigned to it, directly or indirectly,
go on the end of 's sequence. Whenis unassigned from a task, the task and all tasks assigned
to it, directly or indirectly, are removed, and the gaps are plugged by tasks taken from the end.
The sequence does not include cycle task.

In practice, tasks are of three kindsycle taskswhich represent resourcesnfixed tasks
which require assignment to cycle tasks; éirdd taskswhose assignments are fixed to unfixed
tasks, relinquishing responsibility for assigning a resource to those tasks. Resource assignment
algorithms are concerned with assigning or reassigning unfixed tasks.

4.6.3. Task domains and bounds

Each task contains a resource group calledatmain retrievable by calling
KHE_RESOURCE _GROUP KheTaskDomai n(KHE_TASK t ask) ;

When a task is assigned a resource, that resource must be an element of its domain.

More precisely, the solution invariant says thask’s domain must be a superset of the
domain of the task it is assigned to, if any. So, given a chain of assignments beginrasg at
and ending at a cycle task, the domain a§k must be a superset of the domain of the cycle task.
Since the domain of a cycle task is a singleton set defining a resource, the resource assigned to
t ask by this chain of assignments liestinsk’s domain.

Task domains cannot be set directly. Instdadk boundobjects influence them. Task
bounds work in the same way as meet bounds, except that the complications introduced by meet
splitting are absent.

To create a task bound object, call
KHE_TASK_BOUND KheTaskBoundMake(KHE_SOLN sol n, KHE_RESOURCE_GROUP rg);
To delete a task bound obiject, call

bool KheTaskBoundDel et eCheck(KHE_TASK BOUND tb);
bool KheTaskBoundDel et e(KHE_TASK _BOUND t b);

This includes deletingb from each task it is added to, and is permitted when all of those
deletions are permitted, accordingdweTaskDel et eTaskBoundCheck, defined below.

To retrieve the attributes defined when a task bound is created, call

KHE_SOLN KheTaskBoundSol n(KHE_TASK_BOUND t b)

KHE_RESOURCE_GROUP KheTaskBoundResour ceGr oup(KHE_TASK BOUND tb) ;
These are rarely accessed in practice.

A task may have any number of task bounds. Its domain is the intersection, over all its task
bounds b, of KheTaskBoundResour ceG oup(t b) , or the full set of resources of its type if none.
A task bound may be added to any number of tasks. To add a task bound, call

bool KheTaskAddTaskBoundCheck(KHE TASK task, KHE TASK BOUND tb);
bool KheTaskAddTaskBound(KHE TASK task, KHE TASK BOUND tbh);

102 Chapter 4. Solutions

These follow the usual form, returningue when the addition is permitted (when the change
in t ask’s domain it causes does not violate the solution invariant), #TaskAddTaskBound
actually carrying out the addition in that case. To delete a task bound from a task, call

bool KheTaskDel et eTaskBoundCheck(KHE_TASK t ask, KHE TASK BOUND tb);
bool KheTaskDel et eTaskBound(KHE_TASK t ask, KHE TASK BOUND tb);

This too is not always permitted, because it may incréask’s domain, which may violate the
solution invariant with respect to the domains of tasks assigneasta

To visit the task bounds added to a given task, call

i nt KheTaskTaskBoundCount (KHE_TASK t ask) ;
KHE TASK BOUND KheTaskTaskBound(KHE TASK task, int i);

as usual. To visit the tasks to which a given task bound has been added, call

i nt KheTaskBoundTaskCount (KHE_TASK BOUND t b);
KHE_TASK KheTaskBoundTask(KHE_TASK BOUND th, int i);

The relationship between tasks and task bounds is a many-to-many one.

Adding a task bound to a task has some cost in run time, but is fast enough to use within
solvers. The implementation parallels the one described previously for meet bounds.

WhenkKheTaskMake makes a task derived from an event resource which has a preassigned
resource, it adds to the task a task bound whose resource group is the singleton resource group
containing that resource. No other special arrangements are made for tasks derived from
preassigned event resources.

4.7. Marks and paths

Suppose you want to make the best time assignment for a meet. You try each assignmentin turn,
remembering the best so far and its solution cost, then finish off by re-doing the best one.

Now suppose the alternative operations are more complicated. For example, they might
be Kempe meet moves (Section 10.2.2), each consisting of an unpredictable number of time
assignments. The same program structure works, but undoing one alternative is much more
complicated. Marks and paths solve these kinds of problems.

A markis like a waymark on a journey: it marks a particular point, or state, that a solution
has reached. Itis created and deleted by

KHE_MARK KheNar kBegi n(KHE_SOLN sol n) ;
voi d KheMar kEnd(KHE_MARK mar k, bool undo);

These operations must be called in matching pairs: for each ¢éiétdr kBegi n there must be
one later call t&neMar kEnd with the same mark object. Between these two calls there may be
other calls tdkheMar kBegi n andKheMar kEnd, and those calls must occur in matching pairs.

KheMar kEnd deletes the mark created by the correspondimgvar kBegi n. If its undo
parameter isr ue, it also undoes all operations enl n since the correspondinieMar kBegi n,
returning the solution to its state when that call was made. Another way to undo is

4.7. Marks and paths 103

voi d KheMar kUndo(KHE_MARK mar k) ;

It undoes all operations osol n since the call td<heMar kBegi n which returnedrar k, only
without removingrar k. It can only be called when it would be legal to déieMar kEnd with the
same value ofrar k: whennar k is the mark returned most recently by a calkt@Mar kBegi n,
apart from marks already completedfieMar KEnd.

When undoing by either method, the resulting value of the solution may differ from the
original in its naturally nondeterministic aspects, such as the set of unmatched demand monitors
(but not their number), and the order of elements in arrays representing sets (of meets, etc.). But
as a solution it will be the same as the original. KHE objects deleted while doing and re-created
while undoing are re-created with the same memory addresses as the originals.

At any time betweerheMar kBegi n and its correspondingheMar kEnd, functions

KHE SOLN KheMar kSol n(KHE_ MARK mar k) ;
KHE COST KheMar kSol nCost (KHE_MARK mar k) ;

may be called to obtaimar k’s solution and the solution cost at the tirdeeMar kBegi n was
called. Exploring the result dtheMar kSol n will reveal the solution as it is now, not as it was
whenKheMar kBegi n was called.

All mark objects share accessto one sequence, stored in the solution object, of records of the
operations performed on the solution since the first cadhtvar kBegi n whose corresponding
KheMar KEnd has not occurred yet. When undoing, these operations are undone in reverse order
and removed from the sequence. All changes to solutions, including changes to back pointers,
are recorded, except changes to visit numbers, since undoing them would be inappropriate. A
mark object holds a pointer to the solution object, its cost wiievar kBegi n was called, an
index into the sequence saying where to stop undoing, and a sequence of paths, described next.

A pathis like the route between two waymarks. A path is created by calling
KHE_PATH KheMar kAddPat h(KHE_MARK nar k) ;

and represents the route from the staterwfk’s solution represented byar k to the state of

that solution at the momemheMar kAddPat h is called. Concretely, a path holds a copy of the
shared sequence of operations, taken at the mokhehtr kAddPat h is called, from its mark’s

index to the end. As well as being returned, a path is stored in its mark and deleted by that mark’s
KheMar kEnd, if it has not been deleted before then. A path is meaningless after its mark ends.

In practice, this helper function may be more useful tkzeivar kAddPat h:
KHE_PATH KheMar kAddBest Pat h(KHE_MARK mark, int K);

It is written using the more basic functions given below. Its behaviour is equivalent to calling
KheMar kAddPat h(mar k) , then sortingrar k’s paths into increasing cost order, then deleting paths
from the end as required to ensure that not more khaaths are kept. But rather than following
this description literally, it uses an optimized method that only déiédvar kAddPat h(mar k)

when the resulting path would be one of those kept; it returns the new path in that cadé,land
otherwise. For exampl&heMar kAddBest Pat h(mark, 1) saves only the best path, and only
creates a path when it would be a new best.

Any number of paths may be stored in a mark, and they may be visited using

104 Chapter 4. Solutions

i nt KheMar kPat hCount (KHE_MARK mar k) ;
KHE PATH KheMar kPat h(KHE_ MARK mark, int i);

as usual, and sorted by calling

voi d KheMar kPat hSort (KHE_MARK nar k,
i nt(*conpar)(const void *, const void *));

whereconpar is a function suited to passingdeor t when sorting an array ¢fHE_PATH objects.
One such functiorkhePat hl ncr easi ngSol nCost Cnp, is provided, such that after calling

KheMar kPat hSort (mar k, &KhePat hl ncr easi ngSol nCost Cnp) ;

the paths will be sorted into increasing solution cost order, so that the path with the smallest
solution cost comes first. The following operations on paths are also available:

KHE_SCLN KhePat hSol n(KHE_PATH pat h);
KHE COST KhePat hSol nCost (KHE_PATH pat h) ;
KHE_MARK KhePat hMar k(KHE_PATH pat h);

voi d KhePat hDel et e(KHE_PATH pat h) ;

voi d KhePat hRedo(KHE_PATH pat h) ;

KhePat hSol n returnspat h’s solution, andkhePat hSol nCost returns the solution cost at
the moment the path was created KheMar kAddPat h. KhePat hMark returnspat h’s mark.
KhePat hDel et e deletespath, including removing it from its mark.KheMar kEnd calls
KhePat hDel et e for each of its paths; once a mark is deleted, its paths have no meaning.

WhenKhePat hRedo(pat h) is called, the solution must be in the state it was in werh’s
mark was created. It redopst h, without deleting or otherwise disturbing its mark, so that the
state after it returnsis the state at the enpladvh. Thisisthe only way to redo a path, and because
it checks that it starts from the same state that the path started from originally, it guarantees that
the operations executed while redoing the path cannot fail. KHE objects created along the path
and deleted during the undo (which must have occurred in order to return the solution to its
original state) are re-created during the redo with the same memory addresses as the originals.

One application of marks and paths is the conversion of a sequence of operations into an
atomic sequengene which is either carried out completely or not at all:

mar k = KheMar kBegi n(sol n);
success = SonmeSequenceC Cperations(...);
KheMar KEnd(mar k, !success);

If the sequence of operations is successful, it remains in place; otherwise the unsuccessful
sequence, or whatever part if it was completed before failure occurred, is undone. Similarly,

mar k = KheMar kBegi n(sol n);
SomeSequenceCf Qperations(...);
KheMar KEnd(mar k, KheSol nCost (sol n) >= KheMar kSol nCost (mark)) ;
keeps the sequence of operations if it reduces the cost of the solution, but not otherwise.
Another application is the coordination of complex searches, such as tree searches, which

4.7. Marks and paths 105

try many alternatives and keep the best. Before the search begins, create a mark, and pass it
to the search function, so that whenever it finds a worthwhile state it can record it in the mark
by calling KheMar kAddPat h or KheMar kAddBest Pat h. (If the initial state is a valid solution,

one that the rest of the search is trying to improve on,alMar kAddPat h immediately after

KheMar kBegi n.) Within the search function, create other marks as required so that subtrees can
be undone by callingheMar kEnd(sub_nark, true). Atthe end,allworthwhile states are paths

in the original mark, where they can be examined, sorted, or whatever—Iike this, perhaps:

i f(KheMarkPat hCount (nark) > 0)
KhePat hRedo(KheMar kPat h(mark, 0));
KheMar KEnd(mar k, fal se);

when only the best path is kept. If it is safe to redo that path, there can be nothing to undo.

Marks and paths have been implemented carefully, and their running time is small. Indeed,
it is usually faster to use marks and undoing to return a solution to a previous state, than to
use operations opposite to the originals. This is bec#bskar kBegi n andKheMar kEnd call
KheSol nMat chi ngMar kBegi n andKheSol nMat chi ngMar kEnd (Section 7.2), and because there
is no need to check that an undo is safe, as there is when carrying out an opposite operation.

4.8. The solution invariant

Here is the condition, called the solution invariant, that every solution always satisfies. The last
three rules relate to data types introduced in Chapter 5.

1. Themeetrule if meet is assigned toar get _neet at offsetof f set , then:

(@) The value obf f set is at least 0 and at most the durationtaf get _neet minus the
duration ofneet ;

(b) The time domain of ar get _neet , shifted rightof f set places, is a subset of the time
domain ofneet ;

2. Thetask rule if task is assigned ta arget_task, then the resource domain of
target _task is a subset of the resource domairt ek.

3. Thecycle rule the parent links of nodes may not form a cycle.

4. Thenode rule if meetneet is assigned to meétr get _neet and liesin node, thenn has
a parent node aricar get _neet lies in that parent node.

5. Thelayer rule every node of a layer has the same parent node as the layer.

No sequence of operations can bring a solution to a state that violates this invariant.

Chapter 5. Extra Types for Solving

This chapter introduces several types of objects that help with solving. Four of tlogiesay-

ers zonesandtasking3are integral to solutions, being copied when they are copied, for example.
But they are not part of the XML model, so their use is optional. Nodes and layerstogether define
thelayer tree a data structure invented by the author [7] for use in time assignment. Zones help
to make time assignments regular, and taskings are used in resource assignment.

5.1. Layer trees

The layer tree is a data structure for organizing solutions during time assignment. It supports
hierarchical timetablingin which meets are timetabled together into small timetables called
tiles, the tiles are timetabled together, and so on until a complete timetable is produced. Layer
trees are recommended when solving general instances, since they gracefully handle awkward
cases, such as linked events whose durations differ.

Layer trees are made ofodes which form a tree (actually, a forest). Each node has an
optionalparent node The nodes with a given parent aredtsldren

Within each node lie any number of meets. Tiaale rule part of the solution invariant
(Section 4.8), imposes a structure on how the meets of nodes may be assigneet i§
assigned tovar get _nmeet and lies in node, thenn has a parent node amdr get _neet liesin
that parent node. A layer tree usually has a single root node containing the cycle meets, called the
cycle node If there is a cycle node, the node rule guarantees that if every non-cycle meet lying
in a node is assigned to some meet, then every such meet is assigned a time.

A meet may lie in at most one node. When using layer trees, it is conventional for every
meet to lie in a node except when it has received its final assignment. Omitting meets from nodes
hides them from time assignment algorithms, which typically access meets via nodes.

When a meet splits, it is replaced in its node (if any) by the two fragments. When two meets
merge, they must lie in the same node (or none), and they are replaced by the merged meet.

A layeris a subset of the children of some node with the property that none of the meetsin
the nodes of the layer may overlap in time. This could be for any reason, but it is usually because
their meets all share a preassigned resource which possesses a required avoid clashes constraint.
The property is not enforced by KHE; it is merely a convention.

Here are some examples of layer trees. The first has four nhdag,n,, andn,. Then,
share a layer and are children f so their meets must be assigned to meets aihd should
not overlap in time:

N
n

1 n, N

The nodes are shown as rectangles. The horizontal direction represents time. Thah#re

106

5.1. Layer trees 107

a layer is indicated by placing them alongside each other, and that they are childxeis of
indicated by placing them vertically beldw:

In the next example\l has five children, lying in two layer§n, n,, n;} and{m, m}:

N
n n, N

m m,

This could arise when one group of students attends, tivbile another group attends thg
Finally, here is an example where a node lies in two layers (but still has only one parent):

N
nm n, Ny

m, m;

The two layer§ nm, n,,n;} and{nm, m,, m;} both contain nodem,. This case arises naturally
when an event (or a set of linked events) is attended by two groups of students, so that their
timetables coincide at that event but may differ elsewhere.

The key operation in hierarchical timetabling is the assignment of the meets of the children
of a node to the meets of the node, so that meets that share a layer do not overlap. One way to
construct a timetable is to build a layer tree containing every meet, whose root node contains the
cycle meets, and apply this operation at each node, visiting the nodes in postorder (bottom up).

5.2. Nodes

To create a layer tree node, initially with no meets, no parent, and no children, call
KHE_NODE KheNodeMake(KHE_SCLN sol n);

Its back pointer may be accessed by

voi d KheNodeSet Back(KHE_NCDE node, void *back);
voi d »KheNodeBack(KHE _NODE node);

and its visit number by

voi d KheNodeSet Vi si t Num(KHE_NODE n, int num;
i nt KheNodeVi si t Num(KHE_NODE n) ;

bool KheNodeVi sited(KHE_NODE n, int slack);
voi d KheNodeVi si t (KHE_NODE n);

voi d KheNodeUnVi si t (KHE_NCDE n);

as usual, and its other attributes may be retrieved by calling

KHE_SOLN KheNodeSol n(KHE_NCDE node) ;
i nt KheNodeSol nl ndex(KHE_NODE node) ;

108 Chapter 5. Extra Types for Solving

KheNodeSol nl ndex returns thendexof node: the value of for whichKheSol nNode(sol n, i)
(Section 4.2.7) returnsode. The index may change when nodes are deleted (what actually
happens is that the hole left by the deletion of a node, if not last, is plugged by the last node) so
care is needed if indexes are stored. To visit the nodes of a solution in increasing index order,
use functiongheSol nNodeCount andKheSol nNode from Section 4.2.7. To delete a node, call

bool KheNodeDel et eCheck(KHE_NCDE node) ;
bool KheNodeDel et e(KHE_NODE node);

This deletes all parent-child links involvimgde, and deletes all meets fromde (but does not
delete them). It is permitted only when no meets assignedde’'s meets lie in a node.
To make one node the parent of another, call

bool KheNodeAddPar ent Check(KHE_NCDE chi | d_node, KHE NODE parent _node);
bool KheNodeAddPar ent (KHE_NCDE chi | d_node, KHE NCDE parent _node);

These abort ithi | d_node already has a parent; they rettiai se and do nothing when adding
the link would cause a cycle. To delete a parent-child link, call

bool KheNodeDel et ePar ent Check(KHE_NODE chi | d_node);
bool KheNodeDel et ePar ent (KHE_NODE chi | d_node);

Deletion is permitted only when none of the meetslofl d_node is assigned. The gap created
in the list of child nodes of the parent node by the deletiophdof d_node is filled by shuffling
the following nodes down one place. To retrieve the parent of a node, call

KHE_NCDE KheNodePar ent (KHE_NODE node) ;

ThisreturndULL whennode has no parent. Children are added and deleted, obviously, by adding
and deleting parents. Functions

i nt KheNodeChi | dCount (KHE_NCDE node);
KHE_NODE KheNodeChi | d(KHE_NODE node, int i);

visit a node’s children in the usual way. There are also

bool KheNodel sDescendant (KHE_NODE node, KHE NCDE ancestor node);
bool KheNodel sProper Descendant (KHE_NODE node, KHE NODE ancestor _node);

KheNodel sDescendant returnst rue whennode is a descendant afncest or _node, possibly
ancest or _node itself; KheNodel sProper Descendant returnstrue when node is a proper
descendant oéncest or _node, that is, a descendant other tharcest or _node itself. They
work in the obvious way, searching upwards froode for ancest or _node.

Several helper functions for rearranging nodes appear in Section 9.5. They are often more
useful tharkneNodeAddPar ent andkheNodeDel et ePar ent . Some of them call

voi d KheNodeSwapChi | dNodesAndLayer s(KHE_NCDE nodel, KHE _NCDE node2);

This function makes all the child nodes and child layersafel into child nodes and child
layers ofnode2 and vice versa. The child nodes and layers are the exact same objects as before,

5.2. Nodes 109

stored in the same order as before; only their parent node is changed. Any assigned meets lying
in child nodes of either node are unassigned (otherwise the node rule would be violated).

A meet may lie in at most one node, and functidbreMeet Node (Section 4.5) returns the
node containing a given meet, if any. To add a meet to a node and delete it, the operations are

bool KheNodeAddMeet Check(KHE_NODE node, KHE_MEET neet);
bool KheNodeAddMeet (KHE_NODE node, KHE_MEET neet);

bool KheNodeDel et eMeet Check(KHE_NODE node, KHE MEET neet);
bool KheNodeDel et eMeet (KHE_NCDE node, KHE _MEET neet);

KheNodeAddMeet Check andKheNodeAddMeet abort if neet already lies in a node, and return
fal se if it is already assigned to a meet not in the parentasfe. KheNodeDel et eMeet Check
andKheNodeDel et eMeet abort if neet does not lie imode, and returrf al se if a meet from a
child of node is assigned toeet . Functions

i nt KheNodeMeet Count (KHE_NODE node);
KHE_MEET KheNodeMeet (KHE_NODE node, int i);

visit the meets of a node in the usual way. The order that meets are stored in nodes and returned
by these functions is arbitrary, and the user can change it by calling

voi d KheNodeMeet Sort (KHE_NODE node,
int(xcompar)(const void *, const void *))

whereconpar is a comparison function suitable for passingisort. Two such comparison
functions are supplied. One sorts the meets into decreasing duration order:

i nt KheMeet Decr easi ngDur ati onCnp(const void *pl, const void *p2);
Here is the implementation:

i nt KheMeet Decr easi ngDur ati onCnp(const void *pl, const void *p2)
{
KHE_MEET neetl = * (KHE_MEET) pl;
KHE_MEET neet2 = * (KHE_MEET *) p2;
i f(KheMeetDuration(meetl) != KheMeetDuration(neet2))
return KheMeet Duration(meet2) - KheMeet Duration(neetl);
el se
return KheMeet | ndex(meetl) - KheMeet | ndex(neet2);

}

Ties are broken by referring to the meet index. The other sorts meets by increasing value of the
index of the target meet, breaking ties by increasing value of the target offset:

i nt KheMeet | ncreasi ngAsst Cnp(const void *pl, const void *p2)

This brings together meets whose assignments place them adjacent in time. Unassigned meets
appear after assigned ones, but are not themselves sorted into any particular order.

Unlike cycle meets, which are different behind the scenes from other meets, cycle nodes are
just ordinary nodes whose meets happen to be cycle meets. Accordingly, function

110 Chapter 5. Extra Types for Solving

bool KheNodel sCycl eNode(KHE_NODE node) ;

merely returnsr ue if node contains at least one meet, and its first meet is a cycle meet.
The total duration, assigned duration, and demand of the merets®fare returned by

i nt KheNodeDur at i on(KHE_NODE node) ;
i nt KheNodeAssi gnedDur ati on(KHE_NODE node) ;
i nt KheNodeDemand(KHE_NCODE node) ;

The duration is kept up to date and stored in the nodghesdodeDur at i on costs almost nothing.
The other two have to sum values stored in the meets, which is slower but still fast.
Following the pattern laid down in Section 1.3, function

bool KheNodeSi mi | ar (KHE_NODE nodel, KHE NODE node2);

returnst r ue whennodel andnode2 are similar: when they contain similar events. The exact

rule is as follows. Inodel andnode2 are the same node, they are similar. A nodedisnissible

if all of its meets are derived from events, and for each event found among those meets, all of the
meets of that event lie in the node. Thus, an admissible node can be considered as a set of events.
Two distinct nodes are similar if they are admissible and each event in one can be matched up
with a similar event in the other. The definition of similarity for events is as in Section 3.6.2.

A similar property igegularity(Section 5.4). Two nodes are regular when they are the same
node or contain meets of equal durations and equal time domains. Function
bool KheNodeRegul ar (KHE_NODE nodel, KHE NODE node2, int =*regular_count);

returnd r ue whennodel andnode2 are regular, antlal se otherwise. Either way, it reordersthe

meets of both nodes so that corresponding meets have equal durations and equal time domains,
as far as possibley egul ar _count is the number of such pairs. ($oue is returned when

«regul ar _count equals the number of meets in both nodes.)

Another function useful to solvers is

i nt KheNodeResour ceDur ati on(KHE_NCDE node, KHE RESOURCE r);

This returns the total duration of meetside and its descendants that contain a preassignment
of r. If a meet contains two such preassignments, its duration is only counted once.

To make a debug print afode onto filef p with a given verbosity and indent, call
voi d KheNodeDebug(KHE_NODE node, int verbosity, int indent, FILE *fp);

Verbosity 1 prints just the node index number, verbosity 2 adds the duration and meets, verbosity
3 adds the node’s children, and verbosity 4 adds its segments. There is also

voi d KheNodePri nt Ti net abl e(KHE_NODE node, int cell _width,
int indent, FILE *fp);

which prints a timetable showing the meetsiofle across the top, and the assigned meets lying
in child nodes ohode on subsequent lines, one line per child layer. {&te needs to have child
layers when it is called.) Parametest | _wi dt h is the width of each cell, in characters.

5.3. Layers 111

5.3. Layers

A layer (not to be confused with the resource layer of Section 3.5.4) is a subset of the child
nodes of some node. The intention is that the meets of a layer's nodes should not overlap in time,
although this condition is not enforced.

For a given node there are two sets of layers of interest: the npaieat layerswhich are
the layersitliesin (it may lie in several), and dsild layers which are subsets of its child nodes.
A node is a member of all of its parent layers and none of its child layers.

To create a layer of children of a given parent node, initially with no nodes, call
KHE_LAYER KhelLayer Make(KHE_NODE par ent _node);
It has a back pointer and a visit number, accessed by

voi d KhelLayer Set Back(KHE_LAYER | ayer, void *back);
voi d *KheLayer Back(KHE_LAYER | ayer);

voi d KhelLayer Set Vi si t Nun{ KHE_LAYER | ayer, int num;
i nt KheLayer Vi si t Nun{ KHE_LAYER | ayer);

bool KheLayer Vi sited(KHE_LAYER | ayer, int slack);
voi d KhelLayer Visit(KHE_LAYER | ayer);

voi d KhelLayer UnVi si t (KHE_LAYER | ayer);

as usual. Functions

KHE_NCODE KhelLayer Par ent Node(KHE_LAYER | ayer);
i nt KheLayer Par ent Nodel ndex(KHE_LAYER | ayer);

return the parent node oflayer and the wvalue of i for which
KheNodeChi | dLayer (KheLayer Par ent Node(| ayer), i) returnd ayer. For convenience the
solution containing it can be found by

KHE_SCLN KheLayer Sol n(KHE_LAYER | ayer);
To delete the layer (but not its nodes), call
voi d KhelLayer Del et e(KHE_LAYER | ayer);
To add and delete a child nodedr ent _node from a layer, call

voi d KheLayer AddChi | dNode(KHE_LAYER | ayer, KHE NODE node);
voi d KhelLayer Del et eChi | dNode(KHE_LAYER | ayer, KHE NCDE node);

KheLayer AddChi | dNode aborts if node’s parent node antayer’s parent node are different,
andKheLayer Del et eChi | dNode aborts ifnode does not lie in ayer ; otherwise, both succeed.
When a child node is deleted from a layer, all later nodes are shuffled up one place to fill the gap.
To visit the child nodes of a layer, call

i nt KheLayer Chi | dNodeCount (KHE_LAYER | ayer);
KHE NODE KheLayer Chi | dNode(KHE_LAYER | ayer, int i);

112 Chapter 5. Extra Types for Solving

To sort the child nodes of a layer, call

voi d KheLayer Chi | dNodesSort (KHE _LAYER | ayer,
i nt(*conpar)(const void *, const void *));
whereconpar is a function suited to passingdgeort when it sorts an array of nodes.

Although much about layers is taken on trust, ldeer ruleis enforced: the parent node of
each node of a layer equals the parent node of the layer. When the parent of a node is changed,
the node is deleted from all the layers it lies in.

The usual reason why nodes are placed into a layer together is because their meets have one
or more preassigned resourcesin common, and the resources have hard avoid clashes constraints,
preventing the meets from overlapping in time. To document this reason when it applies, a layer
contains a set of resources. To add and delete a resource from this set, the functions are

voi d KheLayer AddResour ce(KHE_LAYER | ayer, KHE RESOURCE r);
voi d KheLayer Del et eResour ce(KHE_LAYER | ayer, KHE RESOURCE r);

To visit this set of resources, the functions are

i nt KhelLayer Resour ceCount (KHE_LAYER | ayer);
KHE_RESOURCE KheLayer Resour ce(KHE_LAYER | ayer, int i);
There is no check that these resources are actually preassigned to the layer's meets.
WhenkKheLayer Make(par ent _node) is called, the resulting layer becomedald layerof
par ent _node. To visit the child layers of a given node, call

i nt KheNodeChi | dLayer Count (KHE_NCDE par ent _node) ;
KHE_LAYER KheNodeChi | dLayer (KHE_NODE parent _node, int i);

Also,

voi d KheNodeChi | dLayer sSort (KHE_NODE par ent _node,
int(+compar) (const void *, const void *));

sorts the child layers afar ent _node, usingconpar (a function suited to passing tgort) as
the comparison function, and

voi d KheNodeChi | dLayer sDel et e(KHE_NCDE par ent _node) ;

deletes all the child layers pfr ent _node, without deleting any nodes.

WhenKheLayer AddChi | dNode(| ayer, node) is called) ayer becomes @arent layerof
node. To visit a node’s parent layers, call

i nt KheNodePar ent Layer Count (KHE_NODE chi | d_node) ;
KHE_LAYER KheNodePar ent Layer (KHE_NODE child_node, int i);

It is important to allow multiple parent layers in this way. For example, suppose there is one
layer for the meets attended by Year 12 students and another for the meets attended by Year
11 students. If one of the Year 11 events is linked to one of the Year 12 events by a link events
constraint, then there will usually be a single node whose subtree contains the meets of both

5.3. Layers 113

events, and this node will appear in both layers. Function
bool KheNodeSanePar ent Layer s(KHE_NODE nodel, KHE_NODE node2);

returns r ue whennodel andnode2 have the same parent layers.
Functions

i nt KheLayer Dur ati on(KHE_LAYER | ayer);
i nt KheLayer Meet Count (KHE_LAYER | ayer);

return the total duration dfayer’s child nodes and the number of meets in them. These values
are stored in the layer and kept up to date as it changes, in the expectation that they will be used
when sorting layers. Similarly,

i nt KhelLayer Assi gnedDur ati on(KHE_LAYER | ayer);
i nt KhelLayer Demand(KHE_LAYER | ayer);

return the total duration of the assigned meetsayfer 's child nodes, and their total demand.
These values are calculated on demand, not stored, so the functions are a bit slower. There are
also set operations, implemented efficiently using bit vectors of node indexes:

bool KhelLayer Equal (KHE LAYER | ayerl, KHE LAYER | ayer?2);
bool KhelLayer Subset (KHE LAYER | ayer1, KHE LAYER | ayer?2);
bool KhelLayer Di sj oi nt (KHE_LAYER | ayer1, KHE LAYER | ayer2);
bool KhelLayer Cont ai ns(KHE_LAYER | ayer, KHE NOCDE node);

These returnr ue if | ayer 1 andl ayer 2 contain the same nodes, if every node ayer 1 is a
node ofl ayer 2, if | ayer 1 andl ayer 2 contain no nodes in common, anchifde liesinl ayer .

Three functions offer more complex comparisons between layers:

bool KhelLayer Sane(KHE_LAYER | ayer1l, KHE LAYER layer2, int *same_count);
bool KhelLayer Si mi | ar (KHE _LAYER | ayer1l, KHE LAYER | ayer 2,

int *simlar_count);
bool KheLayer Regul ar (KHE_LAYER | ayer1l, KHE LAYER | ayer 2,

int *regular_count);

These work in the same general way: they reorder the nodes in the two layers so that the first
*same_count (etc.) nodes imayer 1 are equivalent in some way to the corresponding nodes in

| ayer 2, returningt r ue if this accounts for all the nodes in both layerheLayer Sane aligns
nodesthat are the identical same nadielLayer Si mi | ar aligns nodes that are similar, according

to KheNodeSi mi | ar from Section 5.2; and&helLayer Regul ar aligns nodes that are regular,
according tckheNodeRegul ar from Section 5.2. If ayer 1 andl ayer 2 are the same layer, all

three functions returtir ue and set their count variable to the number of nodes in the layer. If
some nodes are shared between the two layers, these are always considered equivalent and they
always appear first after the layers are ordered.

These functions are implemented by calls to a more general function:

bool KheLayer Al'i gn(KHE_LAYER | ayer1, KHE LAYER | ayer2,
bool (*node_equi v) (KHE_NODE nodel, KHE NODE node2), int =count);

114 Chapter 5. Extra Types for Solving

which does the same kind of alignment, first bringing identical nodes to the front of both layers,
then ordering the other nodes, callimgle_equi v to decide whether two nodes are equivalent.

Two layers that share a common parent node may be merged:
voi d KheLayer Mer ge(KHE_LAYER | ayer1l, KHE LAYER | ayer2, KHE LAYER =*res);

The layers are deleted and replaced by layes, containing the nodes and resourcesayfer 1
andl ayer 2. It makes sense to merge, for example, when one layer is a subset of the other.

As an aid to debugging, KHE offers function
voi d KhelLayer Debug(KHE_LAYER | ayer, int verbosity, int indent, FILE xfp);

It sends a debug print dfayer tof p in the usual way.

5.4. Zones

A regulartimetable is one which has a pattern that makes it easy to understand. For example, if
a train comes every 15 minutes, then that is a regular train timetable.

In high school timetabling, two forms of regularity are importaMeet regularityis
achieved when meets which overlap in time have the same starting times and durations. It is
automatic when all meets have duration 1, but not otherwise. For example, if there are two meets
of duration 2, and one starts at the first time on Mondays while the second starts at the second
time, that is not regular. Most instances seem to have meets of durations 1 and 2, with just a few
meets of higher durations, and under those circumstances meet regularity is easy to achieve.

Node regularityis achieved when the meets of two nodes which overlap in time have the
same starting times and durations. Node regularity makes a timetable easy to understand, and
simplifies resource assignment by reducing the number of pairs of events whose meets overlap
in time, by ensuring that they generally either overlap completely or not at all.

There seems to be little value in measuring regularity formally; the important thing is to
encourage it. Thisis what zones are for.

For any node, consider the set of all pairs of the foifm, 0), wheremis a meet lying im,
andois a legal offset oim: if m has duration 19 may only be O; ifm has duration 20 may be
0 or 1; and so on. Such a pair is callechaet-offset of .nFor example, ifn contains the cycle
meets, then there is a meet-offsetdbr each time of the cycle.

A zoneof noden s a subset of the meet-offsetsiof A zone may be created by calling
KHE_ZONE KheZoneMake(KHE_NCDE node) ;
Initially it contains no meet-offsets. Functions

KHE_NODE KheZoneNode(KHE_ZONE zone);
i nt KheZoneNodel ndex(KHE_ZONE zone);

returnzone’s node, which never changes, and the value fafr whichKheNodeZone(node, i)
returnszone. When a zone is deleted, the indexes of other zones in its node may change. (As
usual, the gap left by the deletion of the zone is plugged by moving the last zone into it, unless
the deleted zone was the last zone.) For convenience there is also

5.4. Zones 115

KHE SOLN KheZoneSol n(KHE_ZONE zone) ;

which returns the solution containiagne’s node.
A zone has has the usual back pointer and visit number:

voi d KheZoneSet Back(KHE_ZONE zone, void *back);
voi d *KheZoneBack(KHE_ZONE zone);

voi d KheZoneSet Vi si t Nun({ KHE_ZONE zone, int num;
int KheZoneVi si t Num(KHE_ZONE zone) ;

bool KheZoneVi sited(KHE_ZONE zone, int slack);
voi d KheZoneVi si t (KHE_ZONE zone);

voi d KheZoneUnVi sit (KHE_ZONE zone);

A zone may be deleted by calling
voi d KheZoneDel et e(KHE_ZONE zone);

and all the zones of a node may be deleted by calling
voi d KheNodeDel et eZones(KHE_NODE node) ;

Each meet-offset may lie in at most one zone. To add a meet-offset to a zone, and to delete a
meet-offset from a zone, the operations are

voi d KheZoneAddMeet Of f set (KHE_ZONE zone, KHE MEET neet, int offset);
voi d KheZoneDel et eMeet OF f set (KHE_ZONE zone, KHE MEET neet, int offset);

To retrieve the zone of a meet-offset, call
KHE ZONE KheMeet O f set Zone(KHE_MEET neet, int offset);

All these functions abort ibf f set is not a legal offset ofreet . KheZoneAddMeet Of f set also
aborts if the meet-offset already lies in a zonezare is NULL, or neet does not lie in a node,
or zone is not a zone of the node containimget . KneMeet O f set Zone returnsNULL if the
meet-offset does not lie in any zone, as is the case by default.

The zones of a node may be accessed from the node in the usual way:

i nt KheNodeZoneCount (KHE_NODE node) ;
KHE_ZONE KheNodeZone(KHE_NODE node, int i);

They are returned in an arbitrary order. The meet-offsets of a zone may be accessed by calling

int KheZoneMeet O f set Count (KHE_ZONE zone) ;
voi d KheZoneMeet O f set (KHE_ZONE zone, int i, KHE MEET #neet, int *offset);

They are returned in an arbitrary order. Function
voi d KheZoneDebug(KHE_ZONE zone, int verbosity, int indent, FILE *fp);

produces a debug print @abne ontof p in the usual way.

116 Chapter 5. Extra Types for Solving

When a meet is deleted from a node or deleted altogether, all the meet-offsets involving that
meet are removed from their zones. When a meet is split or merged, the meet-offsets mutate in
the appropriate way, but preserve their zones. For example, when aroéduration 3 is split
into a meem, of duration 1 and a meet, of duration 2, the meet-offsets mutate as follows:

(m’ 0)’ (m1 1)’ (m1 2) - (rnl1 0)1 (rnZ1 0)1 (rnZ’ 1)

Nothing constrains a zone to hold any particular meet-offsets, and indeed nothing requires zones
to be created at all. The basic operations of KHE are not restricted in any way by zones. By
convention only, some solvers use zones to encourage meet and node regularity. See Section 9.6
for solvers that install zones.

A useful helper function when using zones is

bool KheMeet MovePreservesZones(KHE MEET neetl, int offsetl,
KHE MEET neet2, int offset2, int durn);

Assuming that a meet of duratieiur n may be assigned tweet 1 atof f set 1 and toneet 2 at
of f set 2, this function returnsr ue if that meet would be assigned to the same zones either way.
It treats theNULL value returned at times b$heMeet O f set Zone as though it was a zone.

Another useful function is

i nt KheNodel rregul arity(KHE_NODE node);

It returns thdrregularity of node: O if none of its meets is assigned, else the number of distinct
zones ofn’s parent node that the assigned meets afe assigned to (countifgyLL as a zone),

minus one. For example, wheis parent node has no zones, or all of the meetsark assigned

to the same zone)’s irregularity is 0. One reasonable way to preserve existing regularity is

to measure the irregularity of the nodes affected by an operation beforehand, measure it again
afterwards, and undo the operation if irregularity has increased.

5.5. Taskings

A taskingis an object of typ&HE_TASKI NGrepresenting a set of tasks. A task may lie in at most

one tasking at any one time. Taskings make useful parameters to resource solvers: the solver’s
job can be to assign resources to the tasks of the tasking—any subset of the tasks of a solution.
For a deeper analysis of the role of taskings, see Section 11.2.

To create a tasking, initially with no tasks, call
KHE_TASKI NG KheTaski ngMake(KHE_SOLN sol n, KHE_RESOQURCE_TYPE rt);

Whenrt is nonNULL, it signifies that all the tasks of the tasking have that type; but it may also
beNULL, in which case there is no restriction. To retrieve the two attributes, call

KHE_SCOLN KheTaski ngSol n(KHE_TASKI NG t aski ng) ;
KHE_RESOURCE_TYPE KheTaski ngResour ceType(KHE_TASKI NG t aski ng) ;

To visit the taskings of a solution, call functiokiseSol nTaski ngCount andKheSol nTaski ng
from Section 4.2.7. To delete a tasking, without deleting its tasks, call

5.5. Taskings 117

voi d KheTaski ngDel et e(KHE_TASKI NG t aski ng) ;
To add a task to a tasking, and to delete it from a tasking, call

voi d KheTaski ngAddTask(KHE_TASKI NG t aski ng, KHE TASK task);
voi d KheTaski ngDel et eTask(KHE _TASKI NG t aski ng, KHE TASK t ask);

KheTaski ngAddTask aborts ift ask already lies in a tasking, or if the resource type aski ng
Is nonNULL andt ask does not have that resource typéeTaski ngDel et eTask aborts ift ask
does not lie irt aski ng. Functions

i nt KheTaski ngTaskCount (KHE_TASKI NG t aski ng) ;
KHE_TASK KheTaski ngTask(KHE_TASKI NG tasking, int i);

visit the tasks of a tasking in the usual way, and

voi d KheTaski ngDebug(KHE_TASKI NG t aski ng, int verbosity,
int indent, FILE *fp);

produces a debug print ofski ng.

5.6. Task sets

A task seis like a tasking in that it represents a set of tasks. It is differentin that a task may lie
in any number of task sets, but it does not know which task setsiit lies in.

To create a new, empty task set for holding tasks fsoim, call
KHE_TASK SET KheTaskSet Make(KHE _SOLN sol n);
Thesol n attribute is stored in the task set and may be accessed by calling
KHE_SOLN KheTaskSet Sol n(KHE_TASK_SET ts);
To delete a task set (but not its tasks), call
voi d KheTaskSet Del et e(KHE_TASK_SET ts);

This places the task set object on a free list in its solution object, where it is available for use by
subsequent calls KheTaskSet Make on the same solution object.

To clear a task set back to the empty set of tasks, call
voi d KheTaskSet Cl ear (KHE_TASK SET ts);
To clear a task set from the end back to a point where it contaumg elements, call
voi d KheTaskSet Cl ear Fr omeEnd(KHE_TASK SET ts, int count);
To remove the last tasks from a task set, call
voi d KheTaskSet Dr opFr onEnd(KHE_TASK_SET ts, int n);

To add a task to a task set and delete it, call

118 Chapter 5. Extra Types for Solving

voi d KheTaskSet AddTask(KHE TASK SET ts, KHE TASK task);
voi d KheTaskSet Del et eTask(KHE TASK SET ts, KHE TASK task);

KheTaskSet Del et eTask aborts ift ask is notints. If the tasks are equivalent, the best way to
extract one task is

KHE_TASK KheTaskSet Last AndDel et e(KHE_TASK SET ts);

This deletes and returns the last task gfit aborts ift s is empty.
To search a task set for a given task, call

bool KheTaskSet Cont ai nsTask(KHE_TASK _SET ts, KHE_TASK task, int *pos);
If this returng r ue, it sets+pos to the index oft ask ints. To visit the tasks of a task set, call

i nt KheTaskSet TaskCount (KHE_TASK SET ts);
KHE_TASK KheTaskSet Task(KHE_TASK SET ts, int i);

as usual. There are also

KHE_TASK KheTaskSet Fi rst (KHE_TASK_SET ts);
KHE_TASK KheTaskSet Last (KHE_TASK_SET ts);

which return the first and last tasks. To sort the tasks, call

voi d KheTaskSet Sort (KHE_TASK SET ts,

i nt(*conpar)(const void *, const void *));
voi d KheTaskSet Sort Uni que(KHE_TASK SET ts,

i nt(*conpar)(const void *, const void *));

KheTaskSet Sor t Uni que callsHaAr r aySor t Uni que (Section A.1.3).
Functions

i nt KheTaskSet Tot al Durati on(KHE_TASK SET ts);
fl oat KheTaskSet Tot al Wor kl oad(KHE_TASK_SET ts);

return the total duration or total workload of the task set: the sum, over alltaskshe total
duration or total workload of . Function

voi d KheTaskSet UnG oup(KHE_TASK_SET ts);

isuseful whert s is being used to record a set of tasks which were assigned to other tasksin order

to ensure that they would be assigned the same resource. It removes the assignments of the tasks
of t's, but then assigns the tasks directly to the resources (cycle tasks) that they were previously
indirectly assigned to, if any, or unassigns them otherwise.

There is another possible specificationfbeTaskSet UnGr oup, saying that the assignment
in each task ofts is changed to the grandparent task (whatever the current assignment is
assigned to). This was rejected because it misbehaves in some cases when groupings are made
in stages, with one task assigned to another and then that task assigned to a third. The preferred
specification cuts the knot by ungrouping the tasks from all groupings.

There are functions for visiting the tasks of a task set, following the usual pattern:

5.6. Task sets 119

voi d KheTaskSet Set Vi sit Num(KHE_ TASK SET ts, int num;
i nt KheTaskSet Get Vi si t Num(KHE _TASK SET ts);

bool KheTaskSet Visited(KHE TASK SET ts, int slack);
voi d KheTaskSet Vi sit(KHE TASK SET ts);

voi d KheTaskSet UnVi sit (KHE TASK SET ts);

These just call the corresponding task visit operation on each tasks,obexcept that
KheTaskSet Get Vi si t Numreturns the visit number dfs’s first task, aborting ift s is empty.
KheTaskSet Vi si t ed returng r ue when all the calls on individual tasks returnrue.

Finally,
voi d KheTaskSet Debug(KHE_TASK_SET ts, int verbosity, int indent, FILE «fp);

produces a debug print 66 ontof p with the given verbosity and indent.

5.7. Meet sets

A meet seis like a node in that it represents a set of meets. It is different in that a meet may lie
in any number of meet sets, but it does not know which. Meet sets correspond closely with task
sets, so we will be brief. To create a new, empty meet set for holding meets étorncall

KHE_MEET_SET KheMeet Set Make(KHE_SOLN sol n);
To delete a meet set (but not its meets), call
voi d KheMeet Set Del et e(KHE_MEET_SET ms) ;
A deleted meet set goes on a free list in the solution object and becomes available for re-use.
voi d KheMeet Set Cl ear (KHE_MEET_SET ns) ;
clearsts back to the empty set of meets, and
voi d KheMeet Set Dr opFr onEnd(KHE_MEET _SET ns, int n);
removes the last meets fromms. To add and delete a meet, call

voi d KheMeet Set AddMeet (KHE_MEET_SET ns, KHE_MEET neet);
voi d KheMeet Set Del et eMeet (KHE_MEET _SET ns, KHE_MEET neet);

KheMeet Set Del et eMeet aborts ifnmeet is not present. To search a meet set, call
bool KheMeet Set Cont ai nsMeet (KHE_MEET SET ns, KHE_MEET neet, int xpos);
If this returng r ue, it setsr pos to the index ofrreet in ns. To visit the meets, call

i nt KheMeet Set Meet Count (KHE_MEET _SET ns) ;
KHE_MEET KheMeet Set Meet (KHE_MEET _SET ns, int i);

as usual. To sort the meets, call

120 Chapter 5. Extra Types for Solving

voi d KheMeet Set Sort (KHE_MEET _SET ns,

i nt(xconpar)(const void =, const void *));
voi d KheMeet Set Sort Uni que(KHE_MEET _SET s,

i nt(xconpar) (const void =, const void *));

KheMeet Set Sort Uni que callsHaAr raySor t Uni que (Section A.1.3). Function
i nt KheMeet Set Tot al Dur ati on(KHE_MEET _SET ns);

the sum, over all meetsin ns, of the duration oin
There are functions for visiting the meets of a meet set, following the usual pattern:

voi d KheMeet Set Set Vi si t Num(KHE_MEET_SET ns, int nunj;
int KheMeet Set Get Vi si t Num(KHE_MEET_SET ns) ;

bool KheMeet Set Vi sited(KHE_MEET_SET ns, int slack);
voi d KheMeet Set Vi si t (KHE_MEET_SET ns);

voi d KheMeet Set UnVi si t (KHE_MEET_SET ns) ;

These just call the corresponding meet visit operation on each mees,oéxcept that
KheMeet Set Get Vi si t Numreturns the visit number ofs’s first meet, aborting ifrs is empty.
KheMeet Set Vi si t ed returng r ue when all the calls on individual meets retumue. Finally,

voi d KheMeet Set Debug(KHE_MEET _SET ms, int verbosity, int indent, FILE =fp);

produces a debug print ob ontof p with the given verbosity and indent.

5.8. Time sets

A time seis like a time group in that it represents a set of times. However, it carries less baggage:
it has no name, and there is nothing equivalendhili meG oupNei ghbour . It is a convenient

type to use when a set of times is needed during solving. Internally, a time set holds the instance
that the times come from and a sorted array of time indexes, nothing more.

To create a new, empty time set, call
KHE_TI ME_SET KheTi meSet Make(KHE_I NSTANCE i ns, HA ARENA a);
Another way to make a time set is
KHE_TI ME_SET KheTi neSet Copy(KHE_TI ME_SET ts, HA ARENA a);
This makes a fresh copy ¢of in arenaa. There is also
voi d KheTi meSet CopyEl ement s(KHE TI ME_SET dst ts, KHE TIME SET src_ts);

which replaces the times of time sist _t s, whatever they are, with the timesefc_t s.
To retrieve a time set’s instance, call

KHE_| NSTANCE KheTi meSet | nst ance(KHE_TI ME_SET ts);

There is no function to delete a time set; it is deleted when its arena is deleted. But a time set can

5.8. Time sets 121

be cleared back to the empty set of times, by calling
voi d KheTi meSet Cl ear (KHE_TI ME_SET ts);
To add times to a time set, the following operations are available:

voi d KheTi neSet AddTi me(KHE_TI ME_SET ts, KHE TIME t);
voi d KheTi neSet AddTi neG oup(KHE_TI ME_SET ts, KHE_TIME_GROUP tQ);
voi d KheTi meSet AddTaskTi mes(KHE TI ME_SET ts, KHE TASK task);

These add a time, or the times of a time group, or the times a task is running (including tasks as-
signed, directly or indirectly, to that task). To add the times of a time seKlwall meSet Uni on
below. Here and elsewhere, adding a time that is already present does nothing.

For deleting times there are

voi d KheTi meSet Del et eTi me(KHE_TI ME_SET ts, KHE_ TIME t);
voi d KheTi meSet Del et eLast Ti me(KHE_TI ME_SET ts);

KheTi neSet Del eteTine deletest from ts, or does nothing if it is not present.
KheTi neSet Del et eLast Ti me deletes the last time frotrs; it must be present.
To visit the times of a time set, call

i nt KheTi meSet Ti neCount (KHE_TI ME_SET ts);
KHE_TI ME KheTi meSet Ti me(KHE_TI ME_SET ts, int i);

in the usual way. There is also

i nt KheTi neSet Ti nel ndex(KHE_TI ME_SET ts, int i);
which returns the index of theh time, rather than the time itself. Irrespective of the order in
which the times were added, they are stored and visited in order of increasing index.

There are also set operations on time sets:

voi d KheTi neSet Uni on(KHE_TI ME_SET ts1, KHE_TIME_SET ts2);

voi d KheTi neSet | ntersect (KHE_TI ME_SET tsl1l, KHE TIME_SET ts2);
voi d KheTi neSetDi f f erence(KHE_TI ME_SET tsl1, KHE TIME_SET ts2);

These updates1 to hold its union, intersection, or difference with2. Also,

int KheTi neSet Uni onCount (KHE_TI ME_SET tsl1, KHE TIME_SET ts2);
i nt KheTi meSet | nt ersect Count (KHE_TI ME_SET tsl, KHE TIME SET ts2);
i nt KheTi meSet Di f f erenceCount (KHE_TI ME_SET tsl, KHE TINME_SET ts2);

return the cardinality of the union, intersection, and difference without building the actual set.
KheTi neSet | nt er sect Count is optimized for the case of intersecting a small (and presumably
localized) set with a large one: it uses binary search to retrieve the indexes of the first and last
elements of the smaller set in the larger one, then only traverses the larger one in that range. This
idea could be applied to other operations, but so far it has not been.

Several set queries are available:

122 Chapter 5. Extra Types for Solving

bool KheTi meSet Enpt y(KHE_TI ME_SET ts);

bool KheTi meSet Equal (KHE_TI ME_SET tsl1, KHE TIME_SET ts2);
bool KheTi meSet Subset (KHE_TI ME_SET tsl1, KHE TIME_SET ts2);
bool KheTi meSet Di sj oi nt (KHE TI ME_SET tsl1l, KHE TIME SET ts2);
bool KheTi meSet Contai nsTi me(KHE TIME SET ts, KHE TIME t);

These returir ue whent s isempty, whens1 isequal td s2, whent s1 is a subset of s2, when
t sl is disjoint fromt s2, and whert s containg .
Four other comparison functions are available:

i nt KheTi neSet Cnp(const void *t1l, const void *t2);
i nt KheTi neSet TypedCnp(KHE_TI ME_SET tsl, KHE TIME_SET ts2);

KheTi meSet Cnp is suitable for passing tbiaArraySort, to bring equal time sets together.
KheTi meSet TypedCnp is the typed equivalent d¢heTi meSet Cnp. And

i nt KheTi neSet ChpReverse(const void *t1, const void *t2);
i nt KheTi neSet TypedCnpRever se(KHE_TI ME_SET tsl, KHE TIME_SET ts2);
are likeKheTi meSet Cnp andKheTi neSet TypedCnp, except that they sort in the reverse order.

Unlike time groups, time sets alloMJLL to be a member. It is handled like any other time:
it can be added and deleted, and it participates in set operations. It has indéxich means
that, if present, it is the result ¢heTi meSet Ti ne(ts, 0).

Finally,
voi d KheTi neSet Debug(KHE TI ME_SET ts, int verbosity, int indent, FILE *fp);

produces a debug print b§ ontof p with the given verbosity and indent, asusual. Since the time
set has no name, this can only be done by printing its elements. V¢heosi ty is 1 ori ndent
IS negative, only the first and last elements (at most) are printed.

5.9. Resource sets

A resource seis like a resource group in that it represents a set of resources of a particular type.
However, it carries less baggage: it has no name, for example. Itis a convenienttype to use when
a set of resources is needed during solving. Internally, a resource set holds the resource type that
the resources must share, and a sorted array of resource indexes in that resource type.

Resource sets are virtually clones of time sets, with some extra operations that might find
their way into time sets eventually. To create a new, empty resource set of a given type, call

KHE_RESOURCE_SET KheResour ceSet Make(KHE_RESOURCE_TYPE rt, HA ARENA a);
Another way to make a resource set is
KHE_RESOURCE_SET KheResour ceSet Copy(KHE_RESQURCE_SET rs, HA ARENA a);

It makes a fresh copy ofs in arenaa. Either way, it will be deleted wheais deleted. Also,

5.9. Resource sets 123

voi d KheResour ceSet CopyEl ement s(KHE_RESOURCE_SET dst _rs,
KHE RESOURCE_SET src_rs);

replaces the resources of resourcelset r s, whatever they are, with the resourcesof_r s.
To retrieve a resource set’s resource type, call

KHE_RESOURCE _TYPE KheResour ceSet Resour ceType(KHE_RESOURCE_SET rs);
To clear a resource set back to the empty set of resources, call

voi d KheResour ceSet d ear (KHE_RESQURCE_SET rs);
To add resources to a resource set, the following operations are available:

voi d KheResour ceSet AddResour ce(KHE_RESOURCE SET rs, KHE RESOURCE r);
voi d KheResour ceSet AddResour ceG oup(KHE_ RESOURCE _SET rs,
KHE_RESOURCE_GROUP rg);

These add a resource, or the resources of a resource group. To add the resources of a resource
set, callkheResour ceSet Uni on below. Here and elsewhere, adding a resource that is already
present does nothing.

For deleting resources there are

voi d KheResour ceSet Del et eResour ce(KHE_RESOURCE_SET rs, KHE RESOURCE r);
voi d KheResour ceSet Del et eLast Resour ce(KHE_RESOURCE_SET rs);

KheResour ceSet Del et eResour ce deletesr from rs, or does nothing if it is not present.
KheResour ceSet Del et eLast Resour ce deletes the last resource fram; it must be present.
To visit the resources of a resource set, call

i nt KheResour ceSet Resour ceCount (KHE_RESOURCE_SET rs);
KHE RESOURCE KheResour ceSet Resour ce(KHE RESOURCE SET rs, int i);

in the usual way. There is also
i nt KheResour ceSet Resour cel ndex(KHE_RESOURCE_SET rs, int i);

which returns the index in the resource set’s resource type dfttheesource, rather than the
resource itself. Irrespective of the order in which the resources were added, they are stored and
visited in order of increasing index.

There are also set operations on resource sets:

voi d KheResour ceSet Uni on(KHE_ RESCURCE SET rsl, KHE RESOURCE SET rs2);
voi d KheResourceSet | ntersect (KHE_ RESOURCE SET rsl, KHE RESOURCE SET rs2);
voi d KheResourceSet Di fference(KHE_ RESOURCE SET rsl, KHE RESOURCE SET rs2);

These updates1 to hold its union, intersection, or difference with2. And functions

124 Chapter 5. Extra Types for Solving

voi d KheResour ceSet Uni onG oup(KHE_RESOQURCE SET rsl,
KHE_RESOURCE_GROUP rg2);

voi d KheResour ceSet I ntersect G oup(KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

voi d KheResour ceSet Di f f erenceG oup(KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

do the same, but with a resource group rather than a resource set. A resource group does actually
hold a resource set, but it would not be safe to make that set available directly, because resource
groups are supposed to be immutable after their creation ends. A copy of it is easily made, by
starting with an empty resource set and calkhgResour ceSet Uni onG oup.

Occasionally one needs the cardinality of the results of these set operations, but not the
actual sets. For thisthereis

i nt KheResour ceSet Uni onCount (KHE_RESOURCE_SET rsl,
KHE_RESOURCE_SET rs2);

i nt KheResourceSet | nt ersect Count (KHE_RESOURCE _SET rsl,
KHE_RESOURCE_SET rs2);

i nt KheResourceSetDi f f erenceCount (KHE_RESOURCE _SET rsl1,
KHE_RESOURCE_SET rs2);

i nt KheResourceSet SymmetricDifferenceCount (KHE RESOURCE_SET rs1,
KHE_RESOURCE_SET rs2);

Building the symmetric difference is awkward, so at present there is an operation to find its size,
but no operation to find the set itself. And functions

i nt KheResour ceSet Uni onCount Gr oup(KHE_RESOURCE SET rsl,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceSet | ntersect Count & oup(KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceSetDi f f erenceCount G oup(KHE_RESOURCE SET rsl,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceSet SymmetricDi fferenceCount G oup(KHE_ RESOURCE SET rsl,
KHE_RESOURCE_GROUP rg2);

do the same, but with a resource group rather than a resource set.
Several set queries are available:
bool KheResour ceSet Equal (KHE_RESOURCE_SET rsl, KHE RESOURCE_SET rs2);
bool KheResour ceSet Subset (KHE_RESOURCE_SET rsl1, KHE RESCURCE SET rs2);

bool KheResour ceSet Di sj oi nt (KHE_RESOURCE_SET rsl1, KHE RESOURCE_SET rs2);
bool KheResour ceSet Cont ai nsResour ce(KHE_RESOURCE_SET rs, KHE RESOURCE r);

These returnir ue whenr sl is equal tars2, whenrs1 is a subset of s2, whenr s1 is disjoint
fromrs2, and when's contains .

Two other comparison functions are available:

5.9. Resource sets 125

i nt KheResourceSet Cnp(const void *t1, const void *t2);
i nt KheResour ceSet TypedCnp(KHE_RESOURCE_SET rsl1, KHE RESQURCE_SET rs2);

KheResour ceSet Cnp is suitable for passing télaArraySort, to bring equal resource sets
together.KheResour ceSet TypedCnp is the typed equivalent dfheResour ceSet Cp.

Unlike resource groups, resource sets aldivl to be a member. It is handled like any
other resource: it can be added and deleted, and it participates in set operations. It hak,index
which means that, if present, it is the resultkbEResour ceSet Resour ce(rs, 0).

Finally,

voi d KheResour ceSet Debug(KHE RESOURCE_SET rs, int verbosity,
int indent, FILE *fp);

produces a debug print ok ontof p with the given verbosity and indent, as usual. Since the
resource set has no name, this can only be done by printing its elements.vévhesi ty is 1
orindent is negative, only the first and last elements (at most) are printed.

5.10. Time frames

A time frameor justframe is a sequence of time groups. Frames satisfy a practical need during
solving; they help to bridge the gap between the high school and nurse rostering time models.

A frame has typ&HE_FRAME, the usual pointer to a private struct, lying in heap memory and
holding the enclosing solution, the time groups, and some other things.

Frames are immutable after creation. To help enforce this, they are created indirectly via
another typeKHE_FRAME_MAKE. The operations for creating a frame are

KHE_FRAME_MAKE KheFr ameMakeBegi n(KHE_SOLN sol n);
voi d KheFrameMakeAddTi meG oup(KHE_FRAME MAKE fm KHE TIME_GROUP tg);
KHE_FRAME KheFr ameMakeEnd(KHE_FRAME MAKE fm bool sort _tine_groups);

KheFr ameMakeBegi n starts the creation of the frame by creatingis_FRAVE_MAKE object. This
is followed by any number of calls theFr ameMakeAddTi meG oup, which add the time groups.
The creation ends with a call kheFr ameMakeEnd, which returns the actual frame.

If the sort_time_groups parameter ofkheFr aneMakeEnd is true, KheFr ameMakeEnd
sorts the time groups into increasing first time order.

To delete a frame returned ByieFr ameMakeEnd, call
voi d KheFrameDel et e(KHE_FRAME frane);

This frees the memory consumedflyyane; it goes on a free list ifr ane’s solution object, where
it can be re-used by a later callkbeFr aneMakeBegi n.

The usual operations are available for retrieving the attributes of a frame. To retrieve the
enclosing solution, call

KHE_SCLN KheFr aneSol n(KHE_FRAME frane);

To visit the time groups, call

126 Chapter 5. Extra Types for Solving

i nt KheFranmeTi neG oupCount (KHE_FRAME frane);
KHE TI ME_GROUP KheFr aneTi neG oup(KHE_FRAME frame, int i);

KheFr ameTi meG oup returns the th time group off r ane.

A frame isdisjointwhen its time groups are pairwise disjoint, ammpletavhen every time
in the cycle lies in at least one of its time groups. Frames do not have to satisfy these conditions,
but some applications of frames require them. They are returned by functions

bool KheFranel sDi sj oi nt (KHE_FRAME frane, int =problem.indexl,
i nt *probl emindex2);
bool KheFramel sConpl et e(KHE_FRAME frane, KHE TIME =problemtime);

If the frame is disjoint,KheFranel sDi sj oi nt returnstrue with *probl em.indexl and
xprobl em index2 set to -1; otherwise it returnsfal se with *problem.indexl and
*probl em i ndex2 set to the indexes of two overlapping time groups. If the frame is complete,
KheFr amel sConpl et e returng r ue with = probl em ti ne set toNULL; otherwise it returnsal se

with +probl em ti me set to a time of the instance which is not in anyf oéne’s time groups.

KheFr amel sDi sj oi nt and KheFr anel sConpl et e are typically called at most once per
frame, afterkheFr ameMakeEnd. An efficient implementation has not been thought necessary.
But this function is implemented efficiently:

i nt KheFraneTi nel ndex(KHE_FRAME frame, KHE TIME t);

It returns the index ifir ane of the time group containing tinte If there is no such time group
(implying that the frame is not complete)l, is returned. If there is more than one such time
group (implying that the frame is not disjoint), the index of one of the time groups is returned.
The time group itself can then be retrieved udthgFr aneTi meG oup. There is also

KHE TI ME_GROUP KheFraneTi neTi meG oup(KHE_FRAME franme, KHE TIME t);

which combines the two steps, returning the time groufrafe that containg, or aborting if
there is no such time group.

Frames arise naturally in employee scheduling when each employee can work at most one
shift per day (evidenced by a hard limit busy times constraint with non-zero cost, maximum limit
1, and one time group for each day). When this is true of all resources, function

KHE_FRAME KheFr ameMakeCommon(KHE_SOLN sol n);

returns a frame with one time group per day, each with positive polarity. The time groups do
not have to actually represent days, they merely need to be the same for all resources and to be
disjoint and complete. When there is no common fraxdkel. is returned.

WhenKheFr ameMakeConmon returnsNULL, as a fallback there is
KHE FRANME KheFr ameMakeSi ngl et ons(KHE_SOLN sol n) ;

This returns a frame with one time group for each time, containing just that single time.

Once created, frames of this kind do not change. So it makes sense to share a single one
between solvers, by storing it in the solvers’shared options object. A convenient way do this is

5.10. Time frames 127

KHE_FRAME KheOpti onsFrame(KHE _OPTI ONS options, char xkey, KHE SOLN soln);

from Section 8.2. This returns the frame storedomi ons under the giverkey. If there

iS no object inopti ons under that key, it first creates one, by callidgeFr aneMakeConmon,
followed by KheFr ameMakeSi ngl et ons if necessary, and storing the resultapt i ons under

key. Thus, if all solvers that need a frame call this function to obtain it, they will all share the
same frame, the one created the first time this function is called. By convention, the key to use
is"gs_comon_frame", and so

frame = KheOptionsFrame(options, "gs_conmon_frame", soln);

is the recommended way to obtain this kind of frame.

Solvers may benefit from a good estimate of how much workload a resource is capable of
absorbing, given the various constraints which apply to the resource. This can be calculated in
three steps, based on the common frame. First, call

KHE_FRAVE_WORKLCAD KheFr aneWor kl oadMake(KHE_FRAME fr ane,
KHE_RESOURCE_TYPE rt, KHE EVENT_TI METABLE_MONI TOR et m ;

which works out, for each time group of frane, the minimum amount of workload that a
resource of typet which is busy during g must incur. This is the minimum, over all tasks of
typert running at times of t g (as found iret m), of the task’s workload per time. Itisthe same
for all resources of typet . Second, for each resource of tygeof interest, call

i nt KheFraneResour ceMaxBusyTi mes(KHE_FRAME frane,
KHE FRAVE WORKLQAD fw, KHE RESOURCE r);

to work out the maximum number of busy times thatan have, assuming that it can be busy
for at most one time of each time groupfofame. And third, when all is done, function

voi d KheFrameWor kl oadDel et e(KHE_FRAME WORKLOAD fw) ;

may be called to reclaim the memory used by the frame workload object.
KheFr ameResour ceMaxBusyTi nes(frame, fw, r) returnsthe minimum of these values:

* The number of time groups i ane. This makes sense, given that the resource can be busy
for at most one of the timesin each time group odne. It also ensures that there is at least
one candidate for the minimum, so that the result is well defined.

e The maximum limits of the limit busy times constraints, hard or soft, which applyttave
non-zero weight, and contain a time group which is equal to the whole cycle, according to
KheLi mi t BusyTi mesConstrai nt Li m t s\Wol eCycl e (Section 3.7.15).

* The maximum limits of the cluster busy times constraints, hard or soft, which apply to
have non-zero weight, and whose time groups are all positive and are the Samaeeas

e Themaximum busy times limitg the limit workload constraints, hard or soft, which apply
tor, have non-zero weight, and contain a time group equal to the whole cycle, according
to KheLi m t Wor kl oadConst r ai nt Li m t sWol eCycl e (Section 3.7.16). The maximum
busy times limit is the maximum number of times thatan be busy without exceeding the

128 Chapter 5. Extra Types for Solving

maximum limit of the constraint. To find it, sort the minimum workloads of the time groups
of the frame into increasing order, find the largest index such that the sum of the minimum
workloads up to that index does not exceed the constraint’s maximum limit, and add 1.

Most of the work for the last case is done when the frame workload object is created. The work
for each resource is just a binary search of an array of cumulative minimum workloads. One
may also pasSULL for f w, but then limit workload constraints will not be taken into account.

We turn to something else now. Function
i nt KheFraneResour ceMaxBusyTi mes(KHE_FRAME frame, KHE _RESOURCE r);

returns the maximum number of times thatan be busy without being busy twice during one
time group off r ame or violating a limit busy times constraint. It is the minimum of the number
of time groups inf rame and the maximum limits of all limit busy times constraints, hard and
soft, which have non-zero weight, applyrtcand contain a time group equal to the whole cycle,
as reported bitheLi mi t BusyTi nesConst r ai nt Li ni t sWhol eCycl e (Section 3.7.15).

Function

bool KheFranel ntersectsTi neG oup(KHE FRAME frame, KHE TIME GROUP tQ);

returng r ue whent g shares at least one time with at least one of the time groupsaat.
There is the usual debug function:

voi d KheFrameDebug(KHE FRAME frame, int verbosity, int indent, FILE =fp);

This printsf r ame ontof p with the given verbosity and indent. Hereane may beNULL.
Finally, here are three related miscellaneous functions:

bool KheFrameResour ceHasCl ashes(KHE_FRAME frame, KHE _RESOURCE r);
voi d KheFrameResour ceAssert Nod ashes(KHE_FRAME frane, KHE RESOURCE r);
voi d KheFrameAssert NoCl ashes(KHE_FRAME frane);

These help to debug solvers that preserve an invariant stating that each resource attends at most
one task during each time group fofane. KheFr aneResour ceHasC ashes returnst rue if r

violates this conditiorkheFr ameResour ceAsser t NoC ashes aborts the run if it is violated for
resource , after printing out information about which resource and time group is involved; and
KheFr aneAssert NoC ashes callskheFr ameResour ceAssert Nod ashes for all resources.

Chapter 6. Solution Monitoring

As a solution changes, it is continuoustypnitoredby a hand-tuned constraint network.

6.1. Measuring cost

KHE measures the badness of a solution as a single integral value caltabstioer sometimes

the combined cosbecause it includes the cost of both hard and soft constraint deviations.
Storing costs in this way is convenient, because it allows costs to be assigned, asidgd using

+, and compared usingand so on in the usual way. The hard cost is shifted left by 32 bits, to
ensure that it is more significant than any reasonable total soft cost, then added to the soft cost.

The type of a combined costh8E_COST, a synonym for the standard C 64-bit integer type
int64_t (afact best forgotten). To find the current combined cost of a solution, call
KHE_COST KheSol nCost (KHE_SCOLN sol n);
This value is stored explicitly imol n, so this function takes virtually no time to execute. Call
KHE COST KheCost (int hard _cost, int soft _cost);

to create a combined cost. The two components of a combined cost may be accessed by

i nt KheHar dCost (KHE_COST combi ned_cost);
i nt KheSoft Cost (KHE_COST combi ned_cost);

There is also the constaiteCost Max, which returns the maximum value storable in a variable
of typeKHE_COST (a synonym fott NT64_MAX) and the function

i nt KheCost Cnp(KHE _COST cost1, KHE COST cost2);

which returns an nt which is less than, equal to, or greater than zero if the first argument is
respectively less than, equal to, or greater than the second, as needed when sorting items by cost.
The implementation does not make the mistake of merely subtramigi@ from cost 1; the

result then would be BHE_COST which will usually overflow the nt result.

The suggested way to display a combined cost is as a decimal number with the hard cost
before the decimal point and the soft cost after. Five decimal places are displayed, allowing for
soft costs up to 99999. Larger soft costs are displayed as 99999. To assist with this, function

doubl e KheCost Show(KHE_COST conbi ned_cost);

returns a value which, when printed withi nt f format" % 5f ", prints the cost in this format.

These functions assume that both components of the cost are non-negative. There is no
problem with negative combined costs in themselves, but when a hard and soft cost are combined
together, if either is negative they may be different if they are separated again.

129

130 Chapter 6. Solution Monitoring

6.2. Monitors

A monitoris an object, of typ&HE_MONI TOR, that monitors one part of a solution: typically, one
point of application of one constraint. It contains the usual back pointer and visit number:

voi d KheMoni t or Set Back(KHE_MONI TOR m voi d *back) ;
voi d *KheMoni t or Back(KHE_MONI TOR) ;

voi d KheMonitorSetVisitNum(KHE MONITOR m int nunj;
i nt KheMonitorVisitNum KHE_MONI TOR) ;

bool KheMnitorVisited(KHE MONITOR m int slack);
voi d KheMoni torVisit(KHE_MONITOR m);

voi d KheMonitorUnVisit(KHE MONI TOR m) ;

Operations

KHE_SCLN KheMoni t or Sol n(KHE_MONI TOR m) ;
i nt KheMoni t or Sol nl ndex(KHE_MONI TOR nj ;
KHE_COST KheMoni t or Cost (KHE_MONI TOR) ;
KHE COST KheMbni t or Lower Bound(KHE_MONI TOR m) ;

return the enclosing solution, the indexwih that solution, the cost of whatis monitoring (kept
up to date by KHE as the solution changes), and a constant lower boufiekdmi t or Cost ,
which is usually O but will be non-zero when KHE can prove the lower bound easily.

TypeKHE_MONI TOR is the abstract supertype of many concrete subtypes, with these tags:

6.2. Monitors 131

typedef enum {
KHE_ASSI GN_RESOURCE_MONI TOR_TAG
KHE_ASSI GN_TI ME_MONI TOR_TAG,
KHE_SPLI T_EVENTS_MONI TOR_TAG,
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR_TAG
KHE_PREFER_RESOURCES_MONI TOR TAG
KHE_PREFER_TI MES_MONI TOR_TAG,
KHE_AVO D_SPLI T_ASSI GNVENTS_MONI TOR_TAG
KHE_SPREAD EVENTS_MONI TOR_TAG
KHE_LI NK_EVENTS_NMONI TOR_TAG
KHE_ORDER_EVENTS_MONI TOR_TAG,
KHE_AVO D_CLASHES MONI TOR_TAG
KHE_AVO D_UNAVAI LABLE_TI MES_MONI TOR_TAG
KHE_LI M T_I DLE_TI MES_MONI TOR_TAG
KHE_CLUSTER_BUSY_TI MES_MONI TOR_TAG,
KHE_LIM T_BUSY_TI MES_MONI TOR_TAG,
KHE_LIM T_WORKLOAD MONI TOR _TAG,
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR_TAG,
KHE LI M T_RESOURCES_MONI TOR_TAG
KHE_EVENT_TI METABLE_MONI TOR_TAG,
KHE_RESOURCE_TI METABLE_MONI TOR_TAG
KHE_ORDI NARY_DEMAND_MONI TOR TAG
KHE_WORKLOAD _DEMAND MONI TOR_TAG,
KHE_EVENNESS_MONI TOR_TAG
KHE_GROUP_MONI TOR_TAG,
KHE_MONI TOR_TAG_COUNT

} KHE_MONI TOR_TAG,

Each monitor object contains a tag identifying its subtype, returned by
KHE_MONI TOR_TAG KheMoni t or Tag(KHE_MONI TOR m) ;

Monitors of the first eighteen types monitor one point of application of one constraint; their cost
is the total cost of deviations at that point. They are described in detail in later sections of this
chapter. Monitors of the last six types (frafide_EVENT_TI METABLE_MONI TOR_TAG onwards) do

not monitor constraints. Timetable monitors hold the timetables of events and resources (Section
6.7) Ordinary and workload demand monitors monitor matchings, and evenness monitors
monitor evenness (Chapter 7). Group monitors group together other monitors (Section 6.8). The
last value is not a tag; it is a count of the number of monitor types, allowing code of the form

for(tag = 0; tag < KHE_MONI TOR_TAG COUNT; tag++)
do something for nonitors of type tag ...

For those monitors that monitor a point of application of a constraint, functions

KHE CONSTRAI NT KheMoni t or Constrai nt (KHE_MONI TOR) ;
char xKheMoni t or Appl i esToName(KHE_ MONI TOR) ;

return the constraint and the name of the point of application (if this point is an event re-
source, the name of the enclosing event is returned). For other monitors they Neturn
KheMoni t or Appl i esToNane is more or less obsolete; the author prefers now to call

132 Chapter 6. Solution Monitoring

char xKheMoni t or Poi nt O Appl i cati on(KHE_ MONI TOR m) ;

which returns a more precise indication of the point of application. Each constraint monitor also
has functions which return the specific constraint and point of application.

The result ofkheMoni t or Poi nt Of Appl i cation(n) is created afresh on each call. Thisis
not very efficient, but if the function is called only when generating evaluation tables, as is the
intention, that will not matter.

A similar function tokheMbni t or Poi nt Of Appl i cati on is
char *KheMonitorld(KHE_MONI TOR n ;

It returns a string composed of two or three fields separatéddmaracters. Each field is an Id

from the instance or aninteger. The fields are supposed to uniquely identify the monitor, although
in a few cases this is doubtful. The first field is always a constraint Id, identifying the constraint
that the monitor is derived from, and the second is usually an event, event group, or resource Id,
identifying the point of application. There may be a third field, holding a second event Id (for
order events monitors) or an offset (for resource constraints witkpgiri esToTi meG oup at-
tribute). When the offset is O the offset field and predeciage omitted.

The result ofkheMoni torld(m is created wherkheMnitorld(n) is first called, and
stored inmso that it does not have to be created over and over. If it is used only for debugging,
asis the intention, there is virtually no cost in running time or memory when debugging is off.

The cost of a monitor is a function of itkeviation a non-negative integer:

i nt Khelbni torDeviation(KHE_ MONI TOR) ;
char *KheMoni t or Devi ati onDescri ption(KHE MONI TOR m) ;

These functions are intended for reporting, not solvikgeMoni t or Devi ati on returns the
deviation, andkheMbni t or Devi at i onDescri pti on returns a description of it: an expression,
augmented with brief text, showing how it is calculated. The result string does not necessarily
lie in heap memory, and should not be freed.

For limit active intervals monitor&heMoni t or Devi at i on returnsthe sum of the deviations
of the active intervals. Exceptionally, the cost of the monitor is not a function of this deviation;
instead, it is the sum of the costs of the deviations of the active intervals taken separately.

To visit the full set of monitors monitoringpl n, call

i nt KheSol nMoni t or Count (KHE_SCLN sol n);
KHE_MONI TOR KheSol nMoni t or (KHE_SCLN sol n, int i);

Although KHE does not fully specify the order in which these monitors appear, it does guarantee
that the monitors which monitor constraints will appear together in the list in the order that their
constraints appear in the input. Itis best to select these monitors by testing whether the result of
KheMbni t or Const rai nt above is norNULL.

There is also
bool KheSol nRetri eveMnitor (KHE_SOLN sol n, char xid, KHE MONI TOR *nj;

This function searches for a monitor whose Id, as returnédiéybni t or | d (see above), is equal

6.2. Monitors 133

toi d. If it finds one, it returns$r ue with * mset to that monitor; otherwise it returha se with
*mset toNULL.

Although every monitor has an Id, at pres&héSol nRet ri eveMoni t or does not retrieve
all monitors. It retrieves resource monitors, and event monitors that monitor a single event.

KheSol nRet ri eveMoni tor is intended for debugging and is not very efficient. It works
by finding the entity (event, event group, or resource) identified by the second fietdaofd
searching that entity’s list of monitors for one for whigteMni t or | d returns d.

To debug a monitomwith a given verbosity and indent, call
voi d KheMoni t or Debug(KHE_MONI TOR m int verbosity, int indent, FILE xfp);

There are also versions of this function for each of the specific monitor types. These all work
in the same way. The output starts witlaA or D indicating whether the monitor is a group
monitor, an attached non-group monitor, or a detached non-group monitor. This is followed by
the number of paths up from the monitor to the solution (Section 6.8), usually O or 1. Then comes
the monitor’s tag and cost, then other information depending on the monitor type and verbosity.
There is also

char *Kheloni t or TagShow(KHE_ MONI TOR_TAG tag) ;
which returns a string representationt@f. In practice a more useful function is
char =KheMoni t or Label (KHE_MONI TOR) ;

This returnskheMoni t or TagShow(KheMoni t or Tag(n)) if mis not a group monitor, andis
subtag label ifnis a group monitor.

6.3. Attaching, detaching, and provably zero fixed cost

For a monitor to be updated when the solution changes, there must be links from the appropriate
points within the solution to the monitor. When these links are present, the monitor is said to be
attached to the solutiqor justattached Most monitors are attached to begin with, but they can

be detached at any time, and even reattached later, by calling

voi d KheMbni t or Det achFr onSol n(KHE_MONI TOR) ;
voi d KheMonitorAttachToSol n(KHE MONI TOR m) ;

Even when detached, a monitor remembers which parts of the solution it is supposed to monitor,
so the attach operation does not have to tell the monitor where to attach itself. To find out whether
a monitor is currently attached or detached, call

bool KheMbnitor AttachedToSol n(KHE_MONI TOR m) ;
Another function, highly recommended for calling at the end of a solve, is
voi d KheSol nEnsur e fi ci al Cost (KHE_SOLN sol n);

This ensures that all constraint monitors are both attached to the solution and reporting their
cost to the solution, directly or indirectly via group monitors, and that all demand and evenness

134 Chapter 6. Solution Monitoring

monitors are detached from the solution, guaranteeing that the solution cost is the official cost.

While a monitor is detached, it receives no information about changes to the solution, and,
by definition, its deviation and cost are 0. Detaching a monitor may therefore change its cost. If
there isa change in cost, it is reported to the monitor’s parents (if it has any) as usual. Conversely,
attaching a monitor brings it up to date with the current state of the solution, which again may
change its cost; and again, if there is a change in cost it is reported to its parents (if it has any).

There are two main reasons for detaching a monitor. First, the user might make a deliberate
choice to ignore some constraints. For example, a solver that works in two phases, first finding
a solution that satisfies the hard constraints, and then attacking the soft ones, might detach the
monitors for the soft constraints during its first phase. An example of this kind of deliberate
choice is KHE’s matching feature (Chapter 7), which is implemented with monitors. Unlike
other monitors, matching monitors are detached initially. KHE makes this choice deliberately,
on the grounds that the cost of the matching is not officially part of the cost function.

The second reason for detaching a monitor is that it may be clear that its cost will be zero
for a long time. In that case, detaching it means that no time is spent keeping it up to date, yet it
still reports the correct cost. For example, if the meets of one point of application of a link events
constraint are assigned to each other and those assignments will not be removed, then it is safe
to save time by detaching the corresponding monitor.

This reasoning was formerly embodied in a function cak&dMoni t or At t achCheck,
which assumed that certain elements of the solution were unlikely to change, and detached mon-
itors accordingly.KheMni t or At t achCheck has been withdrawn; the equivalent functionality is
now obtained, more reliably, by calling tRkex andUnFi x functions, as follows.

A monitor hagrovably zero fixed costenough of the solution is currently fixed (by calls to
KheMeet Assi gnFi x andkheTaskAssi gnFi x) to allow KHE to prove that the monitor must have
cost 0 while those fixes remain. For each kind of monitor, either a specific definition of when it
has provably zero fixed cost is given below, or else it never has provably zero fixed cost.

When one of the fixing operations just listed is called, after doing the actual fixing KHE
ensures that all monitors which did not have provably zero fixed cost before but now do are
detached. When one of the corresponding unfix operations is called, after doing the actual
unfixing it ensures that all monitors which had provably zero fixed cost before but now do not
are attached. So there is no risk that detaching these monitors could lead to cost errors; as soon
as unfixes make a non-zero cost possible, they are attached again.

6.4. Event monitors

An event monitomonitors one or more events. The set of monitors (attached or unattached)
which monitor a given event may be found by calling

i nt KheSol nEvent Moni t or Count (KHE_SOLN sol n, KHE_EVENT e);
KHE_MONI TOR KheSol nEvent Moni t or (KHE_SCOLN sol n, KHE EVENT e, int i);

These return the number of monitors that mongtam sol n, and the th of these, as usual. The
timetable monitor for everd (Section 6.7) is not visited by these functions; it may be retrieved
by callingkheEvent Ti met abl eMbni t or .

The total cost of these monitors measures how waltimetabled. Functions

6.4. Event monitors 135

KHE_COST KheSol nEvent Cost (KHE_SCOLN sol n, KHE EVENT e);
KHE_COST KheSol nEvent Moni t or Cost (KHE_SOLN sol n, KHE_EVENT e,
KHE_MONI TOR _TAG tag);

return the total cost of all the monitors monitorieygnd the total cost of all monitors monitoring
e of a specific type, defined kyag. KheSol nEvent Moni t or Cost returns O whenag does not
specify one of the monitor types in the following subsections.

Each point of application of a spread events constraint or link events constraint is one event
group, and a monitor of these kinds appears on the list of monitors of each of the events in its
event group. Similarly, an order events monitor appears on the list of monitors of both of the
events it monitors. IKheSol nEvent Cost (sol n, e) issummed over all events, the cost of such
monitors is counted repeatedly, and the total may exceed the total cost of all event monitors.

The following subsections list the various kinds of event monitors and the details specific
to each of them. Their type&HE_SPLI T_EVENTS_MONI TOR and so on) may be obtained by
downcasting fronKHE_MONI TOR after checking the type tag.

6.4.1. Split events monitors

A split events monitor has tagHE_SPLI T_EVENTS_MONI TOR_TAG and monitors an event which
IS one point of application of one split events constraint. Functions

KHE SPLI T_EVENTS CONSTRAI NT KheSpl it Event shoni t or Const rai nt (
KHE_SPLI T_EVENTS_MONI TOR m) ;
KHE_EVENT KheSpl it Event shonit or Event (KHE_SPLI T_EVENTS_MONI TOR m) ;

return the split events constraint and event being monitored, and

voi d KheSplitEventshonitorLinmts(KHE SPLIT_EVENTS MONI TOR m
int *min_duration, int =max_duration, int *min_anount, int xmax_amount);

sets the four last variables to the corresponding attributes of the monitor’s constraint. Function

voi d KheSplitEvent shonit or Debug(KHE_SPLI T_EVENTS_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.4.2. Distribute split events monitors

A distribute split events monitor has t&E_DI STRI BUTE_SPLI T_EVENTS_MONI TOR_TAG and
monitors one point of application of a distribute split events constraint (one event). Functions

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT
KheDi stri buteSplitEvent shonitor Constraint (
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR) ;
KHE_EVENT KheDi stri but eSplitEvent shbonitorEvent (
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR) ;

return the constraint and event being monitored, and

136 Chapter 6. Solution Monitoring

voi d KheDi stributeEventshonitorLimts(
KHE DI STRI BUTE_SPLI T_EVENTS _MONI TOR m
int xduration, int *mninmm int *maxi mum int *meet_count);

sets+duration, *m ni num and *nmaxi num to the corresponding attributes of the monitor’s
constraint, and meet _count to the number of meets derived from the monitored event whose
duration isxdur ati on (or to the total number of meetsifdur ati on is KHE_ANY_DURATI ON).
Function

voi d KheDi stributeSplitEventshonitorDebug(
KHE_DI STRI BUTE_SPLI T_EVENTS MONI TOR m int verbosity,
int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.4.3. Assign time monitors

An assign time monitor has tag@iE_ASSI GN_TI ME_MONI TOR_TAG and monitors an event which
is one point of application of one assign time constraint. Functions

KHE_ASSI GN_TI ME_CONSTRAI NT KheAssi gnTi meMoni t or Constrai nt (
KHE_ASSI GN_TI ME_MONI TOR) ;
KHE_EVENT KheAssi gnTi meMoni t or Event (KHE_ASSI GN_TI ME_ MONI TOR nj ;

return the assign time constraint and event being monitored. Function

voi d KheAssi gnTi meMoni t or Debug(KHE_ASSI GN_TI ME_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

An assign time monitor does not have provably zero fixed cost Whektet Assi gnFi x
has been called for each of the meets derived from the event it monitors and the monitor has
cost 0 when attached, because the assignments may be to other meets whose assignments are not
fixed. The full assignment paths leading out of the monitored meets would need to be fixed; but
that would be awkward to implement and give no efficiency payoff, because then the monitor
would never be updated anyway. So an assign time monitor never has provably zero cost.

6.4.4. Prefer times monitors

A prefer times monitor has tatHE_PREFER_TI MES_MONI TOR_TAG and monitors an event which
is one point of application of one prefer times constraint. Functions

KHE_PREFER_TI MES_CONSTRAI NT KhePr ef er Ti mesMoni t or Const rai nt (
KHE_PREFER_TI MES_MONI TOR m) ;
KHE_EVENT KhePr ef er Ti mesMoni t or Event (KHE_PREFER_TI MES_MONI TOR) ;

return the prefer times constraint and event being monitored. Function

voi d KhePr ef er Ti meshoni t or Debug(KHE_PREFER _TI MES MONI TOR m
int verbosity, int indent, FILE *fp);

6.4. Event monitors 137

Is like KheMbni t or Debug, only specific to this type of monitor.

6.4.5. Spread events monitors

A spread events monitor has t&fE_SPREAD EVENTS_MONI TOR_TAG and monitors an event
group which is one point of application of a spread events constraint. It appears in the list of
monitors of all the events in its event group. Functions

KHE_SPREAD _EVENTS_CONSTRAI NT KheSpr eadEvent shoni t or Const r ai nt (
KHE_SPREAD EVENTS_MONI TOR m) ;

KHE_EVENT_GROUP KheSpr eadEvent shoni t or Event G oup(
KHE_SPREAD EVENTS_MONI TOR) ;

return the spread events constraint and event group being monitored. There are also

i nt KheSpreadEvent shoni t or Ti meGr oupCount (KHE_SPREAD _EVENTS MONI TOR m) ;
voi d KheSpreadEvent shoni t or Ti meG oup(KHE_SPREAD EVENTS MONITOR m int i,
KHE TI ME_ GROUP «time_group, int *mininmum int =maxi num int *incidences);

The first returns the number of time groups (as in the corresponding constraint). The second
returns the 'th time group and the minimum and maximum number of meets wanted there
(again, as in the constraint), plus the current number of meets incident on that time group. If
«i nci dences is less thamm ni mumor more than maxi mum a cost is incurred. Function

voi d KheSpreadEvent shoni t or Debug(KHE_SPREAD EVENTS MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.4.6. Link events monitors

A link events monitor has tagHE_LI NK_EVENTS_MONI TOR_TAG and monitors an event group
which is one point of application of a link events constraint. It appears in the list of monitors of
all the events in its event group. Functions

KHE_LI NK_EVENTS_CONSTRAI NT KheLi nkEvent shoni t or Const rai nt (
KHE_LI NK_EVENTS_MONI TOR 1) ;

KHE_EVENT_GROUP KheLi nkEvent shMoni t or Event G oup(
KHE_LI NK_EVENTS_ MONI TOR 1) ;

return the link events constraint and event group being monitored. Function

voi d KheLi nkEvent sMoni t or Debug(KHE_LI NK_EVENTS _MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

A link events monitor has provably zero fixed cost when following to the end the chains of
fixed assignments out of the meets of the events it monitors produces the same result for each
event: the same offsets and durations within the same final mgleddket Assi gnFi x and
KheMeet Assi gnUnFi x may detach and attach link events monitors.

138 Chapter 6. Solution Monitoring

Detaching link events monitors is the most important service provided by fixing. Keeping
these monitors up to date is slow, despite the author’s best efforts to optimize. When the times of
a set of linked events change together, an attached link events monitor receives the changes one
by one, forcing it through a tedious sequence of cost changes beginning and ending with 0.

6.4.7. Order events monitors

An order events monitor has t&gE_ORDER _EVENTS_MONI TOR_TAG and monitors two events
which together constitute one point of application of an order events constraint. It appears in
the list of monitors of both events. Functions

KHE_ORDER _EVENTS_CONSTRAI NT KheOr der Event shoni t or Const rai nt (
KHE_ORDER_EVENTS _MONI TOR) ;

KHE_EVENT KheOr der Event shoni t or Fi rst Event (KHE_ORDER EVENTS MONI TOR) ;

KHE_EVENT KheOr der Event shoni t or SecondEvent (KHE_ ORDER _EVENTS MONI TOR) ;

i nt KheOrder Event shoni t or M nSepar ati on(KHE_ORDER_EVENTS MONI TOR m) ;

i nt KheOrder Event shoni t or MaxSepar at i on(KHE_ORDER_EVENTS MONI TOR m) ;

return the constraint being monitored and the four attributes of the monitor: the two events
monitored, and the minimum and maximum separations. Function

voi d KheCOr der Event shoni t or Debug(KHE_ORDER_EVENTS MONI TOR m
int verbosity, int indent, FILE *fp);

Is like KheMoni t or Debug, only specific to this type of monitor.

An order events monitor has provably zero fixed cost when both of its events are broken
into a single meet, following to the end the chains of fixed assignments out of those two meets
leads to the same final meet, and their separation (the offset into the final meet of the second
meet, minus the duration plus offset into the final meet of the first meet) is in the legal range.
KheMeet Assi gnFi x andKheMeet Assi gnUnFi x may detach and attach order events monitors.

6.5. Event resource monitors

An event resource monitanonitors one or more event resources. The monitors (attached or
unattached) which monitor a given event resource may be visited by

i nt KheSol nEvent Resour ceMoni t or Count (KHE_SOLN sol n, KHE EVENT_ RESOURCE er);
KHE_MONI TOR KheSol nEvent Resour ceMoni t or (KHE_SCLN sol n,
KHE_EVENT_RESOURCE er, int i);

The total cost of these monitors measures how wreit timetabled. Functions

KHE_COST KheSol nEvent Resour ceCost (KHE_SOLN sol n, KHE_EVENT_RESOURCE er);
KHE COST KheSol nEvent Resour ceMoni t or Cost (KHE_SOLN sol n,
KHE_EVENT_RESOURCE er, KHE_MONI TOR_TAG tag);

return the total cost of all the monitors monitorieg, and the total cost of all monitors
monitoringer of a specific type, defined liyag. KheSol nEvent Resour ceMbni t or Cost returns
0 whent ag does not specify one of the monitor types in the following subsections.

6.5. Event resource monitors 139

Each point of application of an avoid split assignments constraint is a whole set of event
resources, and a monitor of this kind is attached to each of the event resources in its set. If
KheSol nEvent Resour ceCost (sol n, er) is summed over all event resources, such a monitor
Is counted repeatedly, so the total may exceed the total cost of all event resource monitors.

The following subsections list the various kinds of event resource monitors and the details
specific to each of them. Their type§HE_ASSI GN_RESOURCE_MONI TOR and so on) may be
obtained by downcasting frofHE_MONI TOR after checking the type tag.

6.5.1. Assign resource monitors

An assign resource monitor has tdgE_ASSI GN_RESOURCE_MONI TOR_TAG and monitors an
event resource which is one point of application of one assign resource constraint. Functions

KHE_ASSI GN_RESOURCE_CONSTRAI NT KheAssi gnResour ceMoni t or Const rai nt (
KHE_ASSI GN_RESOURCE_MONI TOR m) ;

KHE_EVENT RESOURCE KheAssi gnResour ceMoni t or Event Resour ce(
KHE_ASSI GN_RESOURCE_MONI TOR m)

return the assign resource constraint and event resource being monitored. Like assign time mon-
itors, assign resource monitors are never considered to have provably zero fixed cost. Function

voi d KheAssi gnResour ceMoni t or Debug(KHE_ASSI GN_RESOURCE_MONI TOR m
int verbosity, int indent, FILE *fp);

IS like KheMoni t or Debug, only specific to this type of monitor.

6.5.2. Prefer resources monitors

A prefer resources monitor has t&fE_PREFER_RESOURCES_MONI TOR_TAG and monitors an
event resource which is one point of application of one prefer resources constraint. Functions

KHE PREFER RESOURCES CONSTRAI NT KhePr ef er Resour cesMoni t or Const rai nt (
KHE_PREFER_RESOURCES_MONI TOR m) ;

KHE_EVENT _RESOURCE KhePr ef er Resour cesMoni t or Event Resour ce(
KHE_PREFER_RESOURCES_MONI TOR) ;

return the prefer resources constraint and event resource being monitored. Function

voi d KhePr ef er Resour cesMoni t or Debug(KHE_ PREFER_RESOURCES MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.5.3. Avoid split assignments monitors

The operations for building avoid split assignments constraints accept a role and event groups,
as required when reading XML. However, they also accept a set of event resources, and these
are what are actually used. Accordingly, one avoid split assignments monitor monitors a set of
event resources, and appears in the list of monitors of each of those event resources. Functions

140 Chapter 6. Solution Monitoring

KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT
KheAvoi dSpl i t Assi gnment sMoni t or Const rai nt (
KHE_AVO D_SPLI T_ASSI GNMENTS_MONI TOR m)

i nt KheAvoi dSpl it Assi gnment shoni t or Event Gr oupl ndex(
KHE_AVO D_SPLI T_ASSI GNMENTS_MONI TOR m)

return the constraint and the index of the set of event resources being monitored, suitable
for passing to functiongheAvoi dSpl it Assi gnnent sConst r ai nt Event Resour ceCount and
KheAvoi dSpl i t Assi gnnent sConst r ai nt Event Resour ce (Section 3.7.7). There are also

int KheAvoi dSpl it Assi gnnment sMoni t or Resour ceCount (
KHE_AVQO D_SPLI T_ASSI GNVENTS_MONI TOR) ;

KHE_RESOURCE KheAvoi dSpl it Assi gnment shMoni t or Resour ce(
KHE_AVO D _SPLI T_ASSI GNVENTS_MONITOR m int i);

int KheAvoi dSpl it Assi gnment sMoni t or Resour ceMul ti plicity(
KHE_AVQO D _SPLI T_ASSI GNVENTS_MONITOR m int i);

The first returns the number of distinct resources currently assigned to tasks monitoreld by
mis a defect this number will be at least 2. The second and third retuirtiteé these distinct
resources (in an arbitrary order) and the number of tasks monitoreddoyhich that resource
is currently assigned. The monitor does not record which tasks those are. Function

voi d KheAvoi dSplitAssi gnment shbnit or Debug(
KHE _AVO D SPLI T_ASSI GNVENTS MONI TOR m int verbosity,
int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

An avoid split assignments monitor has provably zero fixed cost when the paths of fixed
assignments leading out of the tasks it monitors have the same endigaméskAssi gnFi x
andKheTaskAssi gnUnFi x may detach and attach avoid split assignments monitors. Similarly
to link events monitors, the efficiency payoff is significant.

6.5.4. Limit resources monitors

The operations for building limit resources constraints accept event groups and roles, as needed
when reading XML. However, what one limit resources monitor actually monitors is a set of
event resources, and it appears in the lists of monitors of those event resources. Functions

KHE_LI M T_RESOURCES_CONSTRAI NT KhelLi it Resour cesMoni t or Const rai nt (
KHE_LIM T_RESOURCES MONI TOR) ;

i nt KheLi m t Resour ceshoni t or Event G oupl ndex(
KHE_LI M T_RESOURCES_MONI TOR m) ;

return the constraint, and the index within it of the set of event resources being monitored,
suitable for passing to functiori¢heLi mi t Resour cesConst r ai nt Event Resour ceCount and

KheLi mi t Resour cesConst rai nt Event Resour ce (Section 3.7.18). These allow the user to
visit the monitored event resources, and thence, ughegvent Resour ceTaskCount and
KheEvent Resour ceTask, the monitored tasks. There is also

6.5. Event resource monitors 141

voi d KheLi ni t Resour cesMoni t or Acti veDuration(KHE LIM T_RESCURCES MONI TOR m
int *mininum int xmaximum int xactive_durn);

It returnsms minimum limit (taken from the constraint; it will be 0 when there is no minimum
limit), its maximum limit (also from the constraint; it will beNT_MAX when there is no maxi-

mum limit), and theactive durationwhich is the total duration of the tasks derived from the
event resources being monitored which are assigned resources from the constraint. The deviation
is the amount (if any) by whickact i ve_dur n exceeds maxi mumor falls short of+m ni num
Function

voi d KheLi mi t Resour cesMoni t or Debug(KHE LI M T_RESOQURCES MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.6. Resource monitors

A resource monitomonitors a resource. The set of monitors (attached or unattached) which
monitor a given resource may be visited by calling

i nt KheSol nResour ceMoni t or Count (KHE_SCLN sol n, KHE RESOURCE r);
KHE_MONI TOR KheSol nResour ceMbni t or (KHE_SCLN sol n, KHE_RESCURCE r, int i);

The total cost of these monitors measures how wiltimetabled. Functions

KHE_COST KheSol nResour ceCost (KHE_SOLN sol n, KHE_RESOURCE r);
KHE_COST KheSol nResour ceMoni t or Cost (KHE_SCOLN sol n, KHE RESOURCE r,
KHE_MONI TOR_TAG tag);

return the total cost of all the monitors monitoringaind the total cost of all monitors monitoring
r of a specific type, defined hyag. KheSol nResour ceMoni t or Cost returns O wherag does
not specify one of the monitor types in the following subsections.

The following subsections list the kinds of resource monitors and their features. Their types
(KHE_AVO D_CLASHES_MONI TOR etc.) may be obtained by downcasting fr&RE_MONI TOR after
checking the type tag. Monitors of typ&lE_WORKLOAD_DEMAND_MONI TCR, defined in Section
7.4, are also visited byheSol nResour ceMbni t or Count and KheSol nResour ceNbni t or .
However, the timetable monitor for a resource is not visited by these functions; as explained in
Section 6.7, it is retrieved by callirpeResour ceTi net abl eMoni t or .

6.6.1. Avoid clashes monitors

An avoid clashes monitor has t&gE_AvO D_CLASHES_MONI TOR_TAG and monitors a resource
which is one point of application of one avoid clashes constraint. Functions

KHE_AVO D_CLASHES CONSTRAI NT KheAvoi dC ashesMoni t or Const r ai nt (
KHE_AVO D CLASHES MONI TOR m) ;

KHE RESOURCE KheAvoi dCl ashesMbni t or Resour ce(
KHE_AVO D _CLASHES MONI TOR m) ;

return the avoid clashes constraint and resource being monitored. Function

142 Chapter 6. Solution Monitoring

voi d KheAvoi dCl ashesMbni t or Debug(KHE_AVO D_CLASHES MONI TOR m
int verbosity, int indent, FILE *fp);

IS like KheMbni t or Debug, only specific to this type of monitor.

An avoid clashes monitanmay have non-zerigheMbni t or Lower Bound(m) . Lett be the
total duration of the events to whicts resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greatemthaveight. Then ift
exceeds the number of times in the cycle, the excess is a lower bound on the number of defects
that m must have in any reasonable solution (one in which violationsiafe preferred to
violations of the more expensive assign time constraints). Converting this number of defectsinto
a cost usingris cost function in the usual way gives the lower bound.

6.6.2. Avoid unavailable times monitors

This monitor has tagfHE_AVO D_UNAVAI LABLE_TI MES_MONI TOR_TAG and monitors a resource
which is one point of application of one avoid unavailable times constraint. Functions

KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT
KheAvoi dUnavai | abl eTi mesMoni t or Const rai nt (
KHE_AVO D_UNAVAI LABLE TI MES_MONI TOR m) ;
KHE_RESOURCE KheAvoi dUnavai | abl eTi mesMoni t or Resour ce(
KHE_AVO D_UNAVAI LABLE TI MES_MONI TOR m) ;

return the avoid unavailable times constraint and resource being monitored. Function

voi d KheAvoi dUnavai | abl eTi mesMoni t or Debug(
KHE_AVO D_UNAVAI LABLE TI MES MONITOR m int verbosity,
int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

An avoid unavailable times monitan may have non-zer&hehbni t or Lower Bound(m) .
Supposers resource is subject to an avoid clashes constraint of weight greaterishaeight.
Lett, be the total duration of the events to whidb resource is preassigned which either have
preassigned times or are subject to an assign time constraint of weight greatds tvaight.
Lett, be the number of times to be avoided according tdhen ift, + t, exceeds the number of
times in the cycle, the excess is a lower bound on the number of defectsthest have in any
reasonable solution (one in which every meet is assigned a time, and violatroassgbreferred
to violations of the more expensive assign time and avoid clashes constraints). Converting this
number of defects into a cost usimg cost function in the usual way gives the lower bound.

6.6.3. Limit idle times monitors

A limit idle times monitor has tadgHE_LI M T_I DLE_TI MES_MONI TOR_TAG and monitors a
resource which is one point of application of one limit idle times constraint. Functions

KHE LIM T I DLE _TI MES _CONSTRAI NT KheLim t1dl eTi mesMonit or Constrai nt (
KHE_LIM T_I DLE_TI MES_MONI TOR m) ;

KHE_RESOURCE KheLi mi t|dl eTi mesMoni t or Resour ce(
KHE_LIM T_| DLE_TI MES_MONI TOR m) ;

6.6. Resource monitors 143

return the limit idle times constraint and resource being monitored, and

i nt KheLinitldl eTi meshonitorTi neG oupCount (
KHE_LIM T_I DLE_TI MES_MONI TOR) ;

KHE_TI ME_GROUP KheLi mit1dl eTi nesMoni t or Ti meG oup(
KHE LIMT_IDLE_ TIMES MONNTOR m int i);

visit the time groups thatmonitors, that is, the time groups from the constraint. There is also

KHE_TI ME_GROUP KheLim t1dl eTi mesMoni tor Ti meG oupSt at e(
KHE LIMT_IDLE_ TIMES MONNTOR m int i, int +*busy_count, int *idle_count,
KHE_TI ME extreme_busy_tinmes[2], int *extreme_busy_times_count);

which, in addition to returning thieth time group, also reports its state, by settibhgsy_count

to its number of busy timesj dl e_count to its number of idle times, and placing its first and
last busy times intoextreme_busy_times[0 .. =extrenme_busy_tinmes_count - 1]. If
there are no busy timesext rene_busy_ti mes_count is O; if there isone itis 1; otherwise itis
2. Function

voi d KheLinitldleTi mesMonitorDebug(KHE LIM T _I DLE TI MES_ MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.6.4. Cluster busy times monitors

A cluster busy times monitor (tagHE_CLUSTER BUSY_TI MES_MONI TOR_TAG) monitors a re-
source and offset making one point of application of a cluster busy times constraint. Functions

KHE CLUSTER BUSY_TI MES CONSTRAI NT Khed ust er BusyTi nesMoni t or Const rai nt (
KHE_CLUSTER_BUSY_TI MES_MONI TOR) ;

KHE_RESOURCE KheCl ust er BusyTi nesMoni t or Resour ce(
KHE_CLUSTER_BUSY_TI MES_MONI TOR 1) ;

return the cluster busy times constraint and the resource being monitored. Functions

i nt KheC ust erBusyTi mesMoni t or Hi st or yBef or g(
KHE_CLUSTER_BUSY_TI MES_MONI TOR) ;

i nt KheC ust er BusyTi nesMoni t or Hi st or yAfter(
KHE_CLUSTER_BUSY_TI MES_MONI TOR 1) ;

i nt KheC ust erBusyTi nesMoni t or H st ory(
KHE_CLUSTER_BUSY_TI MES_MONI TOR) ;

return the history before, history after, and history values frtsnconstraint, or O if not present.
In the high school model, these are always 0. Function

i nt KheC ust erBusyTi nesMoni t or O f set (KHE_CLUSTER BUSY_TI MES MONI TOR nj ;

returns the offset being monitored. In the high school model, and when the constraibt has
forappl i es_t o_t g, the offset is always 0, otherwise the offset is the difference in index between
one useful time irappl i es_t o_t g and the first time irppl i es_t o_t g. Functions

144 Chapter 6. Solution Monitoring

i nt KheC usterBusyTi meshoni t or Ti meG oupCount (
KHE_CLUSTER_BUSY_TI MES_MONI TOR) ;

KHE TI ME_GROUP KheCl ust er BusyTi mesMoni t or Ti meGr oup(
KHE_CLUSTER BUSY_TIMES MONNTOR m int i, KHE POLARI TY *po);

return the time groups thatmonitors (one for each time group in the cluster busy times con-
straint, adjusted usingheTi neG oupNei ghbour by the offset), and their associated polarities.

There are also two functions which report the current state of the monitor, as it varies during
the solve. Function

voi d Khed ust erBusyTi meshoni tor Acti veTi neG oupCount (
KHE CLUSTER BUSY_TIMES MONITOR m int xactive_group_count,
*open_group_count, int *mninmm int *maxi mum bool xallow zero);

setsract i ve_group_count to the number of active time groups (busy positive time groups plus
non-busy negative time groupsypen_gr oup_count tothe number of time groups not known to
be either active or inactive (becauset ory_af t er is non-zero, or because there is a non-trivial
cutoff index), and m ni mum *maxi mum and=al | ow_zer o to the values from the constraint. If
mhas non-zero cost, then eitheact i ve_group_count + xopen_group_count < *mi ni mum
orxactive_group_count > xmaxi mum Function

bool KheC ust erBusyTi meshbni tor Ti meG oupl sActi ve(
KHE_CLUSTER BUSY TIMES MONITOR m int i, KHE_TIME_GROUP *tg,
KHE_POLARI TY *po, int =busy_count);

returnst r ue when the time group at indexis currently active. It also set$ g and+po to the
time group and polarity at index, and+busy_count to the number of busy times in the time
group. ltsreturn value is the value of the condition

(*po == KHE_NEGATI VE) == (*busy_count == 0)

as the definition of the constraint specifies.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function

int KheC usterBusyTi mesMoni t or At MaxLi m t Count (
KHE_CLUSTER BUSY_TI MES MONI TOR) ;

It returns 1if the monitor is not detecting a violation but the number of active time groups equals
the maximum limit, and O otherwise. It returns an integer rather than a boolean for consistency
with KheLi mi t Acti vel nt er val sMoni t or At MaxLi mi t Count .

For the benefit of time sweep algorithms, which may perform better if cluster busy times
monitors understand that there is no point in complaining about problems beyond the point that
the time sweep has reached, there are functions

voi d Khed ust er BusyTi meshbni t or Set Cut of f | ndex(
KHE CLUSTER BUSY_TIMES MONITOR m int cutoff_index);
i nt KheC ust er BusyTi nesMoni t or Cut of f | ndex(
KHE_CLUSTER BUSY_TI MES_MONI TOR) ;

6.6. Resource monitors 145

These functions set and retrieve the monitarigoff index an integer between 0 and
KheC ust er BusyTi meshoni t or Ti neG oupCount inclusive, whose effect is explained be-
low. If no cutoff index has been saéthed ust er BusyTi mesMbni t or Cut of f | ndex(m) returns
KheC ust er BusyTi meshbni t or Ti neGr oupCount () . This value cuts off nothing, and should
be passed when the aim is to remove a previously set cutoff index.

In practice it will often be easier to call this function:

voi d Khed ust er BusyTi meshoni t or Set Cut of f Ti me(
KHE_CLUSTER BUSY_TI MES_ MONI TOR m KHE_TIME cutoff_tine);

It works out the appropriate cutoff index for ignoring all time groups that contain any time later
thancut of f _ti me, and callXhed ust er BusyTi mesMoni t or Set Cut of f | ndex with that cutoff
index. PassingULL for cut of f _t i me removes any cutoff index.

KheC ust er BusyTi meshoni t or Set Cut of f Ti me examinesnis time groups from first
to last, stopping at the first time group that contains a time whose index exceeds the index of
cutof f _ti me. The index of that time group is the cutoff index; or if there is no such time group,
the cutoff index iskheCd ust er BusyTi mesMoni t or Ti meG oupCount (n) . The function runs
much faster than just described when the cutoff times are increasing, as they usually are.

This procedure may seem dubious, given that there is no requirement for the time groups
of nis constraint to be added in chronological order. However, cluster busy times monitors sort
their time groups into increasing order of the maximum time index in each group.

Khed ust er BusyTi neshoni t or Set Cut of f | ndex returnst rue when a non-zero number
of time groups is being cut offkhed ust er BusyTi mesMbni t or Set Cut of f Ti me does the same.
For example, passingLL for cut of f _ti me always returns valueal se. But other cutoff times
also returrf al se, when they come after the last time in the last time group.

The general idea is that if a solve is attempting to assign times only up to a certain point
in the cycle, then a cutoff index should be set to inform the monitor that there is no point in
complaining about things at or beyond that point. This improves the value of the monitor as an
influencer of the solve actually under way.

For the record, however, we need to be specific about the effect of a cutoff index. The
monitor understands that time groups whose indexes are equal to or larger than the cutoff
index are beyond the scope of the current solve. This does not affect busy time groups, which
are considered to be active or inactive as usual (depending on their polarity), but it does affect
non-busy ones, which are considered to be inpenstate, that is, not known to be either active
or inactive. The monitor then acts conservatively: it considers an open time group to be active
when comparing with a minimum limit, and inactive when comparing with a maximum limit.
Either way, this makes a violation less likely.

Thereis also

KHE_TI ME KheCl ust er BusyTi mesMoni t or I ni ti al Cut of f Ti me(
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR) ;

This returns the smallest timesuch that cutting off at is not the same as cutting off at index
0, orNULL if there is no such time.

Suppose the aim is to successively oudff att 1, t 2, and so on tan, the last time. Let

146 Chapter 6. Solution Monitoring

ti = Khed usterBusyTi neshonitorlnitial CutoffTime(n,andlet] be the firsttime such
that KheCQ ust er BusyTi mesMoni t or Set Cutof f Time(m tj) returnsfal se. Then the only
calls to set cutoffs that actually need to be made are

Khed ust er BusyTi meshbni t or Set Cut of f I ndex(m 0);
Khed ust er BusyTi meshoni tor Set Cut of f Time(m ti);

KheCd ust er BusyTi meshoni tor Set Cut of f Time(m tj);

Calls betweemnl andti - 1 change nothing, and calls aftgr also change nothing. If thereisno
ti, then cutting off at index O is all that is needed.

Finaly, function

voi d Khed ust er BusyTi meshbni t or Debug(KHE_CLUSTER BUSY_TI MES MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.6.5. Limit busy times monitors

A limit busy times monitor (tagkHE_LI M T_BUSY_TI MES_MONI TOR_TAG) monitors a resource
and offset which make up one point of application of a limit busy times constraint. Functions

KHE_LI M T_BUSY_TI MES_CONSTRAI NT KhelLi mi t BusyTi mesMoni t or Const r ai nt (
KHE_LIM T_BUSY_TI MES_MONI TOR m) ;

KHE_RESOURCE KheLi m t BusyTi mesMoni t or Resour ce(
KHE_LIM T_BUSY_TI MES_MONI TOR m) ;

i nt KheLi m t BusyTi meshonitor O f set (KHE_LI M T_BUSY_TI MES_MONI TOR m) ;

return the limit busy times constraint and the resource and offset being monitored. In the high
school model, and when the constraint INaksL for appl i es_to_t g, the offset is always 0,
otherwise the offset is the difference in index between one useful tiragpin es_to_t g and

the first time inappl i es_to_t g. Functions

i nt KheLi nm t BusyTi mesMoni t or Def ecti veTi meG oupCount (
KHE_LIM T_BUSY_TI MES_ MONI TOR n) ;
voi d KheLi m t BusyTi mesMoni t or Def ecti veTi neGr oup(
KHE_LIM T_BUSY_TIMES MONNTOR m int i, KHE_TIME_GROUP *tg,
int *busy count, int *mininum int =maximum bool xallow zero);

visit the time groups monitored bythat are currently defective, in any order. For eagtt g is
set to one defective time grouhusy_count is set to the number of timeds resource is busy
during*t g, and~m ni num+maxi num and«al | ow_zer o are set to the corresponding values from
the constraint; so either the resource is underloaded dutrmgnd+busy_count < *ni ni num

or the resource is overloaded duringy and+busy_count > *maxi num The time groups are
the time groups of the constraint, adjusted ugimgi mreG oupNei ghbour by the offset.

Limit busy times monitors containeei | i ng attribute, set and retrieved by

6.6. Resource monitors 147

voi d KheLi mi t BusyTi mesMni t or Set Cei | i ng(KHE_LI M T_BUSY_TI MES_MONI TOR m
int ceiling);
int KheLi m t BusyTi mesMoni tor Ceiling(KHE_LIM T_BUSY_TI MES_MONI TOR) ;

Whenbusy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 13.7.3. The default valuseofi ng is | NT_MAX, which
effectively turnsit off. Ifmis attached whekheLi m t BusyTi mesMoni t or Set Cei | i ng is called,

it will be detached and reattached by the call.

Function

voi d KheLi mi t BusyTi mesMoni t or Debug(KHE_LIM T_BUSY_TI MES_ MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

A limit busy times monitommay have non-zergheMoni t or Lower Bound(m) . Supposeis
resource is subject to an avoid clashes constraint of weight greaterishagight. Lett, be the
total duration of the events to whicls resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greatenthaseight. Lett, be the
number of times in the cycle minus the number of timegsrconstraint’'s domain. Then at least
t, - t, of the times of the events preassignedisresource must occur in time groups limited by
m If this exceeds the number of time groupsisiconstraint times itsaxi mum then the excess,
converted into a cost in the usual way, gives the lower bound. Monitors are only created for
offsets applicable to all times in the constraint, so this lower bound is the same for all offsets.

6.6.6. Limit workload monitors

A limit workload monitor has tagHE_LI M T_WORKLOAD_MONI TOR and monitors a resource
which is one point of application of one limit workload constraint. Functions

KHE_LIM T_WORKLQAD CONSTRAI NT KheLi mi t Wor kl oadMoni t or Const rai nt (
KHE_LIM T_WORKLOAD MONI TOR m) ;

KHE_RESOURCE KheLi m t Wr kIl oadMoni t or Resour ce(
KHE_LIM T_WORKLOAD MONI TOR m) ;

i nt KheLi m t Wor kl oadMoni t or O f set (KHE_LIM T_WORKLQAD MONI TOR) ;

return the limit workload constraint and the resource and offset being monitored. In the high
school model, and when the constraint haksL for appl i es_to_t g, the offset is always 0,
otherwise the offset is the difference in index between one useful tiragpin es_to_t g and

the first time inappl i es_to_t g. Functions

i nt KheLi m t Wor kl oadMoni t or Def ect i veTi meG oupCount (
KHE _LIM T_WORKLOAD MONI TOR) ;
voi d KheLi mi t Wor kl oadMoni t or Def ecti veTi neGr oup(
KHE LIM T _WORKLOAD MONITOR m int i, KHE TIME GROUP *tg,
float =workload, int *mnimm int *maxi num bool =*allow zero);

visit the time groups monitored lmythat are currently defective, in any order. For eagtt g is
set to one defective time grouor ki oad is set to the workload afis resource duringt g, and
«mi ni mum +naxi mum and+al | ow_zer o are set to the corresponding values from the constraint;

148 Chapter 6. Solution Monitoring

so either the resource is underloaded dufitggand+wor kl oad < +ni ni num or the resource is
overloaded duringt g and+wor kl oad > *nmaxi num The time groups are the time groups of the
constraint, adjusted usirkyeTi meG oupNei ghbour by the offset.

Limit workload monitors contain aei | i ng attribute, set and retrieved by

voi d KheLi mi t Wor kl oadMoni t or Set Cei | i ng(KHE LIM T_WORKLOAD MONI TOR m
int ceiling);
i nt KheLi m t Wor kl oadMoni tor Cei li ng(KHE LIM T_WORKLOAD MONI TOR) ;

Whenwor kl oad > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 13.7.3. The default valusedfi ng is | NT_MAX, which
effectively turns it off. Ifmis attached whekheLi mi t Wor kl oadMbni t or Set Cei | i ng is called,

it will be detached and reattached by the call.

Function

voi d KheLi mi t Wor kI oadMoni t or Debug(KHE_LI M T_WORKLOAD_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

A limit workload monitormmay have non-zerheMoni t or Lower Bound(m) . This is true
in all cases, but at present KHE only calculates a potentially non-zero lower boundmvhen
monitors the whole cycle. In that case, add up the workloads of the tasks to m#relsource
Is preassigned. If this exceeds the maximum of the corresponding limit workload constraint,
converting the excess into a cost usiigcost function in the usual way gives the lower bound.

6.6.7. Limit active intervals monitors

A limit active intervals monitor has tagHE LI M T_ACTI VE_| NTERVALS_MONI TOR_TAG and
monitors a resource and offset which together make one point of application of one limit active
intervals constraint. Limit active intervals constraints occur only in the employee scheduling
model, so limit active intervals monitors also occur only in that model. Functions

KHE_LI M T_ACTI VE_| NTERVALS_CONSTRAI NT
KheLi mi t Acti vel nt erval shoni t or Const r ai nt (
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR) ;
KHE_RESOURCE KheLi mi t Acti vel nt erval shonit or Resour ce(
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR) ;

return the limit active intervals constraint and the resource being monitored. Functions

i nt KheLi m t Activel nterval shonitorM ni mun(
KHE_LI M T_ACTI VE_| NTERVALS _MONI TOR) ;

i nt KheLi m t Activel nterval shonit or Maxi mun(
KHE_LI M T_ACTI VE_| NTERVALS _MONI TOR) ;

return the minimum and maximum limits from the constraint.

6.6. Resource monitors 149

i nt KheLinm tActivelnterval shonitorHi storyBefore(
KHE_LI M T_ACTI VE_| NTERVALS MONI TOR) ;

i nt KheLinitActivelnterval shonitorHi storyAfter(
KHE_LI M T_ACTI VE_| NTERVALS MONI TOR) ;

i nt KheLinmtActivelnterval shonitorHi story(
KHE_LIM T_ACTI VE_| NTERVALS MONI TOR) ;

return the history before, history after, and history values frdsnconstraint, or O if not
present. Function

i nt KheLinm tActivelnterval shnitorOfset(
KHE_LI M T_ACTI VE_| NTERVALS_MONI TOR) ;

returns the offset being monitored. When the constrainhbliasfor appl i es_t o_t g, the offset
is 0, otherwise it is the difference in index between one useful tira@phi es_t o_t g and the
first time inappl i es_to_tg. Functions

i nt KheLinmtActivelnterval shnitorTi neG oupCount (
KHE LI M T_ACTI VE_| NTERVALS MONI TOR) ;
KHE_TI ME_GROUP KhelLim t Activel nterval sMonitorTi meG oup(
KHE LIM T_ACTI VE_I NTERVALS MONITOR m int i, KHE POLARITY *po);

return the time groups thatmonitors (one for each time group in the limit active intervals con-
straint, adjusted usingheTi meG oupNei ghbour by the offset), and their associated polarities.

There are also functions which report the state of the monitor during the solve. Function

bool KheLim tActivelnterval shonitorTi meG oupl sActi ve(
KHE_LI M T_ACTI VE_I NTERVALS MONITOR m int i, KHE TIME_GROUP *tg,
KHE_POLARI TY *po, int =busy_count);

returnst r ue when the time group at indexis currently active. It setst g and+*po to the time
group and polarity at indeix, and+busy_count to the number of busy times in the time group.
It returns the value of the conditigmpo == KHE_NEGATI VE) == (*busy_count == 0),asthe
definition of the constraint specifies.

For visiting defective active intervals (active intervals whose length is less than the
minimum limit or greater than the maximum limit from the constraint), functions

int KheLimtActivelnterval shonitorDefectivelnterval Count (
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;
voi d KheLimitActivelnterval shonitorDefectivelnterval (
KHE_LI M T_ACTI VE_I NTERVALS MONITOR m int i, int xhistory_before,
int =first_index, int *xlast_index, int «history_after, bool *too_| ong);

return the number of defective active intervals and attributes aftthdefective active interval:

«hi story_bef ore. If the interval includes the first time group, the part of its length from
before there (i.e&kheLi ni t Acti vel nt er val shoni t or Hi st ory(n), otherwise O.

«first_index. The index of the first time group in the interval, not including any history

150 Chapter 6. Solution Monitoring

part, so always at lea8t

x| ast _i ndex. The index of the last time group in the interval, not including any history
part, so always at mo&heLi mi t Acti vel nt erval shoni t or Ti meG oupCount () - 1.

«hi story_after. If the interval includes the last time group, the part of its length from
after the last time group. This must be 0 when the the interval violates a maximum limit.

*t 00_| ong. Since this is a defective interval, its length must either be too long or too short.
This value ig r ue if it is too long, andf al se if it is too short.

The value compared with the limits is
*history + (*last_index - *first_index + 1) + xhistory _after

See Jeff Kingston’s paper on history for the rationale for this. All these definitions hold good
(although their consequences are not quite obvious) when there is a cutoff index (see below).

KheLi mi t Acti vel nt erval shMoni t or Def ecti vel nterval visits the defective intervals
in increasing order offirst_index. This ensures that if, between calls to this function, the
solution is changed, then changed back again to its previous state, a partially completed traversal
of defective intervals using this function is not invalidated.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function

i nt KheLim tActivelnterval shonitor At MaxLi m t Count (
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR) ;

It returns the number of active intervals which do not violate any limits, but whose length equals
the maximum limit. It has been considered most efficient to not maintain this value incremen-
tally; instead, the list of non-violating intervals is scanned when this function is called.

For the benefit of time sweep algorithms, which may perform better if active intervals
monitors understand that there is no point in complaining about problems beyond the point that
the time sweep has reached, there are functions

bool KheLimitActivel nterval shonitor Set Cut of f | ndex(

KHE LIM T_ACTI VE_| NTERVALS MONITOR m int cutoff _index);
i nt KheLim tActivelnterval shonitorCutof fl ndex(

KHE_LI M T_ACTI VE_| NTERVALS _MONI TOR) ;

These functions set and retrieve the monitarigtoff index an integer between 0 and
KheLi mi t Acti vel nt er val sMoni t or Ti meG oupCount (m) inclusive, whose effect is explained
below. If no cutoff index has been sé&heLi nit Acti vel nt erval shoni t or Cut of f | ndex(m
returnskheLi mi t Act i vel nt er val sMoni t or Ti meG oupCount () . This value cuts off nothing,
and should be passed when the aim is to remove a previously set cutoff index.

In practice it will often be easier to call this function:

bool KheLi mitActivel nterval sMonitor Set Cut of f Ti me(
KHE_LI M T_ACTI VE_I NTERVALS MONI TOR m KHE_TI ME cutoff _time);

6.6. Resource monitors 151

It works out the appropriate cutoff index for ignoring all time groups that contain any time later
thancut of f _time, and callskheLi nmi t Acti vel nt er val shoni t or Set Cut of f | ndex with that
cutoff index. PassinuLL for cut of f _ti ne removes any cutoff index.

KheLi mi t Acti vel nt er val sMoni t or Set Cut of f Ti me examinesis time groups from first
to last, stopping at the first time group that contains a time whose index exceeds the index of
cutof f _ti me. The index of that time group is the cutoff index; or if there is no such time group,
the cutoff index isKheLi mi t Acti vel nt er val sMoni t or Ti meG oupCount (n) . The function
runs much faster than just described when the cutoff times are increasing, as they usually are.

KheLi m t Acti vel nt erval sMoni t or Set Cut of f I ndex returnstrue when a non-zero
number of time groups is being cut offheLi i t Act i vel nt er val shbni t or Set Cut of f Ti me
does the same. For example, pasdidg. for cut of f _ti ne always returns valukal se. But
other cutoff times also retuifral se, when they come after the last time in the last time group.

The general idea is that if a solve is attempting to assign times only up to a certain point
in the cycle, then a cutoff index should be set to inform the monitor that there is no point in
complaining about things at or beyond that point. This improves the value of the monitor as an
influencer of the solve actually under way.

For the record, however, we need to be specific about the effect of a cutoff index. It
influences its monitor in two ways. First, and most simply, active intervals that begin at or after
the cutoff index do not attract a cost, no matter how short or long they are. Active intervals that
begin before the cutoff index and extend beyond it are not truncated, however, except where the
second effect (which we are about to explain) changes the state of some of their time groups.

Second, and more subtly, the monitor understands that time groups whose indexes are equal
to or larger than the cutoff index are beyond the scope of the current solve. This does not affect
busy time groups, which are considered to be active or inactive as usual (depending on their
polarity), but it does affect non-busy ones, which are considered to beoipeanstate, that is, not
known to be either active or inactive. The monitor then acts conservatively: it considers an open
time group to be active when comparing with a minimum limit, and inactive when comparing
with a maximum limit. Either way, this makes a violation less likely.

There is also

KHE_TI ME KheLi m t Activel nterval sMonitorlnitial CutoffTime(
KHE LI M T_ACTI VE_| NTERVALS MONI TOR) ;

This returns the smallest timesuch that cutting off at is not the same as cutting off at index
0, orNULL if there is no such time.

Suppose the aim is to successively oudgff att 1, t2, and so on tan, the last time. Let
ti = KhelLinitActivelnterval shnitorlnitialCutoffTime(m,andletj be the firsttime
such thatkheLi m t Acti vel nt erval shonit or Set Cut of f Tine(m tj) returnsfal se. Then
the only calls to set cutoffs that actually need to be made are

KheLi m t Acti vel nt erval sMoni t or Set Cut of f I ndex(m 0);
KheLi m t Activelnterval shMonitorSetCutof fTine(m ti);

KheLi m t Activel nterval sMonitorSetCutof fTine(m tj);

Calls betweemnl andti - 1 change nothing, and calls aftgr also change nothing. If there is no

152 Chapter 6. Solution Monitoring

ti,then cutting off at index 0O is all that is needed.
Finally, function

voi d KheLi m t Activel nterval shonit or Debug(
KHE_LIM T_ACTI VE_I NTERVALS MONITOR m i nt verbosity,
int indent, FILE *fp);

Is like KheMoni t or Debug, only specific to this type of monitor.

6.7. Timetable monitors

A timetableis a record of what is going on at each time. As part of monitoring cost, KHE
monitors the timetable of each event and each resource.

6.7.1. Event timetable monitors
Function

KHE EVENT Tl METABLE _MONI TOR KheEvent Ti net abl eMoni t or (KHE_SOLN sol n,
KHE_EVENT e);

returns the event timetable monitor of event Type KHE_EVENT_TI METABLE_MONI TOR is a
subtype ofKHE_MONI TOR with tagKHE_EVENT_TI METABLE_MONI TOR_TAG.

An event timetable monitor always has cost 0. When it is attached, a particular set of meets
is known to it at any moment: the set of meets derived feothat are assigned a time. The
monitor offers these operations, which report which meets are running at each time:

i nt KheEvent Ti met abl eMoni t or Ti meMeet Count (

KHE_EVENT _TI METABLE_MONI TOR etm KHE_TIME tine);
KHE_MEET KheEvent Ti net abl eMoni t or Ti meMeet (

KHE_EVENT _TI METABLE_MONI TOR etm KHE TIME tine, int i);

KheEvent Ti net abl eMoni t or Ti meMeet Count returns the number of meets running atre, and
KheEvent Ti net abl eMoni t or Ti neMeet returns the th of these meets. Closely related is

bool KheEvent Ti net abl eMoni t or Ti neAvai | abl e(
KHE_EVENT_TI METABLE_MONI TOR et m KHE_MEET neet, KHE TIME tine);

which returng r ue if moving meet within et m or adding it toet m so that its starting time is
ti me, would neither placeeet partly off the end of the timetable nor cause clashes.

An event timetable monitor offers no operations which report its set of meets directly. For
that, call functionKheEvent Meet Count andKheEvent Meet from Section 4.2.7 to obtain the
meets derived from a particular event; the timetabled meets are those with an assigned time.

As usual, event timetable monitors are createdi®sol nMake and exist for as long as the
solution does. Thereisone for each event. Link events monitors (but not spread events monitors)
depend on event timetable monitors.

Unlike most monitors, event timetable monitors are not attached initially. The event
timetable monitor returned kheEvent Ti net abl eMoni t or may be unattached and so not up

6.7. Timetable monitors 153

to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some event
timetable monitor is detached, that event timetable monitor is detached. Thus, unless the user
chooses to attach an event timetable monitor explicitly, it will be attached only as needed by
other monitors. Detaching an event timetable monitor does nothing unless no attached monitors
depend on it. In practice, when using an event timetable moetitgrit is best to call

i f(!KheMonitorAttachedToSol n((KHE_ MONI TOR) etnj)
KheMoni t or Att achToSol n((KHE_MONI TOR) etm);

beforehand, and
KheMoni t or Det achFr onfol n((KHE_MONI TOR) et m);

afterwards, unless mmust be attached, because some monitor that depends on it is attached.

Although it would make sense to treat an event timetable monitor as a group monitor
(Section 6.8), that option is not offered. The user who wants all the problems associated with a
given event to be channelled through a single monitor must create a group monitor, separate from
the event timetable monitor, and add the appropriate monitors to it in the usual way.

Event timetable monitors may be debugged by calimgEvent Ti met abl eMbni t or Debug
(defined below) as usual. And

voi d KheEvent Ti et abl eMoni t or Pri nt Ti net abl e(
KHE_EVENT_TI METABLE_MONI TOR etm int cell_width, int indent, FILE =fp);

prints a conventional tabular timetable, usibays and possiblyéeks time groups from the
instance to determine its shape. Paramater_wi dt h is the width of each cell, in characters.
The user may create an event timetable monitor by calling

KHE_EVENT_TI METABLE_MONI TOR KheEvent Ti et abl eMbni t or Make(KHE_SOLN sol n,
KHE_EVENT_GROUP eg) ;

The result monitors the meetssidl n derived from the events efj, and thus offers a way to keep
track of which events oég are running at each time, something which is not otherwise available
in KHE. It can be attached and detached at will in the usual way. Initially, it is detached, so in
practice its creation would always be followed by a caKiteMni t or At t achToSol n.

To delete an event timetable monitor made in this way, call
KheEvent Ti et abl eMoni t or Del et e(KHE_EVENT _TI METABLE MONI TOR et nj ;
This function begins by detachirgymif it is attached. Function

voi d KheEvent Ti met abl eMoni t or Debug(KHE_EVENT_TI METABLE_MONI TOR et m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

154 Chapter 6. Solution Monitoring

6.7.2. Resource timetable monitors
Function

KHE_RESOURCE Tl METABLE _MONI TOR KheResour ceTi et abl eMbni t or (
KHE_SOLN sol n, KHE RESOQURCE r);

returns the resource timetable monitor of resourcBypeKHE_RESCURCE_TI METABLE_MONI TOR
is a subtype oKHE_MONI TOR with tagKHE_RESOURCE_TI METABLE_MONI TOR_TAG.

A resource timetable monitor always has cost 0. Whenitis attached, a particular set of tasks
is known to it at any moment: those assigned the resource whose enclosing meet is assigned a
time. The monitor offers these operations, which report which tasks are running at each time:

i nt KheResour ceTi met abl eMoni t or Ti meTaskCount (
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TI ME tine);

KHE TASK KheResour ceTi net abl eMoni t or Ti meTask(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TIME time, int i);

KheResour ceTi met abl eMoni t or Ti mneTaskCount returns the number of tasks running atre;
KheResour ceTi net abl eMbni t or Ti neTask returns the th of these tasks.

Other functions are offered which may be more convenient in some cases. Function

i nt KheResour ceTi et abl eMoni t or BusyTi nmes(
KHE_RESOURCE_TI METABLE_MONI TOR rt) ;

returns the number of busy timesinm This quantity is kept up to date as the timetable changes,
So retrieving it costs almost nothing. Next,

bool KheResour ceTi et abl eMoni t or Ti meAvai | abl e(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_MEET neet, KHE_TIME tine);

returnst r ue if moving nmeet within rt m or adding it tort m so that its starting time isi ne,
would neither placeeet partly off the end of the timetable nor cause clashes. And

bool KheResour ceTi met abl eMoni t or Ti meG oupAvai | abl e(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TI ME_GROUP t g,
bool ignore_nocost);

returnstrue when the resource monitored by mis free at all of the times otg. If
i gnore_nocost istrue, tasks for whichkhneTaskNonAssi gnnment HasCost returnsf al se are
ignored. Function

bool KheResour ceTi et abl eMbni t or TaskAvai | abl el nFr ame(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TASK task, KHE FRAME frane,
KHE TASK ignore_task);

is similar but more elaborate. For each time thagk and its descendants is running, it finds
the time group containing that timeimane. It returnst r ue when all of those time groups are
available. Ifi gnore_t ask is nonNULL, it ignores any task whose proper root ggor e_t ask.
This is useful, for example, when checking whether a swap of the assignmerdskoaind

6.7. Timetable monitors 155

i gnor e_t ask would create no cases of two tasks running in the same time grdupog.
Next come some operations concerned with finding sets of tasks that overlap things:

voi d KheResour ceTi met abl eMoni t or AddTasks(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TI ME_GROUP tg,
bool include_preassi gned, KHE TASK SET ts);

adds to existing task set the tasks of t mthat overlap with time groupg. It does not add tasks
that are already present.ilficl ude_pr eassi gned ist r ue, preassigned tasks are included, oth-
erwise they are omitted. Omitting them makes sense when the tasks will be reassigned. And

KHE_BUSY_TYPE KheResour ceTi et abl eMoni t or TaskBusy Ty pe(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TASK t ask,
KHE_FRAVE days_frame, KHE_TASK SET r_ts, bool ignore_nocost);
KHE_BUSY_TYPE KheResour ceTi et abl eMoni t or TaskSet BusyType(
KHE RESOURCE TI METABLE MONI TOR rtm KHE TASK SET task_set,
KHE_FRAVE days_frame, KHE_TASK SET r_ts, bool ignore_nocost);

add to existing task set t s the proper roots of the tasksdfmthat are running on the same days
ast ask or the tasks of ask_set , including descendant tasks, usitays_f r ane to determine
what the days are. They do not add tasks tcs that are already present. Both functions return
a value of type

t ypedef enum {
KHE_BUSY_NONE = 0,
KHE_BUSY_SOME = 1,
KHE_BUSY_ALL = 2

} KHE_BUSY_TYPE;

saying whethert mis busy on no day thatask ort ask_set is running, or one some but not all
days, or on all days. lifgnore_nocost, the calculation of this return value considers tasks for
which KheTaskNonAssi gnnent HasCost returnsf al se to be the same as free time. However
such tasks are still addednot s.

A resource timetable monitor offers no operations which report its set of tasks directly.
For that, one can uséheResour ceAssi gnedTaskCount andKheResour ceAssi gnedTask from
Section 4.6.1 to obtain all the tasks assigned the resource; the timetabled ones are just those
whose enclosing meet has an assigned time.

The condition KheResour ceTi net abl eMoni t or Ti neTaskCount (rtm time) >= 2 is
true at each time whent mhas a clash. To find out quickly which times these are, use

i nt KheResour ceTi met abl eMoni t or A ashi ngTi neCount (
KHE_RESOURCE_TI METABLE_MONI TOR rtm) ;

KHE_TI ME KheResour ceTi met abl eMoni t or A ashi ngTi nme(
KHE_RESOURCE_TI METABLE_MONI TOR rtm int i);

They return all times such that mhas a clash at that time, not in chronological order.

As usual, resource timetable monitors are createkhbgol nMake and exist for as long as
the solution does. There is one for each resource. All resource monitors (except possibly limit

156 Chapter 6. Solution Monitoring

workload monitors) depend on resource timetable monitors.

Unlike most monitors, resource timetable monitors are not attached initially. The resource
timetable monitor returned heResour ceTi net abl eMoni t or may be unattached and so not
up to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some resource
timetable monitor is detached, that resource timetable monitor is detached. Thus, unless the
user chooses to attach a resource timetable monitor explicitly, it will be attached only as needed
by other monitors. Detaching a resource timetable monitor does nothing unless no attached
monitors depend on it. So when using a resource timetable momnitoit is best to call

i f(!KheMonitorAttachedToSol n((KHE MONITOR) rtn))
KheMoni t or Att achToSol n((KHE_ MONI TOR) rtm;

beforehand, and
KheMoni t or Det achFr onSol n((KHE_MONI TOR) rtm;

afterwards, unless mmust be attached, because some monitor that depends on it is attached.

Although it would make sense to treat a resource timetable monitor as a group monitor
(Section 6.8), that option is not offered. The user who wants all the problems associated with a
given resource to be channelled through a single monitor must create a group monitor, separate
from the resource timetable monitor, and add the appropriate monitors to it in the usual way.

Function

i nt KheResour ceTi met abl eMoni t or At MaxLi mi t Count (
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TIME t);

returns the sum, over all cluster busy times and limit active intervals monitors that mamier
resource at timg, of the values returned by those monit@ts¥axLi ni t Count functions. Itisan
efficient way to find out, during time sweep resource assignment, whether assignments at time
have brought any of these monitors to their maximum limits.

At present, all resource timetable monitors are created automatically when the solution is
created. The KHE user is offered nothing equivalerdteEvent Ti net abl eMoni t or Make.

Function

voi d KheResour ceTi net abl eMoni t or Debug(
KHE RESOURCE TI METABLE MONITOR rtm int verbosity,
int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor. There is also

voi d KheResour ceTi nmet abl eMoni t or Pri nt Ti met abl e(
KHE RESOURCE TI METABLE MONITOR rtm int cell _width, int indent, FILE =fp);

which prints a tabular timetable, usibgys and possiblyéeks time groups from the instance
to determine its shape. Paramatelrl _wi dt h is the width of each cell, in characters.

6.8. Group monitors 157

6.8. Group monitors

Sometimes the cost ofanglemonitor is needed: for example, when reporting problems to the
user. And the total cost @ll monitors is always needed, since that is the cost of the solution.

Sometimes something in between these two extremes is needed: the cost of a set of related
monitors. To support this, the monitors of a solution are organized into a directed acyclic graph,
or dagfor short, of arbitrary depth. Each monitor reports its cost to its parent monitors. The dag
is often a tree, in which case the picture looks like this:

Soln

e N

Group Group

monitor monitor
Non-group Non-group Non-group
monitor monitor monitor
/S PN S TN VARERAN
Solution

The leaves are theon-group monitorghe various monitors described previously which monitor
the solution directly. The internal nodes are calljgdup monitorsbecause they monitor a set
of monitors (their children). The cost of a group monitor is the sum of the costs of its children.

The solution object itself is a group monitor (initially, the only one). It supports all the
group monitor operations, plus the many other operations described earlier.

Group monitors have type¢HE_GROUP_MONI TOR, a concrete subtype ¢HE_MONI TOR, like
KHE_ASSI GN_TI ME_MONI TCR etc. KHE_GROUP_MONI TOR is a supertype ofHE_SOLN, so upcast

(KHE_GROUP_MONI TOR) sol n

is safe, although often unnecessary, since many operations oRHip8ROUP_MONI TOR have
KHE_SOLNversions. For example, Sin€HE_GROUP_MONI TR is itself a subtype okHE_MONI TCR,
the total cost of all monitors could be found by calling

KheMoni t or Cost ((KHE_MONI TOR) sol n)

but of course the equivaleKMHE_SOLN version KheSol nCost , is easier to use.

When the solution changes at some point, the change is reported to the non-group monitors
that monitor that point. Each updates its cost and reports any change to its parents, which update
their cost and report to their parents, and so on until there are no parents. The dag usually has
a single root, the solution object itself, but it does not have to be that way, because the links that
join non-group and group monitors to their parent monitors can be added and deleted at will.

158 Chapter 6. Solution Monitoring

6.8.1. Basic operations on group monitors

Unlike other types of monitors, group monitors other than the solution object can be freely
created and deleted. Function

KHE_GROUP_MONI TOR KheGr oupMoni t or Make(KHE_SOLN sol n, int sub_tag,
char *sub_tag_l abel);

creates a new group monitor with no parents and no children. It is passed the solution as a
parameter, and it remembers it, but it is not made a child of it. Functions

i nt KheG oupMoni t or SubTag(KHE_GROUP_MONI TOR g ;
char *KheG ouphbni t or SubTagLabel (KHE_GROUP_MONI TOR gnj;

return thesub_t ag andsub_t ag_| abel attributes ofym These are used to distinguish kinds of

group monitors. Ifsub_t ag_| abel is nonNULL, it is printed when debugging. The values of

these attributes in solution objects afleand" Sol n". The term ‘sub-tag’is used because group
monitors already have a tag attribute, whose vallélis GROUP_MONI TOR_TAG.

A group monitor other than the solution object may be deleted by calling
voi d KheG ouphoni t or Del et e(KHE_GROUP_MONI TOR gm) ;

Its children will no longer have it as a parent, and its parents will no longer have it as a child. For
each parent ofm the hole in the parent’s list of child monitors is plugged by moving the last
child monitor tognis position. For each child afm the hole in the child’s list of parent monitors

Is plugged by moving the last parent monitogtds position.

Every group monitor can have any number of child monitors, and every monitor (group or
non-group) can have any number of parent monitors. Even the solution object can have parents,
allowing monitoring of the total cost of a set of solutions. The operations for adding children to
a group monitor and removing them are

voi d KheG oupMoni t or AddChi | dvoni t or (KHE_GROUP_MONI TOR gm KHE_MONI TOR) ;
voi d KheG oupMoni t or Del et eChi | dMoni t or (KHE_GROUP_MONI TOR gm KHE _MONI TOR m) ;

Heremcould be a non-group monitor or a group monitire G oupMoni t or AddChi | dMbni t or
makesna child ofgm andgma parent ofm It aborts if this would create a cycle in the dag (only
possible whemis a group monitor)KheG oupMoni t or Del et eChi | dVbni t or removesnfrom

gm leavingmwith one less parent arginwith one less child. The resulting holes are plugged as
described above for deleting group monitors. It abortsigf not a child ofgm There is also

bool KheG oupMoni t or HasChi | dvoni t or (KHE_GROUP_MONI TOR gm KHE_MONI TOR) ;
which returng r ue whenmis a child ofgm It is useful whermmay already be a child afm

i f(!KheG oupMonitorHasChil dMonitor(gm m)
KheG oupMoni t or AddChi | dMoni tor(gm m;

No-one is checking that one monitor does not become the child of another twice over; and if it
does, its cost will be counted twice in the cost of its parent.

For group monitom KheMoni t or Lower Bound(nm) sums the lower bounds afs children.

6.8. Group monitors 159

It may increase when a descendant is added, and decrease when a descendant is removed.

Initially, all non-group monitors are made children of the solution object, and all of them
except demand monitors are attached to the solution, sé&ttb&dl nCost is the total cost of all
non-demand monitors, which is indeed the cost of the solution. Care is needed when grouping
not to inadvertently disconnect monitors from the solution, since then their costs will not be
counted, or to connect them via multiple paths, since then their costs will be counted multiple
times. Itis usually best to make a new group monitor a child of the solution immediately:

gm = KheG ouphoni t or Make(sol n, sub_tag, sub tag_|abel);
KheG oupMoni t or AddChi | dMoni t or ((KHE_GROUP_MONI TOR) sol n,
(KHE_MONI TOR) gm);

And when deleting a group monitor, the best option may be helper function
voi d KheG ouphbni t or BypassAndDel et e(KHE_ GROUP_MONI TOR gm) ;

It callsKheG oupMbni t or Del et e, but first it makegnis children into children ofynis parents,
if any, thus keeping them linked in. There is also

voi d KheSol nBypassAndDel et eAl | G oupMbni t or s(KHE_SOLN sol n);

which appliekheG oupMbni t or BypassAndDel et e to every group monitor ofol n.
Functions

i nt KheG oupMoni t or Chi | dMoni t or Count (KHE_GROUP_MONI TOR gm) ;
KHE_MONI TOR KheGr oupMoni t or Chi | dMoni t or (KHE_GROUP_MONI TOR gm int i);

visit the child monitors of group monit@min the usual way. Igmis the solution object, these
versions of the functions allow the user to avoid the upcast:

i nt KheSol nChi | dvoni t or Count (KHE_SOLN sol n) ;
KHE_MONI TOR KheSol nChi | dMoni t or (KHE_SOLN soln, int i);

Functions

i nt KheMoni t or Par ent Moni t or Count (KHE_MONI TOR) ;
KHE_GROUP_MONI TOR KheMoni t or Par ent Moni t or (KHE MONITOR m int i);

visit the parent monitors ah There is also
bool KheMoni t or Descendant (KHE_MONI TOR ml, KHE _MONI TOR nR);
which returng rue if n is a descendant of2, including when the two are equal. And

voi d KheG oupMoni t or Debug(KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

A group monitor has the usual attach and detach operations, but they do nothing substantial;
in particular, they do not change its cost. They just mark the monitor as attached or detached.
They should attach and detach it from its children, but that has not yet been implemented.

160 Chapter 6. Solution Monitoring

6.8.2. Defects

Informally, a defect is a specific problem with a solution. In KHE, the word has a formal meaning
as well: adefectis a monitor whose cost is non-zero.

It can be helpful to target defects directly, rather than wasting time changing parts of the
solution where there are no defects. Thisis especially the case near the end of the solve process,
when there may be thousands of monitors but only a handful of defects. To support this, KHE
offers fast access to those child monitors of a group monitor which are defects:

i nt KheG oupMbni t or Def ect Count (KHE_GROUP_MONI TOR gm) ;
KHE _MONI TOR KheG oupMoni t or Def ect (KHE_GROUP_MONI TOR gm int i);

When a monitor’s cost changes from zero to non-zero, the monitor is added to its parents’ defect
lists; and when its cost changes from non-zero to zero it is removed. This takes a negligible
amount of time. When the group monitor is the solution there are convenience versions:

i nt KheSol nDef ect Count (KHE_SQOLN sol n);
KHE_MONI TOR KheSol nDef ect (KHE_SCLN soln, int i);

There is also

voi d KheG oupMoni t or Def ect Debug(KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

which is like KheG oupMoni t or Debug applied togm except that it prints only defective
children, and

voi d KheG oupMoni t or Def ect TypeDebug(KHE_GROUP_MONI TOR gm
KHE MONI TOR TAG tag, int verbosity, int indent, FILE *fp);

which is likeKheG oupMbni t or Def ect Debug except that it prints only children of typeg.

If a solution is changed and then changed back again to its original state, its cost returns
to its original value, but there are two ways in which its defects can be different. First, they may
appear in a different order. Second, although the number of defects which are demand monitors
(Chapter 7) must return to its original value, the demand monitors that make up that number
may change. Thisis because there are many maximum matchings in general, and KHE does not
guarantee to find any particular one of them.

In practice, one wants to traverse a list of defects and try to repair them. Quite commonly,
an attempt to repair a defect will remove it temporarily and then reinstate it if the repair was
not successful. This will cause the defect to be shifted to the end of the defect list. A simple
traversal of the defects from first to last will visit some defects more than once, and others not at
all. To handle this problem, it is necessary to make a copy of the defects and traverse the copy.
Although every defect will have non-zero cost at the time it is copied, as the list is traversed,
after the solution changes or if the list includes demand monitors, one cannot assume that every
monitor on the copy list will have non-zero cost.

To find the total cost of all monitors of a given type in the descendargsafall

KHE_COST KheG oupMoni t or Cost By Type(KHE_GROUP_MONI TOR gm
KHE_MONI TOR_TAG tag, int =defect _count);

6.8. Group monitors 161

It returns the number of defects,idef ect _count , as well as the cost. It traverses the whole
sub-dag of monitors ofm (actually, just the defects), so it is slow: it is intended for reporting,
not for solving. It return® whent ag is KHE_GROUP_MONI TOR_TAG, because it attributes cost to
the monitors that originally generated it. Version

KHE_COST KheSol nCost By Type(KHE_SOLN sol n, KHE_MONI TOR_TAG t ag,
int xdefect _count);

may be called when the group monitor is the solution object. The values returned by these
functions are displayed in a convenient tabular form by functions

voi d KheG oupMoni t or Cost By TypeDebug(KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

voi d KheSol nCost By TypeDebug(KHE_SOLN sol n,
int verbosity, int indent, FILE *fp);

which print one line for each kind of monitor undgnor sol n for which there are defects.

6.8.3. Tracing

Sometimes a solver needs to know which monitors have experienced a change in cost recently.
Ejection chain solvers, for example, need this information,randitor tracingprovides it.

Tracing involves objects of typ€HE_TRACE. To create one, call
KHE_TRACE KheTr aceMake(KHE_GROUP_MONI TOR g ;
wheregmis the group monitor to be traced. The solution may be traced by upcasting it:
t = KheTraceMake((KHE_GROUP_MONI TOR) sol n);
The group monitor that a trace object is for can be found by calling
KHE_GROUP_MONI TOR KheTr aceG oupMbni t or (KHE_TRACE t);
To delete a trace object, call
voi d KheTraceDel et e(KHE TRACE t);

This will call KheTraceEnd(t) below if needed. KHE keeps a free list of trace objects in the
solution object, so many trace objects can be created and deleted at virtually no cost.

Actual tracing is initiated and ended by calling

voi d KheTraceBegi n(KHE_TRACE t);
voi d KheTraceEnd(KHE_TRACE t);

These must be called in matching paikheTr aceBegi n removes any information left over
from any preceding trace, and attaches its group monitor so that it can record what happens.
KheTr aceEnd detaches$ from its group monitor. Different trace objects may be attached and
detached quite independently of each other, even when they have the same group monitor.

After the trace ends, the following functions may be called:

162 Chapter 6. Solution Monitoring

KHE COST KheTracel nit Cost (KHE TRACE t);

i nt KheTraceMonitor Count (KHE TRACE t);

KHE MONI TOR KheTraceMnitor(KHE TRACE t, int i);

KHE COST KheTracelonitorlnitCost(KHE TRACE t, int i);

KheTracel ni t Cost returns the initial cost of 's group monitor (at the time the trace began);
KheTraceMni t or Count returns the number of child monitors ¢fs group monitor whose
cost changed during the tradéieTr aceMbni t or returns the th of these child monitors; and
KheTraceMoni torlnitCost(t, i) returnsthe initial cost okheTraceMonitor(t, i).

The list of child monitors whose cost has changed never contains the same mbwite,
no matter how many timeds cost changes during the trace. This is desirable, but it means that
whennis cost changes, this list has to be searched to se&siflready present. So it is best to
use tracing on group monitors that group only a small number of monitors; or if a large group
monitor like the solution object is traced, to trace it for only small sequences of operations that
are not likely to change the cost of a large number of monitors.

These functions may be called during a trace as well as after it, returning values as though
the trace had just ended. While it is not an error to KB#G oupMoni t or AddChi | dMoni t or
or KheGr oupMoni t or Del et eChi | dMoni t or while tracing the group monitor concerned, it is not
recommended. A solution cannot be copied while one of its group monitors is being traced.

Finally, function
voi d KheTraceDebug(KHE_TRACE t, int verbosity, int indent, FILE *fp);

printst ontof p with the given verbosity and indent, showing monitors whose cost changed.

Chapter 7. Matchings and Evenness

Suppose a decision is made to run five Music meets simultaneously, when the school has only two
Music teachers and two Music rooms. Clearly, when teachers and rooms are assigned later, there
will be major problems, but until then the usual cost function will not reveal any problems.

More subtly, suppose there are eight teachers, and that three of them teach English only,
three teach History only, and two teach both. Suppose a decision is make to run five English
meets and five History meets simultaneously. Then there are enough English teachers to teach
the five English meets, and there are enough History teachers to teach the five History meets, but
there are not enough English and History teachers, taken together, to teach the ten meets.

Matchinggofficially, unweighted bipartite matchinpgetect such problems. Although not
compulsory, they are often helpful. This chapter describes them in general, how they apply to
timetabling, and how to use them in KHE. Getting started can be as simple as calling

KheSol nMat chi ngBegi n(sol n) ;

KheSol nMat chi ngSet Wi ght (sol n, KheCost (1, 0));

KheSol nMat chi ngAddAl | Wor kI oadRequi renent s(sol n);
KheSol nMat chi ngAtt achAl | Or di nar yDemandMoni t or s(sol n);

after the solution is made a complete representation.

7.1. The bipartite matching problem

A bipartite graphis an undirected graph whose nodes are divided into two sets, such that every
edge connects a node of one set to a node of the othenatghingis a subset of the edges
such that no two edges touch the same nodenakimum matching a matching containing as
many edges as possible. Tiipartite matching problens the problem of finding a maximum
matching in a bipartite graph. For example, here is a bipartite graph (at left), and the same graph
with a maximum matching shown in bold (at right):

There is a standard polynomial-time algorithm for this problem.

In timetabling, where bipartite matching has been used for many years [2, 4, 14], it is usual
for one of the two sets of nodes to represent variables (slots, events, etc.) demanding something
to be assigned to them, while the other set represents values (times, resources, etc.) which are

163

164 Chapter 7. Matchings and Evenness

available to supply these demands. So these sets are callddrttemd nodeand thesupply
nodeshere. A maximum matching assigns supply nodes to as many demand nodes as possible,
given that each demand node requires any one of the supply nodes it is connected to, and each
supply node may be assigned to at most one demand node. Although the problem is formally
symmetrical between the two kinds of nodes, in timetabling it is not symmetrical: it does not
matter if some supply nodes are not matched, but it does matter if some demand nodes are
not matched.

One does not usually want to make the assignments indicated by a maximum matching,
because there are other constraints not modelled by it, and the aim is to find, not just any
maximum matching, but one satisfying these other constraints. Instead, the matching helps to
evaluate the current state. Because itis maximum, it indicates that there must be at least a certain
number of problems, in the form of unassigned demand nodes, in any solution incorporating the
decisions already made, and that is valuable information when evaluating those decisions.

Some applications of matching to timetabling utilize the ideatofed, the author’s term for
one resource at one time (the name recallptkel of computer graphics). For example, teacher
Smith during the first time on Mondays is one tixel; it may be represented by the ordered pair

(SmithMon1)

This is also called aupply tixe] because it can supply the demands of events for teachers. The
events are said to contaffemand tixels For example, an event of duration 2 which requests
student grou@A, one English teacher, and one room, is said to contain six demand tixels. This
is shorthand for saying that it demands six supply tixels.

Underlying the high school timetabling problem is a matching that we will calgtbbeal
tixel matching Its supply nodes are the supply tixels, one for each resource of the instance at
each time. Its demand nodes are the demand tixels of the events of the instance. Edges connect
demand tixels to those supply tixels that suit them. For example, a demand for student group 8A
would be connected to supply tixels whose resource is 8A; a demand for an English teacher at
time Monlwould be connected to those supply tixels whose resource is an English teacher and
whose time isvilonl Each demand tixel wants to be assigned one supply tixel, and each supply
tixel may only be assigned to one demand tixel (otherwise there would be a timetable clash). So
a matching is indeed required, and a maximum matching will have the fewest problems.

As decisions are made, in the form of assignments of times to meets or resources to tasks
(or domain reductions, for example from all qualified resources to a smaller set of preferred
resources), the demand tixels affected by these decisions become connected to fewer supply
tixels. When the maximum matching is recalculated (there is an efficient algorithm for doing this
incrementally as the graph changes) there may be more unmatched nodes than before, suggesting
that the decisions made may have been poor ones, and that alternatives should be explored.

The global tixel matching is useful for evaluating instances before solving begins. It can
reveal, for example, that the supply of computer laboratories is insufficient to cover the demand,
and other problems of that kind. It turns out to be very powerful late in the solve process, when
resources are being assigned after times have been assigned, provided it is enhanced with tixels
expressing resource unavailabilities and workload limits (Section 7.4). However, itis quite weak
before times are assigned, because it does not understand that the supply tixels assigned to events
must be correlated in time: it does not perceive the contradiction in assigning, say, the two supply

7.1. The bipartite matching problem 165

tixels (SmithMon1) and(Lab6,Wed35 to an event of duration 1.

An example given earlier, of scheduling five Music events simultaneously when there are
only two Music teachers and two Music rooms, shows that useful checks can be made when
deciding to run events simultaneously, even though their actual time is not fixed. Whatever time
is ultimately assigned to such events, each resource can supply at most one tixel to satisfy their
demands. So the demand tixels for one time of the events concerned may be matched with a set
of supply nodes, one for each resource. This will be cdtedl tixel matching The tixels are
rather different: they share a common generic time rather than holding a variety of true times.

7.2. Setting up
By default, a solution contains no matching. To add one, and later to take it away, call

voi d KheSol nivat chi ngBegi n(KHE_SOLN sol n) ;
voi d KheSol nivat chi ngend(KHE_SCLN sol n);

KheSol nMat chi ngEnd can be omitted if the matching is needed for the lifetime of the solution,
since the matching is deleted when its solution is deleted. There is also

bool KheSol nHasMat chi ng(KHE_SOLN sol n);

which returng r ue whensol n has a matching. Most of the other operations of this chapter are
undefined when no matching is present. Some may abort, others may do nothing.

KheSol nMat chi ngBegi n adds exactly one matching to the solution. It is kept up to date
thereafter as the solution changes, ufitdSol nMat chi ngEnd is called or the solution is deleted.
Adding a matching includes adding its demand nodes, each of which is represented by a monitor
called ademand monitar Removing a matching includes removing all demand monitors. A
demand monitor contributes a cost to the solution just like other monitors do. The costis 0 when
the node is matched, and some non-negative value, set by the user, when it is unmatched.

Demand monitors may be attached and detached individually as usual. Detachinga demand
monitor removes its node from the matching graph. Immediately iS00l nMat chi ngBegi n
returns, the demand monitors it makes are all detached, so the matching graph has no demand
nodes. Convenience functions defined below may be used to attach the demand monitors.

Rather than fiddling around calliieSol nHasMat chi ng, it is conventional to assume that
a matching is present when KHE is being used for solving, but not when it is being used only to
evaluate solutions. The rationale for this is that by comparison with the overall cost of a solve, it
costs virtually nothing, and helps to make the solve environment uniform, if a matching is always
present. If it isn’t actually wanted, its demand monitors can be detached. On the other hand,
when evaluating solutions, at least when just their cost is required, matchings have no use, and
if there are many solutions it is best to avoid the memory cost of the demand and supply nodes.

Behind the scenes, a lazy implementation is used: no matching is done until a query
operation (for example, a request for the current cost of a demand monitor, or a debug print)
occurs, allowing the time spent matching to be amortized over all operations carried out since
the previous query. There is no way for the user to observe the laziness. The key operation, of
bringing the matching up to date (making it maximum) runs in time roughly proportional to the
number of unmatched nodes in the graph when it is called.

166 Chapter 7. Matchings and Evenness

The cost of one unmatched node is set and retrieved by

voi d KheSol nivat chi ngSet Wi ght (KHE_SCLN sol n, KHE COST wei ght);
KHE_COST KheSol nMat chi ng\Wei ght (KHE_SCLN sol n);

For example, a call to
KheSol nMat chi ngSet Wi ght (sol n, KheCost (1, 0));

gives each unmatched node a hard cost of 1. The initial weight is 0. A change of weight is
reflected immediately in the cost reported by all demand monitors.

Although it would be trivial to allow the user to set the cost of each demand monitor
individually, this has not been done, because it might suggest that the matching algorithm is
capable of finding the matching which minimizes the total cost of unmatched nodes. In reality,
there is no way to make the cost depend on which nodes are unmatched, nor on how appropriate
the matching’s assignments are. Those would be useful features, since then the cost of assign
resources and prefer resources constraints could be reflected in the matching cost, but then a
different problem, calledeighted bipartite matchingvould have to be solved, whose algorithm
the author considers to be too slow for solving.

In the absence of weighted matching, choosimigght is not easy. The simple choice is
KheCost (1, 0), and it may well be the best. Another choice is one which guarantees that the
weighted cost of the matching is a lower bound on the ultimate total cost of the violations of
all relevant constraints, assuming that more assignments are added without changing the current
ones. Each unassigned tixel in the matching must ultimately correspond with either a missing
resource assignment at one time, or a resource clash at one time. So a suitable weight is the
minimum of the following quantities: for each event resource, the sum of the combined weights
of the assign resource constraints that apply to it; and for each resource, the sum of the combined
weights of the avoid clashes constraints that apply to it. (Fortunately, both of these constraints
incur a cost for each violating tixel.) Function

KHE_COST KheSol nM nMat chi ng\Wei ght (KHE_SOLN sol n);

works out this value. If there are no event resources and no resources, it returns 0.
The matching has gpethat may be changed at any moment:

KHE_MATCHI NG_TYPE KheSol nMat chi ngType(KHE_SOLN sol n);
voi d KheSol nMat chi ngSet Type(KHE_SOLN sol n, KHE_MATCHI NG TYPE nt);

KHE_MATCHI NG_TYPE is the enumerated type

t ypedef enum {
KHE_MATCHI NG_TYPE_EVAL_| NI TI AL,
KHE_MATCHI NG _TYPE_EVAL_TI MES,
KHE_MATCHI NG_TYPE_EVAL_RESOURCES,
KHE_MATCHI NG_TYPE_SOLVE

} KHE_MATCHI NG_TYPE;

A full explanation of these values is given in the following section. Just briefly, however,

7.2. Setting up 167

KHE_MATCHI NG_TYPE_SOLVE implements an enhanced local tixel matching and is the best choice
when solving; it is also the default value. The others are variants of global tixel matching. A
change of type is reflected immediately in the cost reported by all attached demand monitors.

For the most part, matchings work quietly behind the scenes without attention from the user.
However, there is an important optimization that only the user can invoke. Suppose that some
changes are made to the solution as an experiment, then either retained or undone. Then KHE
will run faster if that part of the program is bracketed by calls to these functions:

voi d KheSol nMat chi ngMar kBegi n(KHE_SCLN sol n) ;
voi d KheSol nMat chi ngMar KEnd(KHE_SOLN sol n, bool undo);

Calls to these operations must occur in matching pairs, possibly nesteadolis t r ue, then

KheSol nMat chi ngMar kEnd assumes without checking that all changesdbn since the cor-
responding call té&cheSol nMat chi ngMar kBegi n have been undone. It uses this information to
bring the matching up to date more quickly than could be done withoutit. To encourage their use,
both functions are well-defined even when there is no matching: in that case, they do nothing.

As an aid to debugging, function

voi d KheSol nMvat chi ngDebug(KHE_SOLN sol n, int verbosity,
int indent, FILE *fp);

ensures that the matching is up to date, then prints its current stateponterbosity 1 prints just
the number of unmatched demand monitors, verbosity 2 prints those monitors, and verbosity 3
prints all demand monitors and the supply nodes they are matched with.

7.3. Ordinary supply and demand nodes

This section explains how most of the supply and demand nodes of the matching, the ones
associated with meets, are defined. Since they are linked together with edges that depend on the
type of the matching, this section also expladHE_MATCHI NG_TYPE in detail.

For each offset of a meetet (for each integer between 0 inclusive and the duration of
meet exclusive), the matching contaiRsordinary supply nodesvhereR is the total number of
resourcesin the instance.niet has duratioml, thisisdRsupply nodes altogether. Each models
the supply of one resource at one offset. These supply nodes cannot be accessed by the user.

Each task ofreet containkheMeet Dur ati on(meet) demand nodes, which will be called
ordinary demand nodet® distinguish them from the workload demand nodes to be defined
later. Each models the demand made by its task at one offset. Ordinary demand nodes have type
KHE_ORDI NARY_DEMAND_MONI TOR and may be accessed in the usual way by

i nt KheTaskDemandMoni t or Count (KHE_TASK t ask);
KHE_ORDI NARY_DEMAND MONI TOR KheTaskDemandMoni t or (KHE_TASK task, int i);

The first function’s value is equal to the duration of the enclosing meet. Like most monitors,these
ones cannot be created or deleted by the user. They are created when the task is created, split and
merged when it is split and merged, and deleted when it is deleted. Unlike other monitors, they
are detached initially. This is so that, by default, KHE monitors only the official cost.

168 Chapter 7. Matchings and Evenness

In addition to the operations applicable to all monitors, ordinary demand monitors offer

KHE_TASK KheOr di nar yDemandMoni t or Task(KHE_ORDI NARY_DEMAND MONI TOR) ;
i nt KheOrdi nar yDemandMoni t or O f set (KHE_ORDI NARY_DEMAND MONI TOR) ;

returning the task thawmonitors, and its offset within that task. Helper functions

voi d KheSol nivat chi ngAttachAl | Or di nar yDemandMoni t or s(KHE_SOLN sol n) ;
voi d KheSol nivat chi ngDet achAl | Or di nar yDemandMoni t or s(KHE_SOLN sol n) ;

ensure that all ordinary demand monitors are attached or detached; they visit every ordinary
demand monitor of every task of every meesof n, check whether it is currently attached, then
attach or detach it if required. Function

voi d KheCOr di nar yDemandMoni t or Debug(KHE_ORDI NARY_DEMAND MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

Although the list of monitorsin atask is fixed, each may be attached or detached individual-
ly, and they may be linked by edges to supply nodes in different ways, depending on the matching
type, as will now be explained.

An ordinary demand node®wvn meets the meet its task lies in. Iteot meets the meet
reached by following the chain of assignments (possibly empty) out of its own meet to a meet
that contains no assignment. &&n offsets its offset in its own meet, and iteot offsetis its
offset in its root meet (the sum of its own offset and the offsets along the assignment path).

When linking an ordinary demand node to ordinary supply nodes, there are at least two ways
to take time into account:

A. Linkitonly to ordinary supply nodes lying in cycle meets at offsets that represent the times
of the time domain of its own meet, shifted by its own offset.

B. Linkit only to ordinary supply nodes lying in its root meet at its root offset.

Informally, (A) evaluates the initial state of time assignment, whereas (B) evaluates its current
state in a way that ensures that simultaneous demands compete for the same supply nodes, as in
local tixel matching. And there are at least two ways to take resources into account:

1. Link it to supply nodes representing the resources of its task’s domain.

2. Link it to supply nodes representing the resources of its task’s root task’'s domain. If the
root task is a cycle task, this will link only to supply nodes representing that resource.

Informally, (1) evaluates the initial state of resource assignment, whereas (2) evaluates the current
state. The four non-empty matching types produce the four conjunctions of these conditions:

A B
1 KHE_MATCHI NG _TYPE EVAL_I NI TI AL KHE_MATCHI NG _TYPE_EVAL_TI MES
2 KHE_MATCH NG TYPE_EVAL_RESOURCES KHE_MATCHI NG TYPE_SOLVE

7.3. Ordinary supply and demand nodes 169

Type (B2) is suited to solving; the others are suited to evaluation before or after solving.

7.4. Workload demand nodes

In addition to ordinary demand nodes, matchings may comtanmkload demand nodgessed to

take account of avoid unavailable times constraints, limit busy times constraints, and limit work-
load constraints, collectively calledorkload demand constraintere. For example, suppose
the cycle contains 40 times, and teacBerithhas a required workload limit of 30 times and is
unavailable at tim&onl Then ten workload demand nodes should be created, one demanding
supply tixel(SmithMon1), and the other nine demandiBgnithat one unrestricted time.

Itisimportant to include workload demand nodes, since otherwise the problems reported by
the matching will be unrealistically few. They are the same for all matching types, and in most
casesi it is enough to call helper function

voi d KheSol nMat chi ngAddAl | Wor kI oadRequi r enent s(KHE_SCLN sol n);

This may be done at any time, and does what is usually wanted. However, it is partly heuristic,
so KHE offers the option of controlling the details.

For the purposes of matchings onlywarkload requiremenis a requirement imposed on
a resource that it be occupied attending meets for at most a given number of the times of some
time group. There are no operations for creating workload demand nodes directly; instead, there
are operations for defining workload requirements, and the workload demand nodes are derived
from them by KHE behind the scenes, as explained below (Section 7.4.2).

Within a solution at any moment, a sequence of workload requirements is associated with
each resource. They may be visited in order by calling

i nt KheSol nMat chi ngWor kl oadRequi r ement Count (KHE_SOLN sol n,
KHE_RESQURCE r) ;

voi d KheSol nMat chi ngWor kl oadRequi r ement (KHE_SCLN sol n, KHE_RESOURCE r,
int i, int *num KHE TIME_GROUP *tg, KHE MONI TOR *mj);

The first returns the number of workload requirements associated wt$ol n, and the second
returns the 'th requirement, in the form of a number of times and a time group. If the third
return parameterm is nonNULL, it is the originating monitor the monitor that gave rise to

this requirement. The originating monitor is stored in workload demand monitors created as a
consequence of this requirement, to assist in analysing defects; it is not otherwise used.

Each resource has no workload requirements initially. To change the requirements of
resource , begin with a call to

voi d KheSol nMat chi ngBegi nWr kl oadRequi r ement s(KHE_SOLN sol n, KHE RESOURCE r);
continue with any number of calls to

voi d KheSol nvat chi ngAddWer kl oadRequi r emrent (KHE_SCLN sol n,
KHE_RESOURCE r, int num KHE TIME_GROUP tg, KHE_MONITOR m);

wheremmay beNULL, and end with a call to

170 Chapter 7. Matchings and Evenness

voi d KheSol nMat chi ngEndWr kl oadRequi r ement s(KHE_SOLN sol n,
KHE_RESOURCE r);

All three functions must be called, in order. The first clegssworkload requirements, the
second appends a requirement thattend events for at mostmof the times oft g (hummay

not exceed the number of timestig), and the third replaces any existing workload demand
nodes forr with new ones derived from the workload requirements. The new monitors are
attached as they are createédieMat chi nghbni t or Set Al | Wor kI oadRequi r enent s calls these
functions. The sections below describe the calls it makes, and how workload requirements are
converted into workload demand nodes.

To delete the workload requirementsrgfalong with their workload demand nodes, call

voi d KheSol nMat chi ngDel et eWor kl oadRequi r ement s(KHE_SOLN sol n,
KHE_RESOURCE r);

KheSol nMat chi ngBegi nWor kl oadRequi renents does this, as doegheSol nMat chi ngEnd
when deleting the whole matching.

The workload demand nodes createdHingSol nvat chi ngEndWr ki oadRequi r ement s
are monitors of typeKHE_WORKLOAD DEMAND MONI TOR. Like other monitors of resources,
they appear on the list of monitors visited by functidfieResour ceMoni t or Count and
KheResour ceMoni t or from Section 6.6.

In addition to the operations applicable to all monitors, workload demand monitors offer

KHE_RESOURCE KheWor kl oadDermandMoni t or Resour ce(
KHE_WORKLOAD _DEMAND MONI TOR m) ;

KHE_TI ME_GROUP KheWor kI oadDermandMoni t or Ti meGr oup(
KHE_WORKLQOAD _DEMAND MONI TOR m) ;

KHE_MONI TOR KheWor kl oadDemandMoni t or Ori gi nati nghbni t or (
KHE_WORKLQOAD _DEMAND MONI TOR m) ;

These return the resource that the workload demand monitor is for, the time group of the
workload requirement that led tp and the originating monitor (possibiLL) of the workload
requirement that led tm Finally, function

voi d KheWr kl oadDemandMoni t or Debug(KHE_ WORKLOAD DEMAND _MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

7.4.1. Constructing workload requirements

This section explains hokheSol nMat chi ngAddAl | Wor kI oadRequi r enent s works. For each
resource , it first callskheSol nMat chi ngBegi nWr kl oadRequi rement s(sol n, r), and then
visits each required workload demand monitof weight greater than 0 applicablertdn order

of decreasing weight. What it does with each monitor is explained below. It then finishes its
work onr with a call tokheSol nMat chi ngEndWr kil oadRequi renent s(soln, r).

If mis an avoid unavailable times monitor, or a limit busy times monitor wiagsenum

7.4. \Workload demand nodes 171

attribute is 0, then for each tintein mis constraint’s domain it calls

KheSol nMat chi ngAddWor kI oadRequi rement (soln, r, O,
KheTi meSi ngl et onTi meG oup(t), m;

If mis a limit busy times monitor witlvaxi mumgreater than 0, then for each time graggn nis
constraint it calls

KheSol nMat chi ngAddWor k|l oadRequi rement (soln, r, k, tg);

wherek is theMaxi mumattribute. TheM ni numattribute is ignored.

A limit workload monitor is like a limit busy times monitor whose time group contains all
the times of the cycle, séheSol nMat chi ngAddWr ki oadRequi r enent is called once with this
time group. The number passed to this call requires careful calculation, involving the workloads
of all events. The remainder of this section explains this calculation.

Let k be the integer eventually passeditmeSol nMat chi ngAddWr kI oadRequi r enent .
Initialize k to theMaxi numattribute of the limit workload constraint. For each event resoerce
let d(er) be its duration andv(er) be its workload. The basic idea is that ifs assigned ter,
thend(er) — w(er) should be added ta For example, a resource with workload limit 30 that is
assigned to an event resource with duration 3 and workload 2 needs a workload requirement of
31, not 30. And ifr is assigned to an event with duration 6 but workload 12, theeeds to be
decreased by 6.

In some cases, preassignments or domain restrictions make it certaimthidte assigned
to some event, and in those cases the adjustment can be done safely in advance. For example,
if every staff member attends a weekly meeting with duration 1 and workload 0, then their
workload requirements can all be increased by 1 to compensate. Similarhyiif definitely
not be assigned to some event, then the event’s duration and workload have no eftect on

The residual problem cases are those event resoercebose workload and duration
differ, whichr may be assigned to but not necessarily. In these cases, an inexact model is used
which preserves the guarantee that the number of unmatched nodes is a lower bound on the final
number, but the number is weaker (that is, smaller) than the ideal.

If w(er)>d(er), thener is ignored. This case can only make the problem harder, so
ignoring it means that the number returned will be smaller than the ideadelf) < d(er), then
d(er) —w(er) is added td, just as though was assigned ter. If r is ultimately assigned to
er, then this will be exact; if it is not, then again it will weaken the bound, by overestimasng
available workload.

These tests are actually applied to clusters of events known to be running simultaneously,
because of required link events constraints or preassignments and other time domain restrictions.
Each resource can be assigned to at most one of the event resources of the events of a cluster, so
only one of the events, the one whose modelling is least exact, needs to be taken account of.

7.4.2. From workload requirements to workload demand nodes

KHE converts workload requirements to workload demand nodes automatically, during the call
to KheSol nMat chi ngEndWr ki oadRequi rement s (defined above). The following explanation
of how this is done, adapted from [9], is included for completeness.

172 Chapter 7. Matchings and Evenness

When converting workload requirements into workload demand nodes, the relationships
between the requirements’ sets of times affect the outcome. In general, an exact conversion
seems to be possible only when these sets of times satisfyliset tree conditioreach pair of
sets of times is either disjoint, or else one is a subset of the other.

For example, suppose the cycle has five days of eight times each, and ressuecpiired
to be occupied for at most thirty times altogether and at most seven on any one day, and to be
unavailable at timeBri6, Fri7, andFri8. These requirements form a tree (in general, a forest):

30Time

|7Tuer/T;;;;i//|7Thu\\\\\\\\\\\T7Eﬁ1

|0Fri6| |OFri7| |OFri8

| 7 Mon

A postorder traversal of this tree may be used to deduce that workload demand nadasefor
needed for ondontime, oneTuetime, oneWedtime, oneThutime, oneFri6 time, oneFri7

time, oneFri8 time, and three arbitrary times. In general, each tree node contributes a number of
demand nodes equal to the size of its set of times minus its number minus the number of demand
nodes contributed by its descendants, or none if this number is negative.

The tree is built by inserting the workload requirements in order, ignoring requirements
that fail the subset tree condition. For example, a failure would occur if, in addition to the above
requirements, there were limits on the number of morning and afternoon times. The constraints
which give rise to such requirements are still monitored by other monitors, but their omission
from the matching causes it to report fewer unmatchable nodes than the ideal. Fortunately, such
overlapping requirements do not seem to occur in practice, at least, not as required constraints.

7.5. Diagnosing failure to match

KHE’s usual methods of organizing monitors, such as grouping and tracing, may be applied to
demand monitors. This section offers three other ways to visit unmatched demand monitors.

7.5.1. Visiting unmatched demand nodes
The unmatched demand nodes may be visited by functions

i nt KheSol nMat chi ngDef ect Count (KHE_SOLN sol n);
KHE _MONI TOR KheSol nMat chi ngDef ect (KHE_SCOLN soln, int i);

Each monitor is either an ordinary demand monitor or a workload demand monitor; a call to
KheMoni t or Tag followed by a downcast will produce the specific type. Then functions defined
earlier give access to the part of the solution being monitored by these monitors.

Unmatched demand nodes with higher indexes tend to have become unmatched more
recently than demand nodes with lower indexes. When the number of unmatched demand nodes
increases, it is reasonable to take the last unmatched demand node as an indication of what went

7.5. Diagnosing failure to match 173
wrong. However, it will usually be better to use grouping and tracing to localize problems.

7.5.2. Hall sets

Hall setsare the definitive method of diagnosing failure to match. They are fine for occasional
use, such as for generating a report to the user, but too slow for repeated use during solving.

Suppose there is a detof demand nodes, whose outgoing edges all lead to nodes in some
setSof supply nodes. Then every nodddrmust be matched with a node$hor not matched at
all. If ID| > |S|then at leagD| - |S|nodes ofD will be unmatched in any maximum matching.

It turns out that every case of an unmatched node can be explained in this way, often
utilizing setsD andSthat are small enough to understand in user terms: they might represent
the demand and supply of Science laboratories, for example. ShamdS, with every edge
out of D leading toS, and|D| > |S| is called aHall setafter the mathematician P. Hall. Given a
maximum matching, every unmatched demand node lies in a Hall set.

The following functions examine the Hall sets of a matching. They all begin by building
the Hall sets if the ones currently stored are not up to date. This means that any change to the
solution invalidates everything returned by all previous calls to these functions.

The number of Hall sets is returned by
i nt KheSol nMat chi ngHal | Set Count (KHE_SOLN sol n) ;

This is not usually the same as the number of unmatched demand nodes, since there may be
several of those in one Hall set. No node liesin two Hall sets. The number of supply and demand
nodes in the 'th Hall set may be found by calling

i nt KheSol nMat chi ngHal | Set Suppl yNodeCount (KHE_SOLN soln, int i);
i nt KheSol nMat chi ngHal | Set DemandNodeCount (KHE_SOLN sol n, int i);

By the way that Hall sets are definddieSol nMat chi ngHal | Set DemandNodeCount (sol n, i)
must be larger thaikheSol nMat chi ngHal | Set Suppl yNodeCount (sol n, i).

Thej 'th supply node of thé'th Hall set can only be an ordinary supply node, but, in case
other kinds of supply nodes are added in future, the following function is used to find the meet
it lies in, its offset within that meet, and the resource it represents:

bool KheSol niat chi ngHal | Set Suppl yNodel sOr di nary(KHE_SOLN sol n,
int i, int j, MEET *meet, int xneet_offset, KHE RESOURCE #r);

At present this always returhsue. Areportto the user should distinguish the cases wineat
Is and is not a cycle meet. Th&h demand node of thieth Hall set is returned by

KHE_MONI TOR KheSol niat chi ngHal | Set DemandNode(KHE_SOLN sol n,
int i, int j);

It will be either an ordinary demand node or a workload demand node as usual. Finally,

voi d KheSol nivat chi ngHal | Set sDebug(KHE_SOLN sol n,
int verbosity, int indent, FILE *fp);

174 Chapter 7. Matchings and Evenness

prints the Hall sets ofiis matching ontd p with the given verbosity and indent. The verbosity
must be at least 1 but otherwise does not affect what is printed.

7.5.3. Finding competitors

Given an unmatched demand monitoreturned bykheSol nMat chi ngHal | Set DemandNode or

KheSol nMat chi ngDef ect , a competitorof that monitor is eithemitself or a monitor whose
removal would allowmto match. Competitors are similar to the demand nodes of Hall sets, ex-
cept that they relate to a single unmatched demand node. They are themselves always matched.
Finding competitors amounts to redoing the search for an augmenting path for the failed node
and noting the demand nodes that are visited along the way.

Functions

voi d KheSol nMat chi ngSet Conpetitors(KHE SOLN sol n, KHE MONI TOR m) ;
i nt KheSol nMat chi ngConpet it or Count (KHE_SOLN sol n);
KHE _MONI TOR KheSol nMat chi ngConpetitor (KHE SOLN soln, int i);

may be used together to visit the competitors of unmatched demand manitor

KheSol nMat chi ngSet Conpetitors(soln, m;
for(i = 0; i < KheSolnMatchingConpetitorCount(soln); i++)
{
conpetitor_m = KheSol nMat chi ngConpetitor(soln, i);
visit conpetitor_m...

}

The competitors are visited in breadth-first order, beginning witlthich the user may choose

to skip by initializingi in the loop above td rather thar0). There may be any number of
competitors other tham including none, and they may be ordinary demand monitors and
workload demand monitors.

The solution contains one set of competitors which remains constant except when reset by
a call toKheSol nMat chi ngSet Conpetitors. If the solution changes, this set of competitors
remains well-defined as a set of monitors, but becomes out of date as a set of competitors.

Competitors are useful because they can be found quickly, but they are not definitive in
the way that Hall sets are: in unusual cases, a given unmatched monitor may have different
competitors in different maximum matchings. For example, consider these two matchings:

7.5. Diagnosing failure to match 175

A A
B B
C

Both are maximum, since all three supply nodes are matched in each; but the compefitors of
in the first matching aré andB, while the competitors of in the second arB andE.

It is important not to change the solution when traversing competitors. Even if itis changed
back again, the unmatched demand nodes may be different afterwards. In the usual case where
the aim is to move one meet that is competing for some scarce resources, the right approach is to
use the loop to find those meets, store them, and move them after it ends.

In applications such as ejection chains it is important to understand what the defect really
is. In the case of unmatched demand nodes, the true defect is the Hall set. This may be
approximated in practice by the set of competitors. Thus, a repair should operate on the set of
competitors independently of their order or which one happens to be the unmatched one.

7.6. Evenness monitoring

Suppose that a school has seven Mathematics teachers, and that at some time there are seven
Mathematics lessons running simultaneously. All seven teachers must be utilized at that time,
which, although feasible, will restrict the options for resource assignment later.

Unless the teachers are very overworked, there must be other times when few Mathematics
lessons are running. The Mathematics lessons are distributed unevenly through the cycle.

KHE offers a kind of monitor, of typ&HE_EVENNESS_MONI TOR, which monitors this kind
of evenness. These work similarly to demand monitors; they are created and removed by

voi d KheSol nEvennessBegi n(KHE_SOLN sol n);
voi d KheSol nEvennessEnd(KHE_SCLN sol n);

although the call t&heSol nEvennessEnd may be omitted when evenness monitoring is wanted

for the lifetime of the solution. Evenness monitors are create¢hbgol nEvennessBegi n but

not attached initially. There is one evenness monitor for each resource partition of the instance
and each time of the cycle, which keeps track of how many tasks whose domains lie within
that partition (as determined t$reResour ceG oupParti tion) are running at that time. The
monitor reports a deviation when this number exceeds some limit, which is usually set at one
less than the number of resources in the partition. Thus, the deviation would be zero when six
Mathematics teachers are needed, and one when seven are needed. Function

176 Chapter 7. Matchings and Evenness

bool KheSol nHasEvenness(KHE _SOLN sol n);

returng r ue when evennness monitors are present.

Like demand monitoring, evenness monitoring depends on the resources demanded at each
time. Unlike demand monitoring, however, domains that cross partition boundaries are not taken
into account, and evenness is only monitored at the root level of the layer tree. Despite these
simplifications, evenness monitoring is potentially useful for giving early warning of demand
problems, especially when used in conjunction with domain tightening (Section 11.3).

When present, evenness monitors may be found in the list of all monitors kept in the
solution, and attached and detached in the usual way. More useful in practice are functions

voi d KheSol nAttachAl | EvennessMoni t or s(KHE_SOLN sol n);
voi d KheSol nDet achAl | Evennesshoni t or s(KHE_SOLN sol n);

which visit each evenness monitor and ensure that it is attached or detached. The usual
operations on monitors may be carried out by upcasting toKifaeMONIl TOR as usual. There
are also operations specific to evenness monitors:

KHE_RESOURCE_GROUP KheEvennessMoni torPartiti on(KHE_EVENNESS MONI TOR) ;
KHE_TI ME KheEvennesshoni t or Ti me(KHE_EVENNESS MONI TOR m) ;
i nt KheEvennessMoni t or Count (KHE_EVENNESS MONI TOR) ;

These return the partition being monitored, the time being monitored, and the number of tasks
whose domains lie within that partition that are currently running at that time (ornQisf
unattached). It would be useful to be able to retrieve the specific tasks that go to make up this
count, but that information is not kept. If it is needed, it is necessary to search the cycle meet
overlapping the time, and all the meets assigned to that cycle meet directly or indirectly, to find
the tasks running at the monitored time whose domains lie within the monitored partition.

Each evenness monitor also contains a limit, such that when the count goes above that limit
a deviation is reported. This limit can be retrieved and changed at any time by calling

i nt KheEvennessMonitorLimt(KHE EVENNESS MONI TOR m);
voi d KheEvennessMonitorSetLimt(KHE EVENNESS MONNTOR m int limt);

Its default value is the number of resources in the partition, minus this same number divided by
six and rounded down. Thus, when there are less than six resources, the value is the number of
resources; when there are between six and eleven resources, the value is one less than the number
of resources; and so on. This seems to work reasonably well in practice. Another way to ignore
unevenness in small partitions would be to detach their monitors.

The deviation i&heEvennessMni t or Count (m) - KheEvennesshonitorLimt(m,or0
if this number is negative. This is converted into a cost by multiplying by a weight (there is no
choice of cost function). The weight may be retrieved, and set at any time, by

KHE_COST KheEvennesshbni t or Vi ght (KHE_EVENNESS_MONI TOR m) ;
voi d KheEvennessMoni t or Set Wi ght (KHE_EVENNESS_MONI TOR m KHE_COST wei ght) ;

The default weight is the smallest non-zero weighgCost (0, 1). Helper function

7.6. Evenness monitoring 177

voi d KheSol nSet Al | EvennesshMbni t or Wi ght s(KHE_SOLN sol n, KHE _COST wei ght);
sets the weights of all evenness monitors at once. Finally, function

voi d KheEvennessMoni t or Debug(KHE_EVENNESS MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMoni t or Debug, only specific to this type of monitor.

Evenness is not monitored in the current versionKbéGener al Sol ve (Section 8.3),
because tests run by the author showed run time increases of about 20%, for little or no gain.
Although it has some beneficial effects, evenness monitoring tends to disrupt node regularity and
reduce diversity, since it causes very similar solutions to have slightly different costs.

Part B

Solvers

178

Chapter 8. Introducing Solvers

A solver is an operation that makes large-scale changes to a solution. This chapter introduces
solvers, defines interfaces for them, presents a few high-level ones, and explains some general
ideas related to solving, including setting options and gathering statistics.

Solvers operate at a high level and should not be cluttered with implementation details:
their source files will includéche_pl at f orm h as usual, but should not include header file
khe_i nterns. h which gives access to KHE'’s internals. Thus, the user of KHE is as well
equipped to write a solver as its author.

Many solvers are packaged with KHE. They are the subject of this part of the manual, all of
which is implemented usinighe_pl at f or m h but notkhe_i nt er ns. h. To gain access to these
solvers, include header fikbe_sol ver s. h, which liesin subdirectoryr c_sol ver s of the KHE
distribution. Itincludes header filhe_pl at f or m h, so you don’t need that.

8.1. Keeping track of running time

KHE offerstimer objects, of type&HE_TI MER, which keep track of running time. A timer object
stores itsstart time the time that it was most recently created or reset. It may also storea

limit, in which case it can report whether that much time has passed since its start time. Storing
a time limit does not magically stop the program at the time limit; it is up to solvers to check the
time limit periodically and stop themselves when it is reached.

Timers represent a time as a floating point number of secoftts.NO_TI ME, a synonym
for- 1. 0, means ‘no time’. Function

float KheTi meFronString(char xstr);

converts a string into a floating point time. dfr is"-", it returnsKHE_NO_TI ME, otherwise
it returns the number of seconds representedtby in the formatsecs, or m ns: secs, or
hrs: m ns: secs. For exampleQ. 5 is 0.5 seconds, arfél 0 is 5 minutes. Conversely,

char +KheTi neShow(fl oat secs, char buff[20]);

returnssecs in string form, usinguf f for scratch memory. It writes in a more readable format
than the input format, for example. 5 secs" or"5.0 mins".

To make a new timer object in areaacall
KHE_TI MER KheTi mer Make(char =tag, float limit_in_seconds, HA ARENA a);

Thetag parameter, which must be nokkL, identifies the timer, and also appears in debug
output. Theim t_i n_seconds parameter isthe time limit;it may b&E_NO_TI ME. The timer’s
start time is set to the time thteTi mer Make is called. Also,

KHE_TI MER KheTi mer Copy(KHE_TI MER ti mer, HA ARENA a);

179

180 Chapter 8. Introducing Solvers

returns a copy of i mer in arenaa. Nothing is reset.
To retrieve the attributes of a timer, call

char =KheTi ner Tag(KHE_TI MER ti mer);
float KheTimerTimeLimt(KHE TIMER tinmer);

KheTi mer Ti meLi m t may returrKHE_NO_TI ME. To change them, call

voi d KheTi ner Reset Start Ti me(KHE_TI MER ti ner);
voi d KheTi mer Reset Ti meLimit (KHE_TIMER timer, float limt_in_seconds);

KheTi nerReset Start Time resetstiner’s start time to the time that it is called.
KheTi mer Reset Ti meLimi t resetstimer’s time limit to |inmit_in_seconds, which may be
KHE_NO_TI ME as usual. Two functions give access to elapsed time:

fl oat KheTi mer El apsedTi ne(KHE_TI MER ti ner);
bool KheTi ner Ti neLi m t Reached(KHE_TI MER ti ner);

KheTi ner El apsedTi me returns the amount of time that has elapsed since the most recent call
to KheTi mer Make or KheTi ner Reset Start Ti ne for the timer. KheTi ner Ti neLi mi t Reached
returng r ue when the elapsed time is equal to or greater than the time limit (always false when
the time limit iskHE_NO_TI ME). Finally,

voi d KheTi mer Debug(KHE _TI MER timer, int verbosity, int indent, FILE *fp);

produces a debug print of mer ontof p with the given verbosity and indent.

Complex solvers may want to keep track of several time limits simultaneously, for example
a global limit plus a limit on the running time of one phase. For this there are objects of type
KHE_TI MER_SET, representing sets of timers. To create a new, empty timer set in areala

KHE_TI MER_SET KheTi ner Set Make(HA_ARENA a) ;
To make a copy of a timer set, call

KHE_TI MER_SET KheTi ner Set Copy(KHE_TI MER_SET tiner_set, HA ARENA a);
To add and delete timers, call

voi d KheTi mer Set AddTi mer (KHE_TI MER_SET timer_set, KHE TIMER tinmer);
voi d KheTi mer Set Del et eTi mer (KHE_TI MER_SET tiner_set, KHE_TIMER tiner);

KheTi mer Set Del et eTi ner aborts ifti ner is not presentimi ner_set. There is also

bool KheTi ner Set Cont ai nsTi mer (KHE_TI MER_SET tinmer_set, char *tag,
KHE TI MER +ti mer);

which seaches for a timer with the giveag inti mer _set . If there isone, it setst i mer to one
such timer and returnis ue, otherwise it returngal se. Function

bool KheTi mer Set Ti meLi m t Reached(KHE_TI MER _SET timer_set);

returnt r ue if at least one of the timers dfi mer _set has reached its time limit. This is the

8.1. Keeping track of running time 181

logical moment to stop if several time limits are present. Finally,

voi d KheTi mer Set Debug(KHE_TI MER_SET timer_set, int verbosity,
int indent, FILE *fp)
produces a debug print of ner _set ontof p with the given verbosity and indent.

The usual way to keep track of running time is by calling the timer functions of options
objects (Section 8.2). These just delegate to a timer set object stored within the options object.

8.2. Options, running time, and time limits

Solvers have anpti ons parameter of typ&HE_OPTI ONS, holding options that influence their
behaviour. This type is similar to a Unix environment: it is a symbol table with strings for its
keys and values. The KHE main program allows options to be passed in via the command line.

To create a new options object containing the empty set of options, call

KHE_CPTI ONS KheQOpt i onsMake(HA_ARENA a) ;
It is created in arena, which it remembers and returnsin

HA ARENA KheQpti onsArena(KHE_OPTI ONS opti ons);
There is no operation to delete an options object when it is no longer needed; instead, delete or
recycle its arena.

Options can be changed at any time, so when solving in parallel it is important for different
options objects to be passed to each solve. These can be created by copying using

KHE_OPTI ONS KheOpt i onsCopy(KHE_OPTI ONS opti ons, HA ARENA a);
The copy is stored in arere KheAr chi veParal | el Sol ve andKhel nst ancePar al | el Sol ve
(Section 8.4) do this.

To set an option, and to retrieve the previously set value, the calls are

voi d KheQptionsSet (KHE _OPTI ONS options, char xkey, char =val ue);
char *KheOptionsGet (KHE_OPTI ONS options, char xkey, char =dft);

KheOpt i onsGet returns the value associated witky in the most recent call icheOpt i onsSet

with that key. If there is no such call, it returdft , reflecting the principle that solvers should

not rely on their options being set, but rather should be able to choose a suitable value when they
are absent—a value that may depend upon circumstances, not necessarily a fixed default value.

By convention, when an option represents a Boolean, its legal values a@ree" and
"true". Onthe KHE command line, omitting the option omits it from the options object, which
usually means that its value is intended tofkese, while including it, either in the full form
"option=true" orthe short fornfoption", givesitvalue'true". Functions

voi d KheQpti onsSet Bool (KHE_OPTI ONS options, char xkey, bool value);
bool KheOpti onsGet Bool (KHE_OPTI ONS options, char xkey, bool dft);

182 Chapter 8. Introducing Solvers

make it easy to handle Boolean optio&eOpt i onsSet Bool callskheOpt i onsSet , with value
"true" or"fal se" depending onal ue. KheOpti onsGet Bool callskheOpti onsGet , returning
an actual Boolean rather than a string. It aborts if the value isfredtse” or"true". If there
Is no value it returngf t , which, as explained above, would usuallyflaése.

Another common case is when an option represents an integer. Convenience functions

voi d KheOptionsSet | nt (KHE OPTIONS options, char xkey, int value);
i nt KheQOptionsGetlnt(KHE OPTIONS options, char xkey, int dft);

make this case easyheOptionsSet | nt callskheOpti onsSet, with value equal toval ue in
string form. KheOpt i onsCet | nt callsKheOpt i onsGet , then returns the value converted to an
integer. It aborts if the value is not an integer. If there is no value it retlimns

It is also possible to associate an arbitrary pointer with a key, by calling functions

voi d KheQpti onsSet bj ect (KHE_OPTI ONS options, char xkey, void xval ue);
voi d *KheQpti onsGet (bj ect (KHE_OPTI ONS options, char xkey, void =dft);

These work in much the same way as the other functions.

When KheOpt i onsCopy is called, byKheArchi veParal | el Sol ve for example, object
options are shared between the copies. Care is heeded, since sharing mutable objects between
threads is not safe. The KHE solvers avoid problems here by not adding any object options until
after the copying has been done: only single-threaded solve functions add them.

Options can be roughly classified into two kinds. One kind is for end users, to allow them to
try out different possibilities. Options of this kind are not set by KHE’s solvers, only used. The
other kind is for KHE’s solvers, to allow them to vary the behaviour of other solvers that they
call. These are set by KHE's solvers, so it is usually futile for the end user to set them.

Each option is described along with the solver it affects. As an aid to managing option
names, there is a convention for beginning option names with a three-character prefix:

gs_ Options set or consulted by general solvers

ps_ Options set or consulted by parallel solvers

ss_ Options set or consulted by structural solvers

ts_ Options set or consulted by time solvers

rs_ Options set or consulted by resource solvers

es_ Options set or consulted by ejection chain solvers

Some options are set by one kind of solver and consulted by another; such options are hard to
classify. The few options consulted by the KHE main program have no prefix. They are:

no_print
If this Boolean option appears in the first list of options onkthe - s orkhe -r command
line, then solving will proceed as usual but the result archive will not be printed.

sol n_group
The name of the solution group createdkbg -s. When absent, the name'isHE" plus a
version number. Absent or not, if a solution group with the specified name already exists,
then"_1","_2" etc.is appended to the name until a fresh name is created.

8.2. Options, running time, and time limits 183

The default values of all Boolean options consulted by KHE code are afaays; for the other
options, a default value is always given as part of the description of the option.

Options objects are passed around through solvers, and they are the natural place to keep
other things which are not options, strictly speaking. In particular, each option contains a timer
set (Section 8.1) which may be used to keep track of running time and impose time limits. The
relevant functions are

KHE_TI MER KheOpti onsAddTi nmer (KHE_OPTI ONS options, char =tag,
float linmit_in_seconds);

voi d KheQptionsDel et eTi ner (KHE_OPTI ONS options, KHE TIMER tiner);

bool KheOpti onsCont ai nsTi ner (KHE_OPTI ONS options, char xtag,
KHE_TI MER *ti mer);

bool KheOpti onsTi melLi ni t Reached(KHE_OPTI ONS opti ons);

voi d KheQpti onsTi mer Set Debug(KHE_OPTI ONS options, int verbosity,
int indent, FILE *fp);

KheOpt i onsAddTi ner creates a new timer with the given attributes and adds it to the timer set
within opti ons. KheOpti onsDel et eTi mer deletes the given timer from that timer set; it must
be presentKheOpt i onsCont ai nsTi ner searches the timer set for a timer with the giveg.
KheOpt i onsTi meLi mi t Reached returnst rue if any of the timer set’s time limits have been
reached, an#heOpt i onsTi ner Set Debug produces a debug print of the timer setopt i ons

ontof p with the given verbosity and indent. These functions are simple delegations to the
corresponding timer set functions.

Finally, there is one stray function,
KHE_FRAME KheOpt i onsFrame(KHE_OPTI ONS options, char *key, KHE _SOLN soln);

This returns a shared common frame for use by solvers, as described in Section 5.10.

8.3. General solving

A solveris a function that finds solutions, or partial solutions, to instancegereral solver
solves an instance completely, unlike, satinge solvewhich only finds time assignments, or a
resource solvewhich only finds resource assignments. A general solver may split meets, build
layer trees and task trees, assign times and resources, and so on without restriction.

The recommended interface for a general solver, definkbdenh, is
typedef KHE_SOLN (*KHE_GENERAL_SOLVER) (KHE_SOLN sol n, KHE_OPTI ONS opti ons);

It will usually return the solution it is given, but it may return a different solution to the same
instance, in which case it should delete the solution it is given. Its second parapitens,
Is a set of options (Section 8.2) which may be used to vary the behaviour of the solver.

The main general solver distributed with KHE is
KHE SOLN KheGener al Sol ve2018(KHE_SOLN sol n, KHE OPTI ONS options);

This single-threaded general solver works by calling functions defined elsewhere in this guide.

184 Chapter 8. Introducing Solvers

It returns the solution it is given. The name includes the year it was completed and will change
from time to time. In publications and solution group names it is referred to as KHE18.

KheGener al Sol ve2018 assumes thatol n is as returned b¥kheSol nMake, so it begins
with KheSol nSplit Cycl eMeet and KheSol nMakeConpl et eRepresent ation. Then it calls
solvers defined in this guide: it builds a layer tree and task tree, attaches demand monitors,
callskheCycl eNodeAssi gnTi nes to assign times, and the thrlee Taski ngAssi gnResour ces
functions to assign resources, ending vidtle Sol nEnsur e f i ci al Cost .

For convenience&heGener al Sol ve2018 calls
KheOpt i onsSet Runni ngTi me(options, el apsed_tinme);

(Section 8.2) just before returning, wheteapsed_t i ne is its running time, obtained by calling
KheOpt i onsTi meLi ni t Now (Section 8.2) on a time limit with taggener al " which it creates at

its start and deletes at its end. Arguably, this is not quite right, because more work could be done
onsol n afterwards. However, callers who do that can easily reset the running time.

By convention, options set or consulted directly KheGener al Sol ve2018 have names
beginning withgs_. Here is the full list:

gs_diversifier
An integer option which, when set, causésGener al Sol ve2018 to set the diversifier of
the solution it is given to the given value. When omitted, the diversifier retains the value it
has wherkheGener al Sol ve2018 is called.

gs_ tinme linmt
A string option defining a soft time limit for the solve. Enforcement is up to particular
solvers; this option merely calkheOpt i onsSet Ti neLi mi t (Section 8.2). The formatis as
for functionKheTi meFronft ri ng described above (Section 8.1): eitlief', meaning no
time limit (the default value), osecs, ormi ns: secs,orhrs: m ns: secs. For example,
10 is 10 seconds, artét 0 is 5 minutes.

gs_mat chi ng_of f
A Boolean option which, wheht rue", instructskheGener al Sol ve2018 to refrain from
installing the global tixel matching (Chapter 7).

gs_noni t or _evenness
A Boolean option which, wheht rue" , instructheGener al Sol ve2018 to install evenness
monitors (Section 7.6).

gs_tinme_assi gnnent _only
A Boolean option which, wheftrue", instructskheGener al Sol ve2018 to exit early,
leaving the solution in its state after time assignment.

gs_unassi gnnment _of f
A Boolean option which, wheht r ue" , instructsKheGener al Sol ve2018 to omit the calls
to KheSol nTryTaskUnAssi gnnent s (Section 12.9) anétheSol nTr yMeet UnAssi gnment s
(Section 10.4) during the cleanup phase.

8.3. General solving 185

gs_event _tinetabl e _nonitor
During the resource assignment phaskhaiGener al Sol ve2018, this option has a value of
typeKHE_EVENT_TI METABLE_MONI TOR, and holds the result of the call

KheEvent Ti met abl eMoni t or Make(sol n, Khel nst anceFul | Event G oup(ins));

The monitor is attached. Before and after that phase, the option is either absent or has
valueNULL. The point of this is that this event timetable monitor is expensive to create and
probably too expensive to update during time assignment, but it is useful during resource
assignment. So this arrangement gives resource assignment algorithms access to a single
shared event timetable monitor, at little cost.

gs_debug_nonitor_id
This option is a string identifying a monitor. It has two or more fields, separated by slashes.
The first field is a constraint Id; the others identify a point of application of the constraint.
For example, Const rai nt: 5/ Nur se3/ 27" is the monitor for constrairitConst r ai nt : 5"
at point of applicatiorNur se3, offset27. This option is used b¥heGener al Sol ve2018
to define optiorgs_debug_noni t or , as explained next. The conversion from string to
monitor is carried out by functiokheSol nRet ri eveMoni t or (Section 6.2).

gs_debug_noni t or
This option is set at the start gheGener al Sol ve2018, whengs_debug_nonitor _i d is
present, to the monitor identified lyg_debug_noni t or _i d. Any solver can reference it
and use itas a hint to produce debug output relevant to that monitor. At present only ejectors
do this: they produce debug output focussed on answering the question ‘Why is the defect
represented by this monitor not removed by the ejection chain algorithm?’.

KheGener al Sol ve2018 is affected indirectly by many other options, via the solversiit calls.
Function

voi d KheSol veDebug(KHE_SCLN sol n, KHE OPTI ONS options, char *fmt, ...);

produces a one-line debug of the current state of a solve. For conciseness it always prints onto
stderr with indent 2. The print containsl n’s instance name, diversifier, cost, and running
time (if opt i ons contains a timer callethl obal " ; if not, the running time is omitted), and ends

with whateverlf printf(stderr, fnt, ...) would produce, followed by a newline.

8.4. Parallel solving
Function

voi d KheAr chi veParal | el Sol ve(KHE_ARCHI VE ar chi ve,
KHE_GENERAL_SOLVER sol ver, KHE _OPTI ONS options, HA ARENA SET as,
KHE_SOLN_GROUP sol n_group);

solves the instances @f chi ve in parallel. Each individual solve is carried out byl ver,
which is passed a fresh solution and a copywfi ons. The fresh solution is as returned by
KheSol nMake except that the diversifier is set, as explained belovs.olin_gr oup is nonNULL,
KheAr chi vePar al | el Sol ve stores some or all of the solutions returned by the solver in

186 Chapter 8. Introducing Solvers

sol n_group, otherwise it discards them. There is also

KHE_SOLN Khel nst ancePar al | el Sol ve(KHE | NSTANCE i ns,
KHE GENERAL SOLVER sol ver, KHE _OPTI ONS options, HA ARENA SET as);

Behind the scenesiit is the same, but it solves a single instance rather than an entire archive, and
it returns any one best solution rather than storing solutions in a solution group.

For both functions, ifas ! = NULL then each call t&heSol nMake is passed an arena set,
as suggested in Section 4.2.2. There is one arena set per threaah séitving one thread and
freshly created arena sets serving the others. At the end, the idle arenas in all arena sets other
thanas are moved int@as, and the arena sets in all solutions kept by the two functions are set to
as by callstokheSol nSet ArenaSet (Section4.2.2). If further parallel solving of these solutions
Is attempted, it will be necessary to install distinct arena sets first.

All objects created by these two functions, except for solutions that are kept, are deleted
before it returns. Thisincludes all copiesaptt i ons, and all freshly created arena sets.

Options consulted by parallel solvers have names beginningog/iithHere is the full list:

ps_t hreads
The number of threads used for solving. This includes the initial thread, the one that called
KheAr chi vePar al | el Sol ve orKhel nst ancePar al | el Sol ve, so the value must be at least
1. If ps_t hr eads is absent, or present but KHE has been compiled with multi-threading
off, its value is taken to be 1.

ps_make
The number of solutionkheAr chi vePar al | el Sol ve andKhel nst ancePar al | el Sol ve
make per instance. [s_nake is absent, its value is taken to be 1.

ps_no_diversify
For each instance, the solutions passebtoer are identical except that the diversifier of
the first is O, the diversifier of the second is 1, and so on. The solver may use these values
to create diverse solutions. Boolean optpmn no_di ver si fy, when"true", gives the
same diversifier (namely 0) to all solutions. All solutions should then turn out the same.

ps_keep
The maximum number of solutions théheAr chi veParal | el Sol ve keeps (stores in
sol n_group) per instance. Ifps_keep is absent, its value is taken to be 1. The best
ps_keep solutions are keptkhel nst ancePar al | el Sol ve does not consult this option; it
always keeps (in fact, returns) one solution, the best it found.

ps_time_neasure
Measuring running time is awkward for parallel solving. This option says how to do it.

If ps_time_neasure is"onit", the parallel solver does not set the running times of the
solutions. They have the values set $nf ver. If sol ver is KheGeneral Sol ve2018,

for example, each holds the wall clock time from when it was created to when
KheGener al Sol ve2018 returns. Thisis useful when all solutions are kept, for showing how
running times vary. It is misleading whes_t hr eads exceeds the number of processors.

If ps_time_neasure is"shared", each instance monopolizes all threads while its solutions

8.4. Parallel solving 187

are being constructed. There is some idle time for some threads while they wait for others
to finish off the current instance, making the total wall clock time of the solve somewhat
larger than for' oni t". Then the running times of all solutions for one instance are set to
the same value: the wall clock time from when the first solve of their instance began until
the last solve ended. Thisis useful when only the best, or the few best, solutions are being
kept, because it records in those solutions how long it really takes to find them, given that
all the solutions have to be found, albeit in parallel, before the few can be chosen.

If ps_time_neasure is"auto" (the default value), then the behaviour is as'fomi t "
whenps_keep >= ps_make, and as fot shar ed" whenps_keep < ps_nake.

ps time linmt
A string option defining a soft time limit for solving each instance. The parallel solver will
stop initiating solves of an instance once the wall clock time since it initiated the first solve
of that instance exceeds this time limit, even if the requeptedrake solves have not
beenreached. The format is as for functibeTi meFr onSt ri ng described above (Section
8.1): either"-", meaning no time limit (the default value), secs, or m ns: secs, or
hrs: m ns: secs. For examplel0 is 10 seconds, arft 0 is 5 minutes.

On the author’s quad-core machine, finding 8 solutions by running 8 threads is usually somewhat
faster than finding them by running 4 threads. The effectis not large. Itis presumably due to the

hardware hyper-threading feature, which allows up to two threads to run on each processor in an
attempt to improve throughput. But there is also a random element concerning whether two slow
solves happen to be allocated to the same thread, so it is hard to be sure.

Parallelism is obtained via functiopshr ead_cr eat e andpt hr ead_j oi n from the Posix
threads library. KHE has been carefully designed to ensure that operations carried out in parallel
on distinct solutions cannot interfere with each other. If you do not have Posix threads, a simple
workaround documented in KHE’s makefile will allow you to compile KHE without it. The only
difference is thakheAr chi vePar al | el Sol ve andKhel nst ancePar al | el Sol ve will find their
solutions sequentially rather than in parallel.

8.5. Gathering statistics

KHE offers a module for gathering statistics. It can calculate running times and generate files
containing tables in several formats, and graphs in Lout format.

8.5.1. Runningtime and date

To find out how long something takes to run, objects of tgiiie STATS_TI MER (the usual pointer
to a private record) are used. Each records one moment in time. To create and delete these timer
objects, the functions are

KHE STATS TI MER KheSt at sTi ner Make(voi d) ;
voi d KheStat sTi mer Del et e(KHE_STATS TI MER st);

KheSt at sTi mer Make returns a new timer, initialized by callingeSt at sTi ner Reset on it, and
KheSt at sTi mer Del et e deletest , reclaiming the memory it used. There is also

188 Chapter 8. Introducing Solvers

KHE_STATS_TI MER KheSt at sTi mer Copy(KHE_STATS Tl MER st)
which copiest , producing a new timer holding the same time&as The other functions are

voi d KheStat sTi mer Reset (KHE_STATS Tl MER st);
float KheStatsTi mer Now(KHE_STATS Tl MER st);

KheSt at sTi mer Reset resetsthe time held withsi to the time wherheSt at sTi mer Reset was
called. KheSt at sTi mer Now compares the time recordedsin (whenkhesSt at sTi mer Reset was

last called) with the time now and reports the difference in seconds. Both functions may be called
any number of times on the same timer. Any number of timers may be used independently.

Because wall clock times are used, times measured within one thread of a parallel solve
will not in general measure the time consumed by that thread. However, a parallel solver can
be called betweekheSt at sTi ner Reset andKheSt at sTi mer Now, and then they will reliably
measure the elapsed time of the parallel solve.

Also offered is

char xKheSt at sDat eToday(voi d);

which returns the current date as a string in static memory.

For the sake of compilations that do not have the Unix system functions called by these
functions, filekhe. h has aKHE_USE_TI M NG preprocessor flag. Its default value is 1; changing
it to O will turn off all calls to Unix timing system functions. If that is done, all functions
will still compile and run without error, butheSt at sTi mer Now will always return- 1. 0, and
KheSt at sDat eToday will return” ?".

8.5.2. Files of tables and graphs

The main thing that the stats module does is generate files of tables and graphs. Any number of
files may be generated simultaneously (not in parallel, because the stats module has no locking,
but by one thread). One file may contain any number of tables and graphs, although only one

may be generated at a time within any one file.

To begin and end a file, call

voi d KheSt at sFil eBegi n(char =file_name);
voi d KheStatsFil eEnd(char =file_nange);

This writes a file calledi | e_name in sub-directoryst at s of the current directory (which the
user must have created previously). The file is openekhb$t at sFi | eBegi n and closed by
KheSt at sFi | eEnd. To generate the actual tables and graphs, see the following subsections.

8.5.3. Tables

To generate tables, make matching pairs of calls to the following functions in between the calls
toKheSt at sFi | eBegi n andKheSt at sFi | eEnd:

8.5. Gathering statistics 189

voi d KheSt at sTabl eBegi n(char *file_name, KHE STATS TABLE TYPE tabl e type,
int col _width, char xcorner, bool with average row, bool with total row,
bool highlight cost _mninma, bool highlight time_nining,
bool highlight int_mninm);

voi d KheSt at sTabl eEnd(char *file_nane);

Only one table at a time can be generated into a given file, so a table is not identified separately
from its file. The table is begun b$heSt at sTabl eBegi n, and finished, including being written

out to the file, bykheSt at sTabl eEnd. Where the file format permits, a label will be associated
with the table: the file name for the first table, the file hame followed by an underscore and
2 for the second table, and so on. The value of the table is created in between these two calls,
by calling functions to be presented shortly. Because the entire table is saved in memory until
KheSt at sTabl eEnd is called, these other calls may occur in any order. In particular it is equally
acceptable to generate the table row by row or column by column.

The format of the table is specified bgbl e_t ype:

t ypedef enum {
KHE_STATS_TABLE_PLAI N,
KHE_STATS_TABLE_LQUT,
KHE_STATS_TABLE_LATEX

} KHE_STATS_TABLE_TYPE;

The choices are plain text, Lout, or LaTeX. Parametér w dt h determines the width in char-
acters of each columnin plain text; itisignored by the other formats. Parameter is printed
in the top left-hand corner of the table. It must be Mbht, but it can be the empty string.

Each entry in the table has a type, which may be eitftieng, cost time (really just an
arbitraryf | oat), orint. If with_average_rowistrue, the table ends with an extra row. Each
entry in this row contains the average of the non-blank, non-string entries above it, if they all have
the same type; otherwise the entry is blankwilf h_t ot al _rowistrue, the effect is the same
except that totals are printed, not averages.

If hi ghlight_cost_m ni maistrue, the minimum values of typeostin each row appear
in bold font, or marked by an asterisk in plain text. Parametiegbl i ght _ti me_ni ni ma and
hi ghl i ght _i nt _nmi ni ma are the same except that they highlight values of typeor int.

A caption can be added by calling
voi d KheStatsCapti onMake(char =file_name, char *fnt, ...);

at any time betweeKheSt at sTabl eBegi n andKheSt at sTabl eEnd, as often as desired. This
does whaprintf would do with the arguments aftérl e_nane. The results of all calls are
saved and printed as a captionKheSt at sTabl eEnd.

In any given table, each row except the first (header) row must be declared, by calling
voi d KheSt at sRowAdd(char *file_nane, char xrow_| abel, bool rule_bel ow);

The rows appear in the order of the calls. Parameter| abel both identifies the row and
appearsin the first (header) column of the table.ulfe_bel owist r ue, the row will have a rule
below it. The header row always has a rule below it, and there is always a rule below the last row

190 Chapter 8. Introducing Solvers

(not counting any average or total row).
In the same way, non-header columns are declared, in order, by calls to

voi d KheStat sCol Add(char =file_nane, char =col | abel, bool rule_ after);

wherecol _| abel both identifies the column and appears in the first (header) row of the table,
and settingul e_af ter totrue causes a rule to be printed after the column.

To add an entry to the table, call any one of these functions:

voi d KheStat sAddEntryString(char *file_name, char *row_| abel,
char =*col _| abel, char =*str);

voi d KheSt at sAddEnt ryCost (char =file_nanme, char *row_| abel,
char =*col _| abel, KHE_COST cost);

voi d KheSt at sAddEntryTi ne(char =file_nanme, char *row_| abel,
char =*col _l abel, float time);

voi d KheStat sAddEntryl nt (char *file_nane, char =row_| abel,
char =*col _l abel, int val);

These add an entry fo | e_nane’s table at rowr ow_| abel and columrcol _| abel , aborting if
these are unknown or an entry has already been added there. If no entry is ever added at some
position, the table will be blank there. The entry’s format depends on the call. For example,

KheSt at sAddEnt ryCost (file_name, row_| abel, col _| abel, KheSol nCost(soln));

adds a solution cost to the table which will be formatted in the standard way.

All strings passed to these functions that require long-term storage are copied, so mutating
strings are not a concern. On the other hand, there is no locking, so calls which create tables
should be single-threaded, as should calls which modify the same table.

8.5.4. Graphs

To generate graphs in Lout format, make matching pairs of calls to the following functions in
between the calls tkheSt at sFi | eBegi n andKheSt at sFi | eEnd:

voi d KheSt at sG aphBegi n(char *file_name);
voi d KheStat sG aphEnd(char *file_name);

As for tables, only one graph can be generated into a given file at a time, and so the graph is iden-
tified by the file name. To set options which control the overall appearance of the graph, call

voi d KheStat sGaphSetWdth(char =file_nane, float width);

voi d KheSt at sG aphSet Hei ght (char *file_name, float height);
voi d KheSt at sG aphSet XMax(char +file_name, float xmax);

voi d KheSt at sG aphSet YMax(char +file_name, float ymax);

voi d KheSt at sG aphSet AboveCapti on(char =file_name, char xval);
voi d KheSt at sG aphSet Bel owCapti on(char =file_name, char xval);
voi d KheStat sGaphSet Left Caption(char *file_name, char =*val);
voi d KheSt at sG aphSet Ri ght Caption(char *file_nane, char val);

8.5. Gathering statistics 191

These determine the width and height of the graph (in centimetres), the maximum x and y values,
and the small captions above, below, to the left of, and to the right of the graph. If calls to these
functions are not made, the options remain unspecified, causing Lout’s graph package to substi-
tute default values for them in its usual way. The caption values must be valid Lout source.

A caption can be added by calling the same function as for tables:
voi d KheStat sCapti onMake(char *file_nane, char =fnt, ...);

at any time betweekheSt at sG aphBegi n andkheG aphTabl eEnd.

Any number ofdatasetamay be displayed on one graph; each dataset is a sequence of
points. Often there is just one dataset. To create a dataset, call

voi d KheSt at sDat aSet Add(char =file_name, char xdataset | abel,
KHE _STATS DATASET_TYPE dat aset _type);

wheredat aset _| abel is used to identify the dataset, adat aset _t ype determines how the
data are presented. At present the stats module offers just one choice:

t ypedef enum {
KHE_STATS_DATASET_HI STO
} KHE_STATS_DATASET_TYPE;

but the Lout graph package offers many others, so it would not be difficult to expand the choices
here.KHE_STATS_DATASET_H STOprints a histogram. The x values of the dataset’s points should
be increasing integers; the y values are the frequencies. Function

voi d KheSt at sPoi nt Add(char *file_name, char xdataset | abel,
float x, float y);

adds a point to a dataset. The points are generated in the order received, so in practice, successive
calls toKheSt at sPoi nt Add on the same dataset should have increasing x values.

8.6. Exponential backoff

One strategy for making solvers faster is to do a lot of what is useful, and not much of what isn’t
useful. When something is always useful, it is best to simply do it. When something might be
useful but wastes a lot of time when it isn't, it is best to try it, observe whether it is useful, and
do more or less of it accordingly. Solvers that do this are said aagtive

For example, suppose there is a choice of two or more methods of doing something. In
that case, information can be kept about how successful each method has been recently, and the
choice can be weighted towards recently successful methods.

However, this section is concerned with a different situation, involving just one method.
Suppose there is a sequencepportunitieso apply this method, and that as each opportunity
arrives, the solver can choose to apply the method or not. Typically, the method will be a repair
method: repairisoptional. If the solvacceptshe opportunity, the method isthen run and either
succeedg¢does something useful) éails (does nothing useful). Otherwise, the soldeclines
the opportunity. So opportunities are classified as successful, failed, or declined.

192 Chapter 8. Introducing Solvers

Exponential backoffrom computer network implementation is a form of adaptation suited
to this situation. It works as follows. If the solver applies the method and it is successful, then it
forgets all history and will accept the next opportunity. But if the solver applies the method and
it fails, then it remembers the total number of failed opportunfEéscluding this one) since
the last successful opportunity, and does not accept another opportunity until after it has declined
2F‘1opportunities. Declined opportunities do not count as failures.

Here are some examples. Each characteris one opportisigysuccessful opportunity (or
the start of the sequence)is a failed one, and is a declined one. Each successful opportunity
makes a fresh start, so the examples all begin &#dhd contain only and. thereafter:

S

SF.

SF. F..

SF.F..F. ...
SF.F..F...F.......

and so on. Every complete trace of exponential backoff can be broken &t edolsub-traces
like these. Methods that always succeed are tried at every opportunity. Methods that always fall
are tried only about logn times, wherean is the total number of opportunities.

Other rules for which opportunities to accept could be used, rather than waitinQFLIﬁtiI
opportunities have been declined. For example, every opportunity could be accepted, which
amounts to having no backoff at all. The principles are the same, only the rule changes.

KHE offers three operations which together implement exponential backoft:

KHE_BACKOFF KheBackof f Begi n(KHE_BACKOFF_TYPE backoff type, HA ARENA a);
bool KheBackof f Accept Qpport unity(KHE_BACKOFF bk);
voi d KheBackof f Resul t (KHE_BACKOFF bk, bool success);

KheBackof f Begi n creates a new backoff object in aremapassing aackof f _t ype value
of type

t ypedef enum {
KHE_BACKOFF_NONE,
KHE_BACKOFF_EXPONENTI AL

} KHE_BACKOFF_TYPE;

which determines which rule is used: none or exponentizdBackof f Accept Cpportunity is

called when an opportunity arises, and retunnge if that opportunity should be accepted. In
that case, the next call must beteBackof f Resul t , reporting whether or not the method was
successful. As usual, the backoff object’'s memory is reclaimed when the arena is deleted.

Suppose that the program pattern without exponential backoff is

8.6. Exponential backoff 193

while(...)
{

i f(opportunity has_arisen)
success = try_repair_method(soln);

}

Then the modified pattern for including exponential backoff is

bk = KheBackof f Begi n(KHE_BACKOFF_EXPONENTI AL) ;
while(...)
{

i f(opportunity has_arisen && KheBackof f Accept Opportunity(bk))
{

success = try_repair_mnethod(soln);
KheBackof f Resul t (bk, success);

}
-

Each successfitheBackof f Accept Oppor t uni ty is followed by a call tckheBackof f Resul t .

All backoff objects hold a few statistics, kept only for printing KiyeBackof f Debug
below, and a boolean flag whichtisue if the next call must be t&heBackof f Resul t . When
exponential backoff is requested, a backoff object also maintains two int€jarglM. C is
the number of declines since the last accept (or since the backoff object was créhisdhe
maximum number of opprtunities that may be declined, defined by

uo ifF=0
M=0¢, .
2 ifF>1

whereF is the number of failures since the last success (or since the backoff object was
created). The next call tgheBackof f Accept Opportunity will return true if C>M. The
implementation will not increadd if that would cause an overflow. Overflow is very unlikely,
since an enormous number of opportunities would have to occur first.

Function

char xKheBackof f ShowNext Deci si on(KHE_BACKOFF bk) ;

returns' ACCEPT" when the next call theBackof f Accept Qppor t uni ty will returntrue, and
"DECLI NE" when it will returnf al se. There is also

voi d KheBackof f Debug(KHE_BACKOFF bk, int verbosity, int indent, FILE *fp);

Verbosity 1 prints the current state, including avhen the flag is set, on one line. Verbosity 2
prints some statistics: the number of opportunities so far, and how many are successful, failed,
and declined, in a multi-line format.

Chapter 9. Time-Structural Solvers

This chapter documents the solvers packaged with KHE that modify the time structure of a
solution: split and merge its meets, add nodes and layers, and so on. These solvers may alter
time and resource assignments, but they only do so occasionally and incidentally to their
structural work.

9.1. Layer tree construction

KHE offers a solver for building a layer tree holding the meets of a given solution:

KHE_NCDE KheLayer Tr eeMake(KHE_SOLN sol n);

The root node of the tree, holding the cycle meets, isreturned. The function has no special access
to data behind the scenes. Instead, it works by calling basic operations and helper functions:

It callskheMeet Spl i t to satisfy split events constraints and other influences on the number
and duration of meets, as far as possible. It is usual tkoellayer Tr eeMake when each
eventis represented ol n by a single meet of the full duration (that is, aftéeSol nMake
andkheSol nMakeConpl et eRepr esent at i on), but some meets may be already split. In any
caseKheLayer Tr eeMake does not create, delete, or merge meets.

It callskheMeet BoundMake with aNULL meet bound group to set the time domains of meets

to satisfy preassigned times, prefer times constraints, and other influences on time domains,
as far as possible. For each meet, one cahtdket BoundMake is made for each possible
duration. It is usual to calkheLayer Tr eeMake at a moment when the time domains of

the meets are not restricted by meet bounds, but some meets may already have bounds. In
any casekhelLayer Tr eeMake only adds bounds, never removes them, so it either leaves a
domain unchanged, or reduces it to a subset of its initial value.

It callskheMeet Assi gn in trivial cases where there is no doubt that the assignments will be
final. Precisely, if there are two events of equal duration linked by a link events constraint
and split into meets of equal durations, and the algorithm places one in a parent node and
the other in a child of that parent, then, provided the child node itself has no children (which
would render the case non-trivial), the meets of the child node will be assigned to meets of
the parent node, and the child node will be deleted in accordance with the convention given
in Chapter 10, that meets whose assignments will never change should not lie in nodes.

It calls KheMeet Assi gnFi x to fix all the assignments it makes (as defined immediately
above). These can be unfixed afterwards if desired.

194

9.1. Layer tree construction 195

» It callskheNodeMake andkheNodeAddMeet to ensure that for each event there is one node
holding the meets of that event, unless these meets receive the trivial assignments just de-
scribed. Thereisalso a node (the root node returnétiédyayer Tr eeMake, also accessible
askKheSol nNode(sol n, 0)) holding the cycle meets. Any other meets (usually none) are
not placed into nodexkhelLayer Tr eeMake requiressol n to contain no nodes initially.

» It callsKheNodeAddPar ent to reflect link events constraints (even between events whose
durations differ), as far as possible, and the need to ultimately assign every meet to a cycle
meet. WherkheLayer Tr eeMake returns, every node is a descendant of the root node.

* Some instances contain events which have already been split, with the fragments presented
asdistinct events. Itis best if the nodes holding the meets derived from these fragments are
merged. So for each pair of distinct events which appear to be part of one course because
they share a spread events constraint or avoid split assignments constraint, if certain other
conditions (Section 9.1.5) are satisfied, the nodes holding the meets of those two events are
merged by a call t&heNodeMer ge.

These elements interact in ways that make most of them impossible to separate. For example,
the splitting of an event into meets needs to be influenced not just by the event’s own split events

constraints and distribute split events constraints, but also by the constraints of the events that it
is linked to by link events constraints.

Logically, order events constraints should also affect the construction of layer trees. In the
version of KHE documented here they are not consulted, but this will change.

AlthoughKhelLayer Tr eeMake does not calkheLayer Make, resource layers (sets of events
that share a common preassigned resource which has a hard avoid clashes constraint) strongly
influence its behaviour. It ensures that the events of each layer are split into meets which can be
packed into the cycle meets without overlapping in time, except in the unlikely case where the
total duration of the events of the layer exceeds the total number of times in the cycle.

For eachheet with a pre-existing assignment to somre get _neet , KheLayer Tr eeMake
tries to placereet into a child node of ar get _neet 's node. In exceptional circumstances, this
may not be possible, and then the pre-existing assignment is remowédelayer Tr eeMake.
Suppose there is an event with two meets, both assigned to other meets. If those two other meets
are both derived from the same event, or if they are both cycle meets, then all is well; but if not,
one of the original meets will be unassigned. This is done bedtnes@yer Tr eeMake tracks
relations between events, not meets, and cannot cope with the idea of one event being assigned
partly to one event and partly to another. A meet will also be unassigned when there is a cycle
of assignments, but that should never occur in practice.

The above attempts to be a complete specificatiokhet.ayer Tr eeMake, sufficient for
using it. For the record, the following subsections explain how it works in detail.

9.1.1. Overview

KheLayer Tr eeMake uses a constructive heuristic which runs quickly. It works by examining the
relevant constraints and taking actions to satisfy them, giving priority to those with higher weight.

It does not search through a large space of possible solutions to find the best. Thisis appropriate,
because in practice good solutions are easy to find. The problem is more about giving due weight

196 Chapter 9. Time-Structural Solvers

to the many influences on the solution than about real solving.

KheLayer Tr eeMake begins by unassigning meets to remove cases where two meets derived
from a single event are assigned to meets not both derived from the same event or both cycle
meets, and splitting meets whose duration exceeds the number of times in the instance into meets
of duration within that bound. This allows the remainder of the algorithm to assume that each
event is preassigned to at most one other event, and that there are no oversize meets.

In practice, it is likely that the constraints of an instance will cooperate harmoniously, but
for completenessit is necessary to handle cases where they do not. For example, there is nothing
to prevent a link events constraint from linking two events, one of which is required by a split
events constraint to split into three meets, while the other is required to split into one.

Thereis a data structure, described in the following sections, which embodies all the require-
ments that the final layer tree must satisfy, including how events are to be split into meets, and
how meets are to be grouped into nodes. Itis an invariant that at least one layer tree must satisfy
all these requirements. Initially, the data structure embodies no requirementsat all. Along series
of jobsis then applied to it, each inspired by some constraint or other feature of the instance to
request that the data structure add some new requirements to the ones it currently embodies. If
no layer trees would satisfy both the old and new requirements, thergjecsed(it is ignored);
otherwise, it isacceptedits requirements are added). There are also cases in which some of the
requirements of a job are accepted but others have to be rejected. The jobs are sorted by decreas-
ing priority, which is usually the combined weight of the constraint that inspired the job. In this
way, contradictory requests are resolved by giving preference to requests of higher priority.

Here is the full list of job types, with brief descriptions. How each job modifies the data
structure will be explained later. The jobs not derived from constraints have high priority.

Pre-existing splitsEach already split evemtgenerates a job requiring the meets that
ultimately split into to be packable into (created by further splitting of) the pre-existing meets.

Preassigned times{HSTT specifies that a meet derived from an event with a preassigned
time must be assigned that time. Several simultaneous meets derived from one event are unlikely
to be wanted, so this job requests that a preassigned event be not split further than its pre-existing
splits, and that the meets’time domains be set to singleton domains.

Pre-existing assignments and link events constraifiteese are interpreted as requests to
create parent-child links between nodes.

Avoid clashes constraint&£ach resource subject to a required avoid clashes constraint
gives rise to a job which requests that the layer tree recognize that the events to which the
resource is preassigned cannot overlap in time.

Split events constraints and distribute split events constrairfiese request restrictions on
the number of meets that an event may be split into, and their durations.

Spread events constraintH. the events of an event group of a spread events constraint
are split into too many or too few meets, then a non-zero number of deviations of the constraint
becomes inevitable. The job tries to tighten the requirements on the number of meets of the
events concerned, to the point where this problem cannot arise.

Prefer times constraintsThis kind of job requests that the time domain of the meets of an
event which have a certain duration be reduced to satisfy a prefer times constraint. Thismay lead
to an empty domain for meets of that duration; if so, then there can be no meets of that duration

9.1. Layer tree construction 197

at all, which may prevent the job from being accepted.

After all jobs have been applied, the data structure is traversed and a layer tree is built.
Finally,KheLayer Tr eeMake examines each pair of events connected by a spread events or avoid
split assignments constraint, and if those events’ nodes satisfy the conditions given in Section
9.1.5, it merges them by callingpeNodeMer ge.

9.1.2. Linking

The data structure used ByeLayer Tr eeMake must be close enough to the layer tree to make
it straightforward to derive an actual layer tree at the end. In fact, it needs to represent the set of
layer trees that satisfy the requirements of all the jobs accepted so far. This section explains how
this is done for linking, and later sections explain the parts that handle splitting and layering.

If meets, can be assigned to mestat offseto,, ands, can be assigned &at offseto,, then
it is always possible to assigndirectly tos; at offseto, + 0,. Thus, the relation of assignability
between meets is transitive. Although it is not safe to assign a meet to itself, it does no harm to
pretend here that assignability is reflexive as well.

In some cases, two meets are assignable to each other. They must have equal durations
and time domains, but that is not unusual. By a well-known fact about reflexive and transitive
relations, two-way assignability is an equivalence relation between meets.

Similar relations can be defined between events A(et e,) hold when the meets & can
be assigned to the meets@fat non-overlapping offsets. Define

(e,6,) = A€, &) UA(E,,€)

Again,Ais reflexive and transitive, arflis an equivalence relation.

The data structure used for linking events includes a representation of rel&teoTsS,
The equivalence classes defined3sre represented by nodes of a graph, containing the events
of the class and connected to other equivalence classes by directed edges repr&sAictindd
be an arbitrary directed acyclic graph, but in fact it is limited to a tree: each equivalence class is
recorded as assignable to at most one other equivalence class. Relational nodes will always be
called classes, to avoid confusion with layer tree nodes.

The child classes of each equivalence class are organized into layers. That additional
structure is not needed for linking, however, so its description will be deferred to Section 9.1.4.

Initially, each event lies in its own class, plus there is one class with no events, representing
the cycle meets. Every event class is a child of the cycle meets class. Thus, initially r8ligtion
empty, and relatioArecords only the basic fact that every event is assignable to the cycle meets
to begin with. Thisis quite true, since, at this initial stage, before any jobs are accepted, the data
structure believes that each event’'s domain is the entire cycle, that each event is free to split into
meets of duration 1, and that there are no layers.

Basing the data structure on events, rather than on meets, seems to be right, but it does cause
differences between the meets of one event to be overlooked. For example, the data structure
believes that all meets derived from the same event have the same time domain.

Jobs that link events together do so by proposing elememtaafiSto the data structure,
which accepts them when it can. Aproposal is a request to merge the equivalence classes

198 Chapter 9. Time-Structural Solvers

containing its two events into one (if they are not already the samé)paoposal is a request to
replace one parent link by another (which must still imply the first by transitivity). A proposal
could be rejected for various reasons: it might lead to a directed acyclic graph which is not a
tree, or cause events from the same layer to overlap in time, or lead to unacceptable restrictions
on how events are to be split (as in the example at the start of this chapter), and so on.

Pre-existing assignments are proposed first as eleme§tand if that fails as elements of
A. The second proposal at least cannot fail to be accepted, because these jobs have maximum
priority and do not contradict each other. A link events constraint job first proposes all pairs
of linked events of equal duration as element§adind then all pairs regardless of duration as
elements ofA. In general, arA proposal could require that the whole set of classes lying on a
cycle of Alinks be evaluated for merging, but this particular way of making proposals ensures
that, in fact, only pairwise merges need to be evaluated.

Each equivalence class hadass leaderone of its own events. When an equivalence class
Is created, its leader is the sole event it initially contains, and when two classes are merged, one
of the two leaders is chosen to be the leader of the merged class. For convenience, we pretend
that the cycle meets are derived from a sirgylele eventvhich is the leader of their class.

If classC contains an everg which is assigned to an event outsidgethen the evengis
assigned to lies in the parent clasg<of There may not be two such eventgdnunless they are
assigned to the same event at the same offset. The leader must be one of these events. The data
structure only becomes aware of assignments when the jobs representing them are accepted.

If C does not contain an event which is assigned to another event outside the class, then
it must contain at least one event which is not assigned at all, since otherwise there would be a
cycle of assignments within the class. Any such unassigned event may be the leader.

These conditions are trivially satisfied when a class is created, by making its sole event the
leader. When two classes are merged, there are various possibilities, including failure to merge
when the two leaders are assigned to distinct events outside both classes.

When constructing the final layer tree, all the unassigned events of each class except
the leader are placed in layer tree nodes which are made children of the node containing the
leader. Similarly, the nodes containing the leaders of child classes become children of the node
containing the leader of the parent class. In reality, of course, it is the meets derived from these
events by the splitting algorithm to be described next that are placed into these nodes.

9.1.3. Splitting

Given an eveng of durationd, any mathematical partition afis a possible outcome of splitting
e. For example, it has duration 6, the possible outcomes are the eleven partitions

6 42 33 3111 2211 111111
51 411 321 222 21111
One element of a partition is calledpart, and is the duration of one meet.

Any condition that limits how an event is split defines a subset of this set of partitions. For
example, if a split events constraint states that an event of duration 6 should be split into exactly
four meets, that is equivalent to requiring the partition to be either3111or22 11

Each equivalence class holds a set of events of equal duration that are assignable to each

9.1. Layer tree construction 199

other. These will eventually be partitioned into meets in the same way. In addition to the events,
the class holds the requirements that the final partition must satisfy. These define a subset of the
set of all partitions of the duration, but it is not possible to store the subset directly, because for
large durations it may be very large. One patrtii®stored, however: the lexically minimum one
satisfying the requirements. (A lexically minimum partition has minimum largest part, and so
on recursively. For example, 11111 1isthe lexically minimum partition of 6.) Itis an invariant
that the set of partitions satisfying the requirements may not be empty.

In the special case of the equivalence class that represents the cycle meets, the requirements
are fixed to allow exactly one partition: the one representing the durations of the cycle meets.

The requirements on partitions are of two kinds. First, there aréottad requirements
These are mainly lower and upper bounds on the total number of parts, and on the number of
parts of each possible duration, modelled on the corresponding fields of the split events and
distribute split events constraints. Another kind of local requirement arises when a pre-existing
split job is accepted: if an event of duration 6 is already split into meets of duration 4 and 2,
say, when the algorithm begins, then, to be acceptable, a partition must be packable into partition
4 2. One partition ipackableinto another if splitting some parts of the second partition and
discarding others can produce the first. For example, 2 11is packable into 2 2 2, but neither of
3111and2211ispackableintothe other.

Second, there are tlsructural requirementsEach parent class has an arbitrary number
of child classes, whose events will eventually be assigned to the parent class’s events. So the
lexically minimum partition of each child class must be packable into the parent class. In
these calculations the constraint always flows upwards: the child’s lexically minimum partition
is taken as given, and the parent’s minimum partition is adjusted (if possible) to ensure that
the child’s is packable into it. When a child class’s minimum partition changes, the parent’s
requirements must be re-tested. In this way, a change to a partition propagates upwards through
the structure until it either dies out or causes some class to have no legal partitions. In the second
case, the job which originated the changes must be rejected.

Some of the child classes may be organized into layers. In that case, each layer’s classes,
taken together, must be packable into the parent class. Each layer is represented by a split layer
object, as explained in detail in the next section. That object contains a minimum partition which
must be packable into the parent class, just like the minimum partitions of child classes.

Deciding whether any partitions satisfy even the local requirements is non-trivial: is it
safe to place two events into one class, when one is already split into partition 4 2 and the other
is already split into partition 32 1? Some simple checks are made, then a full generate-and-test
enumeration is begun and interrupted at the first success. The enumeration produces the lexically
minimum acceptable partition first, which is then stored and propagated upwards. Fortunately,
packability can be tested very quickly in practice, despite being an NP-complete bin packing
problem, because event durations are usually small.

At the end, after the last job is processed, each event of each class is split into meets whose
durations form the lexically minimum partition of that class.

9.1.4. Layering

The relation between meets and layers (sets of events that share a common preassigned resource

200 Chapter 9. Time-Structural Solvers

with a required avoid clashes constraint) is a many-to-many relation: a layer may contain any
number of meets, and a meet may lie in any number of layers.

Suppose that mesf lies in layerl and is assigned to mest KHE enforces the rule that
any assignment of, may not be such as to causeo overlap in time with any other meet bf
In a senses, (actually, that part of it assignes) becomes a member bfvhile s, is assigned to
it. We say thas, liesdirectlyin |, ands, liesindirectlyin I.

An event lies directly in a layer if any of its meets lie directly in the layer. An equivalence
class lies directly in a layer if any of its events lie directly in the layer, and it lies indirectly in the
layer if any of its child classes lie in the layer, either directly or indirectly. This is because the
events of child classes will eventually be assigned to the events of the class.

The layering aspect dtheLayer Tr eeMake is based on an object calledglit layer, which
represents one element of the many-to-many relation between equivalence classes and layers. In
other words, there is one split layer object for each case of an equivalence class lying in a layer,
directly or indirectly. Its attributes are the class, the resource defining the layer, the set of all child
classes of the class that lie in the layer, and a partition, whose value will be defined shortly.

When an equivalence class lies directly in a layer (when it contains an event that lies directly
in the layer), none of its child classes can lie in the layer, since that would mean that two events
of the same layer overlap in time. Soin that case the set of child classes must be empty. To keep
it that way, the partition contains as many 1's as the duration of the class. This makesit clear that
there is no room for any child classes in the layer, without constraining the division of the class’s
events into sub-events in any way.

When an equivalence class lies indirectly in a layer, some of its child classes lie in the layer.
Their total duration must not exceed the duration of the class, and their meets, taken together,
must be packable into the class, since they are disjoint in time. So in this case the set of child
classes may be (in fact, must be) non-empty, and the partition holds the multiset union of the
lexically minimum partitions of the child classes.

The job which adds a layer to the data structure adds its events one by one. In the unlikely
event that the duration of the layer exceeds the number of times in the cycle, or bin packing
problems prevent an event being added, the job rejects the event, which amounts to ignoring the
presence of the preassigned resource in that event.

Adding an event to a layer means that the event’s class and all its ancestors must get split
layer objects for the layer. For all these classes, moving upwards until either there are no more
ancestorsor a class already has a split layer object for the layer, either add a new split layer object
holding just the current child class, or add the child class to an existing split layer object.

While the upward propagation adds new split layer objects, there is no possibility of failure,
since a layer containing a single event is no more constraining than the event alone (the event is
already present, only its membership of a layer is changing). But if an existing split layer object
is reached, the class must be added to it, and so its partition grows, possibly leading to an empty
set of acceptable partitions in the parent, causing rejection of the request.

9.1.5. Merging

As mentioned earlier, when instances contain events which have already been split, it is best to
merge the nodes containing those events. The advantages include ensuring that how the instance

9.1. Layer tree construction 201

is presented does not affect the way it is solved, exposing symmetries which could be expensive
if left hidden, and taking a step towards regularity.

Node merging is carried out after the main part of the layer tree construction algorithm
is complete and a layer tree is present. For each pair of events that share a spread events or
avoid split assignments constraint, the first meet of each event is found and the chain of fixed
assignments is followed to the first unfixed meet and from there to the node. The two nodes thus
found are candidates for merging. If they both exist, and they are distinct, and the first meet in
each contains the same preassigned resources (counting resources in meets assigned to the meet,
directly or indirectly, as well as resources in the meet itself), then the nodes are merged.

Only nodes which share at least one preassigned resource are merged. Thisensuresthatitis
right to assign non-overlapping times to the meets of a node, which is what solvers usually do.

Requiring the same preassigned resources turns out to be important, because of the way that
layers are built from nodes, not from meets. If some of the meets of a node contain a resource
but others do not, then when the nodes containing that resource are formed into a layer later, the
layer’s duration may be longer than the cycle length, making it awkward to timetable.

9.2. Time-equivalence

Two sets of meets ateme-equivalenif it can be shown, by following fixed meet assignments,
that each set of meets must occupy the same set of times as the other while fixed assignments
remain in place. This may be true even when none of the meets is assigned a time.

Two events are time-equivalent if their sets of meets are time-equivalent. Usually, this
Is because they are joined by a link events constraint which is being handled structurally, for
example bykheLayer Tr eeMake (Section 9.1).

Two resources are time-equivalent if they have the same resource type (ca)| it
KheResour ceTypeDemandl sAl | Preassi gned(rt) (Section 3.5.1) i$rue, and the sets of meets
containing their preassigned tasks are time-equivalent. Time-equivalent resources are busy at the
same times. They are usually students who choose the same courses.

It is clear that time-equivalence between sets of meets is an equivalence relation, as is
time-equivalence between events and between resources. So the events and resources of an
instance can be partitioned into time-equivalence classes. These classes are calculated by a
time-equivalence solvewhich can be created and deleted by calling

KHE_TI ME_EQUI V KheTi neEqui vMake(voi d) ;
voi d KheTi neEqui vDel et e(KHE_TI ME_EQUI V te);

To perform the calculation for a particulswl n, call
voi d KheTi meEqui vSol ve(KHE_TI ME_EQUI'V te, KHE _SOLN sol n);
However, the usual way to obtain a time-equivalence object is by calling

KHE_TI ME_EQUI V KheTi meEqui vOpt i on(KHE_OPTI ONS opt i ons,
char *key, KHE_SOLN sol n);

with key"ss_time_equi v". This returns a solved time equivalence object storeapin ons

202 Chapter 9. Time-Structural Solvers

underkey; if it is not present, it creates one, solves it, and addsapto ons before returning it.
The equivalence classes of events are event groups which can be visited by

i nt KheTi neEqui vEvent G oupCount (KHE TIME EQUIV te);
KHE_EVENT _GROUP KheTi meEqui vEvent Group(KHE_TIME EQUIV te, int i);

in the usual way. The equivalence class for a given event is returned efficiently by

KHE_EVENT _GROUP KheTi meEqui vEvent Event Group(KHE_TI ME_ EQUI V te,
KHE_EVENT e);

If e is not time-equivalent to any other event, a singleton event group containsygturned.
There is also

i nt KheTi neEqui vEvent Event Groupl ndex(KHE TIME EQUIV te, KHE EVENT e);

which returns the valuie such thakheTi neEqui vEvent G oup(te, i) contain.
Similarly, the equivalence classes of resources are resource groups which can be visited by

i nt KheTi neEqui vResour ceGroupCount (KHE_TI ME_EQUIV te);
KHE_RESOURCE_GROUP KheTi neEqui vResour ceG oup(KHE_TIME_EQUIV te, int i);

in the usual way. The equivalence class for a given resource is returned efficiently by

KHE_RESOURCE_GROUP KheTi neEqui vResour ceResour ceG oup(KHE_TI ME_EQUI V t e,
KHE_RESOURCE 1) ;

If r is not time-equivalent to any other resource, including the case when its resource type is not
all preassigned, a singleton group containing returned. Again,

i nt KheTi neEqui vResour ceResour ceG oupl ndex(KHE _TI ME_ EQUI V te,
KHE_RESOURCE r) ;

returns the value such thakheTi meEqui vResour ceG oup(te, i) contains .

All of these results reflect the state of the solution at the time of the most recent call to
KheTi meEqui vSol ve(t e) ; they are not updated as the solution changes.

9.3. Layers

Layers were introduced in Section 5.3, but no easy way to build a set of layers was provided.
This section remedies that deficiency and adds some useful aids to solving with layers.

9.3.1. Layer construction

The usual rationale for the existence of a layer is that its nodes’ meets must not overlap in time
because they contain preassignments of a common resource. Function

KHE_LAYER KhelLayer MakeFr onResour ce(KHE_NODE par ent _node,
KHE_RESOURCE r) ;

9.3. Layers 203

builds a layer of this kind. It callsheLayer Make to make a new child layer gfar ent _node,
andKhelLayer AddResour ce to addr to this layer. Then, each child nodepafr ent _node which
contains a meet preassignedeither directly within the node, indirectly within descendant
nodes, or in meets assigned, directly or indirectly, to those meets) is added to the layer.

The layering of nodeparent _node is a particular set of layers which is useful when
assigning times to the child nodesmr ent _node, created by calling function

voi d KheNodeChi | dLayer sMake(KHE_NODE par ent _node);

This will delete any existing child layers pfr ent _node and add the layers of the layering.

The layering is built as follows. First, for each resource of the instance that possesses a
required avoid clashes constraint, one layer is built by cakimg.ayer MakeFr onResour ce
above. If it turns out to be empty, itisimmediately deleted again. Each pair of these layers such
that one’s node set is a subset of the other’s is mergeddwitbeyer Mer ge. Finally, each child
of par ent _node not in any layer goes into a layer (with no resources) by itself.

The layers emerge frokheNodeChi | dLayer sMake in whatever order they happen to be.
The user will probably need to sort them, by callittgeNodeChi | dLayer sSort (Section 5.3),
passing it a user-defined comparison function. Section 10.8.2 has an example of a comparison
function that seems to work well in practice.

After sorting, there may be value in calling
voi d KheNodeChi | dLayer sReduce(KHE_NCDE par ent _node) ;

This merges some layers of marginal utility into others, as follows. Suppose there is & layer
whose nodes all appear in earlier layers. Then if the meets of the nodes are assigned layer by
layer,L's nodes will all be assigned before time assignment reachégguably,L could be
deleted without harm. However, it does contain one piece of useful information: it knows that
the meets to which its resources are preassigned will all be assigned timésiatissigned. If

this information is to be preservelds resources need to be moved forwards to the first earlier
layer that is true of. For each nodleof L, find the minimum over all layers containimg of

the index of the layer. This is the index of the layer during whose time assigrherit be
assigned. Then find the maximum, over all noNesf L, of these minima. This is index of the
layer whose assignment will complete the assignment of all the nodedithis is smaller than

L's index,KheNodeChi | dLayer sReduce deleted. and moves its resources to this earlier layer.

Two important facts about layers and layerings must be borne in mind. First, they reflect
the state of the layer tree at a particular moment. If, after they are built, the tree is restructured (if
nodes are moved, etc.) they become out of date and useless. Second, building a layering is slow
and should not be done within the inner loops of a solver.

Altogether, it seems best to regard layers as temporary structures, created when required by
KheChi | dLayer sMake and destroyed bigheChi | dLayer sDel et e. In between these two calls,
nodes may be merged and split, but it is best not to move them. A useful convention, supported
by several of KHE'’s solvers that use layers, is to assume that if child layers are present, then they
are up to date. Such solvers begin by callihgChi | dLayer sMake if there are no layers, and
end by calling<heChi | dLayer sDel et e, but only if they calleckheChi | dLayer sMVake.

204 Chapter 9. Time-Structural Solvers

9.3.2. Layer coordination

High schools usually contaiformsor years which are sets of students of the same age who
follow the same curriculum, at least approximately. These students may be grouped into classes,
each represented by one student group resource. At some times, the student group resources of
one form might attend the same events, or linked events. For example, they might all attend a
common Sport event, or they might all attend Mathematics at the same times so that they can be
regrouped by ability at Mathematics. At other times, they might attend quite different events,
but over the course of the cycle they all attend the same amount of each different kind of event:
so many times of English, so many of Science, so many of a shared elective, and so on.

As an aid to producing a regular timetable, it might be helpfuldordinatethe timetables
of student groups from the same form: run all the form’s English classes simultaneously, all
its Mathematics classes simultaneously, and so on. Where resources are insufficient to support
this, changes can be made later. In this way, a regular timetable is produced to begin with, and
irregularities are introduced only where necessary.

The XML format does not explicitly identify forms, or even say which resource type
contains the student group resources. This is in fact an advantage, because it forces us to look
for structure that aids regularity. We then coordinate the timetabling of resourcesthat possessthe
useful structure, without knowing or caring whether they are in fact student group resources.

Coordination will only work when the chosen resources attend similar events. This was
the rule when inferring resource partitions (Section 3.5.5), so we take the resource partition as
the structural equivalent of the form. The events should occupy all or most of the times of the
cycle, otherwise coordination eliminates too many options for spreading them in time. ‘Forms’
of teachers and rooms are rarely useful, just because they do not satisfy these conditions.

After KheLayer Tr eeMake returns, it is the nodes lying directly below the root node that need
to be coordinated, not events or meets. Two child nodes may be coordinated by moving one of
them so that it is a child node of the other. KHE offers solver function

voi d KheCoor di nat eLayer s(KHE_NODE par ent _node, bool with_donination);

which carries out such moves on some of the childregroent _node, as follows.

KheCoor di nat eLayers is only interested in resources whose layers have duration at
least 90% of the duration gfar ent _node. For each pair of such resources lying in the same
resource partition, it checks whether their two layers are similar by building the layers with
KheLayer MakeFr onResource and calling KheLayer Similar (Section 9.3). If so, it uses
KheNodeMve (Section 9.5.3) to make each node of the second layer a child of the corresponding
node of the first, unless the two nodes are the same, forcing these nodes to be simultaneous. It
does not assign meets, or remove them from nodes. Finally, it removes the two layers it made.

If wi th_dom nation isfal se,the behaviour is as describedwft h_dom nati on istrue,
a slight generalization is used. Suppose that one of the two layers has duration equal to the
duration ofpar ent _node, and all but one of its nodes is similar to some node in the other layer.
Then the dissimilar nodes of the other layer (possibly none) might as well be made children of
the one dissimilar node of that layer, since if the other nodes are coordinated they must run
simultaneously with it anyway. (The durations of their meets may be incompatible; that is not
checked at present, although it should be.) So that is done.

9.3. Layers 205

In unusual cases the duration of a layer can be larger after coordinating than before. At the
end, if any layers have duration larger than the parent node’s duritie®gor di nat eLayer s
tries to reduce the duration of those layers to the parent node’s duration, by finding cases where
one node of a layer can be safely moved to below another.

9.4. Runarounds

Layer coordination can lead to problems assigning resources. For example, suppose that the five
student groups of the Year 7 form each attend one Music event, and that the school has two Music
teachers and two Music rooms. Each event is easily accommodated individually, but when the
Year 7 layers are coordinated, they run simultaneously and exceed resource limits.

These problems do not arise in large faculties with sufficient resources to accommodate an
entire form at once. Thus they do not invalidate the basic idea of node layer coordination. What
is needed is a local fix for these problems. This is whaaroundsprovide: a way to spread the
events concerned through the times they need, without abandoning coordination altogether.

9.4.1. Minimum runaround duration

Consider the case above where there are not enough Music resources to run the Year 7 Music
events simultaneously. If these eventslie in nodes that are children of acommon parent (one may
lie in the parent itself), it is easy to detect this problem: carry out a time assignment at the parent,
and see whether the cost of the solution increases. This is assuming that the matching monitors,
which detect unsatisfiable resource demands, are attached.

More generally, we can ask how large the duration of the parent node has to be in order to
ensure that there is no cost increase. This quantity is calleshitienum runaround duration
of the node. It will be equal to the duration when there is no problem, and larger when there is a
problem. It can be calculated as follows. While a time assignment of the child nodes produces
a state of higher cost than the unassigned state, add new meets to the parent node. The duration
of the parent node when this process ends is its minimum runaround duration. Function

bool KheM ni nunRunar oundDur at i on(KHE_NODE par ent _node,
KHE TI ME_SOLVER time_sol ver, KHE TI ME_OPTI ONS opti ons,
int xduration);

setstdur at i on to the minimum runaround duration pér ent _node and returnsr ue, except
in an unlikely case, documented below, when it retdiaise with «dur at i on undefined.

KheM ni munRunar oundDur at i on first unassigns all the child meets and saves the unas-
signed cost. It then carries out the time assignment trials just described. For each trial after the
firstit adds one fresh meetpar ent _node for each of its original meets, utilizing their durations
and time domains, but with no event resources. So the result’s duration must be a multiple of the
duration ofpar ent _node. Before returning, it unassigns all the children and removes the meets it
added, leaving the tree in its initial state, unless some child meets were assigned to begin with.

Parameteri me_sol ver is a time assignment solver which is called to carry out each trial.
A simple solver, such aheSi npl eAssi gnTi mes from Section 10.4, should be sufficient here.

Increasing the duration at each trial by the full duration of the node may seem excessive, and

206 Chapter 9. Time-Structural Solvers

there are cases where fewer additional meets would be enough. However, those cases require the
child nodes’ assignments to overlap in ways that do not work out well in practice, because they
may lead to split assignments in the tasks affected.

How many trials are needed? In reasonable instances, each child node’s duration should
be no greater than the parent node’s duration. Thus, after as many trials as there are child nodes
plus one, there should be enough room in the parent node to assign every child meet at an offset
which does not overlap with any other, or with the original parent meets. This is the number of
trials thatkheM ni munRunar oundDur at i on carries out. It stops early if one succeeds with cost
no greater than the unassigned cost. It retiahse only when each trial either did not assign
all the child meets (that is, the call ohnme_sol ver returned al se) or did assign them all, but
at a higher cost than the unassigned cost.

9.4.2. Building runarounds

Nodes may be classified into three typedix&d nodédnas no child nodes. There is no possibility

of spreading the events of a fixed node and its descendants through more times than the node’s
duration. Aproblem nodehas minimum runaround duration larger than its duration, like the
node of Music events used as an example above. It must have child nodes, and timetabling them
simultaneously is known to be inferior to spreading them out further. The remaining nodes are
free nodesthey have child nodes which may run simultaneously, or not, as convenient.

UsingKheNodeMer ge to merge problem nodes with other problem nodes and free nodes can
eliminate problem nodes without greatly disrupting regularity. For example, merging a Music
problem node of duration 2 and minimum runaround duration 6 with a free node of duration 4
produces a merged node of duration 6 which can usually be timetabled without problems.

If a merged node can be timetabled without the cost of the solution increasing, it may be
kept, and is then calledranaround node (The termrunaroundis used by manual timetablers
known to the author to describe this kind of timetable, where events like the Music events are
‘run around’ with other events.) Otherwise it must be split up again and some other merging
tried instead. It only remains, then, to decide which sets of nodes to try to merge.

Regularity is easier to attain when nodes have the same duration, so if there are already many
nodes of a certain duration, it is helpful if a merged node also has that duration. Nevertheless,
a node should not be added to a merge merely to make up some duration: merging limits the
choices open to later phases of the solve, so it should be done only when necessary.

A minimum runaround duration could be very large, close to the duration of the whole
cycle. For example, suppose there is a single teacher, the school chaplain, who gives each of
the five Year 7 student groups 6 times of religious instruction per week. Those events have a
minimum runaround duration of 30. When the minimum runaround duration of a node is larger
than a certain value, the algorithm given below ignores the node: its events will be awkward to
timetable, but runarounds as defined here are not the answer.

To build runaround nodes from the child nodegefent _node, call

voi d KheBui | dRunar ounds(KHE_NODE par ent _node,
KHE NODE TI ME_SCLVER nrd_sol ver, KHE TIME OPTIONS nrd_opti ons,
KHE NODE TI ME_SCLVER runar ound_sol ver,
KHE TI ME_OPTI ONS runaround_opti ons);

9.4. Runarounds 207

where nrd_solver and nrd_options are passed toKheM ni nunRunaroundDurati on

when minimum runaround durations need to be calculated, ramdr ound _sol ver and
runaround_opt i ons are used to timetable merged nodiiseSi npl eAssi gnTi mes is sufficient
for mrd_sol ver, andkheRunar oundNodeAssi gnTi mes works well ag unar ound_sol ver . All

nodes are unassigned afterwards.

It would not do to merge (for example) a node that includes both Year 7 and Year 8 events
with a node that includes only Year 7 ones. 1®e@Bui | dRunar ounds first works out which
resources are preassigned to events in or below which nodes (taking account only of preassigned
resources which have required avoid clashes constraints, and whose events occupy at least 90%
of the duration ofpar ent _node), and partitions the child nodes pér ent _node into disjoint
subsets, such the nodes in each subset have the same preassigned resources.

For each disjoint subset independerthgBui | dRunar ounds tries to build a merged node
around each of the subset’s problem nodes in turn, largest minimum runaround duration first.
When doing this, it prefers to build a node of a particular duraticend it prefers to use other
problem nodes (again, largest minimum runaround duration first), but it will also use free nodes
(minimum duration first). It is heuristic, but it usually works well. It is not limited to sequences
of pairwise mergings, as clustering algorithms often are. Here is the algorithm in detail:

1. Theinputisa setof nodés(one disjoint subset as above), plia desirable duration for a
merged node, ang a maximum duration for a merged node. The outpi she final set
of nodes. Writed(n) for the duration of node, r (n) for its minimum runaround duration,
andd(X) for the total duration of the set of nod¥s

2. InitializeM to empty. Sort to put free nodes first, in decreasing duration order, problem
nodes next, in increasing minimum runaround duration order, and fixed nodes last.

3. If Nisempty, stop. Otherwise delete the last elemer ahd call itn.
4. If nisfixed, problem withr (n) > v, or free, move it tVl and return to Step 3.

5. Heren must be a problem node satisfyin(n) <v. Within each of the following cases,
some non-empty subsefof N are defined. In each casén) < d(n) + d(X), so a merged
node consisting oh merged withX is likely to work well. For each case in turn, and for
each seK defined within each case in turn, remov&om N, mergen andX, and timetable
the resulting merged node. If that is successful (all events timetabled with no increase in
solution cost), add the merged nodeMaand return to Step 3. If it fails, split the merged
node up again, return the nodesXfto their former places i, and try the next sexX; or
if there are no more sets, addo M and return to Step 3.

Case 1. For eachON from last to first such that(n) < d(n) +d(x) = u < v, let X = {x}.

Case 2. For eadtfrom 1to |N|such thaiX;, the last elements oN, satisfies the condition
r(n)<d(n)+d(x;) sv, letX =X,

KheBui | dRunar ounds calls KheM ni munRunar oundDur ati on to find minimum runaround
durations, passing d_sol ver toit. It callskheNodeMer ge to merge nodesunar ound_sol ver

to timetable merged nodes, akideNodeSpl i t to undo failed merges. It uses one-fifth of the
duration ofpar ent _node for v. Foru, it builds a frequency table of the durations of child nodes

208 Chapter 9. Time-Structural Solvers

of parent _node. It then chooses the duration for which the frequency times the duration is
maximum. This weights the choice away from small durations, which are not very useful.

9.5. Rearranging nodes

Earlier sections of this chapter contain the major solvers which work with nodes. This section
contains a miscellany of smaller helper funtions which rearrange nodes.

9.5.1. Node merging
Two nodes may be merged by calling

bool KheNodeMer geCheck(KHE_NCDE nodel, KHE NCDE node2);
bool KheNodeMer ge(KHE_NODE nodel, KHE NODE node2, KHE NODE xres);

The nodes may be merged if they have the same parent node, poskihly

The meets of the resuky es, are the meets afodel followed by the meets afode2, and
the child nodes ofres are the child nodes afodel followed by the child nodes ofiode?2.
The two nodes must either lie in the same layers and have the same parent, or have no parent,
otherwisekheNodeMer ge aborts. This implies that node merging cannot violate the cycle rule,
or any rule. As usual with mergingpdel andnode2 are undefined afterwards (actuatydel
is recycled asres andnode? is freed), but one may write, for example,

KheNodeMer ge(nodel, node2, &nodel);

to re-use variableodel to hold the result.

Merging permits the meets of the child nodes of the two nodes to be assigned to the meets
of either node, rather than to just one as before. For example, suppose the layer tree rooted at
nodel contains the Science events of several groups of Year 7 students, and the layer tree rooted
atnode2 contains the Music events of the same groups of students. Then originally the Science
events must be simultaneous and the Music events must be simultaneous, but afterwards the two
kinds of events may intermingle. This may be useful if there are few Music teachers and Music
rooms, so that the Music events must be spread out in time. This kind of arrangement is well
known to manual timetablers; it has various names, includinground

There is no operation to split a node into two nodes. Howed{eiodeMer ge may be
undone using marks and paths as usual.
9.5.2. Node meet splitting and merging

Node meet splitting and merging (not to be confused with node merging above) split the meets
of a node as much as possible, and merge them together as much as possible:

voi d KheNodeMeet Spl it (KHE_NODE node, bool recursive);
voi d KheNodeMeet Mer ge(KHE_NODE node, bool recursive);

Both operations always succeed, although they may do nothing.
For every offset of every meet obde, KheNodeMeet Spl i t callskheMeet Split, passing

9.5. Rearranging nodes 209

it ther ecur si ve parameter. In this way, the meets become as split up as possible.

KheNodeMeet Mer ge sorts the meets so that meets assigned to the same target meets are
adjacent, with their target offsets in increasing order, ughegeet | ncr easi ngAsst Cmp from
Section 5.2. Unassigned meets go at the end. It then tries to merge each pair of adjacent meets.
Any calls tokheMeet Mer ge it makes are passed thecur si ve parameter.

9.5.3. Node moving
A node may be made the child pér ent _node, instead of its current parent, by calling

bool KheNodeMoveCheck(KHE_NCDE chil d_node, KHE _NCDE parent _node);
bool KheNodeMove(KHE_NCDE chil d_node, KHE_NCDE parent _node);

This does the same as the sequence

KheNodeDel et ePar ent (chi | d_node) ;
KheNodeAddPar ent (chi | d_node, parent_node);

except that this sequence will fail if any ohi | d_node’s meets are assigned initially, whereas
KheNodeMve deals with such assignments and can fail only the cycle rule.

In most caseheNodeMyve begins by deassigning those meetsbifl d_node that are
assigned. However, there is one interesting exception. Suppossihdt node’s new parent
node is an ancestor ohi | d_node’s current parent node:

par ent _node par ent _node

chi | d_node

chil d_node

In each case where a complete chain of assignments reaches frommeeateet chi | d_node

to a meet opar ent _node, neet will be assigned afterwards, to the meet at the end of the chain,
with offset equal to the sum of the offsets along the chain. This is valid (it does not change the
timetable). Where there is no complete chargt will be unassigned afterwards.

For example, suppose nopédnas accumulated children to make the timetable regular, but
now the children’s original freedom to be assigned elsewhere needs to be restored:

whi | e(KheNodeChi | dCount (p) > 0)
KheNodeMove(KheNodeChi | d(p, 0), KheNodeParent(p));

KheNodeMove preserves the current timetable during these relinkings.

9.5.4. Vizier nodes

A vizier (Arabic wazir) is a senior official, the one who actually runs the country while the
nominal ruler gets the adulation. In a similar wayjzer nodesits below another node and does
what that other node nominally does: act as the common parent of the subordinate nodes, and

210 Chapter 9. Time-Structural Solvers

hold the meets that those nodes’ meets assign themselves to.

Any node can have a vizier, but only the cycle node really has a use for one. By connecting
everything to the cycle node indirectly via a vizier, it becomes trivial to try time repairs in
which the meets of the vizier node change their assignments, effecting global alterations such as
swapping everything on Tuesday morning with everything on Wednesday morning. Function

KHE_NCDE KheNodeVi zi er Make(KHE_NCDE par ent _node) ;

inserts a new vizier node directly belgar ent _node. Afterwardsparent _node has exactly

one child node, the vizier; it may be accessed ukirgNodeChi | d(parent _node, 0) as usual,

and it is also the return value. For every mpetof the parent node, the vizier has one meet
vmwith the same duration gsnand assigned tpmat offset 0. The domain ofmis NULL; its
assignment is not fixed. Each child nodepaf ent _node becomes a child of the vizier; each
child layer ofpar ent _node becomes a child layer of the vizier; each meet assigned to a meet of
the parent node becomes assigned to the corresponding meet of the vigaeentf_node has
zones, the vizier is given new corresponding zones, and the parent node’s zones are removed.

All this leaves the timetable unchanged, including constraints imposed by domains and
zones. The vizier takes over without affecting anyone’s existing rights and privileges. A vizier
node is not different from any other node; only its role is special.

KheNodeSwapChi | dNodesAndLayer s (Section 5.2) is used to move the child nodes and
layers to the vizier node, so they are the exact same objects after the call as before. But although
the zones added to the vizier correspond exactly with the original zones, they are new objects.

To remove a vizier node, call
voi d KheNodeVi zi er Del et e(KHE_NODE par ent _node);

Herepar ent _node must have no child layers, no zones, and exactly one child node, assumed
to be the vizier. It call&heNodeSwapChi | dNodesAndLayer s again, to make the child nodes of

the vizier into child nodes gfar ent _node, and the child layers of the vizier into child layers of

par ent _node. Any assignments to meets in the child nodes of the vizier must be to meetsin the
vizier, and they are converted into assignments to megts ient _node where possible (when

the target meet in the vizier is itself assigned). New zones are cregteckeim _node based on

the zones and meet assignments in the vizier. Finally the vizier and its meets are deleted.

Zones are not preserved across callgheNodeVi zi er Make andKheNodeVi zi er Del et e
in the exact way that child nodes and child layers are. The zones added to the vizier node by
KheNodeVi zi er Make are new objects, although they do correspond exactly with the zones in
parent _node. The zones added fm@r ent _node by KheNodeVi zi er Del et e are also new, and
there will be a zone in a given parent meet at a given offset only if there was a meet in the vizier
which was assigned that parent meet and was running (with a zone) at that offset. If vizier meets
overlap in time (not actually prohibited), that will further confuse the reassignment of zones. It
may be best to followheNodeVi zi er Del et e by a call to some function which ensuresthat every
offset of every parent meet has a zone, for exaripédlodeExt endZones (Section 9.6).

FunctionkheNodeMeet Spl i t (Section 9.5.2) is useful with vizier nodes. Splitting a vizier’s
meets non-recursively opens the way to fine-grained swaps, between half-mornings instead of
full mornings, and so on. A wild idea, that the author has not tried, is to have an unsplit vizier
with its own split vizier. Then the larger swaps and the smaller ones are available together.

9.5. Rearranging nodes 211

9.5.5. Flattening

Although layer coordination and runaround building are useful for promoting regularity, there
may come a point where these kinds of voluntary restrictions prevent assignments which satisfy
more important constraints, and so they must be removed.

What is needed is to flatten the layer tree. Two functions are provided for this. The firstis
voi d KheNodeBypass(KHE_NCDE node) ;

This requiresiode to have a parent, and it moves the childremade so that they are children
of that parent. The second is

voi d KheNodeFl att en(KHE_NCDE par ent _node) ;

It moves nodes as required to ensure that all the proper descendpatstf_node initially are
children ofpar ent _node on return.

Both functions us&heNodeMve to move nodes. They cannot fail, becaseNodeMove
fails only when there is a problem with the cycle rule, which cannot occur here. Both functions
are ‘interesting exceptions’ (Section 9.5.3) where assignments are preserved. By convention
(Chapter 10), meets with fixed, final assignments should not lie in nodes. If that convention is
followed, these functions do not affect such meets.

9.6. Adding zones

Suppose a layer of child nodes of noddas its meets assigned to the meets @t various
offsets. Define one zone for each child nadef the layer, whose meet-offsets are the ones at
which c's meets are running. Helper function

voi d KheLayer | nstal | Zonesl nParent (KHE _LAYER | ayer);

installs these zones, first deleting any existing zones of the parent nbdgeof then installing

one zone for each child node bbdyer containing at least one assigned meet. Such zones form

an image of how one child layer (the first to be assigned, usually) is assigned. An algorithm can
use them as a template when assigning the other child layers, or when repairing the assignments
of any child layers, including the first layer.

KheLayer | nst al | Zonesl nPar ent installs zones representing the assignments of one layer
into the layer’s parent node. If the duration of the parent node exceeds the duration of the layer,
some offsets in some parent node meets will not be assigned any zone. This seems likely to be a
problem, or at least a lost opportunity. What to do about it is not clear.

Arguably, zones should be derived from all layers, not just one, in a way that gives every
offseta zone. Butthatis not easyto do, even heuristically. Anyway, there are advantagesin using
zones derived from a good assignment of some layer, since the assignment proves that those
zones work well. This suggests taking the zones installéthblyayer | nst al | Zones| nPar ent
and extending them until every offset has a zone. Accordingly, function

voi d KheNodeExt endZones(KHE_NCDE node) ;

ensures that every offset of every meenofle has a zone, by assigning onerafde’s existing

212 Chapter 9. Time-Structural Solvers

zones to each offset in each meenofle that does not have a zone—unlesdge has no zones
to begin with, in which case it does nothing.

For each (zone, meet) pair where the meet has at least one offset without a zone, the
algorithm finds one option for adding some of the zone to the meet (how much to add, and
where), and assigns a priority to the option. Then it selects an option of minimum priority, carries
it out, and repeats. It runs out of options only when every offset in every meet has a zone.

An option for adding some of a given zone to a given meet is found as follows. If the zoneis
already presentin the meet, it is best to add it at offsets adjacent to the offsets it already occupies,
if possible. If the zone is not already present, it is best to add it adjacent to existing offsets or the
ends of the meet, in a continuous run, to avoid fragmentation of the offsets it occupies as well as
the offsets it doesn’t occupy. Constraints on zone durations arise either way. Within the limits
imposed by them, it is best to aim for an ideal zone duration, which in a completely unoccupied
meet is the meet duration divided by the total number of zones, but which is adjusted to take
account of existing zone durations, with higher being a better option than lower. As the option
Is decided on, it is assigned a priority based on whether it utilizes an underutilized zone, avoids
fragmentation, and approximates to the ideal zone duration.

9.7. Meet splitting and merging

This section presents features which modify the meet splits made by layer tree construction.

9.7.1. Analysing split defects

Given a defect (a monitor of non-zero cost), it is usually easy to see what needs to be done to
repair it: if there is a clash, move one of the clashing meets away; if there is a split assignment,
try to find a resource to assign to all the tasks; and so on.

Split defectsthat is, split events and distribute split events monitors of non-zero cost, are
awkward to analyse in this way, partly because split events monitors monitor both the number
of meets and their durations, and partly because several split events and distribute split events
monitors may cooperate in constraining how a given event is split into meets.

KHE offers asplit analyserwhich analyses the split events and distribute split events
monitors of a given event, and comes up with a sequence of suggestions as to how any defects
among those monitors could be repaired using splits or merges (or both: for example, if there are
too few meets of a given duration, that could be corrected by splitting larger meets or by merging
smaller ones). To create and subsequently delete a split analyser object, call

KHE_SPLI T_ANALYSER KheSpl it Anal yser Make(KHE_SOLN sol n);
voi d KheSplitAnal yserDel et e(KHE SPLI T_ANALYSER sa) ;

In practice, it is better to obtain a split analyser object from'tee spl i t _anal yser" option,
which can be done by a call to

KHE_SPLI T_ANALYSER KheSpl i t Anal yser Opt i on(KHE_OPTI ONS opti ons,
char *key, KHE_SOLN sol n);

with key "ss_split_anal yser". This creates a split analyser and stores ifhi ons if it is

9.7. Meet splitting and merging 213

not already present. The option name is conventional; any name could have been chosen.
To carry out the analysis for a particular event, call

voi d KheSplitAnal yser Anal yse(KHE SPLI T_ANALYSER sa, KHE EVENT e);
After doing this, the sequence of suggestionsfarhich are splits may be retrieved by calling

i nt KheSplitAnal yserSplitSuggestionCount (KHE SPLI T_ANALYSER sa);
voi d KheSplitAnal yser SplitSuggestion(KHE SPLI T_ANALYSER sa, int i,
int *nerged _durn, int xsplitl durn);

fori betweerD andkheSpl i t Anal yser Spl i t Suggesti onCount (sa) - 1 asusual. Each split
suggestion suggests splitting any meet of duratian ged_dur n into two fragments, one with
duration+spl i t 1_durn. Similarly, the sequence of merge suggestions may be retrieved by

i nt KheSplitAnal yser Mer geSuggesti onCount (KHE_SPLI T_ANALYSER sa);
voi d KheSplitAnal yser MergeSuggesti on(KHE_SPLI T_ANALYSER sa, int i,
int xsplitl_durn, int *=split2_durn);

Each suggests merging any two meets with duratiepki t 1_durn and+spl it 2_durn.

Each suggestion is distinct from the others. No notice is taken of constraint weights,
except that constraints of weight zero are ignored. The suggestions are updated only by calls to
KheSpl i t Anal yser Anal yse;they are unaffected by later changes to the solution. So they go out
of date after a split or merge, but become up to date again if that split or merge is undone.

Function

voi d KheSplitAnal yser Debug(KHE SPLI T_ANALYSER sa, int verbosity,
int indent, FILE *fp);

places a debug print ¢fa ontof p with the given verbosity and indent, including suggestions.

9.7.2. Merging adjacent meets

It sometimes happens that at the end of a solve, two meets derived from the same event are
adjacent in time and not separated by a break. If the same resources are assigned to both, they
can be merged, which may remove a spread defect and thus reduce the overall cost. Function

voi d KheMer geMeet s(KHE_SCLN sol n);

unfixes meet splits in all meets derived from events and carries out all merges that reduce solution
cost. For each event it takes the meets derived frosrthat have assigned times and sorts them
chronologically. Then, for each pair of adjacent meetsin the sorted order, Kiteig=et Mer ge,
keeping the merge if it succeeds and reduces cost.

KheMer geMeet s can be called at any time. The best time to call it is probably at the very
end of solving, or possibly after time assignment.

214 Chapter 9. Time-Structural Solvers

9.8. Monitor attachment and grouping

Sometimes, how monitors are grouped and attached is important: when using ejection chains
(Chapter 13), for example, or Kempe and ejecting meet moves (Section 10.2.2). This section lays
out some general concepts and conventions for monitor attachment and grouping.

Solutions often contain structural constraints: nodes, restricted domains, fixed assignments,
and soon. Asolverisexpected torespect such constraints, unlessits specification explicitly states
otherwise. They are part of the solution, and every solver should be able to deal with them. In
the same way, a solver may find that some monitors have been deliberately detached before it
starts running. For example, all monitors of soft constraints may have been detached, because
the caller wants the solver to concentrate on hard constraints. A solver should not change the
attachments of monitorsto the solution, unlessits specification explicitly states otherwise. Itsaim
is to minimizekheSol nCost (sol n) , however that is defined 3ol n’s monitor attachments.

There are two ways to exclude a monitor from contributing to the solution cost: by detaching
it usingKheMoni t or Det achFr onSol n, and by ensuring that there is no path from it to the solution
group monitor. The first way should always be used, because it is the efficient way.

Some solvers need specific groupings. The Kempe meet move operation (Section 10.2.2)
is an example: its precondition specifies that a particular group monitor must be present. Thisis
permissible, and as with all preconditions it imposes a requirement on the caller of the operation
to ensure that the precondition is satisfied when the operation is called. But such requirements
should not prohibit the presence of other group monitors. For example, the implementation
of the Kempe meet move operation begins with a tiny search for the group monitor it requires.
If other group monitors are present nearby, that is not a problem. If this example is followed,
multiple requirements for group monitors will not conflict.

There is a danger that group monitors will multiply, slowing down the solve and confusing
its logic. Itis best if each function that creates a group monitor takes responsibility for deleting
it later, even if this means creating the same group monitors over and over again. Timing tests
conducted by the author show that adding and deleting the group monitors used by the various
solvers in this guide takes an insignificant amount of time.

Two monitors (or defects) amorrelatedwhen they monitor the same thing, not formally
usually, but in reality. For example, if two events are joined by a link events constraint, and one
is fixed to the other, then two spread events monitors, one for each event, will be correlated.

Correlated defects are bad for ejection chains. The cost of each defect separately might not
be large enough to end the chain if removed, causing the chain to terminate in failure, whereas
if it was clear that there was really only one problem, the chain might be able to repair it and
continue. So correlated monitors should be grouped, whenever possible. These groups are
the equivalence classes of the correlation relation, which is clearly an equivalence relation. A
grouping of correlated monitors is callegpamary grouping

A function which creates a primary grouping works as follows. Monitors not relevant to
the grouping remain as they were. Relevant monitors are deleted from any parents they have, and
partitioned into groups of correlated monitors. For each group containing two or more monitors,

a group monitor called primary group monitolis made, the monitors are made children of it,
and it is made a child of the solution object. For each group containing one monitor, that monitor
is made a child of the solution, and no group monitor is made. Any group monitors other than

9.8. Monitor attachment and grouping 215

the solution object which lose all their children because of these changes are deleted, possibly
causing further deletions of childless group monitors.

A function which deletes a primary grouping visits all monitors relevant to the grouping and
deletes those parents of those monitors wisabet ag indicates that they are part of the primary
grouping. The deleting is done by callsiteG oupMoni t or BypassAndDel et e.

FunctiornkheEj ect i onChai nPr epar eMbni t or s (Section 13.7.4) creates primary groupings
of some correlated monitors, and detaches others, in preparation for ejection chain repair.

Secondary groupingare useful groupings that are not primary groupings (that do not
group monitors which monitor the same thing). Instead, they group diverse sets of monitors for
particular purposes, such as efficient access to defects.

Secondary groupings are often built on primary groupings: if a monitor that a secondary
grouping handles is a descendant of a primary group monitor, the primary group monitor goes
into the secondary grouping, replacing the individual monitors which are its children.

A secondary grouping makes one group monitor, callsg@@ndary group monitpnot
many. The secondary group monitor is not made a child of the solution object, nor are its children
unlinked from any other parentsthat they may have. Soitdoes not disturb existing calculationsin
any way; rather, it adds a separate calculation on the side. A secondary grouping can be removed
by passing the secondary group monitoKiteG oupMbni t or Del et e.

Functions for creating secondary groupings appear elsewhere in this guide. They include
KheKenpeDemandG oupMoni t or Make, needed by Kempe and ejecting meet moves (Section
10.2.2), and several functions used by ejection chain repair algorithms (Section 13.7.5).

When building secondary groupings, these public functions are often helpful:

bool KheMoni t or HasPar ent (KHE_MONI TOR m int sub_tag,
KHE_GROUP_MONI TOR *res_gnm ;

voi d KheMoni t or AddSel f Or Parent (KHE_MONI TOR m int sub_tag,
KHE_GROUP_MONI TOR gm) ;

voi d KheMbni t or Del et eAl | Par ent sRecur si ve(KHE_MONI TOR) ;

Consult the documentation in the source code to find out what they do.

It is convenient to have standard values for the sub-tags and sub-tag labels of the group
monitors created by grouping functions, both primary and secondary. So KHE defines type

216 Chapter 9. Time-Structural Solvers

typedef enum {

KHE_SUBTAG SPLI T_EVENTS, /* "SplitEventsG oupMonitor" *]
KHE SUBTAG DI STRIBUTE SPLIT EVENTS, /* "DistributeSplitEventsG ouphnitor” */
KHE_SUBTAG_ASSI GN_TI ME, /* " AssignTi meG oupMoni tor" *]
KHE_SUBTAG PREFER TI MES, I'* "PreferTi msGouphbnitor" *|
KHE SUBTAG SPREAD EVENTS, I'* " SpreadEvent sG ouphbni tor" *|
KHE_SUBTAG LI NK_EVENTS, I* "LinkEvent sG ouphbni tor" *|
KHE_SUBTAG ORDER EVENTS, [* "OrderEvent sG ouphbni tor" *|
KHE_SUBTAG ASSI GN_ RESCOURCE, I'* " Assi gnResour ceG ouphbni tor" *|
KHE SUBTAG PREFER RESQURCES, I'* "PreferResourcesG ouphbnitor" *|
KHE SUBTAG AVO D SPLIT_ASSI GNVENTS, /* "Avoi dSpl it Assi gnment sG ouphonitor” */
KHE SUBTAG AVO D CLASHES, [* "Avoi dd ashesG oupMbni t or" *|
KHE SUBTAG AVO D UNAVAI LABLE TIMES, /* "Avoi dUnavail abl eTi mnesGr ouphonitor” */
KHE_SUBTAG LIM T_I DLE TI MES, [* "LimtldleTi mesG oupMonitor" *)
KHE SUBTAG CLUSTER BUSY_TI MES, [* "Cl usterBusyTi mesG ouphbni tor" *|
KHE_SUBTAG LI M T_BUSY_TI MES, [* "LimtBusyTi mesG oupMoni tor" *]
KHE_SUBTAG LI M T_WORKLOAD, [* "LimtWrkl oadG oupMoni t or" *]
KHE SUBTAG LIM T ACTIVE INTERVALS, /* "LimtActivelnterval sGouphnitor" */
KHE SUBTAG LI M T_RESQURCES, [* "LimtResourcesG ouphbnitor" *|
KHE_SUBTAG_ORDI NARY DEMAND, [* "Ordi naryDemandG ouphoni t or " *|
KHE_SUBTAG_WORKLOAD DEMAND, /[* "Workl oadDemandG oupMoni t or " *)
KHE_SUBTAG KEMPE DEMAND, I'* " KenpeDemandG ouphbni t or " *|
KHE SUBTAG NCDE Tl ME_REPAI R, /'* "NodeTi meRepai r G ouphoni tor" *|
KHE SUBTAG LAYER TI ME_REPAIR /* "Layer Ti meRepai r G ouphbni tor" *|
KHE_SUBTAG TASKI NG [* "Taski ngG ouphoni tor" *|
KHE_SUBTAG ALL_DEMAND /* " Al DemandG oupMoni t or " *]

} KHE_SUBTAG STANDARD TYPE;

for the sub-tags, and the strings in comments, obtainable by calling
char x*KheSubTaglLabel (KHE _SUBTAG STANDARD TYPE sub_tag);

for the corresponding sub-tag labels. There is also
KHE_SUBTAG_STANDARD TYPE KheSubTagFr onmrag(KHE_MONI TOR_TAG tag) ;

which returns the appropriate sub-tag for a group monitor whose children have the agven

Chapter 10. Time Solvers

A time solverassigns times to meets, or changes their assignments. This chapter presents a
specification of time solvers, and describes the time solvers packaged with KHE.

10.1. Specification

If time solvers share a specification, where possible, it is easy to replace one by another, pass one
as a parameter to another, and so on. This section recommends such a specification.

In hierarchical timetabling, ‘time assignment’ means the assignment of the meets of child
nodes to the meets of a parent node, so the recommended interface is

t ypedef bool (*KHE_NODE_TI ME_SOLVER) (KHE_NODE parent _node,
KHE_OPTI ONS options);

This typedef appears khe_sol vers. h. The intended meaning is that such@de time solver

should assign or reassign some or all of the meets of the proper descendaattsnof node:

it might assign the unassigned meets of the child nodegaoént _node, or reassign the

meets of proper descendantsaf ent _node, and so on. Itis free to reorganize the tree below

par ent _node, provided that every descendantpafr ent _node remains a descendant. It must

not change anything in or aboyar ent _node. In the tree belowar ent _node it may add,

delete, split,and merge meets. Some solvers (e.g. ejection chains) do actually do this, so the caller
must take care to avoid the error (very easily made, as the author can testify) of assuming that the
set of meets after a time solver is called is the same as beforeopThens parameter is as in
Section 8.2; by convention, options consulted by time solvers have names beginnihg with

A solver should returfir ue when it has changed the solution (usually for the better, but not
necessarily), and when it is not sure whether it did or not. It should rétlise when it did not
change the solution. The caller may use this information to evaluate the helpfulness of the solver,
or to decide whether to follow it with a repair step, and so on.

A second time solver type is definedkhe_sol vers. h:

t ypedef bool (*KHE_LAYER TIME_SOLVER) (KHE_LAYER | ayer,
KHE_OPTI ONS options);

Instead of assigning or reassigning meets in the proper descendants of some parenapede, a
time solverassigns or reassigns meets in the noddsapér and their descendants, like a node
time solver for the parent node béyer, but limited tol ayer. The solver is free to reorganize
the layer tree below the nodes lodyer (but not to alter the nodes dfyer), provided every
descendant of each nodelafyer remains a descendant of that node.

If all time solvers follow these rules, then meets that do not lie in nodes will never be visited
by them. The recommended convention is that meets should not lie in nodes if and only if they
already have assignments that should never be changed.

217

218 Chapter 10. Time Solvers

Time assignment solvers (and solvers generally) are free to use the back pointers of the
solution entities they target. However, since there is potential for conflict here when one solver
calls another, the following conventions are recommended.

If solverS does not use back pointers (if it never sets any), then this should be documented,
and solvers that cai may assume that back pointers will be unaffected by itS Ulises back
pointers (if it sets at least one), then this should be documented, and solvers tisamcesit
assume that back pointers in the solution objects target8aviynot be preserved. As a safety
measure, solvers should set the back pointers that they have ud¢d toefore returning.

10.2. Helper functions

The functions presented in this section assign and unassign meets, but are not complete time
solvers in themselves. Instead, they are helper functions that time solvers might find useful.

10.2.1. Node assignment functions

This section presents several functions which affect the assignments of the meets of one node.
These functions swap the assignments of the meets of two nodes:

bool KheNodeMeet SwapCheck(KHE _NODE nodel, KHE NODE node2);
bool KheNodeMeet Swap(KHE_NODE nodel, KHE NCDE node2);

Both nodel andnode2 must be noNULL. Both functions returrir ue if the nodes have the
same number of meets, and a sequenckhefieet Swap operations applied to corresponding
meets would succeedheNodeMeet SwapCheck just makes the check, whikheNodeMeet Swap
performs the meet swaps as well. nddel andnode2 are the identical same nodea)l se is
returned. As usual when swapping, the code fragment

i f(KheNodeMeet Swap(nodel, node2))
KheNodeMeet Swap(nodel, node2);

is guaranteed to change nothing, whether the first swap succeeds or not.
To maximize the chances of success it is naturally best to sort the meets before calling these
functions, probably like this:

KheNodeMeet Sort (nodel, &KheMeet Decreasi ngDurati onCp);
KheNodeMeet Sort (node2, &KheMeet Decr easi ngDur ati onCp) ;

This sorting has been omitted fromheNodeMeet SwapCheck and KheNodeMeet Swap for
efficiency, since each node’s meets need to be sorted only once, yet the node may be swapped
many times. The user is expected to sort the meets of every relevant node, perhaps like this:

for(i =0; i < KheSol nNodeCount(soln); i++)
KheNodeMeet Sort (KheSol nNode(sol n, i), &KheMeet Decreasi ngDurationCnp);

before any swapping begins. Some other functions, for exakhphedeRegul ar (Section 5.2),
also sort meets, so care is needed.

10.2. Helper functions 219

These functions propagate one node’s assignments to another:

bool KheNodeMeet Regul ar Assi gnCheck(KHE_NODE node, KHE NODE si bl ing_node);
bool KheNodeMeet Regul ar Assi gn(KHE_NODE node, KHE NODE si bl i ng_node);

KheNodeMeet Regul ar Assi gnCheck callsKheNodeMeet Regul ar (Section 5.2) to check that the
two nodes are regular, and if they are, it goes on to check that each nmedt img_node is
assigned, and that each meenofie is either already assigned to the same meet and offset that
the corresponding meet of bl i ng_node is assigned to, or else may be assigned to that meet
and offset.KheNodeMeet Regul ar Assi gn makes all these checks too, and then carries out the
assignments if the checks all pass.

To unassign all the meets oéde, call
voi d KheNodeMeet UnAssi gn(KHE_NODE node) ;

Even preassigned meets are unassigned, so some care is needed here.

10.2.2. Kempe and ejecting meet moves

The Kempe meet movs a well-known generalization of moves and swaps. It originates as a
move of one meet, say from tinbgto timet, (in reality, from one meet and offset to another meet
and offset). If thisinitial move creates clashes with other meets, then they are movedtodm

If that in turn creates clashes with other meets, then they are moved ftoty, and so on until

all clashes are removed. The result is usually a move or swap, but it can be more complex.

The Kempe meet move is not unlike an ejection chain algorithm. Instead of removing a
single defect at each step, it removes an arbitrary number, but it tries only one repair: moving to
t, on odd-numbered steps andfon even-numbered steps.

Suppose the original meat, has duratior,. Usually, the Kempe meet move only moves
meets of duratioul,, and only fromt, tot, (on odd-numbered steps) and fréso t, (on even-
numbered steps). However, whenis being moved to a different offset in the same target meet,
the Kempe meet move does not commit itself to this until it has examined the first meetygall it
which has to be moved on the second stepnjfvas immediately adjacent to, in time before
m, was moved on the first step, it is acceptablenfigto have a duratiod, which is different from
d,. Inthat case, all meets moved on odd-numbered steps must have ddratiod all meets
moved on even-numbered steps must have duratjoend each meet is moved to the opposite
end of the block of adjacent times thrafandm, were together assigned to originally.

Kempe meet moves need to know what clashes they have caused. Clashes occur between
preassigned tasks. So the first step is to search the meet being moved, and if necessary the meets
assigned to that meet (and so on recursively) for thegnesissigned taska task derived from
a preassigned event resource. If there are no preassigned tasks, there can be no clashes. In that
case, the Kempe meet move operation does exactly what an ordinary meet move would do.

If there is a first preassigned task, then clashes are possible and must be detected. This
is done via the matching, partly because it is the fastest way, and partly because it works at any
level of the layer tree, unlike avoid clashes monitors, which work only at the root. Accordingly,
the matching must be present, as withessed by the presence of a first demand monitor in the first
preassigned task of the meet to be moved. If thisdemand monitor is not present, a Kempe move

220 Chapter 10. Time Solvers

IS not possible, and the operation retufrakse.

Furthermore, preassigned demand monitors must be attached, and grouped (directly or
indirectly) under a group monitor with sub-t&ge_SUBTAG_KEMPE_DEMAND, by calling

KHE_GROUP_MONI TOR KheKenpeDemandGr ouphoni t or Make(KHE_SOLN sol n) ;

before making any Kempe meet moves. This is a secondary grouping, as defined in Section 9.8.
The group monitor’s children are the ordinary demand monitors of the preassigned taslks. of

No primary groupings are relevant here so primary group monitors never replace the ordinary
demand monitors. The operation will abort if it cannot find a group monitor with this sub-tag
among the parents of the first demand monitor of the first preassigned task.

Use of the matching raises the question of whether Kempe meet moves should try to remove
demand defects other thammple clashesclashes involving a resource which possesses a hard
avoid clashes constraint which is preassigned to two meets which are running at the same time.
The author’s view is that it should not. When there is a simple clash caused by one meet moving
to a time, the only possible resolution is for the other to move away. With demand defects in
general, there may be multi-way clashes which can be resolved by moving one of several meets
away, and that is not what the Kempe meet move is about.

Assuming that the grouping is done correctly, then, a call to

bool KheKenmpeMeet Move(KHE_MEET neet, KHE_MEET target_neet,
int offset, bool preserve regularity, int *demand, bool =basic,
KHE_KEMPE_STATS kenpe_stats);

will make a Kempe meet move. It is similarkbeMeet Move in moving the current assignment

of neet totarget _neet atof fset, but it requiresreet to be already assigned so that it knows
where to move clashing meets back to. It does not use back pointers or visit numbers. It sets
+demand to the total demand of the meets it moves, to give the caller some idea of the disruption
it caused, and it setdasi c tot r ue if it did not find any meets that needed to be moved back the
other way, so that what it did was just a basic meet move. Kehpe_st at s parameter is used

for collecting statistics about Kempe meet moves, as described below; it nhilylbi statistics

are not wanted. There is also

bool KheKenpeMeet MoveTi me(KHE MEET meet, KHE TIME t,
bool preserve regularity, int =demand, bool =basic,
KHE KEMPE_STATS kenpe_stats);

which movesreet to the cycle meet and offset representing time

If preserve_regul arity isfal se, these functions ignore zones. One way to take zones
into account is to cakkheMeet MovePr eser vesZones (Section 5.4) first. In theory this is inade-
guate when meets of different durations are moved, but the inadequacy will virtually never arise
in practice. The other way is to gateserve_regul arity totrue, and then the functions will
usekheNodel rregul ari ty (Section5.4) to measure the irregularity of the nodes affected, before
and after; the operation will fail if the total irregularity of the nodes affected has increased.

KheKenmpeMeet Move succeeds, returninig ue, if it movesneet tot ar get _nmeet atof f set,
possibly moving other meets as well, to ensure that the final state has no new simple clashes and
no new cases of a preassigned resource attending a meet at a time when it is unavailable. It fails,

10.2. Helper functions 221

returningf al se, in these cases:
e The matching is not present.

* Some callt&kheMeet Move, which is used to make the individual moves, retdrise. This
includes the case wherreet is already assigned tar get _neet atof f set , which, as pre-
viously documented, is defined to fail for the practical reason that the move accomplishes
nothing and pursuing it can only waste time.

* Moving some meet makes some preassigned resource busy when it is unavailable.

* A meet which needs to be moved is not currently assigned to the expected target meet
(either meet s original target meet otarget _neet, depending on whether the current
step is odd or even), or has the wrong duration or offset. This prevents the changes from
spreading beyond the expected area of the solution.

e preserve_regularity istrue butthe operation increases irregularity (discussed above).

« Some meet needs to be moved, but it has already moved during this operation, indicating
that the classical graph colouring reason for failure has occurred.

If KheKenpeMeet Move fails, it leaves the solution in the state it was in at the failure point. In prac-
tice, it must be enclosed iheMar kBegi n andKheMar kEnd (Section 4.7), so that undoing can
be used to clean up the mess. This could easily have been incorporatdttikdmpeMeet Move,
producing a version that left the solution unchanged if it failed. However, the caller will probably
want to enclose the operationkheMar kBegi n andKheMar kEnd anyway, since it may need to

be undone for other reasons, so cleanup is left to the caller.

The kenpe_st ats parameter is an object (the usual pointer to a private record) used to
record statistics about Kempe meet moves. If statistics are wanted, then to create and delete a
Kempe stats object, call

KHE KEMPE_STATS KheKenpeSt at sMake(HA ARENA a) ;
voi d KheKenpeSt at sDel et e(KHE_KEMPE_STATS kenpe_stats);

Actually the usual way to obtainkdE_KEMPE_STATS object is from the s_kenpe_st at s option,
via a call to

KHE_KEMPE_STATS KheKenpeSt at sOpt i on(KHE_OPTI ONS opti ons, char xkey);

with key"ts_kenpe_stat s". Thisreturnsthe Kempe stats object stored ukdg/first creating
it with KneKenpeSt at sMake and adding it to the options object if it is not present.

Each time a Kempe stats object is passed to a successful ¢dilkikenpeMeet Move or
KheKenpeMeet MoveTi ne, its statistics are updated. They can be retrieved at any time using the
following functions.

A stepof a Kempe meet move is a move of one meet. The statistics include a histogram
of the number of successful Kempe meet moves stitip_count steps, for eacht ep_count ,
retrievable by calling

222 Chapter 10. Time Solvers

i nt KheKenpeSt at sSt epHi st ovax(KHE_KEMPE_STATS kenpe_stats);

i nt KheKenpeSt at sSt epHi st oFr equency(KHE_KEMPE_STATS kenpe_st at s,
int step_count);

i nt KheKenpeSt at sSt epHi st oTot al (KHE_KEMPE_STATS kenpe_stats);

float KheKenpeSt at sSt epH st oAver age(KHE_KEMPE_STATS kenpe_stats);

These return the maximust ep_count for which there is at least one Kempe meet mové), or

if none; the number of Kempe meet moves wattep_count steps; the total number of steps
over all Kempe meet moves; and the average number of steps. This last is only safe to call if
KheKenpeSt at sSt epHi st oTotal > 0.

A phaseof a Kempe meet move is a move of one or more meets in one direction. For
example, a Kempe move that turns out to be an ordinary move has one phase; one that turns out
to move one meet in one direction, then two in the other, has two phases; and so on. The statistics
include a histogram of the number of successful Kempe meet moveghagh_count phases,
for eachphase_count , retrievable by calling

i nt KheKenpeSt at sPhaseH st oMax(KHE_KEMPE STATS kenpe_stats);

i nt KheKenpeSt at sPhaseH st oFr equency(KHE_KEMPE_STATS kenpe_stat s,
i nt phase_count);

i nt KheKenpeSt at sPhaseH st oTot al (KHE_KEMPE_STATS kenpe_stats);

fl oat KheKenpeSt at sPhaseHi st oAver age(KHE_KEMPE_STATS kenpe_stats);

These return the maximuphase_count for which there is at least one Kempe meet move, or

if none; the number of Kempe meet moves witlase_count phases;the total number of phases
over all Kempe meet moves; and the average number of phases. This last is only safe to call if
KheKenpeSt at sPhaseHi st oTotal > 0.

Functions

bool KheEj ecti ngMeet Move(KHE_MEET meet, KHE_MEET target _neet, int offset,
bool allow eject, bool preserve_regularity, int xdemand, bool +basic);
bool KheEj ecti ngMeet MoveTi me(KHE_MEET neet, KHE_TI ME t,
bool allow eject, bool preserve_regularity, int xdemand, bool xbasic);

offer a variant of the Kempe meet move called épecting meet moveThis begins by moving

meet totarget _neet atoffset, and then finds the meets that need to be moved back the other
way exactly as for Kempe meet moves (using the same group monitor), but instead of moving
them, it unassigns them and stops. This is whelow_ej ect is true; whenal | ow_ej ect

is fal se, if any meets need to be ejected, instead of doing that the function rdtaires.

KheEj ect i ngMeet Move does not requireeet to be assigned initially (the move may be an as-
signment), not does it carry out any checking of the durations and offsets of the meets it unas-
signs. All other details are as for Kempe meet moves. Similarly,

bool KheBasi cMeet Move(KHE_MEET neet, KHE MEET target neet,
int offset, bool preserve regularity, int *demand);

bool KheBasi cMeet MoveTi me(KHE_NMEET neet, KHE_TIME t,
bool preserve_regularity, int xdemand);

are variants in which even the unassignments are omitted. They are the sémbtasMove

10.2. Helper functions 223

and KheMeet MoveTi ne as far as changing the solution goes, differing from them only in
optionally preserving regularity, and in reporting demand. No group monitor is needed.

Finally, functions

bool KheTypedMeet Move(KHE MEET neet, KHE MEET target neet, int offset,
KHE MOVE_TYPE nt, bool preserve regularity, int =demand, bool =basic,
KHE _KEMPE_STATS kenpe_stats);

bool KheTypedMeet MoveTi me(KHE MEET neet, KHE TIME t,
KHE MOVE_TYPE nt, bool preserve regularity, int =demand, bool =basic,
KHE _KEMPE_STATS kenpe_stats);

allow the type of move (unchecked, checked, ejecting, or Kempe) to be selected on the fly, using
parametent , which has type

t ypedef enum {
KHE_MOVE_UNCHECKED,
KHE_MOVE_CHECKED,
KHE MOVE_EJECTI NG
KHE_MOVE_KEMPE,

} KHE_MOVE_TYPE;

Unchecked means basic, checked means ejecting wlife for al | ow_ej ect , ejecting means
ejecting witht r ue for al | ow_ej ect , and Kempe means Kempe. These functions switcit on
and call the appropriate variant. Tkenpe_st at s parameter is only passed to Kempe moves.

The rest of this section describgseKenpeMeet Move’s implementation. It is an important
operation, so its implementation must be robust, and must squeeze every drop of utility out of
the basic ideakheEj ect i ngMeet Move is just a cut-down version dtheKenpeMeet Move.

A frame (nothing to do with typeKHE_FRAME) is a set of adjacent positions in a target
meet, defined by the target meet, a start offset into the target meet, and a stop offset, which may
equal the duration of the target meet, but be no larger. The set of positions runs from the start
offset inclusive to the stop offset exclusive. A mées ina frame when it is assigned to that
frame’s target meet, and the set of positions it occupies in that target meet is a subset of the set
of positions defined by the frame.

The Kempe meet move operation defines four frames. On odd-numbered steps, including
the move of the original meet, every move is of a meet lying in a frame callamtithérom frame
to a frame called thedd-to frame Similarly, every meet move on even-numbered steps is from
theeven-from framéo theeven-to frame

The odd-from frame and the odd-to frame have the same duration, and the even-from frame
and the even-to frame have the same duration. When a meet is moved, its new target meet is the
target meet of the to frame of its step, and its offset in that target meet is defined by requiring
its offset in its to frame to equal its former offset in its from frame. This completely determines
where the meet is moved to, and ensures that the timetable of moved meets is replicated in the to
frame exactly as it was in the from frame.

The implementation will now be described, assuming that the four frames are given. How
they are defined will be described later.

224 Chapter 10. Time Solvers

First, if there are no preassigned tasks witteat or within meets assigned teet , directly
or indirectly, thenkheKenpeMeet Move callsKheMeet Move and returns its result. Otherwise, it
finds the group monitor it needs as described above and begins to trace it. It then carries out a
sequence of steps. As each step begins, there is a given set of meets to move, and the step tries
to move them. An empty set signals success.

On odd-numbered stepkheKenpeMeet Move moves the given set of meets from their
offsets in the odd-from frame to the same offsets in the odd-to frame. This will fail if any of
the meets do not lie entirely within the odd-from frame, and if any cadhtdveet Move returns
fal se. Even-numbered steps are the same, using the even-from frame and even-to frame.

The set of meets to move on the first step containsipest. At the end of each step, the set
of meets for the next step is found, as follows. The monitor trace is used to find the preassigned
demand monitors whose cost increased during the current step. For each of these monitors,
KheMbni t or Fi r st Conpet it or and KheMbni t or Next Conpetitor (Section 7.5.3) are used to
find the demand monitors competing with them for supply. These can be of four kinds:

1. A workload demand monitor derived from an avoid unavailable times monitor signals that
a preassigned resource has moved to an unavailable time, so fail.

2. Any other workload demand monitor signals a workload overload other than an unavailable
time, so ignore it. At a higher level, this defect might cause failure, but, as explained above,
the Kempe meet move itself only takes notice of simple clashes and unavailabilities.

3. A demand monitor derived from an unpreassigned task does not signal a simple clash, so
ignore it, on the same reasoning as the previous item.

4. A demand monitor derived from a preassigned task signals a simple clash. The appropriate
enclosing meet of the task (the one on the chain of assignments leading out of the task’s
meet just before the expected target meet) is found. If there is no such meet, or it was moved
on a previous step, fail. If it was moved on the current step, or is already scheduled to move
on the next step, ignore it. Otherwise schedule it to be moved on the next step.

A task is taken to be preassigned when a calieTaskl sPreassi gned (Section 4.6.3), with
as_i n_event _resour ce set tof al se, returng r ue.

It remains to explain how the four frames are defined.

Given the calkheKenpeMeet Move(eet, target_neet, offset, ...),thetarget meet
of the odd-from frame and the even-to fram&hsMeet Asst (eet) , and the target meet of the
even-from frame and the odd-to frame & get _neet . These may be equal, or not.

The odd frames have the same duration, and the even frames have the same duration.
Usually, all frames have the same duration, the odd-from frame and the even-to frame are equal,
and the even-from frame and the odd-to frame are equal. Thisseffeate case

odd-from frame odd-numbered steps > odd-to frame

even-numbered steps
even-to frame - even-from frame

But there is another possibility, theombined case Suppose the odd-from frame and the

10.2. Helper functions 225

even-from frame are adjacent in time (suppose they have the same target meet, and the start
offset of either equals the stop offset of the other). Call the union of their two sets of offsets the
combined blocklIn that case, the durations of the odd-from frame and the even-from frame may
differ. The odd-to frame occupies the opposite end of the combined block from the odd-from
frame, and the even-to frame occupies the opposite end from the even-from frame:

odd-from frame | even-from frame

even-to frame odd-to frame

combined block

Four diagrams could be drawn here, showing cases where the odd-from frame has shorter and
longer duration than the even-from frame, and where it appears to the left and right of the
even-from frame. But in all these cases, meets move between the frames in the same way.

To find these frames, first make the initial movereét tot ar get _neet atof fset. Thisis
an odd-numbered move, so it moves a meet from the odd-from frame to the odd-to frame. But it
is defined by the caller, so no frames are needed. If it fails, then fail. Otherwise, find the resulting
clashing meets. This may cause failure in various cases, as explained above; if successful, all
the clashing meets will currently be assigneddoget _neet at various offsets. If there are no
clashing meets, the initial move suffices, so return success. Otherwise jlatitielash frame
be the smallest frame enclosing the clashing meets. The even-from frame will be a superset of
this frame, to allow all the clashing meets to move legally on the second step.

Next, see whether the separate case applies, as follows. The initial meet must lie inside
the odd-to frame after it moves. Since the even-from frame must equal the odd-to frame in the
separate case, let the even-from frame be the initial clash frame, enlarged as little as possible to
include the initial meet after it moves. Then the odd-from frame is defined completely by the
requirements that its duration must equal the duration of the even-from frame, and that the offset
of the initial meet in the odd-from frame before it moves must equal its offset in the odd-to frame,
and so in the even-from frame, after it moves. Once the odd-from frame is defined in this way,
check that it does not protrude out either end of its target meet, nor overlap with the even-from
frame. If it passes this check, set the odd-to frame equal to the even-from frame, and set the
even-to frame equal to the odd-from frame. The separate case applies.

Otherwise, see whether the combined case applies, as follows. If the initial meet’s original
target meet is ndtar get _neet , or its original position overlaps the initial clash frame, then the
combined case does not apply, and so the entire operation fails. Otherwise, set the even-from
frame to the initial clash frame, and set the odd-from frame to the smallest frame which both
includes the initial meet’s original position and also abuts the even-from frame. This frame
must exist; no further checks are needed. Set the odd-to frame to occupy the opposite end of the
combined block from the the odd-from frame, and set the even-to frame to occupy the opposite
end of the combined block from the even-from frame. The combined case applies.

226 Chapter 10. Time Solvers

10.3. Meet bound groups and domain reduction

The functions described in this section do not assign meets. Instead, they reduce meet domains.

10.3.1. Meet bound groups

Meet domains are reduced by adding meet bound objects to meets (Section 4.5.4). Frequently,
meet bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of meet bounds—»but it is convenient to have a
standard for it, so KHE defines a tyggE_MEET_BOUND_GROUP with suitable operations.

To create a meet bound group, call
KHE_MEET BOUND _GROUP KheMeet BoundGr oupMake(KHE_SQOLN sol n);
To add a meet bound to a meet bound group, call

voi d KheMeet BoundG oupAddMeet Bound(KHE_MEET BOUND GROUP nhg,
KHE_MEET_BOUND nb) ;

To visit the meet bounds of a meet bound group, call

i nt KheMeet BoundG oupMeet BoundCount (KHE_MEET _BOUND_GROUP nbg) ;
KHE_MEET_BOUND KheMeet BoundGr oupMeet Bound(KHE_MEET_BOUND_GROUP nbg, int i);

To delete a meet bound group, including deleting all the meet bounds in it, call
bool KheMeet BoundGr oupDel et e(KHE_MEET _BOUND _GROUP mnhg) ;

This function returnsr ue when every call it makes t¢heMeet BoundDel et e returng r ue.

10.3.2. Exposing resource unavailability

If a meet contains a preassigned resource with some unavailable times, run times will be reduced
if those times are removed from the meet’s domain, since then futile time assignments will be
ruled out quickly. Thisidea is implemented by

voi d KheMeet AddUnavai | abl eBound(KHE_MEET meet, KHE COST min_wei ght,
KHE_MEET _BOUND_GROUP nhg) ;

This makes a meet bound based on the available times of the resources preassiegtednd
to meets with fixed assignmentsieet , directly or indirectly. It adds this bound teet , and to
mbg if mbg is nonNULL.

The meet bound is an occupancy bound whose default time group is the full cycle minus
KheAvoi dUnavai | abl eTi mesConst r ai nt Unavai | abl eTi nes(c) for each avoid unavailable
times constraint for the relevant resources whose combined weight is atdeastei ght . For
example, settingi n_wei ght to 0 includes all constraints; setting it kbeCost (1, 0) includes
hard constraints only. Each time group is adjusted for the offsetdh of the meet containing
the preassigned resource. If the resulting time group is the entire cycle, as it will be, for example,
whenneet ’s preassigned resources are always available, then no meet bound is made.

10.3. Meet bound groups and domain reduction 227

Thereis also

voi d KheSol nAddUnavai | abl eBounds(KHE_SOLN sol n, KHE_COST mi n_wei ght,
KHE_MEET BOUND GROUP nbg) ;

which callskheMeet AddUnavai | abl eBound for each non-cycle meet #ol n whose assignment
is not fixed, taking care to visit the meets in a safe order (parents before children).

10.3.3. Preventing cluster busy times and limit idle times defects

This section presents a function which reduces the cost of cluster busy times and limit idle times
monitors, by reducing heuristically the domains of the meets to which the monitors’resources are
preassigned, before time assignment begins. For example, suppose teacher Jones is limited by a
cluster busy times constraint to attend for at most three of the five days of the week. Choose any
three days and reduce the time domains of the meets that Jones is preassigned to to those three
days. Then those meets cannot cause a cluster busy times defect for Jones.

But first, we need to consider the alternatives. One is to do nothing special during the
initial time assignment, and repair any defects later. But there are likely to be many defects then,
casting doubt on the value of the initial assignment, since repairing cluster busy times defects is
time-consuming and difficult. Repairing limit idle times defects is easier, but it still takes time.

A second alternative is to take these monitors into account as part of the usual method of
constructing an initial assignment of times to meets. The usual method is to group the meets into
layers (sets of meets which must be disjoint in time, because they share preassigned resources)
and assign the layers in turn. Some monitors are handled during layer assignment, including
demand and spread events monitors. Cluster busy times monitors can be too, as follows.

Suppose there is a cluster busy times monitor for resaurequiring thatr be busy on at
most four of the five days of the cycle. Create a meet with duration equal to the number of times
in one day, whose domain is the set of first times on all days. Add a task preassigntbs
meet. Then, in the course of assignirglayer, this meet will be assigned a time, and if there
are no clashes, the other meets preassigneliibe limited to at most four days as required. At
the author’s university, this method is used to give most students two half-days off.

There are a few detailed problems: a whole-day meet may not be assignable to any cycle
meet, and the author’s best method of assigning the meets of one layer (Section 10.6) works best
when there are several meets of each duration, whereas here there may be only one whole-day
meet. These problems can be surmounted by reducing the domains of the other meets instead
of adding a new meet. But there are other problems—problems that may be called fundamental,
because they arise from handling clustering one layer at a time.

A resource idightly loadedwhen it is preassigned to meets whose total duration is much
less than the cycle’s duration. Cluster busy times monitors naturally apply to lightly loaded
resources, because heavily loaded ones don’t have the free time that makes clustering desirable.
In university problems, each layer is a set of meets preassigned just one resource: alightly loaded
student. The layers are fairly independent, being mutually constrained only by the capacities of
class sections. Under these conditions, handling clustering one layer at a time works well.

But now consider the situation, common in high schools, where each meet contains two
preassigned resources, one student group resource and one teacher resource. Suppose the student

228 Chapter 10. Time Solvers

group resources are heavily loaded, and the teacher resources are lightly loaded and subject
to cluster busy times constraints. It is best to timetable the meets one student group layer at a
time, because the student group resources are heavily loaded, but this leaves no place to handle
the teachers’ cluster busy times monitors. Even if the meets were assigned in teacher layers,
those layers are often not independent: electives, for example, have several simultaneous meets,
requiring several teachers to have common available times.

This brings us to the third alternative, the subject of this section. Before time assignment
begins, reduce the domains of meets subject to cluster busy times and limit idle times monitors
to guarantee that the monitors have low (or zero) cost, whatever times are assigned later. Use the
global tixel matching to avoid mistakes which would make meets unassignable. Function

voi d KheSol nd ust er AndLi ni t Meet Domai ns(KHE_SOLN sol n,
KHE COST min_cluster weight, KHE COST min_idle weight,
float slack, KHE MEET BOUND GROUP nbg, KHE OPTI ONS options);

does this. It adds meet bounds to meets, anthgof nmbg is nonNULL, based on cluster busy
times monitors with combined weight at leasth_cl ust er _wei ght, and on limit idle times
monitors with combined weight at leastn_i dl e_wei ght . M ni mumlimits are ignored. See
below for precisely which monitors are included .KieOpt i onsDi ver si fy(options) istrue,

the result is diversified by varying the order in which domain reductions for limit idle times
monitors are tried.

Carrying out all possible domain reductions is almost certainly too extreme; it gives other
solvers no room to move. Parameténck is offered to avoid this problem. For each resource
r, functionKheSol nCl ust er AndLi ni t Meet Domai ns keeps track ofp(r), the total duration of
the events preassignegdanda(r), the total duration of the times available to these events, given
the reductions made so far. Clearly, it is important for the function to erauye p(r), since
otherwise these events will not have room to be assigned. But, Istiadhe value ofl ack,
the function actually ensuregr) > s p(r), or rather, it does not apply any reduction that makes
this conditionf al se. The minimum acceptable value sifack is 1. 0, which is almost certainly
too small. A value arountl. 5 seems more reasonable.

The remainder of this section describes the issues involved in reducing domains, and how
KheSol nd ust er AndLi nmi t Meet Domai ns works in detail.

A set of resources may keme-equivalent sure to be busy at the same times. There
would be no change in cost if all the cluster busy times and limit idle times monitors of a set of
time-equivalent resources applied to just one of them: their costs depend only on when their
resource is busy. So although for simplicity the following discussion speaks of individual
resources, in fadkheSol nCl ust er AndLi ni t Meet Domai ns deals with sets of time-equivalent
resources, taken from théene_equi v option of itsopt i ons parameter. It obtains this by calling
KheTi neEqui vOpt i on (Section 9.2), which creates the option if it is not already present.

A cluster busy times monitor for a resouncés included when its combined weight is at
leastmi n_cl ust er _wei ght , its Maxi numlimit is less than its number of time groups, and each
time group is either disjoint from or equal to each time group of each previously included monitor
forr. Alimitidle times monitor for a resourgeof typert isincluded when its combined weight
is at leastmi n_i dl e_wei ght, rt satisfieskheResour ceTypeDemandl sAl | Preassi gned(rt),
its time groups are disjoint from each other, and each time group is either disjoint from or equal

10.3. Meet bound groups and domain reduction 229

to each time group of each previously included monitor for that resource. The time groups are
usually days, so the disjoint-or-equal requirement is usually no impediment.

An exclusion operationor just exclusion is the addition of an occupancy meet bound
(Section 4.5.4) to each meet preassigned a given resource, ensuring that those meets do not
overlap a given set of times. An exclusionsisccessfuif its calls toKheMeet AddMeet Bound
succeed and do not increase the number of unmatched demand tixels in the global tixel matching.
KheSol nC ust er AndLi mi t Meet Donmai ns keeps only successful exclusions; unsuccessful ones
are tried, then undone. It repeatedly tries exclusions until for each monitor, either a guarantee
of sufficiently low cost is obtained, or no further successful exclusions are available. Exclusions
based on cluster busy times monitors are tried first, since they are most important. After they
have all been tried, the algorithm switches to exclusions based on limit idle times monitors.

Build a graph with one vertex for each resource. For each resource, the aim is to exclude
some of its cluster busy times monitors’ time groups from its meets, enough to satisfy those
monitors’Maxi numlimits. Thinking of each time group as a colour, the aim is to assign a given
number of distinct colours from a given set to each vertex.

If some meet (or set of linked meets) has several preassigned resources, those resources
should exclude some of the same time groups, to leave others available. Linked meets with
preassigned teacheash, ¢, d, ande must not be excluded from Mondays ayfrom Tuesdays
by b, and so on. The global tixel matching test prevents this extreme example, but we also need
to avoid even approaching it. So when two resources share meets, this evidence that they should
have similar exclusions is recorded by connecting their verticegdmg#ive edgevhose cost is
the total duration of the meets they share.

Even when two resources share no meets, they may still influence each other’s exclusions,
when there is an intermediate resource which shares meets with both of them. Two teacherswho
teach the same student group are an example of this. If some time group is excluded by one of
the teachers, it would be better if it was not excluded by the other, since that again limits choice.
In this case the two resources’ vertices are joined me@ative edgevhose cost is the total
duration of the meets they share with the intermediate resource. If there are several intermediate
resources, the maximum of their costs is used.

Negative edges produce a soft graph colouring problem: a good result gives overlapping
sets of colours to vertices connected by positive edges, and disjoint sets of colours to vertices
connected by negative edges. This connection with graph colouring rules out finding an
optimum solution quickly, but it also suggests a simple heuristic which is likely to work well,
since it is based on the successful saturation degree heuristic for graph colouring.

A vertex isopenwhena(v) > s[p(Vv) (as explained above), and it has at least one untried ex-
clusion with at least one cluster busy times monitor which would benefit from that exclusion. If
there are no open vertices, the procedure ends. Otherwise an open vertex is chosen for colouring
whose total cost of edges (positive and negative) going to partly or completely coloured vertices
is maximum, with ties broken in favour of vertices of larger degree.

Once an open vertex is chosen, the cost of each of its untried colours is found, and the
untried colours are tried in order of increasing cost until one of them succeeds or all have been
tried. The cost of a colowris the total cost of outgoing negative edges to vertices contaming
minus the total cost of outgoing positive edges to vertices contaming

The numbers used by the heuristic are adjusted to take account of the idea that one vertex

230 Chapter 10. Time Solvers

requiring several colours is similar to several vertices, each requiring one colour, and connected
in a clique by strongly negative edges. In particular, being partly coloured increases a vertex’s
chance of being chosen for colouring, as does requiring more than one more colour.

Saturation degree heuristics are often initialized by finding and colouring a large clique, but
nothing of that kind is attempted here. A time group which is a subset of the unavailable times
of its resource should always be excluded. This is done, wherever applicable, at the start, after
which there may be several partly coloured vertices.

When handling limit idle times monitors, individual times are excluded instead of entire
time groups. The time groups of limit idle times monitors are compact, and the excluded times
lie at the start or end of one of these time groups. Exclusions which remove a last unexcluded
time are tried first, followed by exclusions which remove a first unexcluded time.

Whether an idle exclusion is needed depends on the following calculation. As above, let
thepreassigned duration(p) of a vertexv be the total duration of the meets tiwsresource is
preassignedto. Let ttavailability a(v) of vertexv be the number of times that these same meets
may occupy. Initially this is the number of times in the cycle, but as time groups are excluded
during the cluster busy times phase it shrinks, and then as individual times are excluded during
the limit idle times monitor phase it shrinks further.

As explained above, when an exclusion would caa(sg= s [p(Vv) to becomd al se, it is
prevented. Assuming this obstacle is not present, consider limit idle times monitdhin v.
A worst-case estimate of its number of deviatidiis)) can be found as follows.

Leta(m), theavailability of m, be the total number of unexcluded timesis time groups.
Since time groups are disjoirg(m) < a(v). The worst case fom occurs when as many meets
as possible are assigned times outside its time groups, leaving many unassigned and potentially
idle times inside. The maximum duration of meets that can be assigned autstdae groups
isa(v) —a(m), leaving a minimum duration of

MD(m) = max(0,p(v) - (a(v) - a(m)))

to be assigned withim's time groups. This assignment leaw&m) — MD(m) of m's available
places unfilled. A little algebra shows that this difference is non-negative, giv@z p(v).

LetM(m) bem's Maxi numattribute. The worst-case deviatid(m) is the amount by which
the number of unfilled places exceedém), that is,

d(m) = max0,a(m) — MD(m) — M(m))

If d(m) is positive, an exclusion which reducasn) further may be tried, and multiplyind(m)
by w(m), the combined weight af's constraint, gives a priority for trying such an exclusion.

Limit idle times monitors are tried in decreasig@gn)w(m) order, updated dynamically, and
modified by propagating exclusions across positive edges. Negative edges are not used.

10.4. Some basic time solvers

This section presents some basic time solvers. The simplest are

10.4. Some basic time solvers 231

bool KheNodeSi npl eAssi gnTi nes(KHE_NCDE par ent _node, KHE OPTI ONS opti ons);
bool KhelLayer Si npl eAssi gnTi mes(KHE_LAYER | ayer, KHE OPTI ONS options);

They assign those meets of the child nodegaofent _node (or of the nodes of ayer) that are

not already assigned. For each such meet, in decreasing duration order, they try all offsets in all
meets of the parent node. KfieMeet Assi gnCheck permits at least one of these, the bestis made,
measuring badness by callifgeSol nCost ; otherwise the meet remains unassigned, and the
result returned will béal se. These functions do not use options or back pointers.

There is one wrinkle. When assigning a meet which is derived from an eyehéese
functions will not assign the meet to a meet which is already the target of an assignment of some
other meet derived from. This is because if two meets from the same event are assigned to the
same meet, they are locked into being adjacent, or almost adjacent, in time, undermining the only
possible motive for splitting them apart.

These functions are not intended for serious timetabling. They are useful for simple
tasks: assigning nodes whose children are known to be trivially assignable, finding minimum
runaround durations (Section 9.4.1), and so on.

The logical order to assign times to the nodes of a layer tree is postorder (from the bottom
up), since until a node’s children are assigned to it, its resource demands are not clear. Function

bool KheNodeRecur si veAssi gnTi mes(KHE_NCDE par ent _node,
KHE_NCDE_TI ME_SOLVER sol ver, KHE_OPTI ONS options);

appliessol ver to all the nodes in the subtree rootedpat ent _node, in postorder. It returns
t rue when every call it makes vl ver returng rue. It uses options and back pointers if and
only if sol ver uses them. For example,

KheNodeRecur si veAssi gnTi nes(par ent _node, &KheNodeSi npl eAssi gnTi mes, NULL);
carries out a simple assignment at each node, and

KheNodeRecur si veAssi gnTi nes(par ent _node, &KheNodeUnAssi gnTi nes, NULL);
unassigns all meets in all proper descendanpsoént _node.

Functions

bool KheNodeUnAssi gnTi mes(KHE_NODE parent _node, KHE OPTI ONS options);
bool KhelLayer UnAssi gnTi mes(KHE_LAYER | ayer, KHE OPTI ONS options);

unassign any assigned meetpafent _node’s child nodes (or of ayer 's nodes). They do not
use options or back pointers. Also,

bool KheNodeAl | Chi | dMeet sAssi gned(KHE_NODE par ent _node) ;
bool KhelLayer Al | Chi | dMeet sAssi gned(KHE_LAYER | ayer);

returnt r ue when the meets of the child nodespair ent _node (or of | ayer) are all assigned.

Preassigned meets could be assigned separately first, then left out of nodes so that they
are not visited by time assignment algorithms. The problem with this is that a few times may be
preassigned to obtain various effects, such as Mathematics first in the day, and this should not
affect the way that forms are coordinated. Accordingly, the author favours handling preassigned

232 Chapter 10. Time Solvers

meets along with other meets, as far as possible.

However, when coordination is complete and real time assignment begins, it seems best
to assign preassigned meets first, for two reasons. First, preassignments are special because
they have effectively infinite weight. There is no point in searching for alternatives. Second,
preassignments cannot be handled by algorithms that are guided by total cost, because they have
no assign time constraints, so there is no reduction in cost when they are assigned. Functions

bool KheNodePr eassi gnedAssi gnTi nes(KHE_NODE r oot _node,
KHE_OPTI ONS options);

bool KhelLayer Preassi gnedAssi gnTi nes(KHE_LAYER | ayer,
KHE_OPTI ONS options);

search the child nodes obot _node, which must be the overall root node, or the noddsagkr ,

whose parent must be the overall root node, for unassigned meets whose time domains contain
exactly one elemenkheMeet Assi gnTi ne is called on each such meet to attempt to assign that
one time to the meet, and the resultisie when all of these calls retutmue. These functions

do not use options or back pointers.

KHE's solvers assume that it is always a good thing to assign a time to a meet. However,
occasionally there are cases where cost can be reduced by unassigning a meet, because the cost
of the resulting assign time defect is less than the total cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSol nTryMeet UnAssi gnment s(KHE_SCLN sol n) ;

for use at the end. It tries unassigning each meesbbh in turn. If any unassignment reduces
the cost ofsol n, it is not reassigned. The resultisue if any unassignments were kept.

10.5. Atime solver for runarounds
Time solver

bool KheRunar oundNodeAssi gnTi mes(KHE_NCDE par ent _node,
KHE_OPTI ONS opti ons);

assigns times to the unassigned meets of the child nodes eft _node, using an algorithm
specialized for runarounds. It tries to spread similar nodes out thrgargint _node as much

as possible. By definition, some resources are scarce in runaround nodes, so it is good to spread
demands for similar resources as widely as possible. It works well on symmetrical runarounds,
but it can fail in more complex cases. If that happens, it undoes its work and makes a call to
KheNodeLayer edAssi gnTi mes(par ent _node, fal se) from Section 10.8.2. Thisis not a very
appropriate alternative, but any assignment is better than none.

KheRunar oundNodeAssi gnTi mes begins by finding the child layers par ent _node using
KheNodeChi | dLayer sMake (Section 9.3.1), and placing similar nodes at corresponding indexes
in the layers, usingtheLayer Si mi | ar (Section 5.3). It then assigns the unassigned meets of
these nodes. lIts first priority is to not increase solution cost; its second is to avoid assigning two
child meets to the same parent meet (this would prevent them from spreading out in time); and
its third is to prevent corresponding meets in different layers from overlapping in time.

10.5. Atime solver for runarounds 233

The algorithm is based on a procedure (let's cafiatve) which accepts a set of child
layers, each accompanied by a set of triples of the form

(parent _meet, offset, duration)

meaning thapar ent _neet is open to assignment by a child meet of the layer, at the given offset
and duration. The task &bl ve is to assign all the unassigned meets of the nodes of its layers.

The initial call toSol ve is passed all the child layers. Each layer’s triples usually contain
one triple for each parent meet, with offset 0 and the duration of the parent meet for duration,
indicating that the parent meets are completely open for assignment. If any meets are assigned
already, the triples are modified accordingly to record the smaller amount of open space.

Sol ve begins by finding the maximum duratian], of an unassigned meet in any of its
layers. It assigns all meets with this duration in all layers itself, and then makes recursive calls to
assign the meets of smaller duration. For each layer, it takes the meets of dudtatidime order
they appear in the layer and its nodes. It assigns these meets to consecutive suitable positions
through the layer, shifting the starting point of the search for suitable positions by one place in
the parent layer as it begins each layer. It never makes an assignment which increases the cost
of the solution, and it makes an assignment which causes two child meets to be assigned to the
same parent meet only as a last resort. If some meet fails to assign, the whole algorithm fails and
the problem is passed onkbeNodeChi | dLayer sAssi gnTi nes as described above.

As meets are assigned, the offsets and durations of the triples change to reflect the fact that
the parent meets are more occupied. After all assignments of meets of durkdiecomplete,
the layers are sorted to bring layers with equal triples together. Each set of layers with equal
triples is then passed to a recursive calbtbve, which assigns its meets of smaller duration.

The purpose of handling sets of layers with equal triples together in this way can be seenin
an example. Suppose the parent node has two doubles and each child node has one double. Then
there are two ways to assign the child’s double; half the child layers will get one of these ways,
the other half will get the other way. The layers in each half have identical assignments so far,
undesirably but inevitably. By bringing them together we maximize the chance that the recursive
call which assigns the singles will find a way to vary the remaining assignments.

10.6. Extended layer matching with EIm

A good way to assign times to meets is to group the meets into nodes, group the nodes into layers,
and assign times to the meets layer by layer. The advantage of doing it this way is that the meets
of one layer strongly constrain each other, because they share preassigned resources so must be
disjoint in time. Assigning times to the meets of one layer, then, is a key step.

Any initial assignment of times to the meets of one layer will probably require repair. But
repair is time-consuming, and it will help if the initial assignment has few defects—as a first
priority, few demand defects, but also few defects of other kinds. The method presented in this
section, calleéxtended layer matchingr EImfor short, is the author’s best method of finding
an initial assignment of times to the meets of one layer.

If all meets have duration 1 and minimizing ordinary demand defects is the sole aim, the
problem can be solved efficiently using weighted bipartite matching. Make each meet a node
and each time a node, and connect each meet to each time it may be assigned, by an edge whose

234 Chapter 10. Time Solvers

cost is the number of demand defects that assignment causes. Among all matchings with the
maximum number of edges, choose one of minimum cost and make the indicated assignments.

Elm is based on this kind of weighted bipartite matching, calégeér matchingby the
author, making it good at minimizing demand defects. éxendedvith ideas that heuristically
reduce other defects. Layer matching was caitegta-matchingn the author’s early work,
because it operates above another matching, the global tixel matching.

Elm can be used without understanding it in detail, by calling

bool KheEl nLayer Assi gn(KHE_LAYER | ayer,
KHE SPREAD EVENTS CONSTRAI NT sec, KHE OPTI ONS options);

KheEl nLayer Assi gn finds an initial assignment of the meets of the child nodésgér to the

meets of the parent node byer , leaving any existing assignments unchanged, and returning
true if every meet of ayer isassigned afterwards. It works well with the reduced meet domains
installed by solvers such asheSol nC ust er AndLi m t Meet Domei ns (Section 10.3.3) for
minimizing cluster busy times and limit idle times defects. It tries to minimize demand defects,
and ifl ayer's parent node has zones, it also tries to make its assignments meet and node regular
with those zones, which should help to minimize spread events defects.dlfvtbresi f y option

of options (Section 8.2) ig r ue, it consults the solution’s diversifier, and its results may vary
with the diversifier. It does not repair its assignment, leaving that to other functions.

Parametesec is optional (may b&ULL); a simple choice for it would be any spread events
constraint whose number of points of application is maximakelf is present, the algorithm
tries to assign the same number of meets to easkd$ time groups. To see why, consider an
example of the opposite. Suppose the events are to spread through the days, and the Wednesday
times are assigned eight singles, while the Friday times are assigned four doubles. It’s likely
that some events will end up meeting twice on Wednesdays and not at all on FridaysecThe
parameter acts only with low priority. It is mainly useful on the first layer, when there are no
zones and the segmentation is more or less arbitrary.

10.6.1. Introducing layer matching

This section introduces layer matching. Later sections describe the implementation. Suppose
some layer has three meets of duration 2 and two meets of duration 1, like this:

I O N N e

Thesechild meetdhave to be assigned to non-overlapping offsets in the meets of the parent node
(theparent meeds Suppose there are three parent meets of duration 2 and three of duration 1:

T OO O

and suppose (for the moment) that assignments are only possible between meets of the same
duration. Then a bipartite graph can represent all the possibilities:

10.6. Extended layer matching with EIm 235

The child meets (the bottom row) are the demand nodes, and the parent meets (the top row) are the
supply nodes. Each edge representsone potential assignment of one child meet. Not alledgesare
present. some are missing because of unequal durations, others because of preassignments and
other domain restrictions. For example, the last child meet above appears to be preassigned.

When one of the potential assignments is made, there is a change in solution cost. Each
edge may be labelled by this change in cost. Suppose that a matching of maximum size (number
of edges) is found whose cost (total cost of selected edges) is minimum. There is a reasonably
efficient algorithm for doing this. This matching is tleer matchingit defines a legal assign-
ment for some (usually all) child meets, and its cost is a lower bound on the change in solution
cost when these meets are assigned to parent meets without any overlapping, as is required since
the child meets share a layer and thus presumably share preassigned resources.

The lower bound is only exact if each assignment changes the solution cost independently
of the others. This is true for many kinds of monitors, but not all, and it is one reason why the
lower bound produced by the matching is not exact. In fact, costs contributed by limit idle
times, cluster busy times, and limit busy times monitors only confuse layer matching. So for
each resource of the layer, any attached monitors of these kinds are detached at the beginning of
KheEl nLayer Assi gn and re-attached at the end.

Parent meets usually have larger durations than child meets, allowing choices in packing
the children into the parents. The parent node typically represents the week, so it might have,
say, 10 meets each of duration 4 (representing 5 mornings and 5 afternoons), whereas the child
meets typically represent individual lessons, so they might have durations 1 areegm&nof
parent meetar get _neet isatriple

(target _meet, offset, durn)

such that it is legal to assign a child meet of durationn to target _neet atoffset. A
segmentationf the parent meets is a set of non-overlapping segments that covers all offsets of
all parent meets. It is the segments of a segmentation, not the parent meets themselves, that are
used as supply nodes. There may be many segmentations, but the layer matching uses only one.
This is the other reason why the lower bound is not exact.

A layer matching graphs a bipartite graph with one demand node for each meet of a
given layer, and one supply node for each segment of some segmentation of the meets of the
layer’s parent node. For each unassigned child meet, there is one edge to each parent
segment whose duration equals the duratiomeet and to whichreet is assignable according
to KheMeet Assi gnCheck. The cost of the edge is the cost of the solution when the assignment
is made, found by making the assignment, calknesSol nCost , then unassigning again. (Using
the solution cost rather than the change in cost ensures that edge costs are always non-negative,
asrequired behind the scenes.) For each assigned childree¢ea parent segment witteet ’s
target meet, offset, and duration is the only possible supply node that the meet can be connected
to; if present, the edge cost is 0.

236 Chapter 10. Time Solvers

A layer matchings a set of edges from the graph such that no node is an endpoint of two
or more of the selected edges.b&st matchings a layer matching of minimuroost(sum of
edge costs) among all matchings of maximsize(number of edges).

The layer giving rise to the demand nodes consists of nodes, each of which typically
contains a set of meets for one course. This set of meets will typically want to be spread through
the cycle, not bunched together. Each meet generates a demand node, and a set of demand nodes
whose meets are related in this way is callettenand node group

There is also a natural grouping of supply nodes, with sapiply node grouponsisting of
those supply nodes which originated from the same parent meet. Thus, the supply nodes of one
group are adjacent in time.

It would be good to enforce the following rule: two demand nodes from the same demand
node group may not match with two supply nodes from the same supply node group (because
if they did, all chance of spreading out the demand nodes in time would be lost). There is no
hope of guaranteeing this rule, because there are cases where it must be violated, and because
minimizing cost while guaranteeing it appears to be an NP-complete problem. However, EIm
encouragesit. When finding a minimum-cost matching, it adds an artificial increment to the cost
of each augmenting path that would violate it, thus making those paths relatively uncompetitive
and unlikely to be applied. The approach is purely heuristic, but it usually works well.

The overall structure of the layer matching graph is now clear. There are demand nodes,
each representing one meet of the layer, grouped into demand node groups representing courses.
There are supply nodes, each representing one segment of one meet of the parent node, grouped
into supply node groups representing the meets of the parent node. Edges between supply
nodes and demand nodes are not defined explicitly; they are determined by the durations and
assignability of the meets and segments.

10.6.2. The core module

This section describes tlw®re modulewhich implements the layer matching graph, including
maintaining a best matching. Elm also hatper moduleglescribed infollowing sections. They
have no behind-the-scenes access to the graph; they use only the operations described here.

The core module follows the previous description closely, except that it uses ‘demand’ for
‘demand node’, ‘demand group’ for ‘demand node group’, and so on—for brevity, and so that
‘node’ always means an object of tyjdeE_NODE. This Guide will do this too from now on.

Elm’s types and functions (apart frakheEl nLayer Assi gn) are declared in a header file of
their own, calleckhe_el m h. So to access the functions described from here on,

#incl ude "khe_sol vers. h"
#include "khe_el mh"

must be placed at the start of the source file.

We begin with the operations on tygeE_ELM representing one elm. An elm for a given
layer is created by

KHE_ELM KheEl mvake(KHE_LAYER | ayer, KHE_OPTI ONS options, HA ARENA a):

and deleted by deleting or recyclilag If the di versi fy option of opti ons istrue, then the

10.6. Extended layer matching with EIm 237

layer’s solution’s diversifier is used to diversify the elm. Inaddition to the elm itdedl nmvake

creates one demand group for each child nodeagér , containing one demand for each meet

of the child node. It also creates one supply group for each meet of the layer’s parent node,
containing one supply representing the entire meet. The sets of meets in the parent and child
nodes should not change during the elm’s lifetime, although the state of one meet (its assignment,
domain, etc.) may change.

The layer and options may be accessed by

KHE_LAYER KheEl nLayer (KHE_ELM el m) ;
KHE_OPTI ONS KheEl nOpt i ons(KHE_ELM el m);

To access the demand groups, call

i nt KheEl nDemandG oupCount (KHE_ELM el m);
KHE_ELM DEMAND GROUP KheEl mDemandG oup(KHE_ELM el m int i);

in the usual way. To access the supply groups, call

i nt KheEl nSuppl y& oupCount (KHE_ELM el) ;
KHE_ELM SUPPLY_GROUP KheEl nSuppl yG oup(KHE_ELM el m int i);

An elm also holds a best matching as defined above. The functions related to it are

i nt KheEl nBest Unnat ched(KHE_ELM el m);
KHE_COST KheEl nBest Cost (KHE_ELM el m);
bool KheEl nBest Assi gnMeet s(KHE_ELM el m) ;

KheEl nBest Unmat ched returns the number of unmatched demands in the best matching.
KheEl nBest Cost returns its cost—not a solution cost, but a sum of edge costs, each of which is
a solution costkheEl mDemandBest Suppl y, defined below, reports which supply a given demand

is matched with. To assign the unassigned mee¢s$ @t layer according to the best matching,
callkheEl nBest Assi gnMeet s; it returng r ue if every meetis assigned afterwards. Elm updates
the best matching only when one of these four functions is called, for efficiency.

Elm has a ‘special node’which is begun and ended by calling

voi d KheEl nSpeci al ModeBegi n(KHE_ELM el m) ;
voi d KheEl mSpeci al ModeEnd(KHE_ELM el m) ;

While the special mode is in effect, EIm assumes that edges can change their presence in the layer
matching graph but not their cost. So when updating edges in special mode, Elm only needs to
find whether each edge is present or not, which is much faster than finding costs as well.

To support splitting supplies so that their numbers in each time group of a spread events
constraint are approximately equal, these functions are offered:

voi d KheEl mnevennessTi neG oupAdd(KHE ELM elm KHE_TI ME_GROUP tg);
i nt KheEl mnevenness(KHE ELM el) ;

KheEl nnevennessTi meG oupAdd instructsel mto keep track of the number of supplies whose
starting times lie withirt g. KheEl mnevenness returns the sum over all these time groups of

238 Chapter 10. Time Solvers

a quantity related to the square of this number. For a given set of supplies, this will be smaller
when they are distributed evenly among the time groups than when they are not.

Function

voi d KheEl mDebug(KHE_ELM el m int verbosity, int indent, FILE «fp);

produces a debug print afl m onto f p with the given verbosity and indent. Demands are
represented by their meets, and supplies are represented by their meets, offsets, and durations. If
verbosity >= 2, the print includes the best matching. Function

voi d KheEl nDebugSegnent ati on(KHE_ELM el m int verbosity,
int indent, FILE *fp);
is similar except that it concentrates@mis segmentation.
Demand groups have typé&E_ELM DEMAND_GROUP. To access their attributes, call
KHE_ELM KheEl nDemandG oupEl m{ KHE_ELM DEMAND GROUP dg)
KHE_NODE KheEl nDemandG oupNode(KHE_ELM DEMAND GROUP dg) ;

i nt KheEl nDemandG oupDemandCount (KHE_ELM DEMAND GROUP dg) ;
KHE_ELM DEMAND KheEl nDenandGr oupDemand(KHE_ELM DEMAND GROUP dg, int i);

These returnilg’s enclosing elm, the child node of the original layer that gave risigtalg’s
number of demands, and itth demand.

EIm maintains edges between demands and supplies automatically. But if a demand’s meet
changes in some way (for example, if its domain changes), EIm has no way of knowing that this
has occurred. When the meets of the demands of a demand group change, the user must call

voi d KheEl mDemandG oupHasChanged(KHE_ELM DEMAND GROUP dg);

to inform EIm that the edges touching the demanddgainust be remade before being used.

A demand group may contain any number of zones. If there are none, then zones have
no effect. If there is at least one zone, then the demand group’s demands may match only with
supplies that begin in one of its zones. The value. counts as a zone. Functions

voi d KheEl mDenandG oupAddZone(KHE_ELM DEMAND_GROUP dg, KHE_ZONE zone);
voi d KheEl nDemandG oupDel et eZone(KHE_ELM DEMAND GROUP dg, KHE_ZONE zone);

add and delete a zone frotg, including callingkheEl nDemandG oupHasChanged. The value
of zone may beNULL. To check whethettg contains a given zone, call

bool KheEl mDemandG oupCont ai nsZone(KHE_ELM DEMAND_GROUP dg, KHE_ZONE zone);
To visit the zones of a demand group, call

i nt KheEl nDemandG oupZoneCount (KHE_ELM DEMAND_GRCOUP dg) ;
KHE_ZONE KheEl mDemandG oupZone(KHE_ELM DEMAND GROUP dg, int i);

Function

10.6. Extended layer matching with EIm 239

voi d KheEl mDemandG oupDebug(KHE_ELM DEMAND GROUP dg,
int verbosity, int indent, FILE *fp);

sends a debug print dfy with the given verbosity and indent tp.

Demands have typéHE_ELM DEMAND. To access their attributes, call

KHE_ELM DEMAND GROUP KheEl mDemandDemandGr oup(KHE_ELM DEMAND d) :

KHE_NMEET KheEl nDemandMeet (KHE_ELM DEMAND d) ;
These return the enclosing demand group, and the meet that gave rise to the demand.

As explained above, when a demand’s meet changes in some way that affects the demand’s
edges, EIm must be informed. For a single demand, this is done by calling

voi d KheEl mDemandHasChanged(KHE_ELM DEMAND d) ;

Thisis called bykheEl nDemandG oupHasChanged for each demand in its demand group. To find
out which supplyd is matched with in the best matching, call

bool KheEl mDemandBest Suppl y(KHE_ELM DEMAND d,
KHE_ELM SUPPLY *s, KHE_COST *cost):

If d is matched with a supply in the best matchikiggEl mDemandBest Suppl y setss to that
supply and-cost to the cost of the edge, and retutmsie; otherwise it returnsal se. And

voi d KheEl mDemandDebug(KHE ELM DEMAND d, int verbosity,
int indent, FILE *fp);

sends a debug print afwith the given verbosity and indent tp.
Supply groups have typ¢HE_ELM SUPPLY_GROUP. To access their attributes, call
KHE_ELM KheEl nSuppl yG oupEl m{ KHE_ELM SUPPLY_GROUP sg);
KHE_MEET KheEl nSuppl yG oupMeet (KHE_ELM SUPPLY_GROUP sg);

i nt KheEl nSuppl y&G oupSuppl yCount (KHE_ELM SUPPLY_GROUP sg);
KHE_ELM SUPPLY KheEl nSuppl yG oupSuppl y(KHE_ELM SUPPLY_GROUP sg, int i);

These returng’s enclosing elm, the meet of the layer’s parent node that gave rise to it, its number
of supplies (segments), andith supply. And

voi d KheEl nSuppl yG oupDebug(KHE_ELM SUPPLY_GRCUP sg,
int verbosity, int indent, FILE *fp);
sends a debug print ey with the given verbosity and indent to.
Supplies have typeHE_ELM SUPPLY. To access their attributes, call
KHE_ELM SUPPLY_GROUP KheEl nSuppl ySuppl yG oup(KHE_ELM SUPPLY s);
KHE_MEET KheEl nSuppl yMeet (KHE_ELM SUPPLY s):

i nt KheEl nSuppl yO f set (KHE_ELM SUPPLY s);
i nt KheEl nSuppl yDur ati on(KHE_ELM SUPPLY s);

KheEl nBuppl ySuppl yG oup is the enclosing supply grouiheEl nSuppl yMeet is the enclosing

240 Chapter 10. Time Solvers

supply group’s meet, aniheEl nSuppl yOf f set andKheEl nSuppl yDur at i on return an offset
and duration within that meet, defining one segment.

To facilitate calculations with zones, each supply maintains the set of distinct zones that its
offsets lie in. These may be accessed by calling

i nt KheEl nSuppl yZoneCount (KHE_ELM SUPPLY s);
KHE_ZONE KheEl nBuppl yZone(KHE_ELM SUPPLY s, int i);

A NULL zone counts as a zone,deeEl nSuppl yZoneCount is always at least 1.
To facilitate the handling of preassigned and previously assigned demands, Elm offers

voi d KheEl nSuppl ySet Fi xedDenmand(KHE_ELM SUPPLY s, KHE_ELM DEVAND d);
KHE_ELM DEMAND KheEl nSuppl yFi xedDenmand(KHE_ELM SUPPLY s);

KheEl nSuppl ySet Fi xedDemand informsel mthatd is the only demand suitable for matching
with s, or if d is NULL (the default), that there is no restriction of that kind.dIf = NULL, d’s
duration must equal the duration ef A call to KheEl nDemandHasChanged(d) is included.
KheEl nBuppl yFi xedDenmand returnss’s current fixed demand, possib¥LL.

To facilitate the handling of irregular monitors, a supply can be temporarily removed from
the graph (so that it does not match any demand) and subsequently restored:

voi d KheEl nSuppl yRemove(KHE_ELM SUPPLY s);
voi d KheEl nSuppl yUnRenove(KHE_ELM SUPPLY s);

KheEl nBuppl yRenmove aborts if s has a fixed demand. A removed supply merely becomes
unmatchabled, it does not get deleted from node lists and so on. Function

bool KheEl nSuppl yl sRemoved(KHE_ELM SUPPLY s);

reports whethes is currently removed.

WhenkKheEl mvake returns, there is one demand group for each child node, one demand for
each child meet, one supply group for each parent meet, and one supply for each supply group,
with offset 0 and duration equal to the duration of the meet. All thisis fixed except that supplies
may be split and merged by calling

bool KheEl nBuppl ySpl it Check(KHE_ELM SUPPLY s, int offset, int durn,
int *count);

bool KheEl nBuppl ySplit(KHE ELM SUPPLY s, int offset, int durn,
int *xcount, KHE_ELM SUPPLY x|s, KHE_ELM SUPPLY xrs);

voi d KheEl nSuppl yMer ge(KHE_ELM SUPPLY |'s, KHE ELM SUPPLY s,
KHE_ELM SUPPLY rs);

KheEl nBuppl ySpl i t Check returnst rue whens may be split so that one of the fragments has
the given offset and duration. If so, it setunt to the total number of fragments that would

be produced, either 1, 2, or BheEl nSuppl ySpl i t is the same except that it actually performs
the split when possible, leavirsgwith the given offset and duration. Splitting is possible when

10.6. Extended layer matching with EIm 241

KheEl nSuppl yFi xedDemand(s) == NULL &&
KheEl nSuppl yOf fset (s) <= of fset &&
of fset + durn <= KheEl nSuppl yO fset(s) + KheEl nSuppl yDurati on(s)

This says thas is not fixed to some demand, and tlo&t set anddur n define a set of offsets
lying within the set of offsets currently covered Hy Otherwise it returngal se.

If KheEl mSuppl yOf fset (s) < of fset, then a supply! s is split off s at left, holding
the offsets fromkheEl nSuppl yOf f set (s) inclusive toof f set exclusive; otherwisel s is
set toNULL. If of fset + durn < KheEl nBuppl yO fset (s) + KheEl nBuppl yDuration(s),
then a supplyrs is split off s at right, holding the offsets frorof f set + durn inclusive to
KheEl mSuppl yOf f set (s) + KheEl nSuppl yDuration(s) exclusive; otherwisers is set to
NULL. The originak is left with offsets fromof f set inclusive toof f set + durn exclusive.

KheEl nSuppl yMer ge undoes the correspondilbeEl nSuppl ySpl i t. Either or both of s
andrs may beNULL. No meet splitting or merging is carried out by these operations.

Finally,

voi d KheEl nSuppl yDebug(KHE_ELM SUPPLY s, int verbosity,
int indent, FILE *fp);

sends a debug print afwith the given verbosity and indent tp.

10.6.3. Splitting supplies

The elm returned bitheEl mvake has only a trivial segmentation, with one segment per parent
meet. Few or no demands will match with these supplies, because only demands and supplies of
equal duration match. So the initial supplies have to be split ugieg nSuppl ySplit .

EIm has a helper module which splits supplies heuristically. It offers just one function:
voi d KheEl mSplit Supplies(KHE ELM el m KHE SPREAD EVENTS CONSTRAI NT sec);

If the di versi fy option of el mis opti ons attribute ist r ue, its result varies depending on the
layer’s solution’s diversifier. Theec parameter oKheEl nSpl it Suppl i es may beNULL. If
nonNULL, KheEl nSpl i t Suppl i es tries to find a segmentation in which each time groupesf
covers the same number of segments, as explainetéat m_ayer Assi gn above.

KheEl nBpl i t Suppl i es works as follows. Begin by handling demands whose meets are
preassigned or already assigned. For each such demand, split a supply to ensure that exactly
the right segment is present, and W&eEl nSuppl ySet Fi xedDemand to fix the supply to the
demand. If the required split cannot be made, the demand remains permanently unmatched.

Sort the remaining demands by increasing size of their meets’domains (in practice this also
sorts by decreasing duration), breaking ties by decreasing demandhé&bget Assi gnFi x to
ensure that these meets cannot be assigned. This removes them from the matching to begin with
(strictly speaking, it prevents them from having any outgoing edges in the matching graph).

For each demand in turn, unfix its meet and observe the effect of this on the best matching.
If the size of the best matching increases by one, proceed to the next demand. Otherwise, the
demand has failed to match, and this must be corrected (if possible) by splitting segments of
larger duration into smaller segments that it can match with. For each supply whose duration

242 Chapter 10. Time Solvers

Is larger than the duration of the demand, try splitting the supply in all possible ways into two
or three smaller segments such that at least one of the fragments has the same duration as the
demand. If there was at least one successful split, redo the best of them.

The best split is determined by an evaluation with five components:

1. The split must besuccessfulit must increase the size of the best matching by one. Only
successful splits are eligible for use; if there are none, the demand remains unmatched.

2. ltisbetter to splita segmentinto two fragments than into three. For example, when splitting
a double from a meet of duration 4, it is better to take the first two times or the last two,
rather than the middle two, since the latter leaves fewer choices for future splits.

3. If the parent node has zones, it is desirable to use a segment overlapping only one zone, to
produce meet regularity (Section 5.4) with the layer used to create the zones.

4. The split should produce a best matching whose cost is as small as possible.
5. If sec !'= NULL, the split should encourage the evennesssbast presence requests.

These are combined lexicographically: later criteria only apply when earlier ones are equal.
Meet regularity has higher priority than cost because cost can often be improved later, whereas
meet regularity once lost is lost forever.

After all demands are processed, if any supplies have duration larger than the duration of
all demands, split them into smaller pieces, preferably supplies regular with the zones, if any.
This adds more edges, and so may reduce the cost of the best matching, at norisk to its size. Itis
important when timetabling layers of small duration, such as layers containing staff meetings.

10.6.4. Improving node regularity

When the parent node has zorié®El nSpl i t Suppl i es produces good meet regularity but does
nothing to promote node regularity. This can be done by following it with a call to

voi d KheEl m nproveNodeRegul arity(KHE ELM el nj;

implemented by another ElIm helper module. It does nothing when there are no zones. When
there are, it removes edges from the matching graph to improve the node regularity of the edges
with respect to the zones. If requested bydheer si fy option of el mis opti ons attribute, it
consults the solution’s diversifier, and the edges it removes vary with the diversifier.

The problem of removing edges from a layer matching graph to maximize node regularity
with zones while keeping the matching cost low may seem obscure, but it is one of the keys to
effective time assignment in high school timetabling. Bin packing is reducible to this problem,
so it is NP-complete. Even the small instances (up to ten nodes in each layer, say) that occur
in practice seem hard to solve to optimality. The author tried a tree search which would have
produced an optimal result, but could not make it efficient, even with several pruning rules. So
KheEl m npr oveNodeRegul ari ty is heuristic.

Although many kinds of defects contribute to the edge costs that make up the matching
cost, in practice the cost is dominated by demand cost (including the cost of avoid clashes and

10.6. Extended layer matching with EIm 243

avoid unavailable times defects). Every unit of demand cost incurred when assigning a time
represents an unassignable resource at that time, implying that either the final solution will have
a significant defect, or else that the time assignment will have to be changed later.

However, not all demand costs are equally important. When the cost is incurred by a child
node with no children, all of the meets of that node at that time will have to be moved later, which
is very disruptive. An assignment scarcely deserves to be called node-regular if that is going to
happen. But when the cost is incurred by a child node with children, after flattening it is often
possible to remove the defect by moving just one meet, disrupting node regularity only slightly.
Soitis important to give priority to nodes with no children.

This is done in two ways. First, the cost of edges leading out of meets whose nodes have
no children is multiplied by 10. Second, when evaluating alternatives while improving node
regularity, the cost of the best matching is divided into two parts: the total cost of edges leading
out of meets in nodes with no children (tigthout-children cogtand the total cost of the
remaining edges (theith-children cosy, and without-children cost takes priority.

The heuristic sorts the child nodes by decreasing duration. Nodes with equal duration are
sorted by increasing number of children. Although it is important to minimize without-children
cost, even at the expense of with-children cost, it would be wrong to maximize without-children
node regularity at the expense of with-children node regularity. Node regularity is generally
harder to achieve for nodes of longer duration, so they are handled first.

For each child node in sorted order, the heuristic generates a sequence of sets of zones. For
each set of zones, it reduces the matching edges leading out of the meets of the child node so that
they go only to segments whose times overlap with the times of the zones. A best set of zonesiis
chosen, the limitation of the child node’s meets to those nodesis fixed, and the heuristic proceeds
to the next child node.

The best set is the first one with a lexicographically minimum value of the triple
(wi thout _children_cost, zones_cost, with_children_cost)

The wi t hout _chi | dren_cost andwi th_chi |l dren_cost components are as defined above.
Thezones_cost component measures the badness of the set of zones. Itis the number of zones
in the set (we are trying to minimize this number, after all), adjusted to favour zones of smaller
duration and zones already present in sets fixed on previously, to encourage the algorithm to use
up zones completely wherever possible.

The algorithm for generating sets of zones generates all sets of cardinality 1, then all sets of
cardinality 2, then one set containing every zone that the current best matching touches. Thislast
setisincluded to ensure that at least one set leading to a reasonable matching cost is tried. A few
optimizations are implemented, including skipping sets of insufficient duration, and skipping
zones known to be fully utilized already.

10.6.5. Handling irregular monitors

Each edge of the layer matching graph is assigned a cost by making one meet assignment and
measuring the solution cost afterwards. This amounts to assuming that the cost of each edge is
independent of which other edges are present in the best matching. Costs come from monitors,
and the truth of this assumption varies with the monitor type, as follows.

244 Chapter 10. Time Solvers

Assign time and prefer times castadependent when the cost functiorLisiear , which
it always is in practice for these kinds of monitors.

Split events and distribute split events codti®t changed by meet assignments.

Spread events costblon-independent. Previous sections have addressed this problem, by
varying path costs to discourage two demands from one demand group from matching with
two supplies from one supply group, and by improving node regularity.

Link events costdNot changed by meet assignments when handled structurally, which they
always are in practice.

Order events costdNon-independent when both events lie in the current layer.

Assign resource, prefer resources, and avoid split assignments d¥stschanged by
meet assignments.

Avoid clashes costdndependent, because clashes are never introduced within one layer.
Avoid unavailable times costéndependent when the cost functiorisear .

Limit idle times, cluster busy times, and limit busy times coltsn-independent when
present (when resources subject to them are preassigned in the layer's meets).

Limit workload costs Not changed by meet assignments.

Demand costsindependent when they monitor clashes and unavailable times. More subtle
interactions can be non-independent, but most layer matchings are built when the timetable
Is incomplete and subtle demand overloads are unlikely.

Order events, limit idle times, cluster busy times, and limit busy times monitors stand out as
needing attention. These will be callegegular monitors

At present, the author has no experience with order events monitors, so EIm does nothing
with them. The irregular monitors handled by Elm are those limit idle times, cluster busy times,
and limit busy times monitors of the resources of the layer match’s layer which are attached at the
time the elm is created. The EIm core module stores these monitors in an array, accessible via

int KheEl m rregul ar Moni t or Count (KHE_ELM el n ;
KHE_MONI TOR KheEl m rregul ar Monitor (KHE_ELM elm int i);
voi d KheEl nSort|rregul ar Monitors(KHE_ELM el m

i nt(*conpar)(const void *, const void *));

KheEl m rregul ar Moni t or Count andKheEl nl rregul ar Moni t or visit them in the usual way.
KheEl nBort | rregul ar Moni t ors sorts themgonpar is a function suited to passing ¢gort
when sorting an array of monitors. Core function

bool KheEl m rregul ar Moni t or sAtt ached(KHE_ELM el m);

returng r ue if all irregular monitors are currently attached. By definition, this is true initially.
As a first step in handling the irregular monitors of its layer, EIm offers functions

voi d KheEl mDet achl rregul ar Moni tors(KHE ELM el m) ;
voi d KheEl mAttachl rregul arMonitors(KHE ELM el m);

10.6. Extended layer matching with EIm 245

to detach any irregular monitors that are not already detached, and attach any that are not already
attached KheEl nLayer Assi gn uses them to detach irregular monitors at the start and reattach
them at the end. This ensures that the best matching never takes them into account. It would
only cause confusion if it did.

For improving its performance when irregular monitors are present, Elm offers
voi d KheEl nReducel rregul ar Moni t or s(KHE_ELM el m) ;

If irregular monitors are attached, it detaches them. It installs the best matching’s assignments,
attaches irregular monitors, and remembers the solution cost. Then for eachssulgtaches
irregular monitors, removesfrom the graph, installs the best matching’s assignments, attaches
irregular monitors, remembers the solution cost, and res®tedhe graph. If none of the
removals improves cost, it returns irregular monitors to their original state of attachment and
terminates. Otherwise, it permanently removes the supply that produced the best cost and repeats
from the start.

Some optimizations avoid futile work. If removirgywould reduce the total duration of
supply nodes to below the total duration of demand nodes, or reduce the number of supplies of
Ss duration to below the number of demandsssfduration, the removal of is not tried. And
the function returns immediately if the layer has no irregular monitors.

KheEl nReducel rregul ar Mni tors is a plausible way to attack limit idle times and limit
busy times defects, but it is not radical enough for cluster busy times defects. These are better
handled by other means, suchkasSol nCl ust er AndLi mi t Meet Donai ns (Section 10.3.3).

10.7. Time repair

This section presents the time solvers packaged with KHE that take an existing time assignment
and repair it (that is, attempt to improve it). However carefully an initial time assignmentis made,

it must proceed in steps, and it can never incorporate enough forward-looking information to
ensure that each step does not create problems for later steps. So a repair phase after the initial
assignment is complete seems to be a practical necessity.

10.7.1. Node-regular time repair using layer node matching

Suppose we have a time assignment with good node regularity, but with some spread and
demand defects. Repairs that move meets arbitrarily might fix some defects, but the resulting
loss of node regularity might have serious consequences later, during resource assignment. This
section offers one idea for repairing time assignments without sacrificing node regularity.

One useful idea is to make repairs which aoele swapsswaps of the assignments of (the
meets of) entire nodes. The available swaps are quite limited, because the nodes concerned must
lie in the same layers and have the same number of meets with the same durations.

For any parent node, take any set of child nodes lying in the same layers whose meets are
all assigned. Build a bipartite graph in which each of these child nodes is one demand node, and
the set of assignments of its meets is one supply node. An assignment is a triple of the form

(target _meet, offset, durn)

246 Chapter 10. Time Solvers

as for layer matchings (Section 10.6), but here a supply node is a set of triples, not one triple.

For each case where a child node can be assigned to a set of triples, because the number
of triples and their durations match the node’s number of meets and durations, add an edge to
the graph labelled by the change in solution cost when the corresponding set of assignments is
made. Find a maximum matching of minimum cost in this graph and reassign the child nodes
in accordance with it. The existing assignment is one maximum matching, so this will either
reproduce that or find something which has a good chance of being better. Function

bool KheLayer NodeMat chi ngNodeRepai r Ti mes(KHE_NCDE par ent _node,
KHE _OPTI ONS opti ons);

applies these ideas to the child nodesafent _node, returningt r ue if it considers its work to

have been useful, as is usual for time repair solvers. Firgariént _node has no child layers

it callsKheNodeChi | dLayer sMake to build them. Then it partitions the child nodes so that the
nodes of each partition lie in the same set of layers. Then, for each partition in turn, it builds
the weighted bipartite graph and carries out the corresponding reassignments. If the solution
cost does not decrease, the reassignments are undone. It continues cycling around the partitions
until nreassignments have occurred without a cost decrease, wisghe number of partitions.

Finally, if it made layers to begin with it removes them. A related function is

bool KheLayer NodeMat chi ngLayer Repai r Ti mes(KHE_LAYER | ayer,
KHE_OPTI ONS options);

It starts with the child nodes dfayer rather than all the child nodes of its parent.

On a real instanc&heLayer NodeMat chi ngNodeRepai r Ti nes found no improvements at
all after all layers were assigned. Applied after each layer after the first was assigned, it found
one improvement, which reduced the number of unassignable tixels by 1 or 2. Thisimprovement
was carried through to the final solution: the median number of unassigned tixels when solving
16 instances was reduced from about 9 to about 7, and there were modest reductions in spread
defects and split assignment defects as well. The extra run time was about 0.6 seconds.

10.7.2. Ejection chain time repair

Time solvers

bool KheEj ecti onChai nNodeRepai r Ti mes(KHE_NCDE par ent node,
KHE_OPTI ONS opti ons);

bool KheEj ecti onChai nLayer Repai r Ti mes(KHE_LAYER | ayer,
KHE_OPTI ONS opti ons);

use ejection chains (Chapter 13) to repair the assignments of the meets of the descendants of
the child nodes opar ent _node, or the assignments of the meets of the descendants of the child
nodes ofl ayer . For full details of these functions, consult Section 13.7.

10.7.3. Tree search layer time repair

Very large-scale neighbourhood (VLSN) search [1, 12] deassigns a relatively large chunk of the
solution, then reassigns it in a hopefully better way. If the chunk is chosen carefully, it may be

10.7. Time repair 247

possible to find an optimal reassignment in a moderate amount of time.

One well-known VLSN neighbourhood is the set of meets of one layer (a set of meets which
must be disjoint in time, usually because they have a resource in common). For example, finding
a timetable for one university student is a kind of layer reassignment, with the choices of times
for the meets determined by when sections of the student’s courses are running. Function

bool KheTreeSear chLayer Repai r Ti mes(KHE_SOLN sol n, KHE_RESOURCE r);

reassigns the meets &6l n currently assigned resourcgusing a tree search. Once the number
of nodes explored reaches a fixed limit, it switches to a simple heuristic, giving up the guarantee
of optimality to ensure that running time remains moderate. Function

bool KheTreeSear chRepai r Ti mes(KHE_SOLN sol n, KHE_RESOURCE TYPE rt,
bool with_defects);

callskheTr eeSear chLayer Repai r Ti mes for each resource isiol n’s instance (or each of type

rt,if rt isnonNULL). If with_defects istrue, these calls are only made for resources with

at least one resource defect, otherwise they are made for all resources. The rest of this section
describegheTr eeSear chLayer Repai r Ti mes in detail.

If atree search is given a high standard to reach, it will run quickly because many paths will
fail the standard and get pruned, and so it is quite likely to run to completion and reach that high
standard if it is reachable at all. If it is given a low standard, it will run more slowly and quite
possibly not run to completion. Either approach is legitimate, but a choice has to be made.

Because VLSN search is relatively slow, it seems best to use it near the end of a solve, when
there are few defects left to targetheTr eeSear chLayer Repai r Ti nes is intended to be used
as a last resort in this way, when there is likely to be just one or two defects related to the layer
beingtargeted. Accordingly, it aims high, for an assignment with no defectsat all. It prunes paths
whenever it can see that there is a defect that cannot be corrected by further assignments.

The meets are first sorted into decreasing duration order and unassigned. Each is given a
current domainwhich is initially its usual domain minus any starting times that would cause the
meet to overlap a time when any of its resources are unavailable. Then a traditional tree search
is carried out, which at each node of levaksigns a time from its current domain to ttiemeet
in the sorted list. The best leaf is remembered and replaces the original set of assignments if its
solution cost is smaller. Three rules are used for pruning the tree.

First, any assignment which returhal se or causes the number of unmatched demand
tixels to exceed its value in the initial solution is rejected.

Second, after a fixed number of nodes is reached, new nodes are still explored, but only the
first assignment that does not increase the number of unmatched demand tixels is tried therein.

Third, a form of forward checking is used. L& andm, be meets of the layer, and Igt
andt, be times. At the start, a set ekclusionss built, each of the form

(Myty) (. My, t)

This means that ifm, is assigned starting tintg, thenm, may not be assigned starting timye
While the search is running, whem is assigned, this exclusion is applied, removirigfrom the
domain ofm,. Whenm, is unassigned later, the exclusion is removegiust come later in the

248 Chapter 10. Time Solvers

list of meets to be assigned tham so that at the momem, is assignedn, is not assigned).
Following is a list of true statements about various situations:

* Since the meets all share a resource, no two of the meets may overlap in time.

* Two meets linked by a spread events constraint cannot be assigned within the same time
group of that constraint, when that time group hasd numattribute of 1.

» Two meets linked by an order events constraint must be assigned in a certain chronological
order, possibly with a given separation.

* Giventwo meets with the same duration and the same resources, and monitored by the same
event monitors, it is safe (and useful for avoiding symmetrical searches) to arbitrarily insist
that the first one in the assignment list should appear earlier in the cycle than the second.

Each statement gives rise to exclusions, and all these exclusions are added, except that at present
a couple of shortcuts are being used: order events constraints are not currently taken into account,
and the symmetry breaking idea of the last point is being applied to a different set of pairs of
meets, namely those which are linked by a spread events constraint and have the same duration.

Exclusions are used in two ways. First, when a meet’s turn comes to be assigned, only
times in its current domain (its initial domain minus any exclusions) are tried. Second, each meet
keeps a count of the number of times in its current domain. If this number ever drops to 0, the
assignment that caused that to happen is rejected immediately.

On instance IT-14-96, with limit 10000, this method improved the timetables of four
resources, reducing final cost from 0.00397 to 0.00390, and adding about 2 seconds to total run
time. There was wide variation in the completeness of the search: for some resources, every
possible timetable was tried; for others, there was only time to try timetables that assigned the
first meet to the first time. It did not reduce the 0.00067 cost of the best of 8 solutions, nor find
any improvements when solving instance AU-BG-98. A run with limit 2000000 improved a fifth
resource in IT-14-96, and showed that many searches do reach even this quite large limit.

10.7.4. Meet set time repair and the fuzzy meet move

Another VLSN idea is to use a tree search to repair the assignments of an arbitrary (but small)
set of meets. Given a set of meets, build the set of all target meets they are assigned to, and for
each target meet, the set of offsets within it that they are running. The aim isto reassign the meets
optimally within these same target meets and offsets. The only pruning rule is that the number
of unmatched demand tixels may not exceed its initial value.

The functions that implement this idea are

KHE MEET SET SCLVER KheMeet Set Sol veBegi n(KHE_SOLN sol n, int max_meets);
voi d KheMeet Set Sol veAddMeet (KHE_MEET _SET SOLVER nss, KHE MEET neet);
bool KheMeet Set Sol veEnd(KHE_MEET_SET SOLVER mnss) ;

KheMeet Set Sol veBegi n makes a meet-set solver object which coordinates the operation.
KheMeet Set Sol veAddMeet adds one meet to the solver, and may be called any number of times,
building up a set of meets. If the number of meets added reachesxtheeet s parameter of

10.7. Time repair 249

KheMeet Set Sol veBegi n, further calls tokheMeet Set Sol veAddMeet are allowed but ignored.
Finally,KheMeet Set Sol veEnd uses a tree search to find an optimal reassignment of the meets to
(collectively) their original target meets and offsets, returningg if it reduced the cost of the
solution, and frees the memory used by the solver object. If the number of nodes in the search
tree exceeds a given fixed limit, the search switches to a simple linear heuristic at each remaining
tree node, losing the guarantee of optimality but ensuring that run times remain moderate.

As a first application of these functions, KHE offers

bool KheFuzzyMeet Move(KHE_MEET neet, KHE MEET target _neet, int offset,
int width, int depth, int max_neets);

This may movereet totarget _meet atoffset, but not necessarily. Instead, it selects a set
of meets likely to be affected by that move, includiregt , and passes them all to the meet set
solver above for (hopefully) optimal reassignment. It retumse if and only if it changed the
solution, which will be if and only if it reduced the cost of the solution.

The point ofkheFuzzyMeet Move is that if the caller has identified this move as likely to be
useful, but with some uncertainty about its consequences, it allows the move to be tried, but with
adjustments in the neighbourhood to get the most out of it. These adjustments are not unlike
those made by Kempe meet moves, only more general and more costly in run time.

Two sets of meets are selected. To be in the first set, a meet has to be assigned to the same
target meet aseet , at an offset lying betweemeet 's current offset minusi dt h, andmeet ’s
current offset plusi dt h. Furthermore, idept h is 1 (the smallest reasonable value), a selected
meet has to share a resource (assigned or preassignedgetithif dept h is 2, a selected meet
has to share a resource with a meet that would be selected when the depth is 1, and so on: the
depth signifies the maximum length of a chain of shared resources that must connect a selected
meet toneet . The second set of meets is the same as the first, only defined aseg _reet
andof f set instead ofreet 's current target meet and offset.

As for meet set time repair, at mostx_neet s meets will be selected. #i dt h anddept h
are small, it is reasonable forx_neet s to bel NT_MAX,

10.8. Layered time assignment

The heart of time assignment when layer trees are used is to assign the meets of the child nodes
of a given parent node to the meets of the parent nodeyéred time assignmeig one which

groups the child nodes into layers and assigns them layer by layer. This is a good way to do it,
since the nodes of each layer strongly constrain each other (they must be disjoint in time).

KheEl nLayer Assi gn (Section 10.6) is KHE’s main solver for assigning the meets of the
child nodes of one layer. But there is work to be done to prepare the way for calling this function,
beyond the structural work of building the layer tree. This section presents KHE's functions for
carrying out this preparatory work and callikigeEl m_ayer Assi gn.

10.8.1. Layer assignments

When assigning layers it is useful to be able to record an assignment of the meets of a layer, for
undoing and redoing later. Marks and paths could do this, but they record every step. A layer

250 Chapter 10. Time Solvers

assignment algorithm could be very long and wandering, so it is better to record just its result.
Accordingly, KHE offers thdayer assignmenbbject, with typeKHE_LAYER_ASST:

KHE_LAYER _ASST KhelLayer Asst Make(KHE_SOLN sol n);

voi d KhelLayer Asst Del et e(KHE_LAYER ASST | ayer asst);

voi d KhelLayer Asst Begi n(KHE_LAYER_ASST | ayer _asst, KHE_LAYER | ayer);

voi d KhelLayer Asst End(KHE_LAYER ASST | ayer _asst);

voi d KhelLayer Asst Undo(KHE_LAYER ASST | ayer _asst);

voi d KhelLayer Asst Redo(KHE_LAYER ASST | ayer _asst);

voi d KhelLayer Asst Debug(KHE_LAYER ASST | ayer _asst, int verbosity,
int indent, FILE *fp);

KheLayer Asst Make andKheLayer Asst Del et e make and delete one&khelLayer Asst Begi n is
called before some algorithm for assignirayer is run. It records which ofayer s meets are
unassigned therkheLayer Asst End is called after the algorithm ends. For each meet recorded
by KheLayer Asst Begi n, it records the assignment of that meigteLayer Asst Undo undoes the
recorded assignments, aldeLayer Asst Redo redoes themKhelLayer Asst Debug produces a
debug print ofl ayer _asst ontof p.

10.8.2. A solver for layered time assignment

Time solver

bool KheNodeLayer edAssi gnTi mes(KHE _NODE parent _node, KHE OPTI ONS options);

assigns the meets of the child nodespaf ent _node to the meets opar ent _node, calling
KheEl mLayer Assi gn (Section 10.6) to assign them layer by layer. Existing assignments of the
meets affected may change. The implementation is described at the end of this section.

If parent_node is the cycle nodekheNodePr eassi gnedAssi gnTi mes should be called
first, to give priority to demands made by preassigned meets.

KheNodeLayer edAssi gnTi nes is influenced by three options:

ts_no_node_regularity
A Boolean option which, whetr ue, instructskheNodeLayer edAssi gnTi nes , as well as
KheEj ecti onChai nNodeRepai r Ti mes and KheEj ect i onChai nLayer Repai r Ti nes (Sec-
tion 13.7), to not try to make the assignments node-regular (Section 5.4). Node regularity
will usually be appropriate for the cycle node, but not for other nodes, since in practice they
are runaround nodes, and irregularity is wanted in them rather than regularity.

ts_layer_swap
KheNodeLayer edAssi gnTi mes usually assigns each layer in turn, in a heuristically
chosen order. But if the Booleas_| ayer _swap option ist r ue, it does something more
interesting. For each layéother than the first and last, it (a) tries assigning and repairing
layeri followed by layeri + 1, then (b) tries assigning and repairing layerl followed by
layeri. If the solution cost after (a) is less than after (b), it leaves (a)’s assignment of layer
i in place and proceeds to the next layer; otherwise it leaves (b)’s assignment af4alyer
in place and proceeds to the next layer. So one layer is assigned on each iteration, as usual,
but it could be either the usual one or the next one.

10.8. Layered time assignment 251

ts_layer repair
An option which instructg&heNodeLayer edAssi gnTi mes which of its layers to repair after
assignment. It has three valuésgone" meaning repair no layersal | " meaning repair all
layers, and exp" meaning use exponential backoff to decide which layers to repair. When
the option is absent its value is taken to'laél " .

ts_layer _tine_limt
A string option defining a soft time limit for assigning a layer. The format is that accepted
by KheTi meFronft ri ng (Section 8.1)secs, orni ns: secs,orhrs: nmi ns: secs. There
Is also the special value meaning ‘set no limit’, and this is the default value.

The rest of this section describes the implementatidthefNodeLayer edAssi gnTi nes.

If par ent _node has no layers¢heNodeLayer edAssi gnTi mes first makes them, by calling
KheNodeChi | dLayer sMake (Section 9.3.1). Itthen sortsthe layers, assigns and optionally repairs
them, and ends witkheNodeChi | dLayer sDel et e if it called KheNodeChi | dLayer sMake.

When sorting the layers, the first priority is to ensure that already assigned layers come
first. These are marked by assigning visit number 1to them. Among unvisited layers, a heuristic
rule is used: decreasing value of the sum of the duration and the duration of meets that have
already been assigned, minus the number of meets. The reasoning here is that layers with
larger durations are harder to assign, and they become even harder when many of their meets’
assignments are already decided on (since the algorithm does not change them); but, on the other
hand, the more meets there are, the smaller their durations must be for a given overall duration,
making assignment easier. Here is the layer comparison function; it may be called separately:

i nt KheNodeLayer edLayer Cmp(const void *t1, const void *t?2)
{
KHE_LAYER | ayer1 = * (KHE_LAYER *) t1;
KHE_LAYER | ayer2 = + (KHE_LAYER *) t2;
int valuel, value2, demandl, demand?2;
i f(KheLayer VisitNun(layerl) != KheLayerVisitNun(layer2))
return KhelLayer VisitNun(layer2) - KhelLayerVisitNun(layerl);
val uel = KhelLayerDuration(layerl) - KhelLayer Meet Count(|ayerl) +
KheLayer Assi gnedDur ati on(1 ayer1);
val ue2 = KhelLayerDuration(layer2) - KhelLayer Meet Count (| ayer2) +
KheLayer Assi gnedDur ati on(| ayer 2) ;
if(valuel !'= value2)
return value2 - val uel
demandl = KhelLayer Demand(| ayer1);
demand2 = KhelLayer Demand(| ayer 2);
i f(demandl != demand2)
return demand2 - denandl;
return KhelLayer Par ent Nodel ndex(| ayer1) -
KheLayer Par ent Nodel ndex(| ayer 2);

}

As a last resort it compares total demand, then layer indexes, to give a non-zero result in all cases:
gsort’s specification is non-deterministic, which is best avoided, if the result is zero.

252 Chapter 10. Time Solvers

KheNodeLayer edAssi gnTi nes setsthei me_vi zi er _node option tof al se before making
the call that repairs the first layer, and resets it to its original value afterwards. It's a small point,
but a vizier node would be redundant when repairing the first layer.

Let thewhole-timetable monitorse the limit idle times, cluster busy times, and limit busy
times monitors. These depend on the whole timetable of their resource, or large parts of it. The
other resource monitors either depend on local parts of the timetable (avoid clashes and avoid
unavailable times monitors) or are independent of the timetable (limit workload monitors).

In practice, evaluating a whole-timetable monitor before its resource’s layer is assigned is
problematical, since it depends on the whole timetable, which does not exist then. For example,
a partial timetable may have idle times which could well be filled later when its resource’s other
meets are assigned times. AccordinghgNodeLayer edAssi gnTi mes begins by detaching all
whole-timetable monitors of all resources in all its layers. Just before assigning each layer, it
attaches the whole-timetable monitors of the resources of the layer.

This detachment of whole-timetable monitors is similar to the detachment of irregular
monitors during the assignment of one layer by Elm (Section 10.6.5). Both detachments are
done because the monitors in question would not produce useful cost information if attached.
However, in the case of EIm that is because of the particular algorithm employed, whereas here
it is because of something more fundamental: the fact that only a partial timetable is present.

The remainder of this section describes the three extra things that are done when the
time_node_regul arity option ofoptions istrue.

First, when a meet from another layer is already assigned (because it is preassigned,
usually), it is good to make that same assignment to a meet of the same duration in the first layer,
for regularity between the two meets. Such an assignment to a meet of the first layer is called
a parallel assignmentlIf there is a node from another layer containing two or more assigned
meets, then it is good to make the corresponding parallel assignments within one node of the first
layer, for regularity between the nodes; and if two nodes from one layer contain assigned meets,
itis good to make the corresponding parallel assignments to distinct nodes of the first layer. The
layer solver that makes these parallel assignments to the meets of the first layer is called only
whenti ne_node_regul arity istrue, but it is also available separately:

bool KheLayer Paral | el Assi gnTi mes(KHE_LAYER | ayer, KHE_OPTI ONS options);

It makes parallel assignmentslitayer heuristically, returning r ue if every assigned meet in
every sibling layer of ayer has a parallel assignment afterwards. It uses no options.

SecondKheEl mLayer Assi gn takes a spread events constraint as an optional parameter.
Whentime_node_regul arity istrue, KheNodeLayer edAssi gnTi mes searches the instance
for a spread events constraint with as many points of application as possible, and passes this
constraint (if any) takheEl mLayer Assi gn.

Third, and most important, when me_node_regul ari ty istrue, after the first layer has
been assigned and optionally repair&bdeNodeLayer edAssi gnTi mes uses the first layer’'s
assignments to define zones in the parent node, by célhieigayer I nst al | Zones| nPar ent
(Section 5.4) andheNodeExt endZones (Section 9.6). These zones encourage the following
calls toKheEl nLayer Assi gn andKheEj ecti onChai nLayer Repai r Ti nes to find and preserve
zone-regular assignments.

10.8. Layered time assignment 253

10.8.3. A complete time solver

Time solver

bool KheCycl eNodeAssi gnTi mes(KHE_NODE cycl e_node, KHE_COPTI ONS options);

combinesthe ideas of this chapter into one solver that assigns the meets in the proper descendants
of cycl e_node, assumed to be the cycle node.

KheCycl eNodeAssi gnTi mes first assigns preassigned meets. If all events have preassigned
times, according takhel nst anceAl | Event sHavePr eassi gnedTi mes, it does nothing else.
Otherwise it assigns times layer by layer usihgNodeLayer edAssi gnTi mes (Section 10.8.2).
Then it removes any regularity features (zones and interior nodes) installed earlier and returns.

If not all events have preassigned times, this function is influenced by three options:

ts_cluster _neet domai ns
A Boolean option which, whetr ue, instructXheCycl eNodeAssi gnTi nes to cluster meet
domains usingtheSol nCl ust er AndLi i t Meet Donmai ns (Section 10.3.3) before assigning
times, and to uncluster them afterwards.

ts_tighten_domai ns_of f
A Boolean option which, whenr ue, instructskheCycl eNodeAssi gnTi nes to not tighten
resource domains (Section 11.8).

ts_node_repair_off
A Boolean option which, whemr ue, instructskheCycl eNodeAssi gnTi mes to not call
KheEj ect i onChai nNodeRepai r Ti mes (Section 10.7.2). If it does call it, it calls it twice,
before and after removing regularity-enhancing features.

ts_node repair_tine |imt
A string option, a soft time limit for each call afheEj ecti onChai nNodeRepai r Ti mes.
The format is that accepted IsyeTi meFronSt ri ng (Section 8.1):secs, orni ns: secs,
orhrs: m ns: secs. The special value (the default) means ‘set no limit’.

Other options influence it indirectly, via its callskbeNodeLayer edAssi gnTi nes.

Chapter 11. Resource-Structural Solvers

This chapter documents the solvers packaged with KHE that modify the resource structure of
a solution: group and ungroup tasks, and so on. These solvers may alter resource assignments,
but they only do so occasionally and incidentally to their structural work.

11.1. Task bound groups

Task domains are reduced by adding task bound objects to tasks (Section 4.6.3). Frequently,
task bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of task bounds—»but it is convenient to have a
standard for it, so KHE defines a tyfggE_TASK_BOUND_GROUP with suitable operations.

To create a task bound group, call
KHE_TASK_BCOUND_GROUP KheTaskBoundG oupMake(KHE_SOLN sol n);
To add a task bound to a task bound group, call

voi d KheTaskBoundG oupAddTaskBound(KHE_TASK BOUND GROUP t bg,
KHE_TASK_BOUND t b);

To visit the task bounds of a task bound group, call

i nt KheTaskBoundG oupTaskBoundCount (KHE_TASK BOUND _GROUP t bg);
KHE_TASK BOUND KheTaskBoundG oupTaskBound(KHE_TASK BOUND_GROUP thg, int i);

To delete a task bound group, including deleting all the task bounds in it, call
bool KheTaskBoundG oupDel et e(KHE_TASK BOUND GROUP t bg);

This function returnsr ue when every call it makes t¢heTaskBoundDel et e returng r ue.

11.2. Task trees

What meets do for time, tasks do for resources. A meet has a time domain and assignment; a
task has a resource domain and assignment. Link events constraints cause meets to be assigned
to other meets; avoid split assignments constraints cause tasks to be assigned to other tasks.

There are differences. Tasks lie in meets, but meets do not lie in tasks. Task assignments do
not have offsets, because there is no ordering of resources like chronological order for times.

Since the layer tree is successful in structuring meets for time assignment, let us see what
an analogous tree for structuring tasks for resource assignment would look like. A layer tree is a
tree, whose nodes each contain a set of meets. The root node contains the cycle meets. A meet’s
assignment, if present, lies in the parent of its node. By convention, meets lying outside nodes

254

11.2. Task trees 255

have fixed assignments to meets lying inside nodes, and those assignments do not change.

A task treethen, is a tree whose nodes each contain a set of tasks. The root node contains
the cycle tasks (or there might be several root nodes, one for each resource type). A task’s
assignment, if present, lies in the parent of its node. By convention, tasks lying outside nodes
have fixed assignments to tasks lying inside nodes, and those assignments do not change.

TypeKHE_TASKI NGis KHE’s nearest equivalent to a task tree node. It holds an arbitrary set
of tasks, but there is no support for organizing taskings into a tree structure, since that does not
seem to be needed. It is useful, however, to look at how tasks are structured in practice, and to
relate this to task trees, even though they are not explicitly supported by KHE.

A task is assigned to a non-cycle task and fixed, to implement an avoid split assignments
constraint. Such tasks would therefore lie outside nodes (if there were any). When a solver as-
signs a task to a cycle task, the task would have to lie in a child node of a node containing the
cycle tasks (again, if there were any). So there are three levels: a first level of nodes containing
the cycle tasks; a second level of nodes containing unfixed tasks wanting to be assigned resources;
and a third level of fixed, assigned tasks that do not lie in nodes.

This shows that the three-way classification of tasks presented in Section 4.6.1, into cycle
tasks, unfixed tasks, and fixed tasks, is a proxy for the missing task tree structure. Cycle tasks
are first-level tasks, unfixed tasks are second-level tasks, and fixed tasks are third-level tasks.
KHE_TASKI NGis only needed for representing second-level nodes, since tasks at the other levels
do not require assignment. By convention, then, taskings will contain only unfixed tasks.

11.3. Task tree construction

KHE offers a solver for building a task tree holding the tasks of a given solution:
bool KheTaskTreeMake(KHE_SCLN sol n, KHE_OPTI ONS options);

As usual, this solver returnig ue if it changes the solution. Like any good solver, this function
has no special access to data behind the scenes. Instead, it works by calling basic operations and
helper functions:

« |t callskheTaski ngvake to make one tasking for each resource typesafn’s instance,
and it callskheTaski ngAddTask to add the unfixed tasks of each type to the tasking it
made for that type. These taskings may be accessed by aélkSgl nTaski ngCount and
KheSol nTaski ng as usual, and they are returned in an order suited to resource assignment,
as follows. Taskings for whickheResour ceTypeDenmand| sAl | Preassi gned(rt) istrue
come first. Their tasks will be assigned alreadshiéSol nAssi gnPr eassi gnedResour ces
has been called, as it usually has been. The remaining taskings are sorted by decreasing
order of KheResour ceTypeAvoi dSpl it Assi gnnent sCount (rt). These functions are
described in Section 3.5.1. Of course, the user is not obliged to follow this ordering. Itisa
precondition ofkKheTaskTr eeMake thatsol n must have no taskings when it is called.

» ItcallskheTaskAssi gn to convert resource preassignments into resource assignments, and
to satisfy avoid split assignments constraints, as far as possible. Existing assignments are
preserved (no calls tgheTaskUnAssi gn are made).

256 Chapter 11. Resource-Structural Solvers

» ltcallsknheTaskAssi gnFi x to fix the assignments it makes to satisfy avoid split assignments
constraints. These may be removed later. At present it does néhedlskAssi gnFi x to
fix assignments derived from preassignments, although it probably should.

e |t callsKheTaskSet Donai n to set the domains of tasks to satisfy preassigned resources,
prefer resources constraints, and other influences on task domains, as far as possible.
KheTaskTr eeMake never adds a resource to any domain, however; it either leaves a domain
unchanged, or reduces it to a subset of its initial value.

These elements interact in ways that make them impossible to separate. For example, a prefer
resources constraint that applies to one task effectively applies to all the tasks that are linked to
it, directly or indirectly, by avoid split assignments constraints.

KheTaskTreeMake does not refer directly to any options. However, it calls function
KheTaski ngMakeTaskTr ee, described below, and so it is indirectly influenced by its options.

The implementation okheTaskTr eeMake has two stages. The first creates one tasking for
each resource type obl n’s instance, in the order described, and adds to each the unfixed tasks
of its type. This stage can be carried out separately by repeated calls to

KHE_TASKI NG KheTaski nghMakeFr onResour ceType(KHE_SCOLN sol n,
KHE_RESOURCE_TYPE rt);

which makes a tasking containing the unfixed tasksabih of typert, or of all typesifrt is
NULL. It abortsif any of these unfixed tasks already lies in a tasking.

The second stage is more complex. It applies public function

bool KheTaski ngMakeTaskTr ee(KHE_TASKI NG t aski ng,
KHE TASK BOUND GROUP tbg, KHE OPTI ONS options);

to each tasking made by the first stage. WHKegiTaski ngMakeTaskTr ee is called from within
KheTaskTr eeMake, itsopt i ons parameter is inherited froheTask Tr eeMake.

As described fokheTaskTr eeMake, KheTaski ngMakeTaskTr ee assigns tasks and tightens
domains; it does not unassign tasks or loosen domains. Only tasksknng are affected.
If tbg is nonNULL, any task bounds created while tightening domains are addddtoTasks
assigned to non-cycle tasks have their assignments fixed, so are deleted$komyg.

The implementation oKheTaski ngMakeTaskTr ee imitates the layer tree construction
algorithm: it appliegobsin decreasing priority order. There are fewer kinds of jobs, but the
situation is more complex in another way: sometimes, some kinds of jobs are wanted but not
others. The three kinds of jobs of highest priority install existing domains and task assignments,
and assign resources to unassigned tasks derived from preassigned event resources. These jobs
are always included; the first two always succeed, and so does the third unless the user has made
peculiar task or domain assignments earlier. The other kinds of jobs are optional, and whether
they are included or not depends on the options (otherrthamvar i ant) described next.

KheTaskTr eeMake consults these options:

rs_invariant
A Boolean option which, whenr ue, causekheTaskTr eeMake to omit assignments and

11.3. Task tree construction 257

domain tightenings which violate the resource assignment invariant (Section 12.2).

rs_task tree_prefer_hard_off
A Boolean option which, whehal se, causekheTaskTr eeMake to make a job for each
point of application of each hard prefer resources constraint of non-zero weight. The
priority of the job is the combined weight of its constraint, and it attempts to reduce the
domains of the tasks dfaski ng monitored by the constraint’s monitors so that they are
subsets of the constraint’s domain.

rs task tree_prefer_soft
A Boolean option which is the same as_task_tree_prefer_hard_of f except
that it makes a job for each point of application of each soft prefer resources constraint of
non-zero weight, and its sense is reversed so that the default Yaluse @s usual) omits
these jobs. The author has encountered cases where reducing domains to enforce soft prefer
resources constraints is harmful.

rs task tree split_hard_off
A Boolean option which, whehal se, causekheTaskTr eeMake to make a job for each
point of application of each hard avoid split assignments constraint of non-zero weight.
Its priority is the combined weight of its constraint, and it attempts to assign the tasks of
t aski ng to each other so that all the tasks of the job’s point of application of the constraint
are assigned, directly or indirectly, to the same root task.

rs task tree split_soft_off
Like rs_task_tree_split_hard_of f except that it makes a job for each point of
application of each soft avoid split assignments constraint of non-zero weight.

By default, then, all of these jobs excest_t ask_t ree_pref er _sof t arerun, unlessthe user
requests something different.

11.4. Tighten to partition

Suppose we are dealing with teachers, and that they have partitions (Section 3.5.1) which are
their faculties (English, Mathematics, Science, and so on). Some partitions may be heavily
loaded (that is, required to supply teachers for tasks whose total workload approaches the total
available workload of their resources) while others are lightly loaded.

Some tasks may be taught by teachers from more than one partition. mbkspartition
tasksshould be assigned to teachers from lightly loaded partitions, and so should not overlap
in time with other tasks from these partitionEghten to partitiortightens the domain of each
multi-partition task in a given tasking to one partition, returninge if it changes anything:

bool KheTaski ngTi ghtenToPartition(KHE_TASKI NG t aski ng
KHE TASK_BOUND _GROUP thg, KHE _OPTI ONS options);

The choice of partition is explained below. All changes are additions of task bounds to tasks, and
if t bg is nonNULL, all these task bounds are also addethmn

It is best to calKheTaski ngTi ght enToParti tion after preassigned meets are assigned,
but before general time assignment. The tightened domains encourage time assignment to avoid

258 Chapter 11. Resource-Structural Solvers

the undesirable overlaps. After time assignment,the changes should be removed, since otherwise
they constrain resource assignment unnecessarily. This is what the task bound group is for:

ti ghten_tbg = KheTaskBoundG oupMake(sol n);
for(i = 0; i < KheSolnTaskingCount(soln); i++)
KheTaski ngTi ght enToPartiti on(KheSol nTaski ng(soln, i),
tighten tbhg, options);
assign times ...
KheTaskBoundG oupDel et e(ti ghten_thg);

The rest of this section explains hdédveTaski ngTi ght enToParti ti on works in detail.

KheTaski ngTi ght enToPar ti ti on does nothing when the tasking has no resource type, or
KheResour ceTypeDenandl sAl | Preassi gned (Section 3.5.1) says that the resource type’s tasks
are all preassigned, or the resource type has no partitions, or its number of partitions is less than
four or more than one-third of its number of resources. No good can be done in these cases.

Tasks whose domains lie entirely within one partition are not touched. The remaining
multi-partition tasks are sorted by decreasing combined weight then duration, except that tasks
with adominant partitiorcome first. A task with an assigned resource has a dominant partition,
namely the partition that its assigned resource lies in. An unassigned task has a dominant
partition when at least three-quarters of the resources of its domain come from that partition.

For each task in turn, an attempt is made to tighten its domain so that it is a subset of one
partition. If the task hasa dominant partition, only that partition istried. Otherwise, the partitions
that the task’s domain intersects with are tried one by one, stopping at the first success, after
sorting them by decreasing average available workload (defined next).

Define theworkload supplyf a partition to be the sum, over the resouncesthe partition,
of the number of times in the cycle minus the number of workload demand monitarsrfor
the matching. Define theorkload demanaf a partition to be the sum, over all taskehose
domain is a subset of the partition, of the workload.of hen theaverage available workloadf
a partition is its workload supply minus its workload demand, divided by its number of resources.
Evidently, if this is large, the partition is lightly loaded.

Each successful tightening increases the workload demand of its partition. This ensuresthat
equally lightly loaded partitions share multi-partition tasks equally.

In a task with an assigned resource, the dominant partition is the only one compatible
with the assignment. In a task without an assigned resource, preference is given to a dominant
partition, if there is one, for the following reason. Schools often have ayéawveralist teachers
who are capable of teaching junior subjects from several faculties. These teachers are useful for
fixing occasional problems, smoothing out workload imbalances, and so on. But the workload
that they can give to faculties other than their own is limited and should not be relied on. For
example, suppose there are five Science teachers plus one generalist teacher who can teach junior
Science. That should not be taken by time assignment as a licence to routinely schedule six
Science meets simultaneously. Domain tightening to a dominant partition avoids this trap.

Tightening by partition works best when the i nvari ant option ofopti ons istrue. For
example, in a case like Sport where there are many simultaneous multi-partition tasks, it will
then not tighten more of them to a lightly loaded partition than there are teachers in that partition.
Assigning preassigned meets beforehand improves the effectiveness of this check.

11.5. Grouping by resource constraints 259

11.5. Grouping by resource constraints

Grouping by resource constraintssKHE's term for a method of grouping tasks together, forcing

the tasks in each group to be assigned the same resource, when all other ways of assigning
resources to those tasks can be shown to have non-zerdkbe$askTr eeMake also does this,

but its groups are based on avoid split assignments constraints, whereas grouping by resource
constraints makes groups based on resource constraints. The function is

bool KheG oupByResour ceConstrai nt s(KHE_SOLN sol n,
KHE_RESOURCE_TYPE rt, KHE_OPTI ONS options, KHE TASK SET ts);

There isna aski ng parameter because this kind of grouping cannot be applied to an arbitrary set
of tasks. Instead, the function applies to all tasks@fn whose resource typeiis, and which

lie in a meet which is assigned a time.r tf isNULL, it applies itself to each of the resource types

of sol n’sinstance in turn. It tries to group these tasks, returhmg if it groups any.

Only tasks for which functiokheTaskNonAssi gnnent HasCost (Section 4.6.1) reports that
non-assignment has a cost are considered for grouping. It would not be good to group a task for
which non-assignment has a cost with a task for which non-assignment has no cost.

For each resource typgéheG oupByResour ceConst r ai nt s finds whatever groupsit can. It
makes each suahsk groupby choosing one of its tasksesder taskand assigning the othersto
it. It makes assignments only to non-cycle tasks that are not already assigned to other non-cycle
tasks, so it does not disturb existing groups. However it does take existing groups into account,
and it will use tasks to which other tasks are asssigned in its own groups.

Tasks which are initially assigned a resource (cycle task) participate in grouping. Such
a task may have its assignment changed to some other task, but in that case the other task will
be assigned the resource. In other words, if one task is assigned a resource initially, and it gets
grouped, then its whole group will be assigned that resource afterwards. Two tasks initially
assigned different resources will never be grouped together.

If ts is nonNULL, every task thakheG oupByResour ceConstrai nts assigns is added to
ts. This makes it easy to remove the groups when they are no longer wanted, by running through
t s and unassigning each of its taskéeTaskSet UnG oup (Section 5.6) does this.

KheG oupByResour ceConst rai nt's consults optioms_i nvari ant , and also

rs_group_by rc_off
A Boolean option which, whetr ue, turns grouping by resource constraints off.

rs_group_by rc_nmax_days
An integer option which determines the maximum number of consecutive days (in fact,
time groups of the common frame) examined by combinatorial grouping (Section 11.5.3).
Values 0 or 1 turn combinatorial grouping off. The default value is 3.

It also callskheFr ameOpt i on (Section 5.10) to obtain the common frame, and retrieves the event
timetable monitor from optiops_event _t i met abl e_noni t or (Section 8.3).

KheG oupByResour ceConst r ai nt s groups tasks whenever it can show that not assigning
the same resource to all of them must incur a cost. That does not mean that those tasks will
always be assigned the same resource in good solutions, any more than, say, a constraint

260 Chapter 11. Resource-Structural Solvers

requiring nurses to work complete weekends is always satisfied in good solutions. However,
in practice they usually will be, so it makes sense to require them to be, and decide afterwards
whether to break up a few groups. The following subsections explain what is done in detail.

11.5.1. Introduction to the implementation

This section introduces the implementation by giving some definitions and describing a data
structure which persists through the whole task grouping process for a given resource type.

A taskcoversa timet if it, or any task assigned to it directly or indirectly, is running.at
Two tasks arequivalenif they cover the same times and have the same constraints, taking tasks
assigned to them, directly or indirectly, into account. Thus, given two equivalent tasks, it does
not matter which of them is chosen for assignment to which resources.

A root taskis a non-cycle task that is available for grouping, because it is not assigned
to another non-cycle task, although it may be assigned to a cycle task, and other tasks may be
assigned to it. Aoot task seis a set of one or more equivalent root tasks. KHE’s algorithm
for testing equivalenc&heTaskEqui val ent (Section 4.6), is imperfect: if it declares that two
tasks are equivalent, then they are, but if it declares that they are not equivalent, they still might
be equivalent. Accordingly, the tasks of one root task set are always equivalent, but two different
root task sets might contain equivalent tasks. That will make the algorithm less efficient, but it
will not invalidate it.

KheTaskEqui val ent takes no account of whether two tasks being tested for equivalence
are assigned. Here, however, for two tasks to be equivalent they must both be unassigned. This
puts each initially assigned root task into a root task set containing only itself.

Each root task set is represented by an object containing the equivalent root tasks, the times
they cover, their shared domain, and the resource they are initially assigned (if any). Since its
tasks are equivalent, we may speak of the times covered by a root task set, its domain, and its
initial assignment as we would for any of its tasks.

A priority ordering is defined between root task sets. A root task set with an initial
assignment comes before a root task set without one in this ordering. When two root tasks both
have an initial assignment, or both do not, then the root task set with the smaller domain comes
before the one with the larger domain.

For each timein the cycle there is a list of these root task set objects, stored in priority order,
containing all the root task sets whose tasks cover that time. Each root task set object appearsin
one list for each time covered by its tasks.

Eachroot task set also has a Boolean flag. When set, it marks the root task set as not suitable
for providing the leader task of any group (the task that the group’s other tasks are assigned to).

Before any grouping is performed, all root tasks of the given resource type for which
non-assignment has a cost, accordinghteTaskNonAssi gnment HasCost (Section 4.6.1), are
inserted into this structure. When a group is made, its tasks are deleted (possibly causing some
root task sets to become empty and be deleted too) and assigned to the group’s leader task, and
then that leader task is re-inserted (possibly causing a new root task set to be created). So groups
formed at one stage are available for further grouping at later stages.

11.5. Grouping by resource constraints 261

11.5.2. Time-based grouping

Resource constraints are concerned with whether resources are busy at particular times, not with
which tasks they are busy with. So grouping by resource constraints cannot discover sets of
groupable tasks directly; rather, it discovers sets of groupable times.

Accordingly, our first problem isme-based groupinggiven two sets of timeg,; andX,
find a set of tasks which together cover all of the timeSpand none of the times of,, and
group them. (The need fot, will become clear in later sectionsl), andX, must be disjoint: if
they shared a time, the specification would contradict itself. The chosen tasks are free to run at
times outsidél, and X, or not. But because they will be assigned the same resource, no two of
them may run at the same time, or at two times from the same time group of the common frame,
andT, may not contain two times from the same time group of the common frame. Also, two
tasks initially assigned different resources may not be grouped together.

Some tasks could be grouped already or have duration greater than 1, so it can be non-trivial
to find suitable tasks. The algorithm is heuristic and simply stops early if it cannot find them. It
is important for the integrity of grouping by resource constraints that it should handle existing
groups reasonably, if only because later stages may encounter groups made by earlier stages.

If, for each timet in T, all root tasks that coverare equivalent, then it is strictly correct to
choose any one of them for grouping. Time-based grouping does this even when the tasks are
not equivalent, so it might sometimes choose inappropriate tasks to group. However, if grouping
were limited to times when all the tasks were equivalent, there would be very little of it. The
algorithm does try to ensure that the tasks in each group have similar domains, to maximize the
number of resources that may be assigned to them after grouping. It also accepts an optional
resource group paramegrnf present, the leader tasks of all groups must have dogain

The function for time-based grouping does not make just one group; rather, it takes an
integer parametan, and tries to make up tm groups with the requested properties. If some
groups already have these properties when the function is called, they do not count towasds
explained below, the function is only interested in root task sets that cover some of the times of
T, but not all of them, ensuring that existing groups with the requested properties are ignored.

The function chooses root task sets sequentially, then makes each group by taking one task
from each of the chosen root task sets. There is @& sétimes that the root task sets not chosen
yet must cover. InitiallyT is set toT,. Only root task sets that cover at least one timé @ire
chosen. As each is chosen, the times ffbroovered by it are removed from. The function
terminates wheil is empty, so all the times dff, must be covered by the chosen root task sets.

There is also a sét of times that the root task sets not chosen yet must not cover. Initially,
Xis set toX,, plus, for each timein T, all the times in the time group from the common frame
containingt other thart itself. (It would be a mistake to choose a root task set that covered such
a time, since then whetncame to be covered later, that would be two times from the same time
group of the common frame.) Aseach root task set is chosen, for eactikiaidt covers, all the
times in the time group from the common frame contairtiage added tX. Only root task sets
that do not cover any of the times ¥fare chosen, guaranteeing not only that none of the times
of X, will be covered, but also that no two root task sets cover the same time, or cover two times
from the same time group of the common frame, fulfilling all requirements concerning time.

The first root task set chosen is leaderroot task set, the one that the leader tasks of the

262 Chapter 11. Resource-Structural Solvers

groups will be taken from. From all root task sets not marked as unsuitable for providing leader
tasks, and which cover at least one of the time$ diut not all of them, and none of the times

of X, choose a root task set which is smallest in the priority ordering defined earlier. If thereis a
g parameter, the chosen root task set must also have dgndaime leader root task set is found

by searching the lists of root task sets for the time$ oDelete fromT the times that this root

task set covers, and addXahe times of the common frame time groups holding these times.

The other root task sets, tfalowerroot task sets, are chosen as follows. For any tiofe
T, from all root task sets ot's list which do not cover any of the times ¥fand are assignable to
the tasks of the leader root task set, choose one which is smallest in priority order. Del€efe from
the times that this root task set covers, and adXltize times of the common frame time groups
holding these times. Repeat uriiis empty.

Make one group by taking one task from the leader root task set and assigning one task from
each of the other root task sets to it. Delete all these tasks from their root task sets, then re-insert
the leader task; it will go into a different root task set because of all its new followers. Repeat this
while at least one task remains in each of the chosen root task satsiambt reached. After
that, if more groups are needed, try again to find a leader root task set, and so on.

If the algorithm is unable to choose a suitable leader root task set, it stops early, having made
fewer than the requested number of groups. If it is unable to choose a suitable follower root task
set, it marks the current leader root task set as not suitable for providing leader tasks, and tries
again to find a leader root task set. These marks are cleared when the function returns.

When some root task sets are initially assigned, the algorithm is somewhat different. These
tasks already get priority when searching for leader root task sets, because they come first in the
priority ordering. Butin addition, when an initially assigned root task set is chosen as leader, the
search for follower root task sets makes two passes over the uncovered ti@eshe first pass,
only root task sets initially assigned the same resource as the leader task set are considered. On
the second pass, only root task sets with no initial assignment are considered.

Suppose that two tasks are initially assigned the same resource, but that their domains have
a non-empty symmetric difference, so that neither task can be assigned to the other. Thisis a
problem for the algorithm as described. There are several possible solutions. The data structure
could be changed to allow groups to exist without requiring assignment to a leader task; but how
such groups would persist over the long term is not clear. The domains could be changed; but
that might be awkward to undo later. Probably the best solution would be to introduce a new task
to lead both tasks, since that would naturally be undone when the grouping is removed later; but
the author prefers to avoid introducing tasks which are not derived from meets.

Our algorithm’s solution is as follows. As already presented, it only allows a root task
set with an initial assignment to be chosen when it is either being chosen as a leader, or as a
follower whose leader has the same initial assignment. Beyond this, if a follower with an initial
assignment which is the same as the leader’s initial assignment fails to be chosen for any reason,
the leader is marked as unsuitable for providing leader tasks, just as though no follower at all
could be found (even if there are other suitable followers). Altogether this avoids the main
danger, which is the creation of two overlapping groups with the same initial assignment.

11.5. Grouping by resource constraints 263

11.5.3. Combinatorial grouping

For each resource type, after setting up the data structure described earlier, the next step in
grouping by resource constraintcismbinatorial groupingto be described now.

Letmbe the value of thes_gr oup_by_r c_max_days option. Iterate over all pair$, t),
wheref is a subset of the common frame containkadjacent time groups, for atlsuch that
2 <k <m, andt is a time fromf’s first time group. Handle each pair separately, as follows.

Build all sets of timed, that includet from f’s first time group, and any one time, or none,
from each off's other time groups. If hask time groups, each withtimes (for example), there
are(n+ 1)k'1combinations, sos_group_by_rc_max_days must be small. LeX, be the set of
all times in the time groups dfwhich are not iril,.

For eachT, find a set of tasks of the given resource type and a resousteh that the
tasks can be grouped, the group can be assigmexitwo tasks cover two times during the same
time group of the common frame, and the tasks, taken together, cover all of the tifgasnaf
none of the times oK,. They may cover times outside This is done by time-based grouping,
although the group is only temporary here. If such tasks cannot be found, ifjrore

Temporarily assignto the tasks. Observe the cost of each cluster busy times and limit busy
times monitor off whose constraint appliesto all resources of the given resource type, and which
monitors times withirf only. (This is done by tracing the assignment, and for each monitor
whose cost changed, checking whether it satisfies these conditions.) If any of these monitors has
non-zero cost, then assigning tasks running,and notX, has non-zero cost for all resources,
sois abad idea. So again igndig

If there is exactly one non-ignordd, then any assignment of any resour¢eany task that
covers time will incur a cost unless is assigned tasks that cover all of the time§ gand none
of the times ofX,. This justifies requiring every task of the given resource type that covers
lie in a group that covers all of the times ©f and none of the times of,. So call time-based
grouping, passing it the one non-ignofggand itsX,,, with mset to infinity and n@.

Sadly, X, is not reflected in the groups. For example, if the successful combination ends
with a free day, that is not recorded. AndTif contains only one time, no groups are made.

If processing ongf,t) pair leads to some grouping, then the function starts again from the
first pair containing. It may find groups that were not available before. Consider an instance
with one constraint specifying that each weekend must be either free on both days or busy on
both, and another specifying that a day shift must not follow a night shift. First, the Saturday and
Sunday night tasks will be grouped; then, the Saturday and Sunday day tasks will be grouped,
because the Saturday day tasks will not group with any Sunday night tasks, since the Sunday
night tasks are all already grouped with Saturday night tasks.

The groups made in this way can be a big help to solvers. In inst@he€Post . xnl , for
example, each Friday night task is grouped with tasks for the next two nights. Good solutions
always assign these three tasks to the same resource, owing to constraints specifying that the
weekend following a Friday night shift must be busy, that each weekend must be either free on
both days or busy on both, and that a night shift must not be followed by a day shift. A time
sweep task assignment algorithm cannot by itself look ahead and see such cases coming, but
combinatorial grouping allows it to do so.

264 Chapter 11. Resource-Structural Solvers

11.5.4. Combination elimination

Some combinations examined by combinatorial grouping may have zero cost as far as the
monitors used to evaluate it are concerned, but have non-zero cost when evaluated in a different
way, involving the overall supply of and demand for resources. Such combinations can be ruled
out, leaving fewer zero-cost combinations, and potentially more task grouping.

For example, suppose there is a maximum limit on the number of weekends each resource
can work. If this limit is tight enough, it will force every resource to work complete weekends,
even without an explicit constraint, if that is the only way that the available supply of resources
can cover the demand for weekend shifts. This example fits the pattern to be given now, setting
C to the constraint that limits the number of busy weekeiids, the times of all weekend$;,
to the times of théth weekend, anfl to the number of days in theh weekend.

Take any any set of timés Let §(T), thesupply during T be the sum over all resources
of the maximum number of times thatan be busy durin@ without incurring a cost. LeD(T),
thedemand during Tbe the sum over all tasksor which non-assignment would incur a cost,
of the number of timeg is running duringl. ThenS(T) = D(T) or else a cost is unavoidable.

In particular, take any cluster busy times constr&ntvhich applies to all resources, has
time groups which are all positive, and has a non-trivial maximum INMnit(The analysis also
applies when the time groups are all negative and there is a non-trivial minimum limit, $dtting
to the number of time groups minus the minimum limit.) Suppose thenetare groups';, for
1<i < n, and let their union b#.

Letf be the number of time groups from the common frame with a non-empty intersection
with T,. This is the maximum number of times frofduring which any one resource can be
busy without incurring a cost, since a resource can be busy for at most one time in each time
group of the common frame.

Let F be the sum of the largebt f values. This is the maximum number of times frdm
that any one resource can be busy without incurring a cost: if it is busy for more times than this,
it must either be busy for more thgrimes in somd;, or else it must be busy for more thih
time groups, violating the constraint’s maximum limit.

If there areRresources altogether, then the supply dufiing is bounded by
ST)<RF

sinceC is assumed to apply to every resource.
As explained above, to avoid cost the demand must not exceed the supply, so

D(T) < XT) < RF

Furthermore, ifD(T) = RF, then any failure to maximize the use of workload will incur a cost.
That is, every resource which is busy durifjgnust be busy for the fuf| times inT,.

So the consequence for grouping is thisD{iT) > RF, we may assume that if a resource is
busy in one time group of the common frame that overfagien it is busy in every time group
of the common frame that overlaps When searching for groups, the option of being assigned
in some of these time groups but not others is removed. With fewer options, there is more chance
that some combination might be the only one with zero cost, allowing more task grouping.

11.5. Grouping by resource constraints 265

11.5.5. Profile grouping

Profile grouping is perhaps best introduced by an example. Suppose that on Monday, Tuesday,
Wednesday, Thursday, and Friday there is a demand for 6 nurses on the night shift, but that on
Saturday and Sunday nights the demand drops to 4 nurses. Consider any division of the night
shifts into sequences of one or more shifts on consecutive days, where the shifts of any one group
are assigned the same resource. Irrespective of how these sequences are made, at least two must
begin on Monday, and at least two must end on Friday.

Now suppose that a limit active intervals constraint, applicable to all resources, specifies that
night shifts on consecutive days must occur in sequences of at least 2 and at most 3. Then the
two sequences of night shifts that must begin on Monday must contain a Monday night and a
Tuesday night shift at least, and the two that end on Friday must contain a Thursday night and a
Friday night shift at least. So here are two time-based groupings, of Monday and Tuesday nights
and of Thursday and Friday nights, for each of which we can build two task groups.

Suppose that we already have a task group which contains a sequence of 3 night shifts on
consecutive days. This group cannot be grouped with any night shifts on days adjacent to the
days it currently covers. So for present purposes the tasks of this group can be ignored. This can
change the number of night shifts running on each day, and so change the amount of grouping.
For example, in instand@d - GPost . x| all the Friday, Saturday, and Sunday night shifts get
grouped into sequences of 3, and 3 is the maximum, so those night shifts can be ignored here,
and so every Monday night shift begins a sequence, and every Thursday night shift ends one.

We now generalize this example, ignoring for the moment the issues raised by varying
task domains. Le€ be any limit active intervals constraint which applies to all resources, and
whose time groups are all positive and all singletons. These time groups may be represented
by a sequence of timds... t. LetC’s limits beC,, andC,, and suppos€,,is at least 2
(if not, there can be no grouping based@n The following is relative t&C, and is repeated for
each such constraint. Constraints with the same time groups are notionally merged, allowing the
minimum limit to come from one constraint and the maximum limit from another.

Consider a task which covers a number of adjacent times €oagual to or exceeding
Chax Thismaximaltask can have no influence on grouping to sat@s/minimum limit, so it
may be ignored, that is, the function may run as though the task is not there. This applies both
to tasks which are present at the start, and tasks which are constructed along the way.

Let n, be the number of tasks that cowgmot including maximal tasks. The together
make up therofileof C. The data structure described earlier makes it easy to find the profile.

For eachi such thatn,_, <n, n,—n,_; groups of length at lea€l ,;,, must start at;. They
may be constructed using time-based grouping, setijng{t;.,... ’ti+Cmin—l}’ Xyto{t,_,, ti+CmaJ’
andmto n, — n,_, minusc;, the number of existing tasks (not including maximal ones) that cover
all of T, and none ofX;,. Some of the times iff, and X, may not exist; in that case, omit the
non-existent ones but still do the grouping, providgcas at least 2 elements. The case for

sequences ending jais symmetrical.

If C has no history, we may saf andn,, , to 0, allowing groups to begin &tand end at,.
If C has history, we do not know how many tasks are running ouGjde we set, andn,_, to
infinity, preventing groups from beginningigiand ending at,.

The general aim is to pack blocks of size freely chosen betfigerandC, ., into a given

266 Chapter 11. Resource-Structural Solvers

profile, and group wherever it can be shown that the packing can only take one form. But we are
not interested in optimal solutions (ones with the maximum amount of grouping), so we do not
search for other cases. However, some apparently different cases are actually already covered.
For example, suppos€,,,=2andC_ . =3 withn,=n.=0andn,=n;=n,=4. Then 4

groups of length 3 can be built. But the function does this: it first builds 4 groups of length 2
begining at,, then 4 groups of length 3 endingtatincorporating the length 2 groups.

Finally, we return to the issue of varying task domains. Suppose that one senior nurse is
wanted each night, four ordinary nurses are wanted each week night, and two ordinary nurses
are wanted each weekend night. Then the two groups starting on Monday nights should group
demands for ordinary nurses, not senior nurses. Nevertheless, tasks with different domains are
not totally unrelated. A senior nurse could very well act as an ordinary nurse on some shifts.

We still aim to buildM = n, —n,_, — ¢, groups that cover all of ; and none oK, However,
we do this by making several calls on time-based grouping, utilizing {herameter. For each
g appearing as a domain in any root task set running attirfied ny;, the number of tasks (not
including maximal ones) with domamrunning att;, andng(i_l), the number at,_,. For eacly
such thainy; > ny;_,, addg andMy = ny; - ny;_;, to a list. Then re-traverse the list. For eagh
on it, calltime-based grouping, passimg= min(M, M,) andg, then subtract frorM the number

of groups actually made. Stop wh&h= 0or the list is exhausted.

11.6. Grouping by resource
Grouping by resources another kind of task grouping, obtained by calling

bool KheTaski ngG oupByResour ce(KHE _TASKI NG t aski ng,
KHE_OPTI ONS options, KHE_TASK SET ts);

Like grouping by resource constraints, it groups tasks whose resource types are covered by
t aski ng which lie in adjacent time groups of the common frame, and adds each task which it
makes an assignment tatte (if t s isnonNULL). However, the tasks are chosen in quite a differ-

ent way: each group consists of a maximal sequence of tasks which lie in adjacent time groups
of the frame and are currently assigned to the same resource. The thinking is that if the solutionis
already of good quality, it may be advantageous to keep these runs of tasks together while trying
(by means of any repair algorithm whatsoever) to assign them to different resources.

When a grouping made bsheTaski ngG oupByResour ce and recorded in a task set is no
longer needed, functiotheTaskSet UnG oup (Section 5.6) may be used to remove it.

11.7. The task grouper

A task groupersupports a more elaborate form of grouping, one which allows the grouping to
be done, undone, and redone at will.

The first step is to create a task grouper object, by calling
KHE_TASK GROUPER KheTaskG ouper Make(KHE_RESOURCE TYPE rt, HA ARENA a);

This makes a task grouper object for tasks of typelt is deleted when is deleted. Also,

11.7. The task grouper 267

voi d KheTaskG ouper d ear (KHE_TASK GROUPER t Q) ;

clears g back to its state immediately aftiéie TaskG ouper Make, without changingt ora.
To add tasks to a task grouper, make any number of calls to

bool KheTaskG ouper AddTask(KHE TASK GROUPER tg, KHE TASK t);

Each task passed tg in this way must be assigned directly to the cycle task for some resource
r of typert. The tasks passed tg by KheTaskG ouper AddTask which are assigned at the
time they are passed are placed in one group. No assignments are made.

If true isreturned bykheTaskG ouper AddTask, t is theleader tasKor its group: it is the
first task assigned which has been passedttg. If f al se is returned; is not the leader task.

Adding the same task twice is legal but is the same as adding it once. If the task is the leader
task, it is reported to be so only the first time it is passed.

Importantly, although the grouping is determined by which resources the tasks are assigned
to, it is only the grouping that the grouper cares about, not the resources. Once the groups are
made, the resources that determined the grouping become irrelevant to the grouper.

At any time one may call

voi d KheTaskG ouper G oup(KHE_TASK_GROUPER t g);
voi d KheTaskG ouper UnG oup(KHE_TASK_GRCUPER t g);

KheTaskG ouper Group ensures that, in each group, the tasks other than the leader task are
assigned directly to the leader task. It does not change the assignment of the leader task.
KheTaskG ouper UnGroup ensures that, for each group, the tasks other than the leader task are
assigned directly to whatever the leader task is assigned to (possibly nothing). As mentioned
above, the resources which defined the groups originally are irrelevant to these operations.

If KheTaskG ouper G oup cannot assign some task to its leader task, it adds the task’s task
bounds to the leader task and tries again. If it cannot add these bounds, or the assignment still
does not succeed, it aborts. In addition to ungroupfhgTaskG ouper UnG oup removes any
task bounds added tKheTaskG ouper G oup. In detail, KheTaskG ouper G oup records the
number of task bounds present when it is first called, kredaskG ouper UnG oup removes
task bounds from the end of the leader task until this number is reached.

A task grouper’s tasks may be grouped and ungrouped at will. This is more general than
usingkheTaskSet UnGr oup, since after ungrouping that way there is no way to regroup. The extra
power comes from the fact that a task grouper contains, in effect, a task set for each group.

11.8. Other resource-structural solvers

This section documents some miscellaneous functions that reorganize task trees, represented by
taskings. They assume that only unfixed tasks lie in taskings, and they preserve this condition.

A good way to minimize split assignments is to prohibit them at first but allow them later.
To change a tasking from the first state to the second, call

bool KheTaski ngAl | owSpl it Assi gnment s(KHE_TASKI NG t aski ng,
bool unassigned only);

268 Chapter 11. Resource-Structural Solvers

It unfixes and unassigns all tasks assigned to the tasksséf ng and adds them toaski ng,

returningt r ue if it changed anything. If one of the original unfixed tasks is assigned (to a cycle
task), the tasks assigned to it are assigned to that task, so that existing resource assignments are
not forgotten. Ifunassi gned_onl y istrue, only the unassigned taskstdski ng are affected.

(This option is included for completeness, but it is not recommended, since it leaves few choices
open.)KheTaski ngAl | owSpl i t Assi gnent s preserves the resource assignment invariant.

If any room or any teacher is better than none, then it will be worth assigning any resource
to tasks that remain unassigned at the end of resource assignment. Function

voi d KheTaski ngEnl ar geDomai ns(KHE_TASKI NG t aski ng, bool unassigned only);

permits this by enlarging the domains of the tasks a¥ki ng and any tasks assigned to them
(and so on recursively) to the full set of resources of their resource typesasi§i gned_onl y is

true, only the unassigned tasks@ski ng are affected. The tasks are visited in postorder—that

Is, a task’s domain is enlarged only after the domains of the tasks assigned to it have been
enlarged—ensuring that the operation cannot fail. Preassigned tasks are not enlarged.

This operation works, naturally, by deleting all task bounds from the tasks it changes. Any
task bounds that become applicable to no tasks as a result of this are deleted.

11.9. Task groups

There are cases where two tasks are interchangeable as far as resource assignment is concerned,
because they demand the same kinds of resources at the same timéassKTgmeupembodies
KHE's approach to taking advantage of interchangeable tasks.

Thefull task setof an unfixed task is the task itself and all the tasks assigned to it, directly
or indirectly (all its followers), omitting tasks that do not lie in a meet. An unfixed tashnis-
completdf each task of its full task set lies in a meet that has been assigned a time. Two time-
complete tasks arime-equalif their full task sets have equal cardinality, and the two sets can
be sorted so that corresponding tasks have equal starting times, durations, and workloads. Two
unfixed tasks arenterchangeabldf they are time-complete and time-equal, and their domains
are equal. When two resources are assigned to two interchangeable tasks, either resource can be
assigned to either task and it does not matter which is assigned to which. (Exception: if a limit
resources constraint contains one of the tasks but not the other, it does matter.)

A task groups a set of pairwise interchangeable tasks. Task groups occur naturally when
there are linked events, or when time assignments are regular. Virtually any resource assignment
algorithm can benefit from task groups. Assigningto a task group rather than to a task eliminates
symmetries that can slow down searching. A given resource can only be assigned to one task of
a task group, since its tasks overlap in time, so task groups help with estimating realistically how
many resources are available, and how much workload is open to a resource.

Objects of type&KHE_TASK_GROUP hold one set of interchangeable tasks, and objects of type
KHE_TASK_GROUPS hold a set of task groups. Such a set can be created by calling

KHE_TASK GROUPS KheTaskG oupsMakeFroniTaski ng(KHE _TASKI NG t aski ng) ;

It places every task dfaski ng into one task group. The task groups are maximal.

11.9. Task groups 269

To remove a set of task groups (but not their tasks), call
voi d KheTaskG oupsDel et e(KHE_TASK _GROUPS task_groups);
To access the task groups, call

int KheTaskG oupsTaskG oupCount (KHE_TASK GROUPS t ask_groups);
KHE_TASK _GROUP KheTaskG oupsTaskG oup(KHE TASK GROUPS task_groups, int i);

To access the tasks of a task group, call

i nt KheTaskG oupTaskCount (KHE TASK GROUP t ask_group);
TASK KheTaskG oupTask(KHE_TASK GROUP task, int i);

There must be at least one task in a task group, otherwise the task group would not have been
made. Task groups are not kept up to date as the solution changes, so if time assignments are
being altered the affected tasks cannot be relied upon to remain interchangeable.

The tasks of a task group have the same total duration, total workload, and domain, and
these common values are returned by

i nt KheTaskG oupTot al Durati on(KHE_TASK _GROUP t ask_group);
fl oat KheTaskG oupTot al Wor kl oad(KHE_TASK_GROUP task_group);
KHE_RESOURCE_GROUP KheTaskG oupDomai n(KHE_TASK GROUP task_group);

KheTaskG oupTot al Dur ati on is the value oKheTaskTot al Dur ati on shared by the tasks, not
the sum of their durations; and similarly fisiieTaskG oupTot al Wor kI oad.

For the convenience of algorithms that use task groups, function

int KheTaskG oupDecreasi ngDur ati onCnp(KHE_TASK_GROUP t g1,
KHE_TASK_CGROUP tg2);

is a comparison function that may be used to sort task groups by decreasing duration.

Because the tasks of a task group are interchangeable, it does not matter which of them is
assigned when assigning resources to them. This makes the following functions possible:

i nt KheTaskG oupUnassi gnedTaskCount (KHE_TASK GROUP task_group);

bool KheTaskG oupAssi gnCheck(KHE_TASK GROUP task_group, KHE RESOURCE r);
bool KheTaskG oupAssi gn(KHE_TASK GROUP task _group, KHE RESOURCE r);

voi d KheTaskG oupUnAssi gn(KHE_TASK GROUP task_group, KHE RESOURCE r);

KheTaskG oupUnassi gnedTaskCount returns the number of unassigned taskisask_gr oup;
KheTaskG oupAssi gnCheck checks whether can be assigned to a task tdsk_group (by
finding the first unassigned task and checking thedteTaskG oupAssi gn is the same, only
it actually makes the assignment, usikhgTaskAssi gn, if it can; andkheTaskG oupUnAssi gn
finds a task of ask_gr oup currently assigned, and unassigns that task.

The tasks of a task group may have different constraints, in which case assigning one may
change the solution cost differently from assigning another. This is handled heuristically as
follows. The first timeKheTaskG oupAssi gn returnst r ue, it tries assigning to each task of
the task group, notes the solution cost after each, and sorts the tasks into increasing order of this

270 Chapter 11. Resource-Structural Solvers

cost. Then it and all later calls assign the first unassigned task in this order.
The usual debug functions are available:
voi d KheTaskG oupDebug(KHE TASK GROUP task _group, int verbosity,
int indent, FILE *fp);

voi d KheTaskG oupsDebug(KHE TASK GROUPS task _groups, int verbosity,
int indent, FILE *fp);

printt ask_group andt ask_gr oups ontof p with the given verbosity and indent.

Chapter 12. Resource Solvers

A resource solvemssigns resources to tasks, or changes existing resource assignments. This
chapter presents the resource solvers packaged with KHE.

12.1. Specification
The recommended interface for resource solvers, definigtkirsol vers. h, is

t ypedef bool (*KHE_TASKI NG SOLVER) (KHE _TASKI NG t aski ng,
KHE_OPTI ONS options);

It assigns resources to some of the tasksaski ng, influenced byopt i ons, returningt r ue if

it changed, or at least usually changes, the solution. Taskings were defined in Section 5.5. The
opti ons parameter is as in Section 8.2; by convention, options consulted by resource solvers
have names beginning witls _.

A resource solver could focus on the initta@instructiorof a resource assignment, or on the
repair of an existing resource assignment. Itis not wise, however, to try to classify solversrigidly
in this way, because some can be used for both. A construction solver can be converted into a
repair solver by prefixing it with some unassignments, and a repair solver can be converted into a
construction solver by including missing assignments among the defects that it is able to repair.

Except for preassignments, there is no reason to assign resources, at least in large numbers,
before times are assigned. Accordingly, a resource solver may choose to assume that all meets
have been assigned times. It may alter time assignments in its quest for resource assignments.

The usual way to convert preassignments in the instance into assignments in the solution
is to callkheTaskTr eeMake (Section 11.3); this is one of several routine jobs that it carries out.
KheTaskTr eeMake does not fix these assignments, although it does reduce the domains of the
affected tasks to singletons. So other solvers should not be able to move preassigned tasks to
other resources, but they can unassign them, which will produce errors if any preassigned tasks
are unassigned when the solution is written.

A split assignmens an assignment of two or more distinct resources to the tasks monitored
by an avoid split assignments monitor. partial assignmenis an assignment of resources to
some of these same tasks, but not all. An assignment can be both split and partial.

12.2. The resource assignment invariant

If all tasks have duration 1, then the matching defines an assignment of resources to tasks which
maximizes the number of assignments. Although larger durations are common, and maximizing
the number of assignmentsis not the only objective, still it is clear from this fact that the matching
deserves a central place in resource assignment.

271

272 Chapter 12. Resource Solvers

Accordingly, the author’'s work in resource assignment [9] emphasizes algorithms that
preserve the following condition, called tresource assignment invariant

The number of unmatchable demand tixels equals its initial value.

Assignments are permitted only when the number of unmatchable demand tixels does not
increase. This keeps the algorithms on a path that cannot lead to new violations of required avoid
clashes constraints, avoid unavailable times constraints, limit busy times constraints, and limit
workload constraints. In practice, most tasks can be assigned while preserving this invariant.

The Boolean optioms_i nvari ant is used to tell resource solvers whether they should
preserve the resource assignment invariant or not. In principle, every resource solver should
consult and obey this option; in practice, many do but not all. A reasonable strategy isto preserve
the invariant for most of the solve, but to relax it near the end, to allow as many assignments as
possible to be made. This strategy is followed by KHE'’s high-level resource solvers (Section
12.10). They set this option, so it is futile for the end user to set it when using these functions.

The invariant is not usually checked after each individual operation. Rather, a sequence
of related operations is carried out, and then the number of unmatchable demand tixels at the
end of the sequence is compared with the number at the start. If it has increased, the sequence
of operations needs to be undone. Such sequences wereatalteid sequenceas Section 4.7,
where the following code (using a mark object) was recommended for obtaining them:

mar k = KheMar kBegi n(sol n);
success = SoneSequenceC Qperations(...);
KheMar KEnd(mar k, !success);

When preserving the resource invariant, this needs to be changed to

mar k = KheMar kBegi n(sol n);

init_count = KheSol nvat chi ngDef ect Count (sol n);

success = SomeSequencef Qperations(...);

i f(KheSol nMat chi ngDef ect Count (soln) > init_count)
success = fal se;

KheMar KEnd(mar k, !success);

This works without the matching too, since th@meSol nMat chi ngDef ect Count returns O.
As a simple but effective aid to getting this right, this code is encapsulated in functions

voi d KheAt onmi cQper at i onBegi n(KHE_SOLN sol n, KHE_MARK *mark,
int *init_count, bool resource_invariant);

bool KheAt oni cOper ati onEnd(KHE_SCLN sol n, KHE MARK *nark,
int *init_count, bool resource_invariant, bool success);

which may be placed before and after a sequence of operations, like this:

KheAt omi cOper ati onBegi n(sol n, &mark, & nit_count, resource_invariant);

success = SoneSequenceCf Cperations(...);

KheAt omi cOper ati onEnd(soln, &mark, & nit_count, resource_invariant,
success);

12.2. The resource assignment invariant 273

Heremark andinit_count are variables of typ&HE_MARK andi nt, not used for anything
else,resource_invariant istrue if the operations must preserve the resource invariant to
be considered successful, asutcess is their diagnosis of their own success, not including
checking the resource invariarkheAt om cOper at i onEnd returng r ue if success istrue and

(if resource_i nvariant istrue)the number of unmatchable demand tixels did not increase:

voi d KheAt om cQper ati onBegi n(KHE_SCLN sol n, KHE MARK *nark,
int *init_count, bool resource_invariant)

{
»mar k = KheMar kBegi n(sol n);
*ini t_count = KheSol nMat chi ngDef ect Count (sol n);

}

bool KheAt oni cOperati onEnd(KHE_SCLN sol n, KHE MARK =*narKk,
int *xinit_count, bool resource_invariant, bool success)

{

if(resource_invariant &&
KheSol nMat chi ngDef ect Count (sol n) > *init_count)
success = fal se;
KheMar KEnd(*mar k, !success);
return success;

}

The code is trivial, but useful because it encapsulates a common but slightly confusing pattern.

If the resource invariant is being enforced, there may be no need to include the cost of
demand monitors in the solution cost, since their cost cannot increase. They must continue to
monitor the solution, however, so detaching is not appropriate. Function

voi d KheDi sconnect Al | DemandMoni t or s(KHE_SCLN sol n, KHE RESOURCE TYPE rt);

disconnects all demand monitors (or all demand monitors which monitor entities of ttype

if rt is nonNULL) from all their parents, including the solution object if it is a parent. Thus, as
required, they continue to monitor the solution, but the costs they compute are not added to the
cost of any group monitorkheSol nMat chi ngDef ect Count still works, however, and there is
nothing to prevent them from being made children of other group monitors later.

12.3. Unchecked, checked, ejecting, and Kempe task and task set moves

The operation of assigning a resource to a task is fundamental to resource solving. This section
defines four variants of this operation (unchecked, checked, ejecting, and Kempe), and presents
functions for applying them to individual tasks and to task sets (Section 5.6).

In all cases, the task or tasks to be moved can be assigned or unassigned initially; either way,
they are reassigned to the given resource. If the given resouMdelisthat’s fine too; it means
unassignment, even for the Kempe functions, where it would be more natural, arguably, for the
operation to be undefined. The functions all retuahse when they either cannot carry out the
requested changes, or they can but that changes nothing. Failed operations leave the solution in
its state at the point of failure, so calls on these functions (exteptskMveResour ce) should
be enclosed iKheMar kBegi n andkheMar kEnd, to undo failed attempts properly.

274 Chapter 12. Resource Solvers

An unchecked task movjust a call on platform function
bool KheTaskMoveResource(KHE TASK task, KHE RESOURCE r);

Although it makes the checks described in Section 4.6, it is called ‘unchecked’ here, because it
does not check whether the move introduces any incompatible tasks (defined below).

An unchecked task set moigea set of unchecked task moves to the same resource, as
implemented by function

bool KheTaskSet Move(KHE _TASK SET ts, KHE RESOURCE r);

defined here. It moves the taskgaftor using calls ta<heTaskMoveResour ce. It returng rue
whent s is non-empty and the individual moves all succeed.

An ejecting task movis a task move which both moves a resource to a tasleprutithat
IS, unassigns) the resource from all incompatible tasks. This is done by function

bool KheEj ectingTaskMove(KHE TASK task, KHE RESOURCE r, bool allow eject);

whenal | ow_ej ect istrue. It movestask to r, unassigning from all incompatible tasks
(defined below), and returning ue if it succeeds. Failure can be duettask being fixed,
or r not lying in the domain ot ask, orr being already assigned task, or because some
incompatible task cannot be unassigned, or it can belduiw_ej ect isfal se, meaning that
ejection is not allowed (this is called an checked task move above).

KheEj ecti ngTaskMove considers two tasks to be incompatible when they overlap in time.
However, in nurse rostering, two tasks are often considered incompatible when they occur on the
same day, so another function is offered which handles such cases using frames (Section 5.10):

bool KheEj ecti ngTaskMoveFrame(KHE_TASK task, KHE_RESOURCE r,
bool allow eject, KHE_FRAME frane);

This is the same ageEj ect i ngTaskMve except that two tasks are considered incompatible if
any time that one task is running lies in the same time grotdipafe as some time that the other
task is running. Herér ame may not be a null frame.

Unlike the corresponding function for ejecting meet mowasE ect i ngTaskMve and
KheEj ect i ngTaskMoveFr ane do not consult the matching or use a group monitor. Instead, when
r is nonNULL, they use ’s timetable monitor to find the tasks assignethat are incompatible
with t ask and unassign them, returnifgl se if any cannot be unassigned, because they are
fixed or preassigned. Then they dgieTaskMveResour ce and return what it returns.

It is not likely that some incompatible tasksk2 cannot be unassigned because it is fixed.
This is becauskheTaskFi r st UnFi xed(t ask2) (Section 4.6.1) is unassigned, nask?2.

An ejecting task set movis a set of ejecting task moves to the same resource. This
operation is carried out by functions

bool KheEj ectingTaskSet Move(KHE TASK SET ts, KHE RESOURCE r,
bool allow eject);

bool KheEj ecti ngTaskSet MoveFranme(KHE TASK SET ts, KHE RESOURCE r,
bool allow eject, KHE FRAME frane);

12.3. Unchecked, checked, ejecting,and Kempe task and task set moves 275

which perform ejecting task moves on the elementssofwithout or with a frame, returning
t rue whent s is non-empty and all of the individual ejecting task moves succeed.

A Kempe task movs carried out by functions

bool KheKenpeTaskMove(KHE_TASK task, KHE RESOQURCE r);
bool KheKenpeTaskMoveFrane(KHE TASK task, KHE RESOURCE r, KHE FRAME frame);

If r is NULL, this is just an unassignment as usual. Otherwisegsk is initially unassigned,

or assigned, f al se is returned. Otherwise, leR be the resource initially assignedttask.
KheKenpeTaskMyve performs a sequence of ejecting task moves, firstask tor, then of the

tasks ejected by this move t@, then of the tasks ejected by those moves,t@and so on until

there are no ejected tasks. It fails if any of these ejecting task moves fails, or if tries to move
some task twice. There is bl ow_ej ect parameter because it is inherent in the Kempe idea
to keep going until all tasks are assigned.

A Kempe task set moveapproximately a set of Kempe task moves, carried out by

bool KheKenpeTaskSet Move(KHE TASK SET ts, KHE RESOURCE r);
bool KheKenpeTaskSet MoveFrane(KHE TASK SET ts, KHE RESOURCE r,
KHE FRAME frane);

The tasks must initially be assigned the same resource. This is not exactly like moving the tasks
one by one, because the rule about not moving a task twice applies to the operation as a whole.

Finally, there is a way to select the kind of move to make on the fly, defined by type

t ypedef enum {
KHE_MOVE_UNCHECKED,
KHE_MOVE_CHECKED,
KHE_MOVE_EJECTI NG
KHE_MOVE_KEMPE,

} KHE_MOVE_TYPE;

The usual four functions are offered:

bool KheTypedTaskMove(KHE TASK task, KHE RESCURCE r, KHE MOVE TYPE nt);

bool KheTypedTaskMoveFrame(KHE TASK task, KHE RESOURCE r,
KHE_MOVE_TYPE nt, KHE FRAME frane);

bool KheTypedTaskSet Move(KHE TASK SET ts, KHE RESOURCE r,
KHE_MOVE_TYPE nt);

bool KheTypedTaskSet MoveFrame(KHE TASK SET ts, KHE RESOURCE r,
KHE_MOVE_TYPE nt, KHE FRAME frane);

These switch ont , then call one of the functions above. There is also

char *KheMveTypeShow KHE_MOVE_TYPE nt) ;

which returns the obvious one-word descriptionrof " unchecked" and so on.

276 Chapter 12. Resource Solvers

12.4. Frame operations for resource solvers

This section presents some operations on frames (Section 5.10) of interest to resource solvers.
These operations mostly take a frame and a resource as parameters, and operate on the set of
tasks lying in the frame which are currently assigned the resource. We sometimes refer to this
combination of a frame and a resource assource framgbut usually we just call it a frame.

There is a natural connection between resource frames and task sets, made manifest by
KHE_TASK_SET KheFraneTaskSet (KHE_FRAME frame, KHE RESOURCE r);

It returns a new task set containing the proper roots of all tasks which are currently assigned
and which lie in meets that overlap in time with the time groupgs afe. No task appears twice.
Expressions such as ‘the tasks of the frame’ below refer to the tasks of this task set.

The usual visit operations are available:
voi d KheFrameSet Vi si t Num{ KHE_FRAME franme, KHE RESOURCE r, int nunj;
i nt KheFraneVi sit Nun{ KHE_FRAME frame, KHE RESOURCE r);
bool KheFrameVi sited(KHE FRAME frame, KHE RESOURCE r, int slack);
voi d KheFrameVisit (KHE _FRAMVE frame, KHE RESOURCE r);
voi d KheFrameUnVi sit (KHE_FRAME frane, KHE RESOURCE r);

These do to the frame’s tasks what the corresponding operations on task sets do.

As Section 5.10 explains, each time group of a frame comes with a polarity, as used in
cluster busy times and limit active intervals constraints. This means that each time group of a
resource frame can be classified as either active or inactive, depending on its polarity and whether
the resource is busy during its times or not, in the usual way. Functions

bool KheFranel sActive(KHE_FRAME frame, KHE RESOURCE r);
bool KheFranel sl nactive(KHE FRAME frame, KHE RESOURCE r);

returnt r ue if frane is active (if all its time groups are active), and ifane is inactive (if all its
time groups are inactive). Functions

KHE_FRAVE KheFrameAct i veAt Left (KHE_FRAME frame, KHE RESOURCE r);
KHE_FRANME KheFramel nacti veAt Left (KHE_FRAME frane, KHE_RESOURCE r);
KHE_FRAME KheFr ameActi veAt Ri ght (KHE_FRAME franme, KHE_RESOURCE r);
KHE_FRAME KheFr amel nact i veAt Ri ght (KHE_FRAME frame, KHE_RESOURCE r);

return the largest active or inactive slicefofane lying within f r ane at its left or right end.
File khe_sol vers. h contains a declaration

typedef struct khe frame_iterator_rec {
} *KHE_FRANE_| TERATOR;

which can be used for visiting the active intervals of a frame, calling functions

12.4. Frame operations for resource solvers 277

voi d KheFramelteratorlnit(KHE FRAME | TERATOR fi, KHE FRAME frane,
KHE RESOURCE r, int extra);
bool KheFranelterator Next (KHE FRAME | TERATOR fi, KHE FRAME *res);

The basic code for visiting each active interval of resource frefmene, r) is

struct khe frame_iterator_rec fi _rec;
KheFranmelteratorlnit(&i _rec, frame, f, 0);
whi | e(KheFranelteratorNext(&fi _rec, &active frame))

{

visit active_frame ...
}
Each value oficti ve_frane is a maximal active slice dfr are.

Parameteext ra may be any non-negative integer. It is used to introduce diversity: the
iteration starts at the first active interval which begins after poséxona in the frame, modulo
the frame length, wraps around at the end, and ends just before that active interval.

As an alternative t&heFr anel t er at or Next , one can call
bool KheFranelterat or Next Pai r (KHE_FRAVE | TERATOR fi, KHE FRAME =*res);

This visits one pair of active frames on each stepes starts with one or more active time
groups, continues with one or more inactive time groups, and ends with one or more active time
groups. The second active slice of one valuerafs will be the first active slice of the next.

12.5. Resource assignment algorithms

This section presents four algorithms for constructing initial assignments of resources to tasks.

As explained at the start of this chapter, it is not wise to emphasise the distinction between
construction and repair. Although the author has not found any uses for these algorithms in
repair, there may be some;and later in this chapter there is another algorithm (resource matching)
which is useful for both. Indeed, the time sweep algorithm built on resource matching is the
author’s method of choice for constructing an initial assignment in nurse rostering.

12.5.1. Satisfying requested task assignments

When an event resource must be assigned a particular resource, that should appear in the instance
as a preassignment. Such preassignments in the instance are converted to assignments in the
solution by functiorkheSol nAssi gnPr eassi gnedResour ces (Section 4.3).

When the assignment is merely a preference, it will be included as a request, in the form of
a constraint, not as a preassignment. Function
bool KheSol nAssi gnRequest edResour ces(KHE_SOLN sol n, KHE_OPTI ONS opti ons);

may be used to make these requested assignments. It retueni$ it changes the solution.

It is quite likely that some of the requested assignments are incompatible with finding a
good solution. That's fine: the assignments mad&hapol nAssi gnRequest edResour ces are

278 Chapter 12. Resource Solvers

not fixed in any sense; they are open to change by repair algorithms later.

KheSol nAssi gnRequest edResour ces works as follows. For each resourceof sol n’s
instance, it takes each limit busy times monitaf r with non-zero weight whosa | ow_zer o
attribute isf al se. It then takes each time grodpof mwhose cardinality equalgs minimum
limit. This is a request for to be busy at every time df. For each such time, it first checks
whetherr is already busy then. If not, it searches through the events running at tfioneny
unassigned task thatcould be assigned to. If it can find such a task, it makes that assignment.

KheSol nAssi gnRequest edResour ces also examines each cluster busy times momitof
r with non-zero weight whose minimum limit equals its number of time groups (taking history
into account), and whos# | ow_zer o attribute isf al se. In such monitors, each positive time
group containing just one time is a requestifdo be busy at that time, and those requests are
attended to in the same way as for limit busy times constraints.

Actually, it visits the monitors in order of decreasing hardness and weight. In this way, the
more important constraints are handled before the less important ones. And it tries all the tasks
thatr could be assigned to at each time, choosing one that minimizes solution cost afterwards.

KheSol nAssi gnRequest edResour ces consults one option:

rs_requested_of f
A Boolean option which, whenrue, causekheSol nAssi gnRequest edResour ces to
do nothing.

It also uses thgs_event _ti net abl e_noni t or option (Section 8.3), to find the events running
at each time. It aborts if this option is notapt i ons.

12.5.2. Most-constrained-first assignment

When each unfixed task has no followers, so that each demands a resource for a single interval
of time, as is usual with room assignment, a simple ‘most constrained first’ heuristic assignment
algorithm that maintains the resource assignment invariant is usually sufficient to obtain a
virtually optimal assignment (in high school timetabling, not nurse rostering). Function

bool KheMost Constrai nedFi r st Assi gnResour ces(KHE_TASKI NG t aski ng,
KHE_OPTI ONS opti ons);

does this. It tries to assign each unassigned unfixed tasksifi ng, leaving assigned ones
untouched. For each such task, it maintains the set of resources that can currently be assigned to
the task without increasing the number of unmatchable demand tixels. It selects a task with the
fewest such resources, assigns it if possible, and repeats until all tasks have been handled.

Each assignment preserves the resource assignment invariant. If no assignment can do
that, the task remains unassigned. Among all resources that preserve it, as a first priority an
assignment that minimizébeSol nCost is chosen, and as a second priority, resources that have
already been assigned to other tasks of the event resources of the task and the tasks assigned to
it are preferred. So even when an avoid split assignments constraint is not present, the algorithm
favours assigning the same resource to all the tasks of a given event resource, for regularity.

In fact,KheMost Const r ai nedFi r st Assi gnResour ces assigns task groups (Section 11.9),
not individual tasks. Each task of a task group is assignable by the same resources, so one list of

12.5. Resource assignment algorithms 279

suitable resources is kept per task group. At each step, a task group is selected for assignment
for which the number of suitable resources minus the number of unassigned tasks is minimal.

When a resource is assigned to a task, it becomes less available, so its suitability for
assignment to its other task groups is rechecked. If it proves to be no longer assignable to some
of them, their priorities are changed. The task groups are held in a priority queue (Section A.5),
which allows their queue positions to be updated efficiently when their priorities change.

12.5.3. Resource packing

To packa resource means to find assignments of tasks to the resource that make the solution cost
as small as possible, while preserving the resource assignment invariant, in effect utilizing the
resource as much as possible [9]. Following the recommended interface for resource assignment
functions (Section 12.1), function

bool KheResour cePackAssi gnResour ces(KHE_TASKI NG t aski ng,
KHE_OPTI ONS options);

assigns resources to the unassigned tasksi ng using resource packing, as follows.

The tasks are clustered into task groups (Section 11.9). Two numbers help to estimate the
difficulty of utilizing a resource effectively: thdemand duratiorand thesupply duration A
resource’s demand duration is the total duration of the task groups it is assignable to. Its supply
duration isthe number of timesit is available for assignment: the cycle length, minus the number
of its workload demand monitors, minus the total duration of any tasks it is already assigned to.

The resources are placed in a priority queue, ordered by increasing demand duration minus
supply duration. That s, the less demand there is for the resource, or the more supply, the more
important it is to pack it sooner rather than later. In practice, part-time teachers come first in this
order, which is good, because they are difficult to utilize effectively.

The main loop of the algorithm removes a resource of minimum priority from the priority
gueue and packs it. If this causes any task groups to become completely assigned, they are
unlinked from the resources assignable to them, reducing those resources’demand durations and
thus altering their position in the priority queue. This is repeated until the queue is empty.

Each resource is packed using a binary tree search: at each tree node, one available
task group is either assignedrtpor not. The task groups are taken in decreasing order of the
maximum, over all taskis of the task group, okheMeet Denand() , wheremis the first unfixed
meet on the chain of assignments out of the meet containifithis gives preference to tasks
whose meets are hard to move, reasoning that the leftovers will be given split assignments, and
repairing them may require moving their meets. The search tree has a moderate depth limit. At
the limit, the algorithm switches to a simple heuristic which assigns as many tasks as it can.

12.5.4. Split assignments

After solver functions such ageMst Const rai nedFi r st Assi gnResour ces (Section 12.5.2)
andKheEj ect i onChai nRepai r Resour ces (Section 12.7) have assigned resources to most tasks,
some tasks may remain unassigned. These will have to receive split assignments. Function

280 Chapter 12. Resource Solvers

bool KheFi ndSpl it ResourceAssi gnment s(KHE_TASKI NG t aski ng,
KHE_OPTI ONS opti ons);

reduces the cost of the solution as much as it can, by making split assignments to the unassigned
tasks oft aski ng while maintaining the resource assignment invariant. Any tasks which were
unassigned to begin with are replaced aski ng by their child tasks.

At the core ofkheFi ndSpl i t Resour ceAssi gnnent s is a procedure which takes every pair
of resources capable of constituting a split assignment to some task and tries to assign them
greedily to the task, keeping the assignment that produces the lowest solution cost. However,
before entering on thatheFi ndSpl i t Resour ceAssi gnnent s eliminates resources that cannot
be assigned even to one child task, makes assignments that are forced because there is only one
available resource (not forgetting that one forced assignment might lead to another, or that once
a resource has been assigned to one child task it makes sense to assign it to as many others as
possible), and divides each task into independent components (in the sense that no resource is
assignable to two components). In practice, much of what it does is more or less forced.

12.6. Resource matching

Consider the tasks running at some timeEach task can be assigned at most one resource.
Assuming the resources have hard avoid clashes constraints, each resource can be assigned to at
most one of the tasks. So the assignments to these tasks form a matching in the bipartite graph
with tasks for demand nodes, resources for supply nodes, and feasible assignments for edges.

Consider an initial state in which none of the tasks running at timassigned. For each
edge in the bipartite graph, carry out the indicated assignment, label the edge with the cost of the
solution after the assignment is made, and then remove the assignment. The result is a bipartite
graph with edge weights representing the badness of each individual assignment.

Assuming that all tasks have hard assign resource constraints, a maximum matching of
minimum cost in this graph will be a very desirable assignment. Indeed, it will often be optimal.
This can be seen by examining all constraint types: each is either unaffected by the assignment,
or else its effect is independent for each edge, so that the edge weights are valid in combination
as well as individually.Resource matching KHE’s name for this general idea.

There is one constraint whose effect is not independent for each edge: the limit resources
constraint from employee scheduling. Resource matching handles this constraint specially, as
described in Section 12.6.2. This special arrangement is exact (preserves optimality) in many
common cases, but in general itis merely heuristic. The resource assignment invariant is another
problem: it may hold for each element of a set of assignments individually, but fail on the whole
set. However, this does not seem to be a problem in practice.

Not all tasks have hard assign resource constraints. In nurse rostering, for example, a shift
requiring between 3and 5 nursesis modelled by an event with 5 tasks, only 3 of which have assign
resource constraints. Fortunately, missing assign resource constraints are easily handled. For
each task, add a supply node, linked only to that task, representing non-assignment of the task.
The edge weight is just the initial solution cost, because choosing that edge changes nothing.

As described, resource matching constructs assignments; it does not repair them. However,
a repair algorithm is easily made from it: choose a ttmenassign all the tasks running at that

12.6. Resource matching 281

time, reassign them using resource matching, and then either keep the new assignments if they
improve the solution, or revert to the original assignments if they do not.

During initial construction it may be that some tasks are already assigned, and what is
wanted isto assign the unassigned ones without disturbing the assigned ones. In that case, simply
omit the demand nodes for assigned tasks.

Instead of selecting all tasks running at a single ttm€HE’s implementation selects all
tasks whose times overlap with an arbitrary set of time&or|T| = 2 this does not make sense
in general, because one resource could be assigned to two or more of the tasks, and the rationale
for using matching is lost. However, there are at least two cases where it does make sense.

First, whenT is a time group from the common frame (Section 5.10), hard limit busy times
constraints prohibit resources from being assigned to two or more tasks that dverlap

Second, when resource matching is used for repair, KHE’s version of it specifies that tasks
which are assigned the same resource at the start must be assigned the same resource at the end.
Of course, this does not produce an optimal reassignment of the tasks, because it requires some
tasks to be assigned to the same resources. However, minimum cost weighted matchings can be
found in polynomial time, whereas true optimal reassignment is NP-complete.

12.6.1. A solver for resource matching

This section presents a solver for resource matching. It can be used directly via the interface
given in this section, or indirectly via the applications given in the following two sections.

One solver may be used for many solves. To create and delete a solver, call

KHE RESOURCE_MATCHI NG_SOLVER KheResour ceMat chi ngSol ver Make(
KHE_SOLN sol n, KHE RESOURCE_GROUP rg, HA ARENA a);
voi d KheResour ceMat chi ngSol ver Del et e(KHE_RESOURCE_MATCHI NG SOLVER r 1rs) ;

The deletion really only happens when arena deleted or recycled; but before then a call to
KheResour ceMat chi ngSol ver Del et e is needed to carry out some tidying up (there are group
monitors to remove).

The solves have one supply node for each resourcg,gflus supply nodes representing
non-assignment. Typicallyg would bekheResour ceTypeFul | Resour ceG oup(rt) for some
resource typet , but it can be any resource group. Itis fixed for the lifetime of the solver.

To carry out one solve, call

bool KheResour ceMat chi ngSol ver Sol ve(KHE_RESCURCE_MATCHI NG _SCLVER r s,
KHE RESOURCE _MATCHI NG _DEMAND_SET rnds, bool edge adjustl of f,
bool edge adjust2 off, bool edge_adjust3 off, bool edge_adjust4 off,
bool nocost _of f, KHE OPTI ONS options);

If this can find a way to improve the solution, it does so and returns. Otherwise it leaves
the solution unchanged and retufasse. Parameterdns is the set of demand nodes to match
against the supply nodes already presentr&) how to construct it is explained below. The other
parameters affect the detailed behaviour of the solver, as follows.

Whent r ue, parametersdge_adj ust 1_of f ,edge_adj ust 2_of f ,edge_adj ust 3_of f ,and

282 Chapter 12. Resource Solvers

edge_adj ust 4_of f turn off the four edge adjustments. These adjust edge costs so that, in cases
which would otherwise be tied, assignments prefer resources with certain properties.

Edge adjustment 1 gives preference to resources with a larger number of available times
over resources with a smaller number. For each resoytbe number of available times of
is KheFr ameResour ceMaxBusyTi mes(frame, r), wherefrane is the common frame (Section
5.10), minusKheResour ceTi net abl eMoni t or BusyTi nes(rtn) (Section 6.7.2), wheretm
Is r’'s resource timetable monitor. This seems likely to be the most effective form of edge
adjustment, so it is given twice the weight of the others.

Edge adjustment 2 gives preference to resources whose assignment brings a smaller number
of constraints from below their maximum values to their maximum values. Hopefully this will
keep more resources available for assignment for longer.

Edge adjustment 3 tracks the number of consecutive assignments to the resource in recent
solves, and favours resources for which this is smaller. This encourages smaller sequences of
consecutive assignments, which hopefully will give more flexibility when repairing later.

Edge adjustment 4 tracks the time of day of the most recent assignment to the resource, and
favours assignments that repeat that time of day. This encourages sequences of shifts of the same
type. These always seem to be acceptable in nurse rostering, and they are often preferable.

Whent rue, parametenocost _of f causes tasks for which non-assignment has no cost
to be included in the match. When itfial se, only tasks for which non-assignment has a cost
are included.

Three options fronopt i ons are consulted. Optiors_i nvari ant determines whether the
resource assignmentinvariantis in effect,as usual. If itis, only individual edges that preserve the
invariant are included in the graph, and if, when the solution is changed to reflect the minimum
matching, any of the individual assignments fail the invariant, those assignments are omitted.
Option gs_common_frane supplies the common frame, needed even when edge adjustment
is not in effect, for ejecting task moves. Finally, the first time thads is solved, option
gs_event _timetabl e_noni t or (Section 8.3), which must be present, is used to obtain efficient
access to the tasks which overlap its times.

A demand set is constructed by a sequence of calls beginning with

KHE_RESOURCE_MATCHI NG_DEMAND_SET KheResour ceMat chi ngDemandSet Make(
KHE_RESOURCE_MATCHI NG_SOLVER rns, bool preserve_existing);

(for preserve_exi sting, see below), and continuing with any number of calls to

voi d KheResour ceMat chi ngDemandSet AddTi me(
KHE_RESOURCE_MATCHI NG_DEMAND_SET rmds, KHE_TIME t);

voi d KheResour ceMat chi ngDemandSet AddTi meG oup(
KHE_RESOURCE_MATCHI NG_DEMAND_SET rmds, KHE_TI ME_GROUP tQ);

voi d KheResour ceMat chi ngDemandSet AddFr ane(
KHE_RESOURCE_MATCHI NG _DEMAND_SET rnds, KHE_FRAME frane);

in any order. These define a set of tinfeghe union of the times, the time groupsg, and the
time groups of rane. T may not be empty.

A demand set may be saved, and solved multiple times. Whenitis no longer needed it may

12.6. Resource matching 283

be deleted explicitly, by calling
voi d KheResour ceMat chi ngDemandSet Del et e(KHE_ RESOURCE_MATCHI NG DEMAND SET rnus) ;

Alternatively, deleting its solver’s arena will also delete it, because it is stored in that arena. A
less drastic alternative to deletion is

voi d KheResour ceMat chi ngDenmandSet O ear (KHE_RESOURCE_MATCHI NG DEMAND_SET r nmds) ;

which clears out nds ready for a fresh lot of times.

The demand nodes of one demand node set are specified in two steps: first the tasks to
include, called theselected tasksare specified, then the grouping of those tasks into demand
nodes. A task is selected (its assignment may be changed) when it satisfies these conditions:

1. It hasthe same resource type as the solvegrattribute;

2. ltiseither assigned directly to the cycle task of a resourceg ofr else it is unassigned,;
3. If preserve_existingistrue,itisunassigned,
4

It, or some task assigned directly or indirectly to it, lies in a meet which is assigned a time,
directly or indirectly, so as to cause the task to share at least one tim& with

o

It is not derived from a preassigned event resource;
6. Itsassignmentis not fixed (breTaskAssi gnFi x, or because it is a cycle task);

7. Unlessocost _of f istrue, not assigning it would (probably) attract a cost, because it is
monitored by an assign resource or limit resources constraint of non-zero cost, as reported
by KheTaskNonAssi gnnent HasCost (Section 4.6.1).

For each resource of rg there is one demand node containing all selected tasks which are
initially assigned . If there are no such tasks (for example, wheeser ve_exi sting istrue),

there is no such node. There is also one demand node for each of the remaining selected tasks.
(We are speaking of logical demand nodes here; as the next section explains, equivalent logical
demand nodes are grouped into single nodes by the implementation, for efficiency.)

The supply nodes of one solve consist of one for each resounfer g, representing
assignment of , and one for each demand node, representing non-assignment of its tasks.
(Again, these are logical supply nodes; in the implementation, all supply nodes representing
non-assignment are grouped into a single supply node.)

When determining which edges are present and their weights, the first step is to unassign
every initially assigned selected task uskigTaskUnAssi gn. This must succeed, because the
selected tasks are not fixed. Then, for each demanddddeeach supply noderepresenting
assignment of a resourcedraw an edge betweemands when the tasks od can be assigned
r. Thisistested by callingheEj ect i ngTaskMve for each task ofl; an edge is added when all
these calls succeed. The edge cost is the solution cost after they are done, optionally with edge
adjustment as described above. There is also an edgaiftortine supply node representing
non-assignment of the tasksafwhose cost is the (unchanged) solution cost.

284 Chapter 12. Resource Solvers

12.6.2. Implementing resource matching

This section describes the implementation of resource matching in detail.

As mentioned earlier, limit resources constraints (or rather monitors) are a problem for
resource matching, because they take away the independence of the edge weights. Suppose that
on the current day there is a requirement for at least one senior nurse. If no special arrangements
are made, every edge to a non-senior nurse will carry a cost. That is not right, because only one
task needs a senior nurse. This problem strongly influences the implementation.

Resource matching detaches all limit resources monitors that affect the current match and
replaces them by adjustments to the edge weights. This restores the lost independence. These
adjustments are ofteaxact they have the same effect on cost as the monitors. When they are
not exact, resource matching loses its local optimality, although it is still a good heuristic.

The algorithm has two parts. The first paeparation builds the demand nodes and does
a few other things explained below. It has three phases. The secorgbpany adds the edges,
finds the matching, and makes the assignments. A demand set may be solved repeatedly, but it
is prepared only once, just before it is solved for the first time.

Preparation (first phase): find and group selected tagks selected tasls a task that may
be assigned by the current match. &ffected tasks a task whose assignment is affected by the
current match: it is either selected, or it is assigned, directly or indirectly, to a selected task (its
selected tagk For example, when grouping by frame groups a Saturday task with a Sunday task,
one of the tasks is selected and the other is affected but not selected.

Given the demand set’s set of timiEghe selected tasks are easily found. For each time in
T, use the event timetable monitor from optgs event _t i net abl e_noni t or to find the meets
running at thattime. For each task of each meet, follow its chain of assignmentsto its proper root.
If the proper root satisfies the conditions given in the previous section, it is a selected task.

A selected task might be encountered more than once while doing this. So to finish this
step, the array of selected tasks it builds is sorted and uniqueified.

The next step is to traverse the uniqueified array of selected tasks, doing two things. First,
if several selected tasks are assigned the same resource when resource matching is called, the
specification states that they should be assigned the same resource by resource matching. So a
task grouper (Section 11.7) is used to group these tasks. In each group, the leader task remains
selected but its followers are assigned to it, demoting them to affected but not selected. From now
on, ‘selected’means ‘selected after grouping’. The grouping is removed at the end of the solve:
the follower tasks are then assigned directly to whatever the leader task is assigned to. Second,
each selected task is placed into its adamand node node of the bipartite graph.

Preparation (second phase): find task profiles and merge equivalent.nQuhesselected
task per node would work. But many tasksegeivalent for each resource assigning to one
of these tasks has the same effect as assigrimgnother. Given that the following calculations
are not cheap and that underlying the weighted bipartite matching algorithm is a flow algorithm,
able to handle multiple equivalent nodes as single nodes with multiplicities represented by edge
capacities, it makes sense to merge nodes containing equivalent tasks into a single node whose
incoming edge has its number of tasks as a capacity limit. This phase does this.

Determining whether selected tasks are equivalent is done by buildiskaprofilefor
each, such that two tasks are equivalent if their profiles are equal. A selected task’s profile

12.6. Resource matching 285

depends on the task itself and on the tasks assigned to it, directly or indirectly. It consists of the
set of times occupied by those tasks, their total workload, and a petigfrencesA preference

is a pair(g,), whereg is a set of resources, ands a cost. Its meaning is that the resources of

g are preferred for this task, and assigning something ngtattracts cost;.

For convenience of presentation, an artificial resoyyedefined, such that assigningo
some task means non-assignment of that task. A preferepoessy includer,,

At the start of this phase, each node contains a single task. It also has a task profile
attribute, which is now initialized to the task profile for the node’s sole tasky. This is done
by traversing, the tasks assigned tpthe tasks assigned to those tasks, and so on recursively.
While doing this, the set of times occupied by those tasks, and their total workload, are added to
the profile. Also, for each point where an assign resource or prefer resources mmuamoiitors
ataskt’ which is assigned directly or indirectly tpone preferencgg, ¢) is added:

« If misan assign resource monitgrjs the full set of resources of the task’s resource type,
andg; is the duration ot' multiplied by the weight ofn's constraint.

« If mis a prefer resources monitgy,is m's resource group plus, andg; is the duration of
t" multiplied by the weight ofn's constraint.

These preferences express the effect of these monitors exactly. A prefer resources constraint
does not penalize non-assignment, which is wfig included.

Two preferences with the same set of resources may be merged into one, whose cost is the
sum of the two original costs. These merges are done as preferences are added to profiles.

After the traversal of the affected tasks of selected tasids, the preferencestis profile
are sorted, to expedite comparing profiles. After the profiles are done, the nodes are sorted to
bring nodes with equal profiles together, then adjacent nodes with equal profiles are merged.

Preparation (third phase): add preferences representing limit resources manitdris
phase adds preferences representing limit resources monitors. The representation is often exact,
and when itisn't, it is usually close.

While preferences representing assign resource and prefer resources monitors were being
added to task profiles in the previous step, a list of all limit resources monitors that monitor
affected tasks was built. Thislistis now sorted and uniqueified. Each monitor on itisthen visited
and preferences are added to represent it.

Before visiting the first limit resources monitor, all affected tasks are visited, and the back
pointer in each is set to its selected task. (Allthat is actually needed is a boolean mark to indicate
that the task is affected.) After the last limit resources monitor is visited, the affected tasks are
visited again and their back pointers are cleared.

Handling one limit resources moniton proceeds in two steps. In the first step, several
quantities are calculated: the total duratimf the affected tasks monitored by, lower and
upper limitsL andU on the total duration of these tasks which may be assigned resources fromiits
resource groug, without incurring a penalty; and for each selected tagkmonitored duration
t,: the total duration of its affected tasks that are monitoreahbyn the second step, preferences
are added based on these quantities.

The first step proceeds as followN. is initialized to 0, and_ andU to m’s minimum and

286 Chapter 12. Resource Solvers

maximum limits. Ifm has no minimum limitl_ is setto 0. Ifm has no maximum limitJ is set
to a very large number. For each selected tagks set to 0.

Now m may monitor non-affected tasks as well as affected ones. In practice, limit resources
monitors always limit what is happening at a particular moment in time, so non-affected tasks
might seem to be not a live issue. But consider the grouped Saturday and Sunday tasks above.
While matching Saturday, there may well be a limit resources monitor which monitors the
Sunday task and also other, non-affected Sunday tasks.

A complete traversal of the tasks monitoredriyis carried out. For each task, the back
pointer set earlier tells whether the task is affected by the current match or not. If it is affected, its
duration is added thl and also to the monitored duration of its selected task. If it is not affected,
there are two cases. If itis assigned, directly or indirectly, to a resourcefrtimen its duration
Is subtracted from both andU. If it is not assigned to any resource, directly or indirectly, then
its duration is subtracted fromonly. Thisis analogous to how history is handled by cluster busy
times and limit active intervals monitors.

After this, if L is negative, setitto 0, and if it exceddsset it toN. Do the same fod. After
that we must have <L < U < N. HereL < U is an invariant of this whole step, established by
a requirement of the limit resources constraint and preserved as the step proceeds.

That concludes the first step in the handling of limit resources momjtahe calculation
of N, L, U, and thed,. The second step adds preferences to demand nodes, as follows.

Selected tasks with total monitored duration at Iéasiould be assigned resources frgm
so find selected tasksvhose total monitored duration is as large as possible not excdeding
add preferencgg, wd,) to their nodes, to encourage these assignments. Similarly, selected tasks
of monitored duration at leadt — U should not be assigned resources frgnso find selected
taskst whose total monitored duration is as large as possible not excebiding, and add
preferencéGH ry} - g,wd,) to each of them, to discourage these assignments. Each demand
node receives at most one preference derived frgrsincel + (N - U) < N.

Given that all the tasks in one node share the same preferences, it may be necessary to split
nodes while doing this. Only one of the two resulting nodes receives the new preference.

Which demand nodes should these preferences be added to? It is easy to add preferences
derived from assign resource and prefer resources monitors, because the tasks and hence the
nodes are determined; but here the selected tasks must be chosen, from the selected tasks with
positive monitored duration.

Nodes need to be chosen whose preferences are as similar as possible to the new preference
that will come in. It would be wrong to encourage some resources with one preference and a
completely different set of resources with another. This will be investigated further below. For
now, it is assumed that there is an integ@ompatibilityfor each node with respect m, such
that when incompatibility is low, adding preferen@ wd,) works well, and when it is high,
adding preferencgz ry} - g, wd,) works well.

The algorithm for adding limit resources preferences, then, is as follows. Calculate the
incompatibility of each node, and store it in the node. Sort the nodes into increasing order of
incompatibility. Consider the tasks as forming a single sequence, beginning with the tasks in the
first node, then the second, and so on. Ignoring tasks of zero monitored duration, find the largest
prefix of this sequence whose tasks have total monitored duration atlmastl ensure that

12.6. Resource matching 287

preferencég, wd,) applies to each tagkof them and to no other tasks. This may involve some
node splitting, as mentioned earlier. Then find the largest suffix of this sequence whose tasks
have monitored duration at mdst- U, and ensure that preferen@ r} - g,wd,) applies to

each task of them and to no other tasks. Again, this may require some node splitting.

The implementation is slightly different. At each naget builds a sefA of tasks fromn.
First it adds toA the first task it can find whose monitored duration is non-zero and would not
cause the target (initially eithér or N — U) to be exceeded. Then it addsAas many more
tasks fromn as it can, subject to them all having the same monitored duration as the first, and
collectively not exceeding the target. After thisis dondi$ empty it proceeds to the next node.
If Acontains every task af it adds the new preferencempupdates the target, and proceeds to
the next node. Otherwise it makes a new node holding copies @ireferences plus the new
preference, moves the tasksMto it, updates the target, then restartsorit does theN — U
preferences before theones, because this is slightly simpler to implement, given that new nodes
go on the end of the sorted sequence of nodes.

A suitable incompatibility function is needed, one which avoids penalizing some demand
node for assigning some resource, and penalizing it again for not assigning it. Although the
result will in general be heuristic, not exact, the difficulty should not be overstated. A typical
example might be (a) 5 or 6 nurses, with (b) at least one senior nurse and (c) at most two trainee
nurses. For cases like this, a simple heuristic should do very well.

Let Sbe the senior nurses afidbe the trainee nurses. Constraint (a) adds preferences of
the form(G, w), whereG is the full set of resources, to 5 tasks, leaves one task untouched, and
adds preferences of the foi(§r,}, w) to the remaining tasks; (b) adds one preference of the form
(Sw); and (c) adds preferences of the fof@(r,} - T,w) to all but two of the tasks.

It would be bad to encourage the same task to assign both a senior nurse and a trainee, and
bad to encourage tasks beyond the sixth task to not assign a nurse and also to assign a senior
nurse or trainee. On the other hand, adding prefer@@ge r,} — T, ¢) to a task which already
has preferencf{r,}, ¢) is very desirable, because it does not reduce the size of the intersection
at all. It nominates a task which preferably is not assigned a resource as one of the tasks which
preferably is not assigned a trainee nurse.

However, minimizing the size of the reduction in the intersection is not always right. If a
preference of the fornS ¢) is added to a demand node which already has a preference of the
form ({r,},), then the size of the intersection reduces by only 1, but since the result is empty, no
assignment to this demand node is free of cost. That isn't desirable at all.

Based on examples like these the author has decided to define the incompatibility to be
the cardinality of the symmetric difference of the new preference’s resource group with the
intersection of the existing preferences’ resource groups. Every element of the symmetric
difference is an option that is available before the preference is added, but lost after it is added.

Set operations are slow, so four optimizations are used. First, in preferences derived from
assign resource constraints, thevalue is in factNULL. This is because it has no effect on the
intersection (except by omitting, butr,is handled separately). Only ndbkL sets of resources
need to be intersected. Second, an intersection is only performed when it is actually needed:
when atask profile already contains at least two preferences witNularsets of resources, and
a third is being considered for adding to it. That makes threeNobh-sets—quite unlikely in
practice. Third, only the size of the symmetric difference is found, not the actual set. And fourth,

288 Chapter 12. Resource Solvers

intersections are stored as resource sets (Section 5.9), which are cheaper than resource groups.

That ends the preparation phase of the algorithm. Its results are stored in the demand
set object: the demand nodes with their tasks, profiles, and preferences; the uniqueified list of
relevant limit resources monitors; and the task grouper recording which tasks have to be assigned
the same resource. As explained below, preferences derived from assign resource and prefer
resources monitors are deleted at the end of preparation.

Solving Solving is much easier to describe than preparation. Group tasks as indicated by
the task grouper. Detach the limit resources monitors. From each demand node, add an edge of
capacity 1to each supply node representing a resource, and an edge of unlimited capacity to the
supply node representing non-assignment. Find a maximum matching of minimum cost and
make the assignments indicated by it. Reattach the limit resources monitors. Ungroup the task
grouper. Using a mark, if the solution is not improved, undo the assignments.

The cost of the edge from demand natl® the supply node for resourcgpossiblyr,)
is the cost of the solution after that one assignment is made. In addition, to compensate for the
detached limit resources monitors, for each preferégpg) in d derived from a limit resources
constraint such thaf does not contain, ¢ is added to the edge cost. Edge costs are not affected
by preferences derived from assign resource and prefer resources monitors, because those mon-
itors are not detached. Their preferences are needed for task equivalence and to guide the place-
ment of preferences derived from limit resources monitors, but they are not used when solving,
so they can be and are deleted at the end of preparation. There are also the separate adjustments
described earlier, the ones controlled by parameitggs_adj ust 1_of f , edge_adj ust 2_of f ,
edge_adj ust 3_of f, andedge_adj ust4_of f .

When there are no limit resources monitors, the algorithm does not waste time on work
inspired by them: grouping equivalent tasks using task profiles is a valuable optimization in
any case, and the third phase of preparation does nothing. Whether the preparation time spent
on limit resources monitors is significant is a question that can only be answered definitely by
testing, but the running time is probably dominated by solving, in which case the answer is no.

This section sheds light on how cover constraints should be modelled. In principle, assign
resource and prefer resources constraints are best, because they affect each task independently.
But if they are replaced by equivalent limit resources constraints, this algorithm will produce
the same matching graph. This opens a path to a useful generalization—the expression of all
cover constraints by limit resources constraints—by showing that the efficiency advantage of the
special cases represented by assign resource and prefer resources constraints need not be lost.

12.6.3. Time sweep resource assignment

In a planning timetable whose columns represent times and whose rows represent resources,
resource packing proceeds vertically: it assigns one row after anoil@e sweepproceeds
horizontally, assigning one time (that is, the tasks running at that time) after another. Thisislikely
to be useful in nurse rostering, where many constraints link nearby times.

KHE offers this function for time sweep resource assignment:

bool KheTi neSweepAssi gnResour ces(KHE_SCLN sol n, KHE_RESOURCE_GROUP r g,
KHE_OPTI ONS options);

12.6. Resource matching 289

Using resource matching, it assigns resources to those taskbkrofvhose resource type is that
of r g, and which are initially unassigned. It does not disturb any existing assignments. For how
it handles fixed and preassigned tasks, and other such details, see Section 12.6.1.

KheTi meSweepAssi gnResour ces obtains a frame frontheFr aneOpt i on (Section 5.10).
It visits each time group of the frame in chronological order, and uses one resource matching
to assign or reassign the tasks which overlap this time group. It is influenced indirectly by the
resource matching options, and directly by these options:

rs time_sweep daily tinme limt
A string option defining a soft time limit for each day. The format is the one accepted by
KheTi meFronSt ri ng (Section 8.1):secs, ormi ns: secs, orhrs: m ns: secs. Thereis
also the special value meaning ‘set no limit’, and this is the default value.

rs_time_sweep_edge adjustl off
A Boolean option which, whetr ue, causes edge adjustment 1to be turned off, by passing
t rue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust1_of f .

rs_tinme_sweep_edge_adjust2_off
A Boolean option which, whetr ue, causes edge adjustment 2 to be turned off, by passing
t rue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust 2_of f .

rs_tinme_sweep_edge_adj ust 3_off
A Boolean option which, whetr ue, causes edge adjustment 3 to be turned off, by passing
t rue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust 3_of f .

rs_tinme_sweep_edge_adjust4_off
A Boolean option which, whetr ue, causes edge adjustment 4 to be turned off, by passing
t rue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust4_of f .

rs_time_sweep_nocost_off
A Boolean option which, whetr ue, includes tasks for which non-assignment has no cost
in the sweep, by passingue to KheResour ceMat chi ngSol ver Sol ve for nocost _of f .

rs_time_sweep_| ookahead
An integer option which, when it has a positive valyeauses time sweep to look ahdad
time groups when calculating edge costs. A full description appears below (Section 12.6.4).
The default value, 0, produces no lookahead.

rs time_sweep_preserve_existing off
A Boolean option which, whehr ue, causes existing assignments to not be preserved, by
passing al se to KheResour ceMat chi ngSol ver Sol ve for preserve_exi sting.

rs_time_sweep_cutoff_off
A Boolean option which, whenr ue, causes cutoff times to be omitted. Whiead se,
cutoff times are installed in all cluster busy times and limit active intervals monitors for the
resources of g, making them ignore all time groups after the largest time of the current
time group. Cutoff times are removed after the last time group.

290 Chapter 12. Resource Solvers

rs time_sweep_redo_off
A Boolean option which, whehr ue, causes redoing to be omitted. Whieai se, after
the last time group is assigned, the algorithm returns to the first time group and reassigns
it using resource matching with the same options. The result may be different, because the
following time groups are assigned now, and there are no cutoffs. It sweeps through all the
time groups in this way. At the end, it checks whether the cost improved, and if so it does
another redo sweep, continuing until a complete redo sweep has no effect on cost.

rs_time_sweep_rematch_off
A Boolean option which, whetr ue, causes rematching to be omitted. Wiehse, after
each time group is assigned during the initial sweep, the most recently assigned 2, 3, and
soonuptaos_tinme_sweep_renat ch_nmax_groups time groups are reassigned, using
resource matching with the same options. This rematching is omitted during redoing.

rs_time_sweep_rematch_max_groups
The maximum number of time groups rematched (see just above). The default value is 7.

On one instance, cutoff times and redoing had a very significant effect. Without redoing, cutoff
times reduced final cost from 185 to 149. With redoing, they reduced final cost from 95 to 72.
Edge adjustment produced mixed results. Rematching during time sweep also produced mixed
results, reducing one solution cost by 40 (from 107 to 67), but increasing another by 20.

12.6.4. Time sweep with lookahead

If option rs_ti me_sweep_| ookahead has valuek > 0, KnheTi meSweepAssi gnResour ces
looks aheadk time groups when calculating edge costs, as follows.

Lookahead is similar to combinatorial grouping (Section 11.5.3). Supposeedgeects
taskt to resource. Without lookahead, the co€tof eis the cost of the current solution altered
so thatt is assigned, plus edge adjustments. With lookahead, the first step is to caldd)ate
the cost without lookahead, as before. At the same tonthe total cost of all monitors of
resource constraints involvimgis calculated. Then, for each combinatiaf one assignment or
non-assignment of a task tan each of thd subsequent days, the total cosdf the monitors
of resource constraints involvingis calculated. The edge cost is then changed oo
C - c+c,, wherec,, is the minimum of the,.

This value is not a solution cost: it includes the resource costs of certain assignments but
not their event resource costs. But it is a good estimate of the true cost of choosing ta assign
tot. For example, it should really begin a sequence of assignments, luants to be free the
next day, the cost of either not having the sequence or not allawtmge free will be included.
Whenk = 0, there is just one combination (the empty sequence of assignments), itsc;asids
so the edge costs reduce to the costs without lookahead.

When monitor cutoffs are in use, the cutoffs for monitors @re moved forward time
groups while the; are being calculated, and moved back again afterwards.

To support lookahead, a variantiifeResour ceMat chi ngSol ver Sol ve is offered:

12.6. Resource matching 201

bool KheResour ceMat chi ngSol ver Sol veW t hLookahead(
KHE_RESOURCE_MATCHI NG_SOLVER r s,
ARRAY_KHE_RESOURCE_MATCHI NG_DEMAND SET *rnus_arr ay,
int first_index, int last_index, bool edge adjustl off,
bool edge adjust2 off, bool edge adjust3 off,
bool edge adjust4 _off, bool nocost off, KHE OPTIONS options);

The matched demand set is+4nnds_array atfirst_index. The lookahead demand sets
follow, ending atlast_index. So last_index == first_index means no lookahead,

| ast _index == first_index + 1meansone day’sworth,and soon. The other parametersare
as forkheResour ceMat chi ngSol ver Sol ve. ARRAY_KHE RESOURCE_MATCHI NG _DEMAND_SET is
defined alongsid&HE_RESOURCE_MATCHI NG_DEMAND_SET in khe_sol vers. h.

12.6.5. Resource rematching repair
Resource rematchingpairs a solution using resource matching. KHE'’s function for this is

bool KheResour ceRemat ch(KHE_SOLN sol n, KHE_RESOURCE_GROUP r g,
KHE_OPTI ONS options, int variant);

It creates a resource matching solverdorn andr g and calls it on many sets of times.

Parameterari ant may be any integer and causes some change in behaviour when it
changes. At present, depending on whether it is odd or even, the time sets rematched are tra-
versed in forward or reverse order. This can be significant, especially when a time limit prevents
all of them from being visited.

KheResour ceRemat ch is influenced indirectly by the resource matching solver options, and
directly by these options:

rs_rematch_of f
A Boolean option which, whetr ue, causegheResour ceRenat ch to do nothing.

rs_rematch_sel ect
This determines howheResour ceRenat ch selects sets of times for solving. Its values are

"none","defective tasks","frame","interval s",and"auto", for which see below.

rs_rematch_max_groups
An integer option which instructtheResour ceRemat ch to try sequences of adjacent time
groups of length 1, 2, and so on up to its value. Its default value is 7. It is only consulted
whenrs_remat ch_sel ect is"frame" or"interval s".

rs_rematch_edge_adjust1_off
A Boolean option which, whetr ue, causes edge adjustment 1to be turned off, by passing
t r ue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust1_of f .

rs_rematch_edge_adj ust 2_of f
A Boolean option which, whetr ue, causes edge adjustment 2 to be turned off, by passing
t r ue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust 2_of f .

292 Chapter 12. Resource Solvers

rs_rematch_edge_adj ust3_off
A Boolean option which, whetr ue, causes edge adjustment 3 to be turned off, by passing
t rue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust 3 _of f .

rs_rematch_edge_adj ust4_of f
A Boolean option which, whetr ue, causes edge adjustment 4 to be turned off, by passing
t r ue to KheResour ceMat chi ngSol ver Sol ve for edge_adj ust 4_of f .

rs_rematch_nocost off
A Boolean option which, whetr ue, includes tasks for which non-assignment has no cost
in the rematch, by passingue to KheResour ceMat chi ngSol ver Sol ve for nocost _of f .

The choices for s_remat ch_sel ect are as follows. In each case, a set of times may be
selected several times over, but each distinct set is solved only once. As explained above at the
end of the introduction to resource matching, when the selected tasks are initially assigned (as is
assumed here), tasks which share a resource initially will share one finally.

If rs_renmat ch_sel ect is"none", rematching is turned off, likes_r emat ch_of f .

If rs_rematch_sel ect is"defective_tasks", sets of times suited to repairing high
school timetables are selected. Find the first taskirspbh whose resource type is the resource
type ofrg. For each taskof that tasking which is unassigned or assigned a resourcerfypm
and which is defective (unassigned, assigned an unpreferred resource, part of a split assignment,
or involved in a clash), make one set of times equal to the set of timels$iranning, including
the times of all tasks connected withy assignments not involving a cycle task.

If rs_rematch_sel ect is"frame", sets of times suitable for repairing nurse rostering
timetables are selected. For each index in the common frame (Section 5.10), the time group at
that index, plusn - limmediately following time groups, are united to form one of the sets of
times. There is one set for each valuenobetween 1 ands_r emat ch_max_gr oups inclusive.

If rs_rematch_sel ect is"interval s",then for each limit active intervals constraint in
the instance, for each index into the sequence of time groups of that constraint, the time group
at that index, plusn— limmediately following time groups, are united to form one of the sets of
times. There is one set for each valuenobetween 1 ands_r emat ch_max_gr oups inclusive.
To these are added the sets of times solved wisemenmat ch_sel ect is"frane".

Finally, if rs_remat ch_sel ect is"aut 0" (the default value), theldef ecti ve_t asks"
Is chosen when the model is high school timetabling, otherWisene" is chosen. The author
had high hopesfdri nt erval s", but his tests showed an improvement in only one instance, from
107 to 105, which did not justify the increased running time, averaging one or two seconds.

12.7. Ejection chain repair

Function

bool KheEj ecti onChai nRepai r Resour ces(KHE _TASKI NG t aski ng,
KHE_OPTI ONS options);

uses ejection chains (Chapter 13) to improve the solution by changing the assignments of the
tasks oft aski ng. Itis influenced by many options, including

12.7. Ejection chain repair 293

rs_eject _off
A Boolean option which, whetr ue, causes this function to do nothing.

For full details, consult Section 13.7.

12.8. Resource pair repair

One idea for repairing resource assignments is to unassign all tasks assigned to two resources,
then try to reassign those tasks to the same two resources in a better way—an example of
very large-scale neighbourhood (VLSN) search [1, 12]. The search space, although formally
exponential in size, is often small enough to search completely, giving an optimal result.

Most of this section is devoted to functigheResour cePai r Reassi gn, which carries out
this idea while trying to save time by detecting symmetries. The last subsection is devoted to a
simpler functionkheResour cePai r Si npl eReassi gn, which is better suited to nurse rostering.

12.8.1. The basic function

The basic function for carrying out this kind of repair is

bool KheResour cePai r Reassi gn(KHE_SOLN sol n, KHE_RESOURCE r1,
KHE RESOURCE r2, bool resource_invariant, bool fix splits);

It knows that when one task is assigned to another, the two tasks must be assigned the same re-
source; and it believes that tasks that overlap in time must be assigned different resources. It does
not change task domains, fixed assignments, or assignments of tasks to non-cycle tasks. If it can
find a reassignment td andr 2 of the tasks currently assignedtbandr 2 which satisfies these
conditions and givesol n a lower cost, it makes it and returraue; otherwise it changes nothing

and returng al se. If resource_i nvariant istrue, only changes that preserve the resource
assignment invariant are allowelheResour cePai r Reassi gn accepts any resources, but it is

most likely to succeed on resources with similar capabilities that are involved in defects.

If fix_splits istrue, the algorithm focuses on repairing split assignments, by forcing
tasks unassigned by the algorithm which are linked by avoid split assignments constraints of
non-zero cost to be assigned the same resource in the reassignment. This runs faster, because it
has fewer choices to try, but it may overlook other kinds of improvements.

Within the set of tasks assignedrtbandr 2 originally, there may be subsets which are not
assignable to two resources without introducing clashes. Clashes in the original assignments
can cause this, as can split assignments vihe&nspl i t s is set. Such subsets are ignored by
KheResour cePai r Reassi gn; their original assignments are left unchanged.

12.8.2. Aresource pair solver

Resource solver
bool KheResour cePai r Repai r (KHE_TASKI NG t aski ng, KHE OPTI ONS options);

calls KheResour cePai r Reassi gn for many pairs of resources. Theesource_invari ant
arguments of all these calls are set tortkei nvari ant option ofopti ons. Two other options

294 Chapter 12. Resource Solvers

control the behaviour ofheResour cePai r Repai r :

rs_pair_off
A Boolean option which, whetr ue, turns resource pair repair off.

rs_pair_sel ect
This options determines which pairs of resources are tried. Ifitdse", no pairs are tried,
giving another way to turn this repair off. If it isplits" (the default), then for all pairs
of resources involved in all split assignmentg aéki ng, KheResour cePai r Repai r calls
KheResour cePai r Reassi gn for those two resources, with thiéx_spl i t s parameter set
totrue. Thisfocuses the solver on repairing split assignments. If gastiti ons",then
KheResour cePai r Reassi gn calls KheResour cePai r Repai r for each pair of resources
in each partition of the resource typetafski ng, or in all resource types ifaski ng has
no resource type, withi x_splits set tof al se. Each resource type with no partitions
is treated as though all resources lie in a single shared partitition. This focuses the solver
on improving resources’ assignments generally. However the search space is often larger,
increasing the chance that the search will be cut short, losing optimality. Valué
is the same apartitions" except that partitions are ignored, so that there is a call on
KheResour cePai r Reassi gn for every pair of distinct resources of the types involved.

KheResour cePai r Repai r collects statistics about its calls #heResour cePai r Reassi gn,

held in thers_pair_calls, rs_pair_successes, andrs_pair_truncs options. Each time
KheResour cePai r Reassi gn is called,rs_pair _cal | s is incremented. Each time it returns
true, rs_pair_successes isincremented. And each time it truncates an overlong search (at
most once per cally,s_pair_truncs is incremented. The caller must initialize and retrieve
these options at the right moments, using the usual options functions (Section 8.2).

12.8.3. Partition graphs

Resource pair repair is essentially about two-colouring a clash graph whose nodes are tasks and
whose edges are pairs of tasks that overlap in time. Although the basic idea is simple enough,
the details become quite complicated, especially when optimizing by removing symmetries in
the search. It has proved convenient to build on a seppaatiéion graphmodule, which is the
subject of this section. It finds the connected components of a graph (catigabnentbere),

and, if requested, partitions components into pactsby two-colouring them.

The module stores a graph whose nodes are represented by values\dfitype There
are operations for creating and deleting a graph, adding nodes to it, and visiting those nodes:

KHE_PART_GRAPH KhePart G aphMake(KHE_PART GRAPH REL_FN rel fn);
voi d KhePart G aphDel et e(KHE_PART_GRAPH gr aph) ;

voi d KhePart G aphAddNode(KHE_PART_GRAPH graph, void *node);
int KhePart G aphNodeCount (KHE_PART_GRAPH gr aph) ;

voi d *KhePart G aphNode(KHE_PART_GRAPH graph, int i);

Deleting a graphincludes deleting all its components and parts, but not its nodes. These functions
and the others in this section are declared in includéfigée part _gr aph. h.

To define the edges, the user passegé@iadion functionof typeKHE_PART_GRAPH REL_FN

12.8. Resource pair repair 295

which the module calls back whenever it needs to know whether two nodes are connected by an
edge. As the user would define it, this function looks like this:

KHE_PART_GRAPH REL Rel ati onFn(void *nodel, void *node2)
{

}
where typeKHE_PART_GRAPH_REL is

typedef enum {
KHE_PART _GRAPH_UNRELATED,
KHE_PART_GRAPH DI FFERENT,
KHE_PART _GRAPH_SAME

} KHE_PART_GRAPH_REL;

ValuesKHE_PART_GRAPH_UNRELATED and KHE_PART_GRAPH_DI FFERENT are the usual options

for clash graphs, the first saying that there is no edge between the two nodes, the second that there
is an edge which requires the two nodes to be coloured with different colours. The third value,
KHE_PART_GRAPH_SAME, says that the two nodes must be coloured the same colour. It is used,
for example, when the two nodes represent tasks which are linked by an avoid split assignments
constraint, and thii x_spl i t s option is in force.

After all nodes have been added, the user may call
voi d KhePart G aphFi ndConnect edConponent s(KHE_PART_GRAPH gr aph);
to find the connected components, which may then be visited by

i nt KhePart G aphConponent Count (KHE_PART _GRAPH gr aph);
KHE_PART_GRAPH COVPONENT KhePart GraphConponent (KHE PART _GRAPH graph, int i);

The graph that a component is a component of may be found by
KHE_PART_GRAPH KhePart G- aphConponent Gr aph(KHE_PART_GRAPH_COVPONENT conp) ;
and the nodes of a component may be visited by

i nt KhePart G aphConponent NodeCount (KHE_PART_GRAPH_COVPONENT conp) ;
voi d *KhePart G aphConponent Node(KHE_PART_GRAPH_COMPONENT conp, int i);

KhePar t G- aphFi ndConnect edConponent s considers two nodes to be connected when f n
returnsKHE_PART_GRAPH_SAME or KHE_PART_GRAPH_DI FFERENT when passed those nodes.

If requested, the module will partition the nodes of a component into two sets, such that
two-colouring the component will give the nodes in one set one colour, and the nodes in the other
set the other colour. This gives exactly two ways to two-colour the component, which is all there
are, since once a colour is assigned to one node, its neighbours must be assigned the other colour,
their neighbours must be assigned the first colour, and so on. To carry out this partitioning, call

voi d KhePart GraphConponent Fi ndPart s(KHE_PART_GRAPH_COVPONENT conp) ;

296 Chapter 12. Resource Solvers

After that, to retrieve the two parts, call

bool KhePart GraphConponent Part s(KHE_PART_GRAPH_COMPONENT conp,
KHE_PART_GRAPH_PART =partl, KHE_PART_GRAPH_PART xpart2);

If KhePart GraphConponent Fi ndParts was able to partition the component into two parts,
KhePar t G aphConponent Part s returnst r ue and setspart 1 andxpart 2 to nonNULL values;
otherwise it returnsal se and sets them tiULL. To find a part’s enclosing component, call

KHE_PART_GRAPH_COVPONENT KhePar t Gr aphPar t Conponent (
KHE_PART_GRAPH_PART part);

The nodes of a part may be visited by

i nt KhePart G aphPart NodeCount (KHE_PART_GRAPH_PART part);
voi d *KhePart G aphPart Node(KHE_PART_GRAPH_PART part, int i);

as usual.

12.8.4. The implementation of resource pair reassignment

This section describes the implementation KifeResour cePai r Reassi gn. It builds two
partition graphs altogetherfiast graphwhich does the basic analysis, angseaond graplvhich
is used to find and remove symmetries in the first graph.

The same node type is used in both graphs. A node holds a set of tasks. A resource is
assignable to a nodehen it is assignable to each task of the node. A resource is assignable to
a fixed task when it is assigned to that task (fixed tasks are never unassigned). A resource is
assignable to an unfixed task when it lies in the domain of that task. Itis possible for neither, one,
or both resources to be assignable to a node. If neither is assignable, the nodssignable
otherwise it isassignable

When aresource is assignable to a node, there are operations for assigning and unassigning
it. To assign it, assign it to each unfixed task of the node. To unassign it, unassign it from each
unfixed task of the node.

The first graph contains one node for each task initially assighext r 2, containing just
that task. Thus, in the first graph there are no unassignable nodes. Given two nodes, the first
graph’s relation function first checks which resources are assignable to each. If there is no way
to assign the same resource to both nodes, it retHBISPART_GRAPH_DI FFERENT. Otherwise,
if there is no way to assign different resources to the nodes, it rektEnSART_GRAPH_SAME.
Otherwise, iff i x_splits istrue and the two nodes share an avoid split assignments monitor
of non-zero cost, it return€dE_PART_GRAPH_SAME. Otherwise, if the two nodes overlap in time,
it returnskHE_PART_GRAPH DI FFERENT. Otherwise it return&HE_PART _GRAPH_UNRELATED.

Next, the graph’s connected components are found and partitioned. It is easy to see,
referring to the relation function, that if a component was successfully partitioned there must be
at least one way (and possibly two ways) to assigto the nodes of one part and to the nodes
of the other part. So a component of the first graph is calksignablef it was successfully
partitioned, andinassignabletherwise.

For each assignable component, the nodes of one part are merged into one node, and the

12.8. Resource pair repair 297

nodes of the other are merged into a second node. These two nodes are assignable to different
resources in one or two ways. For each unassignable component, all the nodes are merged into
a single node. It does not matter whether this node is assignable or not; it is never assigned.

Next, the assignable components are sorted into increasing order of number of possible
assignments. Each of th& assignable components has 1 or 2 possible assignments. A tree
search is carried out which tries each of these on each component in turn. The total search
space size is at mogt. This is often small enough to search completely. For safety, the search
only explores both assignments until 512 tree nodes have been visited; after that it tries only one
assignment for each component. In the usual way, each time the tree search reaches a leaf it
compares its solution cost with the best so far, and if it is better (and if the resource assignment
invariant is preserved, if required) it takes a copy of its decisions. At the end, the cost of the best
solution found is compared with the initial solution cost, and if the best solution is better it is
installed; otherwise the initial solution is restored.

The search space often has symmetries which would waste time and cause the node limit
to be reached often enough to compromise optimality in practice if they were not removed. The
rest of this section describes them and hnaResour cePai r Reassi gn removes them.

Suppose 1 andr 2 are Mathematics teachers assigned to two Mathematics courses from
the same form, each split into 4 meets of the same durations, running simultaneously. This gives
4 components and a search space of E‘Izyset clearly this could be reduced safely to 1. If two
of the simultaneous meets are made not simultaneous, the search space size can still be reduced
safely, to 2. Iffix_splits istrue, each set of 4 meets is related, making 1 component and a
search space of size 2—still unnecessarily large when the meets are simultaneous.

A component issymmetricalif it makes no difference which of its two assignments is
chosen. In that case, its assignment choices can be reduced from 2 to 1 by arbitrarily removing
one, halving the search space size. But note the complicating factor in the Mathematics example:
one cannot arbitrarily remove one choice from each component, because some combinations of
choices lead to split assignments and others do not. Instead, a way must be found to first merge
the four components into one, which can then be assigned arbitrarily.

Symmetry arises when the two assignment choices of a component affect monitors in the
same way. They need to have the same effect on the state of monitors, so that no difference arises
when the monitors change state again later in response to changes outside the component.

The two choices always have the same effect on the state of event monitors (no effect at
all), and on the state of assign resources monitors, which care only whether tasks are assigned
resources, not which resources. As far as these kinds of monitors are concerned, all components
are symmetrical. Classify the remaining monitors into three groups: resource monitors, prefer
resources monitors, and avoid split assignments monitors. (This description was written before
the advent of limit resources monitors, and does not take them into account.)

A component ig-symmetricalp-symmetricglor s-symmetricalvhen it is assignable both
ways and they affect in the same way all resource, prefer resources, or avoid split assignments
monitors that monitor tasks of the component. (In particular, if there are no monitors of some
type, the component is vacuously symmetrical in that type.) Combinations of prefixes denote
conjunctions of these conditions. For exampignmetricals shorthand forps-symmetrical

Although these definitions are clear in principle, they are rather abstract. An algorithm
needs concrete, easily computable conditions that imply the abstract ones and are likely to hold

298 Chapter 12. Resource Solvers

in practice. Here are the concrete conditions usethbResour cePai r Reassi gn, assuming that
the component is assignable both ways.

Suppose that some component’s two parts run at the same times and have the same total
workload. Then the component is r-symmetrical, because only these things affect resource mon-
itors, except clashes—but component assignments have no clashes in themselves, and since the
two parts run at the same times, they have the same clashes with tasks outside the component.

Suppose that, for every prefer resources monitor of non-zero cost which monitors any task
of some component, eithet andr 2 are both preferred by the monitor’s constraint, or they are
both not preferred. Then the component is p-symmetrical.

Suppose that, for each task in some compormeanhich is monitored by an avoid split
assignments monitor of non-zero cost, every task monitored by that monitor either was not
assigned 1 orr 2 originally, or else it lies irc. Then the component is s-symmetrical.

To prove this, take one avoid split assignments monitor, and partition the set of tasks mon-
itored by it into those that were not assignédor r 2 originally, and so are beyond the scope of
the reassignment (call the8)), and those that were (call the®y). If the tasks ofS, lie within
two or more components, then which way those components are assigned does matter. Butif they
lie within one component, then the cost of the monitor will be the same whichever assignment is
chosen. This is becausé andr 2 do not appear among the resources assigned to the taSks of
(if they did, those tasks would be 8)), so the assignments &) introduce fresh resources to the
monitor. If all the tasks o8, lie in one part of the component, one fresh resource is introduced
by both assignments; if some lie in one part and the others in the other, two fresh resources are
introduced by both assignments. Either way, the effect on the monitor is the same.

Whenfix_splitsistrue, all tasks which share an avoid split assignments monitor lie in
the same part, so in the same component. So every component is s-symmetrical in that case.

It is easy to check whether a component is rp-symmetrical. Thisis done as each component
is partitioned. Merely checking for s-symmetry is not enough: asillustrated by the Mathematics
example, several components may need to be merged (by merging their parts) to produce one
s-symmetrical component. This is done using the second partitioning graph, as follows.

The second-graph nodes are the merged nodes from the first-graph components. When two
nodes come from the same first-graph comporiéiit, PART_GRAPH_DI FFERENT is returned by
the relation function. Otherwise, if they share an avoid split assignments monitor of non-zero
cost, it return&HE_PART _GRAPH_SAME. Otherwise it return&HE_PART GRAPH UNRELATED.

Two nodes representing the two parts of a first-graph component must lie in the same
second-graph component, because there is an edge between them. So each second-graph
component is a set of first-graph components linked by avoid split assignments constraints.

For each second-graph component, its first-graph components may be merged if it does
not contain an unassignable first-graph component, at most one of its first-graph components is
not rp-symmetrical, and it is partitionable. The two nodes of the merged component are built by
merging the nodes of each part of the second-graph component. If all the first-graph components
being merged are rp-symmetrical, the resulting component is rps-symmetrical, so either one of its
assignments may be removed. But component merges are valuable even without rps-symmetry.

12.8. Resource pair repair 299

12.8.5. A simpler resource pair repair

This section describekheResour cePai r Si npl eReassi gn, a simpler resource pair repair
function, which is suited to nurse rostering applications. It does not attempt to find symmetries,
which are rare in instances whose events all have duration 1. Instead it offers a way of limiting
the search space to just one segment of the timetables of the two resources:

bool KheResour cePair Si npl eReassi gn(KHE_SOLN sol n,
KHE_RESOURCE r1, KHE_RESOURCE r2, KHE_FRAME frame, int fi, int |i,
bool resource_invariant, int max_assignments);

It tries all combinations of reassignmentsrdf andr 2 to the tasks assigned to themfinane
between indexe$i and!i inclusive. If resource_invariant is true, only assignments
satisfying the resource invariant are acceptable.

Each resource is assigned to at most one task per time groupé, so there are two
choices at each time group (or 1 when neither resource is assigned), and the size of the search
space is at most 2 to the powdreFr aneTi neG oupCount (f rame) . However, the function stops
after makingrax_assi gnment s assignmentsin total. If it finds an improvement, it charsgpés
to it and returnsr ue, otherwise it keeps the original assignments and refurinse.

A convenient way to invok&heResour cePai r Si npl eReassi gn repeatedly is
bool KheResour cePair Si mpl eRepai r (KHE_SOLN sol n, KHE OPTI ONS options);

It returnst r ue if any of its calls tokheResour cePai r Si npl eReassi gn return true. It obtains
frame andr esour ce_i nvari ant from options. The following options are also consulted
and determine the other parameters:

rs_pair_off
A Boolean option which, whetr ue, turns resource simple pair repair off.

rs_pair_sel ect
This option determines which pairs of resources are tried. Its value médyndoe",
meaning that no pairs are tried, giving another way to turn this repair of§lor' , meaning
that for each resource type, all pairs are tried;atj acent ", meaning that each adjacent
pair of resources (0 and 1, 1 and 2, 2 and 3, and so on) in each resource type is tried; or
"defective" (the default), meaning that for each resource type, all pairs of resources for
which at least one of the resources has a defective resource monitor are tried.

rs_pair_parts
The value ofkheFr aneTi meG oupCount (frane) on each call. For example, setting this
value to 7 (the default) reassigns one week.

rs_pair_start,rs_pair_increnent
The value of r ame’s start index on the first call, and how much it is incremented by on each
subsequent call. The default values are Orangbai r _parts.

rs_pair_nmax
The value ofnmax_assi gnments. Its default value is 1000000, which is fine when
rs_pair_parts is7but may need to be reduced when it is larger.

300 Chapter 12. Resource Solvers

Resource pair repair runs very quickly when the default values are used, as would be expected
given that the search space has size at tﬂq&br pair. On testsrun by the author it found several
improvements, enough to justify its modest running time. Settmgai r _parts to 14 gave

some further improvement, but it also slowed the solves down noticeably.

Another way to invokéheResour cePai r Si npl eReassi gn repeatedly is
bool KheResour cePai r Si npl eBusyRepai r (KHE_SOLN sol n, KHE_OPTI ONS opt i ons);

This is like KneResour cePai r Si npl eRepai r except that it makes a different set of calls to
KheResour cePai r Si npl eReassi gn, and its options have different namess_bpai r _of f,
rs_bpair_select, rs_bpair_parts, rs_bpair_start, rs_bpair_increnent, and
rs_bpai r _max. These are like the corresponding option&lafResour cePai r Si npl eRepai r ,
exceptr s_bpai r _sel ect has no effect, and the default valueraf_bpai r _part s is 14.

For each resourcekheResour cePai r Si npl eBusyRepai r obtains its number of busy
times from KheResour ceTi met abl eMoni t or BusyTi mes (Section 6.7.2), and its limit from
KheFr ameResour ceMaxBusyTi mes (Section 5.10). It pairs the most overloaded resource with
the most underloaded one, the second most overloaded with the second most underloaded, and
so on, and callg&heResour cePai r Si npl eReassi gn on each pair. Each resource participates
in at most one call t&heResour cePai r Si npl eReassi gn, so the number of these calls is very
much smaller than the number made KheResour cePai r Si npl eRepai r, and accordingly
rs_bpai r _parts canreasonably be larger thas_pai r _parts.

When tested by the auth&heResour cePai r Si npl eBusyRepai r produced very promising
pairs, but failed to improve the solution, both when bpai r _par t s had the default value 14,
and when itwas increased to 21, with_bpai r _i ncr enent setto 7. Atthat point a small but
noticeable amount of time was being consumed by some pairs. Pairing each overloaded resource
with the most underloaded resource also failed to find any improvement. Accordingly, the default
value ofr s_bpai r _of f has been set to ue.

Also available are

bool KheResourceTri pl eSi npl eReassi gn(KHE_SOLN sol n,
KHE RESOQURCE r1, KHE RESOURCE r2, KHE RESOURCE r3, KHE FRAME frane,
int fi, int |i, bool resource_invariant, int max_assignments);

and

bool KheResourceTri pl eSi npl eRepai r (KHE_SOLN sol n, KHE_OPTI ONS opti ons);

These are just lik&heResour cePai r Si npl eReassi gn andKheResour cePai r Si npl eRepai r,
only reassigning three resources rather than tif@Resour ceTri peSi npl eRepai r consults
optionsrs_triple_off,rs_triple_select,rs_triple_parts,rs_triple_start,
rs_triple_increnment,andrs_tripl e_max. These are like the corresponding options for
resource pairs, except thag_tri pl e_sel ect has default valuénone", not" def ecti ve".

The author undertook one test of resource triple repair. It ran after resource pair repair,
but still it found five improvements. The search space has(s?imr resource triple when
rs_triple_parts is7. Thisis not impossibly large, but trying all triples containing at least
one defective resource is very slow. The author’s test took several hours (the instance was
I NRC1- LHO3, with about 50 nurses) and convinced him that resource triple repair is not suitable

12.8. Resource pair repair 301
for routine use. It may be suitable for repairing a few very bad resources.

12.8.6. Resource pair swapping
Yet another way to repair two resources is to simply swap their timetables:

bool KheResour cePai r Swap(KHE_SCLN sol n,
KHE_RESOURCE r1, KHE _RESOURCE r2, KHE_FRAME frame, int fi, int |i,
bool resource_invariant);

It attemps to move all tasks ebl n lying (partly or wholly) between indexdés and! i inclusive

in frane initially assignedr1 to r2 and vice versa. Ifesource_invariant istrue, only
assignments satisfying the resource invariant are acceptable. If all these assignments succeed
and the solution cost is reducétieResour cePai r Swap leavessol n in the new state and returns

true. Otherwise it leavesol n unchanged and returhsl se.

A convenient way to invok&heResour cePai r Swap repeatedly is
bool KheResour cePai r SwapRepai r (KHE_SOLN sol n, KHE_OPTI ONS opti ons);

It returnst r ue if any of its calls tokheResour cePai r Swap return true. It obtainérane and
resour ce_i nvari ant fromopti ons. The following options are also consulted and determine
the other parameters:

rs_swap_off
A Boolean option which, whetr ue, turns resource swap repair off.

rs_swap_sel ect
This option determines which pairs of resources are tried. Its values are the same as those
forrs_pair_select.

rs_swap_parts
Thevalueoffi - Ii + 1oneach call. For example, setting this value to 7 reassigns one
week. The default value kheTi meG oupTi meCount (f r ane) , which means that the entire
timetables of the two resources are swapped.

rs_swap_start,rs_swap_i ncrenent
The value of i on the first call,and how much itis incremented by on each subsequent call.
The default values are 0 and_swap_parts.

report on its effectiveness still to do

12.9. Trying unassignments

KHE's solvers assume that it is always a good thing to assign a resource to a task. However,
occasionally there are cases where cost can be reduced by unassigning a task, because the
cost of the resulting assign resource defect is less than the cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSol nTryTaskUnAssi gnnent s(KHE_SOLN sol n) ;

302 Chapter 12. Resource Solvers

for use at the end. It tries unassigning each taskobh in turn. If any unassignment reduces
the cost ofsol n, it is not reassigned. The resultisue if any unassignments were kept.

12.10. Putting it all together

This section presents functions which assemble the pieces described in previous sections.

Three structural decisions face a resource solver. Should it work with split assignments?
Should it preserve the resource assignment invariant? Should it respect the domains of tasks? It
is easy to write solvers that can be used with any combination of these decisions, as follows.

Get unsplit assignments by building a task tree with avoid split assignments jobs. Allow
split assignments by callingheTaski ngAl | owSpl i t Assi gnment s (Section 11.8). Either way,
a solver assigns resources to unfixed tasks, without knowing or caring if they have followers.

By enclosing each attempt to change the solutioshi@At omi cTransact i onBegi n and
KheAt oni cTransacti onEnd (Section 12.2), a solver can preserve the resource assignment
invariant, or not, depending on the value of a Boolean parameter.

If domains are to be respected, do nothing; if not, then before running the solver, call
KheTaski ngEnl ar geDomai ns (Section 11.8) to enlarge them to the full set of resources.

A sequence of three functions,

bool KheTaski ngAssi gnResour cesSt agel(KHE_TASKI NG t aski ng,
KHE_OPTI ONS opti ons);

bool KheTaski ngAssi gnResour cesSt age2(KHE_TASKI NG t aski ng,
KHE_OPTI ONS opti ons);

bool KheTaski ngAssi gnResour cesSt age3(KHE_TASKI NG t aski ng,
KHE_OPTI ONS opti ons);

packages this chapter’s ideas into a three-stage solver which assigns resources to the tasks of
taski ng. Called in order, they take a ‘progressive corruption’ approach to the decisions just
described: they are spotless at first, but they slide into the gutter towards the end.

KheTaski ngAssi gnResour cesSt agel begins by setting optiotr s_i nvariant” totrue.
Then it assigns resources to the unassigned unfixed taskasbifng, using the assignment
algorithm indicated by thes_const ruct or option, as detailed below. This s followed by a call
to a private function, called the ‘repair part’ here, which tries several kinds of repairs, including
KheResour ceRemat ch (Section 12.6.5)kheEj ect i onChai nRepai r Resour ces (Section 12.7),
and, in the employee scheduling modklkeResour cePai r Si npl eRepai r (Section 12.8.5).

After this, the great majority of the tasks, probably, have been assigned resources. There are
no split assignments, the resource assignment invariant is preserved, and domains are respected.

KheTaski ngAssi gnResour cesSt age2 does nothing if the instance contains no avoid split
assignments constraints. Otherwise, it délisFi ndSpl i t Resour ceAssi gnnent s to build split
assignments, argheTaski ngAl | owSpl i t Assi gnnent s to permit all tasks, assigned or not, to
be split. It then calls the repair part. Ejection chain repair will try to remove split assignments
(it has always been able to, but there has been nothing to trigger it until now), and it also tries to
assign unassigned tasks, even at the cost of splitting assignments that were previously unsplit.

KheTaski ngAssi gnResour cesSt age3 is very corrupt indeed. It turns the resource

12.10. Putting it all together 303

assignment invariant off, enlarges domains by calkheTaski ngEnl ar geDomai ns, then runs

the repair part yet again. Enlarging domains makes sense only at the very end, and will help only
if any resource is better than none. Because the resource assignment invariant is removed, this
stage should be run only after the first two stages have bednreach resource type

The options consulted by the three functions directly are

rs_constructor
This option determines which resource solkieeTaski ngAssi gnResour cesSt agel calls
to construct the initial resource assignment. If it m®ne", then no solver is called: no
assignments are made, and the repair stages have to find assignments as well as repair them.
This is not likely to work well, although it is worth trying. If it isnost _constrai ned",
then KheMost Const r ai nedFi r st Assi gnResour ces (Section 12.5.2) is called. If it is
"resour ce_packi ng", then KheResourcePackAssi gnResources (Section 12.5.3) is
called. If itis"ti me_sweep", thenKheTi meSweepAssi gnResour ces (Section 12.6.3) is
called. If itis"aut 0" (the default), then one of these functions is called, depending on the
model and whether there are avoid split assignments constraints.

rs_group_by_resource
This option, when r ue, causes the repair part ifieTaski ngAssi gnResour cesSt agel to
be executed twice, first in the usual way, and then with the tasks grouped by resource using
KheTaski ngG oupByResour ce (Section 11.6). The grouping is then removed.

rs repair_off
This option, when r ue, causes the repair part to do nothing in all three stages, leaving just
the initial construction, including any repair steps within the construction algorithms.

rs repairl off,rs repair2 off,rs repair3 off
These three options, whénue, cause stage 1, 2, or 3 of the repair part to do nothing.

rs_repair_rematch_off
This option, when r ue, turns off rematching repair in the repair parts.

rs_repair_ejection_off
This option, when r ue, turns off ejection chain repair in the repair parts.

rs repair _tinme limt
A string option defining a soft time limit for the repair part of each stage. The format
is the one accepted bgheTi meFronString (Section 8.1):secs, or m ns: secs, or
hrs: m ns: secs, or the special value, meaning ‘no limit’, which is the default value.

Many other options influence the solvers called by the three functions. All three functions set
thers_i nvariant option, making it futile for the user to do so if they are used.

Chapter 13. Ejection Chains

Ejection chains are sequences of repairs that generalize the augmenting paths from bipartite
matching. They are due to Glover [3], who applied them to the travelling salesman problem.

13.1. Introduction

An ejection chain algorithm targets one defect and tries a set of alterrep@igson it. A repair

could be a simple move or swap, or something arbitrarily complex. It removes the defect, but

may introduce new defects. If no new defects of significant cost appear, that is success. If just
one significant new defect appears, the method calls itself recursively to try to remove it; in this

way a chain of coordinated repairs is built up. If several significant new defects appear, or the
recursive call fails to remove the new defect, it undoes the repair and continues with alternative
repairs. It can also try to remove all the new defects, although that is not often useful.

Corresponding to the well-known function for finding an augmenting path in a bipartite
graph, starting from a given node, is this function, formulated by the author, for ‘augmenting’
(improving) a solution, starting from a given defect:

bool Augment (Solution s, Cost c, Defect d);
(KHE’s interface is somewhat different to thisAjignent has precondition
cost(s) >=c¢ & cost(s) - cost(d) < ¢

If it can changes to reduce its cost to less thanit does so and returnis ue; if not, it leavess
unchanged and returfial se. The precondition implies that removinigwithout adding new
defects would be one way to succeed. Here is an abstract implementatagnent :

bool Augmnent (Solution s, Cost c, Defect d)
{
repair_set = RepairsO(d);
for(each repair r in repair_set)
{
new_def ect _set = Apply(s, r);
if(cost(s) <c)
return true;
for(each e in new defect _set)
if(cost(s) - cost(e) < c & Augnent(s, ¢, e))
return true;
\ UnApply(s, 1);

return fal se;

}

It begins by finding a set of ways thdtcould be repaired. For each repair, it applies it and

304

13.1. Introduction 305

receives the set of new defects introduced by that repair, looks for success in two ways, then
if neither of those works out it unapplies the repair and continues by trying the next repair,
returningf al se when all repairs have been tried without success.

Success could come in two ways. Either a repair reduesg s) to belowc, or some new
defecte has cost large enough to ensure that removing it alone would constitute success, and a
recursive call targeted atsucceeds. Notice thabst (s) may grow without limit as the chain
deepens, while there is a defeaivhose removal would reduce the solution’s cost to below

The key observation that justifies the whole approach is this: the new defects targeted by the
recursive calls are not known to have resisted attack before. It might be possible to repair one of
them without introducing any new defects of significant cost.

The algorithm stops at the first successful chain. An option for finding the best successful
chain rather than the first has been withdrawn, because of design problems in combining it with
ejectiontrees (Section 13.5.3). Itisno greatloss: it produced nothing remarkable, and ran slowly.
Another option, for limiting the disruption caused by the repairs, has also been withdrawn. It too
was not very useful. It can be approximated by limiting depth, as described next.

The tree searched IBygnment as presented may easily grow to exponential size, which is not
the intention. The author has tried two methods of limiting its size, both of which seem useful.
They may be used separately or together.

The first method is to limit the depth of recursion to a fixed constant, perhaps 3 or 4. The
maximum depth is passed as an extra parametemgient , and reduced on each recursive call,
with value 0 preventing further recursion. Not only is this attractive in itself, it also supports
iterative deepeningn whichAugnent is called several times on the same defect, with the depth
parameter increased each time. Another idea is to use a small depth on the first iteration of the
main loop (see below), and increase it on later iterations.

The second method is the one used by augmenting paths in bipartite matching. Just before
each call orhugnent from the main loop, the entire solution is marked unvisited (by increment-
ing a global visit number, not by traversing the entire solution). When a repair changes some
part of the solution, that part is marked visited. Repairs that change parts of the solution that are
already marked visited are tabu. This limits the size of the tree to the size of the solution.

Given a solution and a list of its defects, the main loop cycles through the list repeatedly,
callingAugnment on each defect in turn, with set tocost (s) . When the main loop exits, every
defect has been tried at least once without success since the most recent success, so no further
successful augments are possible, unless there is a random elementAngtrent . Under
reasonable assumptions, this very clear-cut stopping criterion ensures that the whole algorithm
runs in polynomial time, for the same reason that hill-climbing does.

When there are several defect types, sevargient algorithms are needed, one for each
defect type, dynamically dispatched on the type. The repairs are usually applied directly, rather
than indirectly via objects built to represent them.

Careful work is needed to maximize the effectiveness of ejection chains. Grouping together
monitors that measure the same thing is important, because it reduces the number of defects
and increases their cost, increasing the chance that a chain will be continued. Individual repair
operations should actually remove the defects that they are called to repair (the framework does
not check this), and should do whatever seems most likely to avoid introducing new defects.

306 Chapter 13. Ejection Chains

13.2. Ejector construction

KHE offersejectorobjects which provide a framework for ejection chain algorithms, reducing
the implementation burden to writing just the augment functions. The framework uses visit
numbers (Section 4.2.5), in the conventional way.

To support statistics gathering (Section 13.6), a single ejector object may be re-used many
times, even on different instances (although not in parallel—an ejector object is highly mutable
and cannot be shared by two or more threads). This makes it important to distinguish between
those parts of the ejector which are constant throughout its lifetime, and those parts which vary
from solve to solve. This section is concerned with the constant parts.

An ejector is constructed by a sequence of calls beginning with
KHE_EJECTOR KhekEj ect or MakeBegi n(HA_ARENA a) ;

and ending with
voi d KheEj ect or MakeEnd(KHE_EJECTCR €j) ;

Its constant parts are set by calling the functions given in this section, between these two calls.
After KneEj ect or MakeEnd is called the constant parts cannot be changed.

The ejector is stored in aremawhich is accessible by calling
HA ARENA KheEj ect or Arena(KHE_EJECTOR €j);

There is no function to delete an ejector; as usual, it is deleted when its arena is deleted.

The constant parts of an ejector object are a sequenoea@@r schedulesind a set of
augment functionsThe major schedules control the detailed behaviour of each solve, while the
augment functions are callback functions passed in by the user, containing the repairs.

A major schedule is represented by an object of e EJECTOR_ MAJOR_SCHEDULE. It
contains a sequence ofinor schedulesA minor schedule is represented by an object of type
KHE_EJECTOR_M NOR_SCHEDULE. It contains two attributesmaximum deptfand may-revisit
The entire main loop of the algorithm, which repeatedly tries to augment out of each defect until
no further improvements can be found, is repeated once for each major schedule in order. An
ejector with no major schedules does nothing. Within each main loop, the augment for one defect
is tried once for each minor schedule of the current major schedule, until an augment succeeds in
reducing the cost of the solution or all minor schedules have been tried. A major schedule with
no minor schedules does nothing.

An ejector’s major schedules may be accessed at any time by

i nt KheEj ect or Maj or Schedul eCount (KHE_EJECTOR €j) ;
KHE_EJECTOR_MAJOR_SCHEDULE KhekEj ect or Maj or Schedul e(KHE_EJECTCR ej, int i);

in the usual way. To begin and end adding one major schedule, call

voi d KheEj ect or Maj or Schedul eBegi n(KHE_EJECTOR €j) ;
voi d KheEj ect or Maj or Schedul eEnd(KHE_EJECTOR €j) ;

Its minor schedules are added by call&heEj ect or M nor Schedul eAdd (described below) in

13.2. Ejector construction 307

between these calls, and may then be accessed by calling

i nt KheEj ect or Maj or Schedul eM nor Schedul eCount (KHE_EJECTOR_MAJOR_SCHEDULE ej m) ;
KHE_EJECTOR_M NOR_SCHEDULE KhekEj ect or Maj or Schedul eM nor Schedul e(
KHE_EJECTOR_MAJOR SCHEDULE ejm int i);

in the usual way.
Minor schedules are added to a major schedule by calls to

voi d KheEj ect or M nor Schedul eAdd(KHE_EJECTOR egj
int max_depth, bool may _revisit);

in between the calls tisheEj ect or Maj or Schedul eBegi n andKheEj ect or Maj or Schedul eEnd.
The attributes of a minor schedule may be retrieved by

i nt KheEj ect or M nor Schedul eMaxDept h(KHE_EJECTOR_M NOR_SCHEDULE ej ns) ;
bool KheEj ect or M nor Schedul eMayRevi si t (KHE_EJECTOR_M NOR_SCHEDULE ej ns) ;

Thenmax_dept h attribute determines the maximum depth of recursion (the maximum number of
repairs allowed on one chain). Value 0 allows no repairs at all and is forbidden. Value 1 allows
augment calls from the main loop, but prevents them from making recursive calls, producing a
kind of hill climbing. Value 2 allows the calls made from the main loop to make recursive calls,
but prevents those calls from recursing. And so on.

Eachtree (rooted at one augment call in the main loop) gets a new global visit number,
making it free to change any part of the solution. Whew revisit isfal se, each part of the
solution may be changed by at most one of the recursive calls within one tree; whenui¢ js
each part may be changed by any number of them, although only once along any one chain.

Here are some examples. To allow up to two repairs on any chain, with revisiting:

KheEj ect or Maj or Schedul eBegi n(ej);
KheEj ect or M nor Schedul eAdd(ej, 2, true);
KheEj ect or Maj or Schedul eEnd(ej) ;

To allow arbitrary-depth recursion, but no revisiting:

KheEj ect or Maj or Schedul eBegi n(ej);
KheEj ect or M nor Schedul eAdd(ej, | NT_MAX, false);
KheEj ect or Maj or Schedul eEnd(ej) ;

Itis a bad idea to setax_dept h to a large value andhy_r evi sit totrue in the same schedule,
because the algorithm will then usually take exponential time. But settingdepth to a
small constant, or settirgy_revi sit tof al se, or both, guarantees polynomial time. Another
interesting idea igerative deepeningn which several depths are tried. For example,

308 Chapter 13. Ejection Chains

KheEj ect or Maj or Schedul eBegi n(g)'

KheEj ect or M nor Schedul eAdd(ej, 1, true);

KheEj ect or M nor Schedul eAdd(ej, 2, true);

KheEj ect or M nor Schedul eAdd(ej, 3, true);

KheEj ect or M nor Schedul eAdd(ej, |NT_MAX, false);
KheEj ect or Maj or Schedul eEnd(ej) ;

tries maximum depth 1, then 2, then 3, and finishes with arbitrary depth.
Here are two faster ways to add schedules:

voi d KheEj ect or AddDef aul t Schedul es(KHE_EJECTOR ¢€j) ;
voi d KheEj ect or Set Schedul esFrontt ri ng(KHE_ EJECTOR €,
char +ejector_schedul es_string);

KheEj ect or AddDef aul t Schedul es adds some major and minor schedules, chosen by the author
as reasonable defaults. At present it does this:

KheEj ect or Maj or Schedul eBegi n(ej);

KheEj ect or M nor Schedul eAdd(ej, 1, true);

KheEj ect or Maj or Schedul eEnd(ej) ;

KheEj ect or Maj or Schedul eBegi n(ej);

KheEj ect or M nor Schedul eAdd(ej, | NT_MAX, false);
KheEj ect or Maj or Schedul eEnd(ej) ;

KheEj ect or Set Schedul esFronStri ng interprets its string as a sequence of instructions for
adding schedules &) , and follows the instructions. It supports tests that compare schedules.

The string contains a sequence of one or more major schedules separated by commas. Each
major schedule consists of a sequence of minor schedules, each represented by two characters.
The first character of each minor schedule is a digit, @and defines the depth limitymeans un-
limited. The second is either meaning with revisiting, or, meaning without it. For example,

"1+, u-" defines two major schedules. The first has one minor schedule with depth limit 1 and
revisiting; the second has one minor schedule with unlimited depth and no revisiting.

The other constant part of an ejector object is the set of augment functions, one function for
each kind of defect that the user wants the ejector to repair. These augment functions are written
by the user, as described in Section 13.4, and passed to the ejector by calls to

voi d KheEj ect or AddAugnent (KHE_EJECTOR ej, KHE_MONI TOR_TAG t ag,
KHE_EJECTOR_AUGMENT _FN augnent _fn, int augnent_type);

voi d KheEj ect or AddG oupAugment (KHE_EJECTOR ej, int sub_tag,
KHE_EJECTOR_AUGMENT _FN augnent _fn, int augnent_type);

The first says that defects which are non-group monitors with éggshould be handled by
augment _f n; the second says that defects which are group monitors with swsiiagag should

be handled byugnent _f n. Heresub_t ag must be between 0 and 29 inclusive. Any values not

set are handled by doing nothing, as though an unsuccessful attempt was made to repair them.
Ejectors handle the polymorphic dispatch by defect type. aligeent _t ype parameter is used

by statistics gathering (Section 13.6), and may be 0 if statistics are not wanted.

13.3. Ejector solving 309

13.3. Ejector solving
Once an ejector has been set up, the ejection chain algorithm may be run by calling

bool KheEj ect or Sol ve(KHE_EJECTOR ej, KHE GROUP_MONI TOR start _gm
KHE GROUP_MONI TOR conti nue_gm KHE OPTI ONS opti ons);

This runs the main loop of the ejection chain algorithm once for each major schedule, returning
t rue if it reduces the cost of the solution monitoreddsart _gmandcont i nue_gm

The main loop repairs only the defective child monitorssoért _gm and the recursive
calls repair only the defective child monitorsafnt i nue_gm These two group monitors could
be equal, and either or both could be an upcast solution. Although it is not required, in practice
every child monitor okt art _gmis also a child monitor ofont i nue_gm

Just as an ejector is constructed by a sequence of calls encldgedjirct or MakeBegi n
andKheEj ect or MakeEnd, so a solve is carried out by a sequence of calls beginning with

voi d KheEj ect or Sol veBegi n(KHE_EJECTOR ej, KHE_GROUP_MONI TOR start_gm
KHE_GROUP_MONI TOR conti nue_gm KHE _OPTI ONS opti ons);

and ending with
bool KheEj ect or Sol veEnd(KHE_EJECTOR €j) ;

KheEj ect or Sol veEnd does the actual solving. FunctidgtheEj ect or Sol ve above just calls
KheEj ect or Sol veBegi n andKheEj ect or Sol veEnd with nothing in between.

The only functions callable betwedheEj ect or Sol veBegi n andKheEj ect or Sol veEnd
(at least, the only ones that change anything) are

voi d KheEj ect or AddMoni t or Cost Li m t (KHE_EJECTOR €j ,
KHE_MONI TOR m KHE_COST cost _limt);

voi d KheEj ect or AddMoni t or Cost Li m t Reduci ng(KHE_EJECTCR ¢gj ,
KHE_MONI TOR m) ;

The callkheEj ect or AddMbni t or CostLimit(ej, m cost_linit) saysthatfora chaintoend
successfully, not only must the solution cost be less than the initial coghdtni t or Cost (m
must be no larger thacost _| i mi t. KheEj ect or AddMoni t or Cost Li mi t Reduci ng(ej, m is
the same except that the cost limitis initialized&beMoni t or Cost (m) , and if a successful chain
is found and applied which reduckseMbni t or Cost (n) to below its current limit, that limit is
reduced to the newheMbni t or Cost (m) for subsequent chains.

To visit thesdimit monitors call
i nt KheEj ect or Moni t or Cost Li ni t Count (KHE_EJECTOR €j) ;

voi d KheEj ect or Moni t or Cost Li mi t (KHE_EJECTOR ej, int i,
KHE_MONI TOR *m KHE_COST *cost _limt, bool *reducing);

The returned values are the monitor, its current cost limit, and whether that limit may be reduced.
Any number of limit monitors may be added, but large numbers will not be efficient.

Each time the ejector enters the main loop, it makes a copy aft _gnis list of defects

310 Chapter 13. Ejection Chains

and sorts the copy by decreasing cost. Ties are broken differently depending on the value
of the solution’s diversifier. If thees_| i m t _defects option is set to some integer (not to
"unlimted"),defectsare dropped from the end of the sorted list to ensure that there are no more
thanes_linit_defects of them.

Consider a defeal that the main loop of the ejection chain solver is just about to attempt
to repair. Suppose that the most recent change either to the solution or to the major schedule
occurred before the most recent previous attempt to relpdihen, if the repair is deterministic,
the current attempt to repairis certain to fail like the previous attempt did. Accordingly, it is
skipped. The implementation of this optimization uses visit numbers stored in monitors.

In practice, repairs are not deterministic, since, for diversity, KHE’s augment functions vary
the starting points of their traversals of lists of repairs between calls. However, the author carried
out an experiment on a large instance (NL-KP-03), in which this optimization was turned off but
a check was made to see whether there were any cases where repairs which it would have caused
to be skipped were successful. Over 8 diversified solves there were 15 cases.

The following functions may be called whiléheEj ect or Sol ve is running (that is, from
within augment functions):

KHE_GROUP_MONI TOR KheEj ect or St art Gr ouphoni t or (KHE_EJECTOR €j) ;
KHE_GROUP_MONI TOR KheEj ect or Cont i nueG ouphoni t or (KHE_EJECTOR ¢j) ;
KHE_OPTI ONS KheEj ect or Opt i ons(KHE_EJECTCR €j) ;

KHE_FRAME KheEj ect or Fr ame(KHE_EJECTCR €j) ;

KHE_EVENT_TI METABLE_MONI TOR KheEj ect or Event Ti net abl eMoni t or (KHE_EJECTOR gj) ;
KHE _SOLN KhekEj ect or Sol n(KHE_EJECTCR ¢j) ;

KHE_COST KheEj ect or Tar get Cost (KHE_EJECTCR ¢€j) ;

KHE _EJECTOR_MAJOR_SCHEDULE KheEj ect or Curr Maj or Schedul e(KHE_EJECTCR €j) ;
KHE_EJECTOR_M NOR_SCHEDULE KheEj ect or Curr M nor Schedul e(KHE_EJECTCR €j) ;
bool KheEj ect or Curr MayRevi si t (KHE_EJECTCR €j);

i nt KheEj ect or Curr Dept h(KHE_EJECTCR ¢j) ;

i nt KheEj ect or Curr Augment Count (KHE_EJECTOR gj) ;

bool KhekEj ect or Curr Debug(KHE_EJECTOR €j) ;

i nt KheEj ect or Curr Debugl ndent (KHE_EJECTCR ¢€j) ;

KheEj ect or St art G oupMoni t or , KheEj ect or Cont i nueG oupMoni t or , and KheEj ect or Opt i ons
arestart_gmcontinue_gm andopti ons from KheEj ect or Sol ve.

KheEj ect or Frane is the frame (Section 5.10) thaj passes tdheEj ecti ngTaskMove
(Section 12.3), juskheFr ameQpt i on(opti ons, "gs_common_frame", ins) (Section 5.10).

KheEj ect or Event Ti et abl eMoni t or is the value of th@s_event _ti net abl e_noni t or
option (Section 8.3, afULL if absent. When it is present, some augment functions use it to find
events running at the same time as a given event; when it is absent, those functions omit repairs
that depend on finding those events.

KheEj ect or Sol n is start_gnis and conti nue_gms solution. KheEj ect or Tar get Cost
is the cost that the chain must improve on to succedd the abstract code above): the cost
that the solution had whefugnent was most recently called from the main loop, except when
ejection trees are in use, as explained in Section 138k ect or Cur r Maj or Schedul e is
the current major schedul&heEj ect or Curr M nor Schedul e is the current minor schedule,

13.3. Ejector solving 311

andKheEj ect or Curr MayRevi si t is itsmay_revisit attribute—frequently used by augment
functions, as will be seerkheEj ect or Curr Dept h is the current depth (1 when the augment
function was called from the main loop, 2 when called from an augment function called from
the main loop, etc.)KheEj ect or Cur r Augnent Count is the number of augments since this
solve began.

KheEj ect or Curr Debug returnst rue whenej is currently debugging, because it is try-
ing to repair a main loop defect in the monitor stored in glsedebug_roni t or option of
options. It seems to work well for each repair to generate a one-line description of itself when
KheEj ect or Cur r Debug istrue. KheEj ect or Curr Debugl ndent is the current amount that de-
bug prints should be indented by; this is twice the current depth.

13.4. How to write an augment function
An augment function has type
typedef bool (*KHE_EJECTOR AUGMVENT FN) (KHE_EJECTOR ej, KHE_MONITOR d);

The parameters are the ejeatpipassed t&heEj ect or Sol ve, and the defeat that the augment
function is supposed to repair. Itis a precondition thaave non-zero cost and removing that

cost would make for a successful augment. The return value is supposed to be equal to the value
returned by the most recent callKkbeEj ect or Repai r End below, orf al se if there have been

no repairs. The ejector does not use this value, since it already knows what the most recent call
to KheEj ect or Repai r End returned. However, it is convenient to have it available for when one
augment function calls another.

Augment functions often look like this, although not necessarily exactly:

bool Exanpl eAugnent (KHE_EJECTOR ej, KHE_MONI TOR d)
{
KHE ENTITY e; bool success; REPAIR r;
e = SoneSol nEntityRel atedTo(d);
if('KheEntityVisited(e))
{
KheEntityVisit(e);
for(each r in RepairsO(e))
{
KheEj ect or Repai r Begi n(ej) ;
success = Apply(r);
i f(KheEj ectorRepairEnd(ej, 0, success))
return true;
}
i f(KheEjectorCurrMayRevisit(ej))
KheEntityUnVisit(e);
}

return fal se;

312 Chapter 13. Ejection Chains

FunctionSoneSol nEnt i t yRel at edTo used to identify some entity (node, meet, task, etc.) that
will be changed by the repairs, but that should only be changed if it has not already been visited
(tested by callingheMeet Vi si t ed etc. from Section 4.2.5). Functid®pai rsO builds a set

of alternative repairs of e, andAppl y(r) stands for the code that applies repaiin practice,
repairs just need to be iterated over and applied; an explicit set of them is not needed.

FunctionkheEj ect or Repai r Begi n andKheEj ect or Repai r End are supplied by KHE:

voi d KheEj ect or Repai r Begi n(KHE_EJECTOR €]) ;
bool KheEj ect or Repai r EndLong(KHE_EJECTOR ej, int repair_type,

bool success, int max_sub_chains, bool save and sort,

void (*on_success_fn)(void xon_success _val), void *on_success val);
bool KheEj ect or Repai r End(KHE_EJECTOR ej, int repair_type, bool success);

KheEj ect or Repai rEnd and KheEj ect or Repai rEndLong are the same except that
KheEj ect or Repai r End, the best choice in most circumstances, relieves the user of the burden
of supplying the usual values for the last four parameters, natméa se, NULL, andNULL. If

other values are wanted for any of these parametersKtiedii ect or Repai r EndLong must be
called. Formax_sub_chai ns see Section 13.5.3; faave_and_sort see Section 13.5.4; and

for on_success_fn andon_success_val see Section 13.5.5KHeEj ect or Repai r End’ means
‘KheEj ect or Repai r End or KheFEj ect or Repai r EndLong’ from here on.

Calls toKheEj ect or Repai r Begi n and KheEj ect or Repai r End must occur in matching
pairs. A call tokheEj ect or Repai r Begi n informsej that a repair is about to begin, and the
following call toKheEj ect or Repai r End informs it that that repair has just ended. The repair is
undone and redone (if required) behind the scendé bl ect or Repai r End, using marks and
paths, so undoing is not the user’s concern.

Therepai r _t ype parameter oKheEj ect or Repai r End is used to gather statistics about
the solve (Section 13.6). It may be O if statistics are not wanted.

Thesuccess parameter tells the ejector whether the caller thinks the current repair was
successful. If it id al se, the ejector undoes the repair and forgets that it ever happened. The
other parameters are ignored in that case. If itrige, the ejector checks whether the repair
reduced the cost of the solution, whether there is a single new defect worth recursing on, and so
on. The writer of an augment function can forget that all this is happening behind the scenes.

If KheEj ect or Repai r End returnst r ue, the ejector has decided that there is no point in
trying more repairs for the current defect. The reason for this decision is not the business of
the augment function; it must returnue immediately, without trying any more repairs (it is an
error not to do this). In that case it does not matter whether the entity is marked unvisited or not
before exit.

13.5. Variants of the ejection chains idea

This section presents some variants of the basic ejection chains idea.

13.5. Variants of the ejection chains idea 313

13.5.1. Defect promotion

Successful chains begin by repairing a defect which is os¢aft _gnis children, and continue

by repairing defects which are childrenafnt i nue_gm The intention is thagt art _gmshould

monitor some region of the solution that has only just been assigned, so that there has been no
chance yet to repair its defects, whilent i nue_gmmonitors the entire solution so far, or the part

of it that is relevant to repairing the defectsstfart _gm These two regions may be the same,
which is whyst art _gmandcont i nue_gmmay be the same group monitor; but when they are
different, the difference is important, as the following argument shows.

Suppose onlgt art _gmis used. Then the ejector sets out to repair the right defects, but is
unable to follow chains of repairs into parts of the solution that have been assigned previously.
Or suppose onlgonti nue_gmis used. If the children ofonti nue_gmare a superset of the
children ofst art _gm as is always the case in practice, this does allow a full search, but at the
cost of trying again to repair many defects for which a previous repair attempt failed (those in
cont i nue_gmwhich are not also int art _gm). This can waste a lot of running time.

At this point, however, an unexpected issue enters. Suppose a successful chain is found
which causes some child of continue_gm to become defective, but which nevertheless
terminates without repairimjbecause it improves the overall solution cost. Here is a new defect,

a child ofcont i nue_gmnot known to have been repaired previously, and thus worthy of being
targeted for repair; but if it is not also a child sfart _gm it won'’t be.

Defect promotioraddresses this issue. When an ejection chain is declared successful, the
ejector examines the defects created by that chain’s last repair that are childoeniofue_gm
These come from the trace object in the usual way. It makes any of these that are not children of
start _gminto children ofst art _gm they get dynamically added to the set of defectstargeted by
the current solve. Of course, whetrart _gmandcont i nue_gmare the same, it does nothing.

Defect promotion is optional, controlled by opti@s_no_pronot e_defects, whose
default value ig al se. On one run it reduced the final solution cost from 0.04571 to 0.03743,
while increasing running time from 286.84 seconds to 490.21 seconds—a substantial amount,
but nothing like what would have occurredsifart _gmhad been replaced lopnt i nue_gm

13.5.2. Fresh visit numbers for sub-defects

It is common for a monitor to monitor several points in the solution. For example, a prefer
times monitor monitors several meets, all those derived from one point of application of the
corresponding prefer times constraint (one event). Arguably, having one monitor for each meet
would make more sense; but there is a problem with this, at least when the cost function is not
Li near , because then there is no well-defined value of the cost of such a monitor. A costis only
defined after all the deviations of tkab-defectat all the monitored points are added up.

The usual way to repair a defective monitor which monitors several points is to visit each
point, determine whether that point is a sub-defect, and try some repairs if so. When the repair is
atdepth 1, it makes sense for the augment function to give a fresh visit number to each sub-defect,
so that the repair at each sub-defect is free to search the whole solution, as in this template:

314 Chapter 13. Ejection Chains

for(i =0; i < KheMonitorPointCount(m; i++)
{

p = KheMonitorPoint(m i);

i f(KheMonitorPointlsDefective(p))

{

i f(KheEjectorCurrDepth(ej) == 1)
KheSol nNewd obal Vi sit(sol n);

i f(KheMonitorPoint TryRepairs(p))
return;

}
}

CallingKheSol nNewd obal Vi si t opens up the whole solution for visiting. This is what would
happen if the monitor was broken into smaller monitors, one for each point. It is important,
however, not to calkheSol nNewG obal Vi sit at deeper levels, since that amounts to allowing
revisiting, so it leads to exponential time searches.

Fresh visit numbers arotassigned in this way within the augment functions supplied with
KHE. Instead, a more radical version of the idea is offered byethéresh_vi sits option.
When set tar ue, it causes

i f(KheEjectorCurrDepth(ej) == 1)
KheSol nNewd obal Vi sit(sol n);

to be executed within each callkbeEj ect or Repai r Begi n, opening up the entire solution, not
just to each sub-defect at depth 1, but to each repair of each sub-defect at depth 1.

13.5.3. Ejection trees

An ejection trees like an ejection chain except that at each level below the first, instead of
repairing one newly introduced defect, it tries to repair several (or all) of the newly introduced
defects, producing a tree of repairs rather than a chain.

Ejection trees are not likely to be useful often. It is true that the run time of an ejection
tree is limited as usual by the size of the solution, but its chance of success is lower than usual,
because it must repair several defects at the lower level to succeed at the higher level. If repairing
the first defect produces two new defects, repairing each of those produces two more, and so on,
then the result is a huge number of defects that must all be repaired successfully. And to make
a repair which introduces a defect and then repair that defect using an ejection tree is to spend a
lot of time on a defect that can be removed much more easily by undoing the initial repair.

However, when the original solution has a very awkward defect, the best option may be a
complex repair which usually introduces several new defects. For example, the best way to repair
a cluster busy times overload defect may be to unassign every meet on one of the problem days.
In that case, it makes sense to use an ejection tree at that level alone: that is, to try a repair that
introduces several defects, then try to repair them by finding an ejection chain for each.

Thenax_sub_chai ns parameter oKheEj ect or Repai r EndLong allows for ejection trees,
by specifying the maximum number of defects introduced by that repair that are to be repaired.
Different repairs may have different values mdx_sub_chai ns. For example, the complex

13.5. Variants of the ejection chains idea 315

cluster busy times repair could be tried only whigreEj ect or CurrDepth(ej) is 1, with
max_sub_chai ns set tol NT_MAX. All other repairs could be given value 1 fioax_sub_chai ns,
producing ordinary chains elsewhere.

A set of defects now has to be repaired, not necessarily just one. One option would have
been to change the interfaceAfgnent to pass this set to the user. This was not done, because
it would be a major change from the targeted repairs used by ejection chains. Instead, just as the
framework handles the dynamic dispatch by defect type, so it also accepts a whole set of defects
for repair and passes them one by one to conventiaugakent calls.

The remainder of this section explains the implementation of ejection trees (and indeed
ejection chains) by presenting a more detailed version dAuteent function than the one given
at the start of this chapter. One detail concerns the influence of monitor lower bounds. Define

Potential (d) = KheMbnitorCost(d) - Khelonitor Lower Bound(d)
The potential is the maximum improvement obtainable by repadjgguantity that turns out

to be more relevant here than cost alone.

Another detail concerns monitor cost limits, which require that the solution not change so as
to cause the cost of some given monitors to exceed given limits (Section 13.3). To handle them,
the interface ofugnent is changed to

bool Augment (Solution s, Cost ¢, Limts x, Defect d);

wherex is a set of monitor cost limitsAugnent returng r ue if the value ofs afterwards is such
thats’s cost is less than and the limitsc are all satisfied. This condition is evaluated by

bool Success(Solution s, Cost ¢, Limts x)

{

return cost(s) < c & LimtsAllSatisfied(s, x);

}
The precondition ofugnent (s, ¢, x, d) ischanged to
I Success(s, ¢, X) && cost(s) - Potential (d) <c

Its postcondition iSuccess(s, c, Xx) if true isreturned, ands'‘is unchanged’ otherwise.

The new defects chosen for repair mustdpen defectsdefects whose cost increased
during the previous repair, as reported by the trace of that repairm®heub_chai ns open
defects of largest potential, or all open defects if fewer ten sub_chai ns open defects are
reported by the trace, are selected. In the code below, this selection is made by line

{d1, ..., dn} = Sel ect OpenDefects(new defect_set, MaxSubChains(r));

where0 <= n <= MaxSubChai ns(r).
Here is the more detailed implementatiorafnent :

316 Chapter 13. Ejection Chains

bool Augnent(Solution s, Cost c, Limts x, Defect d)
{
repair_set = RepairsOfi(d);
for(each repair r in repair_set)
{
new_def ect _set = Apply(s, r);
i f(Success(s, ¢, x))
return true;
if(NotAtDepthLimt())

{
{d1, ..., dn} = Sel ect OpenDefects(new defect set, MaxSubChains(r));
for(i =1; i <=n; i++)
{
sub ¢ = ¢ + Potential (d(i+l1)) + ... + Potential (dn);
sub x = (i <n?{}: x); [* empty limt set except at end */
i f(Success(s, sub_c, sub x))
continue;
if(cost(s) - Potential(di) >= sub_c)
br eak;
i f(!'Augnent(s, sub _c, sub x, di))
br eak;
i f(Success(s, ¢, X))
return true;
}
}
reset s toits state just before Apply(s, r);
}
return fal se;

}

As before, all of this except the loop that iterates over and applies repairs is hidden in calls to
KheEj ect or Repai r Begi n andKheEj ect or Repai r End. It is easy to verify that this satisfies the
revised postcondition. The reset near the end is carried out by a &a#Nar kUndo.

After the usual test for success immediately after the repair, if the depth limit has not been
reached the new code selestepen defects for repair, then calsgnent recursively on each
in turn. The complicating factor is the choice of a target cost and set of limits for each recursive
call, denotedub_c andsub_x above. Using the originalandx, as is done with ejection chains,
would wrongly place the entire burden of improving the solution onto the first recursive call.

When repairingi1, the right cost target to shoot for is
sub ¢ = ¢ + Potential (d2) + ... + Potential (dn);

The best that can be hoped for from repairii2gs Pot ent i al (d2) , the best that can be hoped
for from repairingd3 is Pot enti al (d3), etc. So if the first recursivBugment cannot reduce
cost (s) below the given value ofub_c, there is little hope that after all the recursive augments
it will be reduced belove. The same idea is applied for each of the

When a recursive call thugnment changes the solution, sorfRet enti al (di) values may
change. So this code re-evaluates_c from scratch on each iteration of the inner loop, rather

13.5. Variants of the ejection chains idea 317

than attempting to save time by adjusting the previous valsa&fc.

The choice osub_x causes limits to be ignored except when carrying out the last augment.
Thisisin accord with the intention of monitor cost limits, which is to only check them at the end.
It would be a mistake to check them earlier. For example, the repair of the cluster busy times
defects described above is likely to violate a monitor cost limit when it deassigns meets. These
do need to be reassigned by the end, but they will not all be reassigned earlier.

After definingsub_c andsub_x but before the call tdugment , the code executes

i f(Success(s, sub_c, sub x))
conti nue;

if(cost(s) - Potential(di) >= sub _c)
br eak;

These lines ensure that the precondition of the recufsiyeent call holds at the time itis made.

If Success(s, sub_c, sub_x) holds, then the aim of that call has already been achieved, so
the algorithm moves on to the next one. It does not matter that it ski@sitieess(s, ¢, x)

test further on, because there has been such a test since the last time the solution changed. If
cost(s) - Potential (di) >= sub_c holds, then the algorithm has no real hope of beating
sub_c by repairingdi , and so no real hope of success at all, so it abandons the current repair.

Success(s, ¢, x) impliesSuccess(s, sub_c, sub_x) throughoutAugnent, because
sub_c >= ¢ andsub_x is a subset ok. This cannot be used to simplifugnent , but it does
have one or two interesting consequences. For example, it applies transitively down through all
active calls tddugnent , so whileSuccess(s, sub_c, sub_x) isfal se atany level of recursion,
the original aim of the ejection tree cannot be satisfied.

When repairingdn, sub_c == ¢ andsub_x == x. This gives confidence thaugnent
could succeed, and shows that it reduces to the origugaent whenMaxSubChai ns(r) == 1,
except for the different expression of how one open defect is selected.

The method described here finds the first chain that reghjfsces it, and moves on 2.
Representing the higher path by a solid arrow, the chains (successful or not) thati telpair
dashed arrows, and the chains (successful or not) that oy dotted arrows, the picture is

By
I S

AR

Another possibility is to find the first chain that repaifs then try to find chains fod2, but if
that fails, to continue searching for other chainsdor

!

A

AARA

This approach is implementable within the current framework, but it has not been tried. There
IS no reason to think that it would be better.

318 Chapter 13. Ejection Chains

13.5.4. Sorting repairs

Each repair is usually followed immediately by recursive calls which extend the chain, where
applicable. Setting theave_and_sort parameter ofkheEj ect or Repai r EndLong to true

invokes a different arrangement. Paths representing the repairs are saved in the ejector without
recursion. After the last repair they are sorted into increasing order of the cost of the solutions
they produce, and each is tried in turn, just as though they had occurred in that sorted order [5].

In practice,save_and_sort would be given the same value for every repair of a given
defect. However, it is legal to use a mixture of values. Those given valuewill be saved,
those given valuéal se will be recursed on immediately in the usual way. If any of those lead
to success, that chain is accepted and any saved repairs are forgotten.

Only repairs with some hope of success are saved: those for which

Success(s, ¢, X) || (NotAtDepthLimt() &&
cost(s) - (Potential(dl) + ... + Potential (dn)) < c)

holds after the repair, in the terminology of Section 13.5.3.

The author’s experience witkave_and_sort has been disappointing. Chains can end
successfully anywhere in the search tree, and low solution cost at an intermediate point is not
a good predictor of a successful end. Every saved repair is executed once before sorting to
establish the solution cost after it,then undone. If the repairistried later, itis executed again (by a
path redo). The significant benefit needed to justify this extra work does not seem to be there.

13.5.5. Adjustment on success

Suppose that, in order to encourage ejection chains to remove a cluster busy times defect, some
days when the resource will be busy are chosen, all meets assigned the resource outside those
days are unassigned, and repairs are tried which move those meets to the chosen days.

While the repairs are underway, it is desired to limit the domains of the resource’s meets
to the chosen days, to keep the repairs on track. So the repair altogether consists of unassigning
some of the resource’s meets and adding a meet bound to each of the resource’s meets.

Whether the repair is successful or not, after it and the chains below it are finished, the
meet bound must be removed, since the domains of the meets are not supposed to be restricted
permanently. If the repair is unsuccessful, the meet bound is removed by the ejector as part of
undoing the repair. But if the repair is successful there is a problem, because it is not undone.

KheEj ect or Repai r End returnst r ue to tell the user’'s augment function to not generate
any more repairs. Although this is often because the repair just ended was successful, it is not so
always. So it would be a mistake to use thige result as the signal to do this kind of work.

Instead, cases like this may be handled by passind\bbinvalues for then_success_fn
andon_success_val parameters okheEj ect or Repai r EndLong. If the ejector subsequently
decides to not undo that repair, it will then call

on_success_fn(on_success_val)

and the user can ensure that this removes meet bounds or whatever is wanted.

13.5. Variants of the ejection chains idea 319

The call toon_success_f n should not change the cost of the solution; in practice it is
limited to enlarging domains, unfixing, and so on. It works with all kinds of repairs and options,
includingsave_and_sort. It is made at a time when the associated repair has been done or
redone and not undone, but by no means directly after it is done or redone, since there may be
a long chain to execute after that before success can be established. Itis an error to assume that
the state of the solution whem_success_f n is called is its state at the end of the repair.

13.6. Gathering statistics

Ejectors gather statistics about their performance. This takes a negligible amount of time, as the
author has verified by comparing run times with preprocessoKfageJECTOR_ W TH_STATS

in the ejector source file set to 0 (no statistics) and 1 (all statistics). On two typical instances, the
increase in overall run time caused by gathering statistics was less than 0.1 seconds.

13.6.1. Options for choosing ejectors and schedules

Each ejector holds its own statistics, independently of other ejectors. Some statistics accumulate
across the entire lifetime of an ejector; they are never reset. This makes it possible, for example,
to measure the performance of time repair ejection chains and resource repair ejection chains
over an entire set of instances, by carrying out all time repairs in all instances using one ejector

and all resource repairs in all instances using another.

To facilitate this, options objects usually contain two ejectors, under naspest or 1" and
"ej ector2", as explained in Section 13.7.1; they could contain more.

The next questionis what schedulesto give to these ejectors. A set of schedulesisan option,
so theopt i ons object has optiors_schedul es for it, whose value is a string. Its default value
Is" 1+, u-", for the meaning of which see Section 13.2.

Setting the schedule string does not set any ejector schedules, it merely sets one option of
opti ons, to a fresh copy of the string it is given. User code must set the actual schedules, using
helper functiorkhegj ect or Set Schedul esFronSt ri ng (Section 13.2).

13.6.2. Statistics for analysing Kempe meet moves

The ejector itself does not maintain statistics for analysing Kempe meet moves. These are stored
in kenpe_st at s objects, one of which is conveniently available from optienkenpe_st at s

(Section 10.2.2). This object is passed to the callgetpeMeet Move made by the augment
functions described in this chapter. Only Kempe meet moves which are complete repairs on their
own are passed this object, not Kempe meet moves combined with other operations (meet splits
and merges, for example). So by the end of an ejction chain run, statistics about these Kempe
meet moves will have been accumulated intthekenpe_st at s option of theopt i ons object

passed to the ejection chain repairs.

13.6.3. Statistics describing a single solve

The statistics presented in this section make sense only for one Kia¢Hjcect or Sol veEnd. So
they are available only until the next callkbeEj ect or Sol veEnd, when they are reset.

320 Chapter 13. Ejection Chains

An improvementis an ejection chain or tree, rooted in a defect examined by the main loop,
which is applied to the solution and reduces its cost. Each time an improvement is applied, four
facts about it are recorded. The number of improvements applied is returned by

i nt KheEj ect or | npr ovenent Count (KHE EJECTOR €j) ;
and the four facts about théh improvement (counting from 0 as usual) are returned by

i nt KheEj ect or | npr ovenent Nunber Of Repai r s(KHE_EJECTOR ej, int i);
fl oat KheEj ectorl nprovenent Ti me(KHE_ EJECTOR ej, int i);

KHE_COST KheEj ect or | npr ovenent Cost (KHE EJECTOR ej, int i);

i nt KheEj ect or | npr ovenent Def ect s(KHE_EJECTOR ej, int i);

These return the number of repairs in thieimprovement (this tends to increase wijhthe time
from the moment whekheEj ect or Sol veEnd was called to the moment after the improvement
was applied, the solution cost afterwards, and the number of defestsuof _gm afterwards.
Times are measured in seconds, to a precision much better than one second. There are also

KHE_COST KheEj ect or I ni t Cost (KHE_EJECTOR €j) ;
i nt KheEj ectorlnitDefects(KHE EJECTOR €j);

which return the cost and number of defects wKieEj ect or Sol ve began.

13.6.4. Statistics describing multiple solves

The statistics presented in this section make sense across multiple kbélBjtect or Sol veEnd.
They are initialized when the ejector is created and never reset.

It is interesting to see how many repairs make up one improvement. Each time an
improvement occurs on any solve during the lifetime of the ejector, one entry in a histogram of
numbers of repairs is incremented. This histogram can be accessed at any time by calling

i nt KheEj ector | npr ovenent Repai r Hi st oMax(KHE_EJECTOR €j) ;
i nt KheEj ector | nprovenent Repai r H st oFr equency(KHE_EJECTCR ¢gj ,
int repair_count);

KheEj ect or | npr ovenent Repai r Hi st oMax returns the maximum, over all improvements
X, of the number of repairs that make up or O if there have been no improvements.
KheEj ect or | npr ovenent Repai r Hi st oFr equency returns the number of improvements with
the given number of repairs. Also, functions

i nt KheEj ect or | npr ovenent Repai r Hi st oTot al (KHE_EJECTOR €j);
fl oat KheEj ector | nprovenent Repai r Hi st oAver age(KHE_EJECTCR ¢j) ;

use this same basic information to find the total number of improvements, and the average
number of repairs per improvement when there is at least one improvement.

Another histogram, again with one element for each improvement, records the number of
calls toAugnent since the most recent on in the main loop:

13.6. Gathering statistics 321

i nt KheEj ect or | npr ovenent Augnent Hi st oMax(KHE_EJECTOR ej) ;

i nt KheEj ect or | npr ovenent Augnent Hi st oFr equency(KHE_EJECTCR ¢gj
i nt augment _count);

i nt KheEj ector | npr ovenent Augnent Hi st oTot al (KHE_EJECTOR €j) ;

float KheE ectorl nmprovenent Augnment Hi st oAver age(KHE_EJECTOR €j) ;

This is helpful, for example, in deciding whether it would be useful to terminate a search after
some number of augments has failed to find an improvement. A method of doing this is built
into ejectors, but not offered as an official option at the moment.

Another interesting question is how successful the various augment functions and repairs
are. There are methodological issues here, however. For example, if one kind of repair is tried
before another, it has more opportunities to both succeed and fail than the other. If there are
several alternatives to choose from, the best test would be to compare the results of several
complete runs, one for each alternative. No statistical support is needed for that. But even after
the best alternatives are chosen, there remains the question of whether each componentis pulling
its weight. The statistics to be described now attempt to answer this question.

An augment typés a small integer representing one kind of augment functiomepair
typeis a small integer representing one kind of repair. Functibesj ect or AddAugrment and
KheEj ect or AddG oupAugnent assign an augment type to each augment function, and thus to
each call on an augment function. Each repair is followed by a c#&Hldgj ect or Repai r End
(Section 13.4), and itpai r _t ype parameter assigns a repair type to that repair. Based on this
information, the ejector records the following statistics:

1. Foreachdistingugnent _t ype, the number of repairs made by calls on augment functions
with that augment type;

2. Foreachdistingtaugnent _type, repair_type) pair,the number of repairs of that repair
type made by calls on augment functions with that augment type;

3. For each distinctugnent _type, the number of successful repairs made by calls on
augment functions with that augment type;

4. For each distinctaugnment _type, repair_type) pair, the number of successful repairs
of that repair type made by calls on augment functions with that augment type.

Only repairs with & r ue value for thesuccess parameter okheEj ect or Repai r EndLong are
counted. When thgave_and_sort optionisin use, not all saved repairs are counted, only those
redone after sorting. For the purposes of statistics gathering, a repair is considered successful if it
causes its enclosirgignent function to return r ue, whether this happens immediately, or after
recursion, or after saving and sorting. The statistics may be retrieved at any time by calling

i nt KheEj ect or Tot al Repai r s(KHE_EJECTOR ej, int augment _type);

i nt KheEj ect or Tot al Repai rsByType(KHE_EJECTOR ej, int augment type,
int repair_type);

i nt KheEj ect or Successf ul Repai rs(KHE_EJECTOR ej, int augment type);

i nt KheEj ect or Successf ul Repai r sByType(KHE_EJECTOR ej, int augment type,
int repair_type);

322 Chapter 13. Ejection Chains

whereaugment _type andrepai r _type are arbitrary non-negative integers. Based on these
numbers, a reasonable analysis of the effectiveness of the augment functions and their repairs can
be made. For example, the effectiveness of an augment function can be measured by the ratio
of the third number to the first. Adding up the resultbtEj ect or Tot al Repai r sBy Type over

all values ofr epai r _t ype produces the result d¢theEj ect or Tot al Repai r s, and adding up the

result ofKheEj ect or Successf ul Repai r sByType over all values of epai r _t ype produces the

result ofKheEj ect or Successf ul Repairs.

13.6.5. Organizing augment and repair types

KheEj ect or AddAugnment andKheEj ect or AddG oupAugnent accept anyugnent _t ype values.
The user should define these values using an enumerated type. The following function may be
called any number of times during the ejector’s setup phase, to tell it what values to expect:

voi d KheEj ect or AddAugnent Type(KHE_EJECTOR ej, int augnent_type,
char *augment _| abel);

This tellsej to expect calls tkheEj ect or AddAugnent and KheEj ect or AddGr oupAugnent

with the given value ofugment _t ype, and associates a label with that augment type. Labels
must be nomMULL; copies are stored, not originals. No checks are made that the values passed
via KheEj ect or AddAugment and KheEj ect or AddGr oupAugnent match those declared by
KheEj ect or AddAugment Type. But if they do, then making tables of statistics is simplified by
calling the following functions afterwards.

To visit all the augment types declared by call&leEj ect or AddAugnent Type, call

i nt KheEj ect or Augment TypeCount (KHE_ EJECTOR €j) ;
i nt KheEj ect or Augment Type(KHE EJECTOR ej, int i);

To retrieve the label corresponding to an augment type, call
char =KheEj ect or Augnent TypelLabel (KHE _EJECTOR ej, int augment _type);

In this way, suitable values for passingKoeEj ect or Tot al Repai rs and the other statistics
functions above can be generated, along with labels to identify the statistics.

The same functionality is offered for repair typ&beEj ect or Repai r Begi n may be passed
any values for epai r _t ype, but the user knows which values will be passed, and the following
function may be called any number of times during the ejector’s setup phase to tell it this:

voi d KheEj ect or AddRepai r Type(KHE_EJECTOR €j, int repair_type,
char *repair _|abel);

KheEj ect or AddRepai r Type declares thaej can expect calls tdaheEj ect or Repai r Begi n

with the given value of epai r _t ype, and associates a label with that repair type. Labels must
be nonNULL; copies are stored, not originals. No checks are made that the values passed via
KheEj ect or Repai r Begi n match those declared ByieEj ect or AddRepai r Type. But if they do,

then making tables of statistics is simplified by calling the following functions afterwards.

To visit all the repair types declared by callst®Ej ect or AddRepai r Type, call

13.6. Gathering statistics 323

i nt KheEj ect or Repai r TypeCount (KHE_EJECTOR €]) ;
i nt KheEj ect or Repai r Type(KHE EJECTOR €j, int i);

To retrieve the label corresponding to a repair type, call
char xKheEj ect or Repai r TypeLabel (KHE_ EJECTOR e}, int repair_type);

There is no way to declare which combinations of augment type and repair type to expect. The
author handles this by ignoring cases whreEj ect or Tot al Repai r sByType returns 0.

13.7. Ejection chain time and resource repair functions

Previous sections have described ejectors in general. This section describes how ejectors are put
to use in three ejection chain time and resource repair functions:

bool KheEj ecti onChai nNodeRepai r Ti mes(KHE_NCDE par ent _node,
KHE_OPTI ONS options);

bool KheEj ecti onChai nLayer Repai r Ti mes(KHE_LAYER | ayer,
KHE_OPTI ONS options);

bool KheEj ecti onChai nRepai r Resour ces(KHE_TASKI NG t aski ng,
KHE_OPTI ONS options);

KheEj ect i onChai nNodeRepai r Ti mes repairs the assignments of the meets of the descendants
of the child nodes oparent _node, and KheEj ect i onChai nLayer Repai r Ti nes repairs the
assignments of the meets of the descendants of the child nodegef. This is useful for
repairing the time assignments of a layer immediately after they are made, without wasting
time on earlier layers where repairs have already been tried and are very unlikely to succeed.
KheEj ect i onChai nRepai r Resour ces repairs the assignments of the tasks @fki ng.

All three functions make assignments as well as change them, so may be used to construct
solutions as well as repair them. However, there are better ways to construct solutions.

Although these functions target different parts of the solution, they share much of their
implementation. In particular, they call the same augment functions, although the detailed
behaviour of those functions depends on several options.

Here is the full list of options consulted or set by these functions. By convention, these
options all have names beginning we . The most important options from the point of view
of the user are those that he can reasonably set:

rs_ejector_off
A Boolean option which, whenrue, causeheEj ecti onChai nRepai r Resour ces to
do nothing.

es_ejectorl,es_ejector?2
These two options hold ejector object&heEj ecti onChai nNodeRepai r Ti mes and
KheEj ectionChai nLayer Repai r Times use the ejector object stored under key
es_ej ect or 1, whileKheEj ect i onChai nRepai r Resour ces uses the ejector object stored
under keyes_ej ect or 2. For full details on this method of obtaining ejector objects, see
Section 13.7.1. While there is no pressing need for the user to set these options, since they

324 Chapter 13. Ejection Chains

will be set the first time they are needed, retrieving them at the end of the solve can be useful,
since they will then contain statistics on the performance of the ejection chain algorithm.

es_vi zi er _node
A Boolean option which, whetr ue, instructskheEj ect i onChai nNodeRepai r Ti mes and
KheEj ect i onChai nLayer Repai r Ti mes to insert a vizier node (Section 9.5.4) temporarily
while they run.

es_| ayer _repair_| ong
A Boolean option which, whenr ue, instructskheEj ect i onChai nLayer Repai r Ti nes
to target every layer up to and including the current layer when repairing the current layer.
Otherwise only the current layer is targeted.

es_nodes_before neets
A Boolean option which, whetr ue, instructs augment functions that try both node swaps
and meet moves to try the node swaps first.

es_kenpe_noves
This option determines whether augment functions that move meets use Kempe moves in
addition to ejecting and basic ones (Section 10.2.2). Its possible valuesieremeaning
to use them,al se, meaning to not use them, ahdr ge_| ayer s (the default), meaning to
use them when moving the meets of nodes that lie in layers of large duration relative to the
cycle duration, reasoning that swaps are usually needed when such meets are moved.

es_fuzzy_noves
A Boolean option which, whenhr ue, instructs augment functions that move meets to try
fuzzy meet moves (Section 10.7.4) in addition to the other kinds of meet moves. If they
do, to conserve running time they only do so at depth 1 on the ejection chain, i.e. only
when repairing a defect of the current best solution, not when repairing a defect introduced
by a previous repair. At present thedt h, dept h, andmax_neet s arguments passed to
KheFuzzyMeet Move are fixed constants.

es_nho_ej ecti ng_noves
A Boolean option which, whenr ue, instructs augment functions that assign and move
meets to not use ejecting moves, only basic ones (Section 10.2.2).

es no limt_busy sequences
A Boolean option which, whehr ue, instructs augment functions that repair limit busy
times defects to move only single assignments, not sequences of assignments.

es_schedul es
The value here is a string describing the schedules to apply to an ejector. The default value
iIs" 1+, u-". For the meaning of this, consult Section 13.2.

es_max_augnment s
An upper limit on the number of augments tried on each attempt to repair a main loop de-
fect. The default value 820, which may be more effective than a larger number, especially
when there is a time limit, because it helps the search to not waste time on lost causes.

13.7. Ejection chain time and resource repair functions 325

es_max_repairs
An upper limit on the number of repairs tried on each attempt to repair a main loop defect.
The default value iENT_MAX,

es_no_pronote_defects
A Boolean option which, whenr ue, instructs an ejector not to promote defects (Sec-
tion 13.5.1).

es fresh visits
A Boolean option which, wherirue, instructs an ejector to make fresh visits (Sec-
tion 13.5.2).

es |limt_defects
An option whose value is eithéonl i mi ted" or an integer. This integer is a limit on the
number of defects handled by the main loop of the ejector. Each time the main list of defects
is copied and sorted, if its size exceeds this limit, defects are dropped from the end until it
doesn’t. When the option is not set, or its valuéusl i ni t ed", no limit is applied.

es_task seq swaps_off
A Boolean option which, whetr ue, causes each move of a sequence of tasks on adjacent
days to not try to find a second sequence of tasks in the other direction.

es_group_limt_resources_off
A Boolean option which, whenr ue, instructskheEj ecti onChai nPrepar eMbni t ors
(Section 13.7.4) to not group limit resources monitors for the same events and resource
types. Grouping these monitors is not exact, which is why this option is offered to turn it
off, but it may be helpful anyway, to reduce the density of these constraints.

es_w deni ng_of f ,es_reversi ng_off,es_bal anci ng_of f
Boolean options which, wham ue, cause widening, reversing, and balancing to be omitted
from task move repairs.

es_nocost _of f
Task move repairs treat tasks for whigteTaskNonAssi gnnent HasCost returnd al se the
same as free time, unassigning them when necessary to avoid clashes. This Boolean option,
whent r ue, turns off this special behaviour for these tasks, which may save time.

The following options are set by KHE'’s functions, making it futile for the user to set them:

es_split_noves
A Boolean option which, whenr ue, instructs augment functions that move meets to try
split meet moves in addition to other kinds of meet movgsCener al Sol ve2018 sets
this option tot r ue when the instance contains soft split events or distribute split events
constraints, reasoning that they may not have been satisfied by structural solvers.

es_repair_tines
A Boolean option which, whenr ue, lets augment functions change meet assignments.
KheEj ect i onChai nNodeRepai r Ti nes and KheEj ect i onChai nLayer Repai r Ti nes set it
totrue, while KheEj ect i onChai nRepai r Resour ces sets it tof al se.

326 Chapter 13. Ejection Chains

es limt_node
This option holds a node object. When it is ngul-L, it causes augment functions that
assign and move meets to limit their repairs to the descendants of that node. This option is
set by all three functions.

es_repair_resources
A Boolean option which, whenr ue, lets augment functions change task assignments.
KheEj ect i onChai nNodeRepai r Ti nes and KheEj ecti onChai nLayer Repai r Ti nes set it
tof al se, while KheEj ect i onChai nRepai r Resour ces sets it tat r ue.

All three functions require certain monitor groupings, but they set them up and remove them
themselves. It is reasonable to worry about the time it takes to set up these group monitors.
To investigate this question, the author ran just the group monitor setup and removal parts of
function KheEj ect i onChai nNodeRepai r Ti mes 10000 times on a typical instance (BGHS98)

and measured the time taken. This was 31.35 seconds, or about 0.003 seconds per setup/remove.
This is not significant if it is done infrequently.

13.7.1. Obtaining ejector objects

The first issue is where the ejector objects come from. They need to be loaded with the right
augment functions, and they need to be available after the solve, to give access to their statistics.
KHE offers a function for creating an ejector object with its augment functions loaded:

KHE EJECTOR KheEj ecti onChai nEj ect or Make(KHE_OPTI ONS options, HA ARENA a);

This returns a new ejector object, ready to solve with, stored in areltsschedules come from
thees_schedul es option ofopt i ons, and its augment functions are the ones defined by KHE.
However, the three ejection chain solvers obtain their ejector objects indirectly, by calling

KHE EJECTOR KheEj ecti onChai nEj ect or Opti on(KHE_OPTI ONS options, char *key);

This retrieves the object frowpt i ons with the given key, casts it idHE_EJECTOR, and returns

it; or if there is no such object, it calkheEj ect i onChai nEj ect or Make(opti ons, a) to create
one, adds it t@pt i ons under the given key, and returnsit. The ejector’s lifetime is the lifetime
of opti ons, because is KheOpt i onsArena(options).

For KheEj ecti onChai nNodeRepai r Ti mes and KheEj ecti onChai nLayer Repai r Ti mes
the keyis'es_ej ect or 1" ; for KheEj ect i onChai nRepai r Resour ces itis"es_ej ector2". This
allows for collecting two sets of statistics, for time assignment and resource assignment.

13.7.2. Limiting the scope of changes

Ejection chains work best when they are free to follow chains into any part of a solution, and
make any repairs that help. This freedom can conflict with the caller’s desire to limit the scope
of the changes they make, typically because initial assignments have not yet been made to some
parts of the solution, and an ejection chain repair should not anticipate them.

For example, suppose resourds preassigned to some tasks, and there are others it could
be assigned to. The preassigned tasks gaiatimetable when their meets are assigned times,
and could then create resource defects that an ejection chain time repair algorithm knows about.

13.7. Ejection chain time and resource repair functions 327

Suppose a limit busy times underload defect is created (quite likely when the workload on some
day first becomes non-zero), and its augment function tries (among other things) to assign more
tasksta toincrease its workload on that day. Thisis not done at present, butitis plausible. Then
there will be an unexpected burst of resource assignment during time assignment.

One romantic possibility is to ‘let a thousand flowers bloom’ and just accept such repairs.
The problem with this is that a carefully constructed initial assignment can be much better than
the result of a set of uncoordinated individual repairs.

Another possibility is to fix the assignments of all variables beyond the scope of the current
phase of the solve to their current values, often null values. Thisis a very reliable approach, and
arguably the most truthful, because it says to the ejection chain algorithm, in effect, ‘for reasons
beyond your comprehension, you are not permitted to change these variables.” But it suffersfrom
a potentially severe efficiency problem: a large amount of time could be spent in discovering a
large number of repairs, which all fail through trying to change fixed variables.

Yet another possibility is to have one ejector object for each kind of call (one for repairing
time assignments, another for repairing resource assignments, and so on), with different augment
functions. The augment functions for time repair would never assign a task, for example. This
was the author’s original approach, but as the code grew it became very hard to maintain.

At present the author is using the following somewhat ad-hoc ideas to limit the scope of
changes. They do the job at very little cost in code and run time.

The start group monitor is one obvious aid to restricting the scope of a call. For example,
time repair calls do not include event resource monitors in their start group monitors.

Many repairs move meets and tasks, but do not assign them. It seems that once a meet or
task has been assigned, it is always reasonable to move it during repair. So the danger areas are
augment functions that assign meets and tasks, not augment functions that merely move them.

Augment functions for assign time and assign resource defects must contain ‘dangerous’
assignments. But suppose that the assign time or assign resource monitor for some meet or task
is not in the start group monitor. Then a repair of that monitor cannot occur first on any chain;
and if the meet or task is unassigned to begin with, it cannot occur later either, since the monitor
starts off with maximum cost, so its cost cannot increase, and only monitors whose cost has in-
creased are repaired after the first repair on a chain. So assign time and assign resource augment
functions can be included without risk of the resulting time and resource assignments being out
of scope. Thisis just as well, since they are needed after ejecting meet and task moves.

If it can be shown, as was just done, that certain events will remain unassigned, then they
can have no other event defects, since those require the events involved to be assigned. Similarly,
unassigned event resources will never give rise to other event resource defects.

Another idea is to add options to the options object that control which repairs are tried. This
is as general as different ejector objects with different augment functions are, but, if the options
are few and clearly defined, it avoids the maintenance problems. If many calls on augment
functions achieve nothing because options prevent them from trying things, that would be an
efficiency problem, but there is no problem of that kind in practice.

The options object contains @a_r epai r _t i nes option, which when r ue allows repairs
that assign and move meets, andeanr epai r _r esour ces option, which whert r ue allows
repairs that assign and move tasks. It takes virtually no code or time to consult these options;

328 Chapter 13. Ejection Chains

often, just one test at the start of an augment function is enough.

When moving a meet, its chain of assignments is followed upwards, trying moves at each
level. But if the aim is to repair only a small area (one runaround, say), then even if a repair
starts within scope, it can leave it as it moves up the chain. This has happened, and has caused
problems. So the options object containsganl i mi t _node option, whose value is a node. If
it is nonNULL, meet assignments and moves are not permitted outside its proper descendants.

KheEj ect i onChai nNodeRepai r Ti nes andKheEj ect i onChai nLayer Repai r Ti nes set option
es_repair_times totrue,es_repair_resources tofal se,andes_| i m t _node to the parent
node, or taNULL if it is the cycle node. Théal se value fores_r epai r _r esour ces solves the
hypothetical problem, given as an example at the start of this section, of limit busy times repairs
assigning resources during time assignment.

KheEj ect i onChai nRepai r Resour ces sets optiones_repair_tines to false, option
es_repair_resources totrue,and optiores_| i m t _node toNULL. Settinges_repair_tinmes
to true here would also be reasonable, although slow; it would allow the repairs to try meet
moves while repairing task assignments.

13.7.3. Correlation problems involving demand defects

Section 9.8 discusses the problem of correlated monitors, and how it can be solved by grouping.
Demand monitors obviously correlate with avoid clashes monitors: when there is a clash, there
will be both an avoid clashes defect and an ordinary demand defect. They also correlate with
avoid unavailable times, limit busy times, and limit workload monitors: when there is a hard
avoid unavailable times defect, for example, there will also be a demand defect. This section
explores several ways of handling these correlations, beginning with grouping.

Group the correlated monitorssrouping is the ideal solution for correlation problems, but
it does not work here. There are two reasons for this.

First, although every avoid clashes defect has a correlated ordinary demand defect, unless
the resource involved is preassigned there is no way to predict which monitors will be correlated,
since that depends on which resource is assigned to the demand monitors’ tasks.

Second, grouping workload demand monitors with the resource monitors they are derived
from has a subtle flaw. A demand defect is really the whole set of demand monitors that
compete for the insufficient supply. (These sets are quite unpredictable and cannot themselves
be grouped.) A workload demand defect shows up, not in the workload demand monitor itself,
but in an ordinary demand monitor that competes with it. This is because the last demand tixel
to change its domain and require rematching is the one that misses out on the available supply,
and workload demand monitors never change their domains. So this grouping still leaves two
correlated defects ungrouped: the group monitor and the unmatched ordinary demand monitor.

If grouping does not work, then one of the correlated monitors has to be detached or
otherwise ignored. There are several ways to do this.

Detach demand monitorsThis does not work, because no-one notices that six Science
meets are scheduled simultaneously when there are only five Science laboratories, and the
resulting time assignment is useless.

Attach demand monitors but exclude them from continue group montthisprevents cor-
related monitors from appearing on defect lists, but both costs continue to be added to the solution

13.7. Ejection chain time and resource repair functions 329

cost, so removing the resource defect alone does not produce an overallimprovement. The chain
terminates in failure; the ejector cannot see that repairing the resource defect could work.

Attach demand monitors but exclude them from the solution and continue group monitors;
add a limit monitor holding themThen other monitors will be repaired, but no chain which
increases the total number of demand defects will be accepted. This has two problems.

First, it can waste time constructing chains which fall at the last hurdle when it is discovered
that they increase demand defects. This is particularly likely during time repair: the six Science
meets problem could well occur and pass unnoticed for a long time.

Second, although it prevents demand defects from increasing, it does not repair them. This
rules it out for time repair, which is largely about repairing demand defects, but it may not matter
for resource repair. Resource repair cannot reduce the number of demand defects unless it moves
meets: merely assigning resources reduces the domains of demand tixels, which cannot reduce
demand defects. Even moving meetsis unlikely to reduce demand defects during resource repair,
since many of those moves will have been tried previously, during time repair.

Detach correlated resource monitorBistead of detaching demand monitors, detach the
resource monitors they correlate with. Each kind of resource monitor is considered below. The
main danger here igexactnessif some detached resource monitor is not modelled exactly by
the demand monitors that replace it, then some defects go undetected and unrepaired.

Detach all avoid clashes monitorg:or every avoid clashes defect there is an ordinary
demand defect. The only inexactness is that avoid clashes monitors may have any weights,
whereas demand monitors have equal weight, usually 1 (hard). But avoid clashes constraints
usually have weight 1 (hard) or more, so this does not seem to be a problem in practice, given
that, as the specification says, hard constraint violations should be few in good solutions.

Detach avoid unavailable times monitors that give rise to workload demand monitors.
These are monitors with weight at least 1 (hard). The modelling here is exact apart from any
difference in hard weight, so again there is no problem in practice.

Detach limit busy times monitors that give rise to workload demand monitdrsse are
monitors with weight at least 1 (hard) which satisfy the subset tree condition (Section 7.4.2).
Apart from the possible difference in hard weight, this is exact except for one problem: limit busy
times constraints can impose both a lower and an upper limit on resource availability in some set
of times, and workload demand monitors do not model lower limits at all.

This can be fixed by (conceptually) breaking each limit busy times monitor into two, an
underload monitor and an overload monitor, and detaching the overload monitor but not the
underload monitor. KHE expresses this idea in a different way, chosen because it also solves the
problem presented by limit workload monitors, to be discussed in their turn.

Limit busy times monitors have two attributéé ni nrumandMaxi num such that less than
M ni numbusy timesis an underload, and more tNaxi mumis an overload. Add a third attribute,
Cei l'i ng, such thatCei | i ng >= Maxi num and specify that, with higher priority than the usual
rule, when the number of busy times exce@eld i ng the deviation is 0.

FunctionKheLi mi t BusyTi mesMbni t or Set Cei | i ng (Section 6.6.5) may be called to set the
ceiling. Setting it td NT_MAX (the default value) produces the usual rule. SettingMato mum
Is equivalent to detaching overload monitoring.

Detach limit workload monitors that give rise to workload demand monithimit

330 Chapter 13. Ejection Chains

workload monitors are similar to limit busy times monitors whose set of times is the entire cycle.
However, the demand monitors derived from a limit workload monitor do not necessarily model
even the upper limit exactly (Section 7.4.1). This problem can be solved as follows.

Consider a resource with a hard limit workload monitor and some hard workload demand
monitors derived from it, and suppose that all of these monitors are attached. As the resource’s
workload increases, it crosses from a ‘white region’ of zero cost into a ‘grey region’ where the
limit workload monitor has non-zero cost but the workload demand monitors do not, and then
into a ‘black region’where both the limit workload monitor and the workload demand monitors
have non-zero cost. This black region is the problem.

The problem is solved by addingGai | i ng attribute to limit workload monitors, as for
limit busy times monitors. FunctiokheLi mi t Wor kI oadMoni t or Set Cei | i ng (Section 6.6.6)
sets the ceiling. As before, the default valueNs_MAX. The appropriate alternative value is not
Maxi num but rather a value which marks the start of the black region, so that the limit workload
monitor’s cost drops to zero as the workload crosses from the grey region to the black region. In
this way, all workload overloads are reported, but by only one kind of monitor at any one time.

There is one anomaly in this arrangement: a repair that reduces workload from the black
region to the grey region does not always decrease cost. This is a pity but it is very much a
second-order problem, given that the costs involved are all hard costs, so that in practice repairs
are wanted that reduce them to zero. What actually happens is that one repair puts a resource
above the white zone, and this stimulates a choice of next repair which returns it to the white
zone. Repairs which move between the grey and black zones are possible but are not likely to
lie on successful chains anyway, so it does not matter much if their handling is imperfect.

The appropriate value faei | i ng is the number of times in the cycle minus the total
number of workload demand monitors for the resource in question, regardless of their origin.
When the resource’s workload exceeds this value, there will be at least one demand defect, and
it is time for the limit workload monitor to bow out.

To summarize all this: there is some choice during resource repair, but detaching resource
monitors (with ceilings) always works, and it is the only method that works during time repair.

13.7.4. Primary grouping and detaching
To install and remove the primary groupings used by ejection chains, call

voi d KheEj ecti onChai nPrepar eMoni t or s(KHE_SOLN sol n,
KHE_OPTI ONS opti ons);
voi d KheEj ecti onChai nUnPr epar eMoni t or s(KHE_SOLN sol n);

This includes detaching some resource monitors, as in the plan evolved in Section 13.7.3. This
section explains exactly wh&hbeEj ect i onChai nPr epar eMoni t or s does.

KheEj ect i onChai nPr epar eMbni t or s partitions the events afol n’s instance into classes,
placing events into the same class when following the fixed assignment paths out of their meets
proves that their meets must run at the same times. It then groups event monitors as follows.

Split events and distribute split events monitdfsr each class, it groups together
the split events and distribute split events monitors that monitor the events of that class. It
gives sub-tagHE_SUBTAG_SPLI T_EVENTS to any group monitors it creates. There is also a

13.7. Ejection chain time and resource repair functions 331

KHE_SUBTAG DI STRI BUTE_SPLI T_EVENTS subtag, but it is not used.

Assign time monitorskor each class, it groups the assign time monitors that monitor the
events of that class, giving sub-téide. SUBTAG_ASSI GN_TI ME to any group monitors.

Prefer times monitorsWithin each class, it groups those prefer times monitors that
monitor events of that class whose constraints request the same set of times, giving sub-tag
KHE_SUBTAG_PREFER_TI MES to any group monitors.

Spread events monitorgor each spread events monitor, it finds the set of classes that hold
the events it monitors. It groups attached spread events monitors whose sets of classes are equal,
giving sub-tagkHE_SUBTAG_SPREAD_EVENTS to any group monitors. Strictly speaking, only
monitors whose constraints request the same time groups with the same limits should be grouped,
but that check is not currently being made.

Link events monitorslike split events monitors, these are usually handled structurally, so
it does nothing with them. They usually have provably zero fixed cost, so are already detached.

Order events monitorg-or each order events monitor, it finds the sequence of classes that
hold the two events it monitors. It groups attached order events monitors whose sequences of
classes are equal, giving sub-tddE SUBTAG ORDER EVENTS to any group monitors. Strictly
speaking, only monitors whose constraints request the same event separations should be grouped,
but that check is not currently being made.

Next, KheEj ect i onChai nPrepar eMoni tors partitions the event resources ebln’s
instance into classes, placing event resources into the same class when following the fixed
assignment paths out of their tasks proves that they must be assigned the same resources. It then
groups event resource monitors as follows.

Assign resource monitordzor each class, it groups the assign resource monitors of that
class’s event resources, giving sub-k&§_SUBTAG_ASSI GN_RESCURCE to any group monitors.

Prefer resources monitor§Vithin each class, it groups those prefer resources monitors that
monitor the event resources of that class whose constraints request the same set of resources,
giving sub-tagkHE_SUBTAG_PREFER_RESOURCES to any group monitors.

Avoid split assignments monitor§here seems to be no useful primary grouping of these
monitors, so nothing is done with them. They may be handled structurally, in which case they
will have provably zero fixed cost and will be already detached.

Students who follow the same curriculum have the same timetable. So for each resource
typert such that a call téheResour ceTypeDenand| sAl | Preassi gned(rt) (Section 3.5.1) shows
that its resources are all preassigrié@fj ect i onChai nPr epar eMbni t or s groups the resource
monitors ofr t ’s resources as follows.

Avoid clashes monitorslt groups those avoid clashes monitors derived from the same
constraint whose resources attend the same events, giving SkiHEt&YBTAG _AVO D_CLASHES
to any group monitors.

Avoid unavailable times monitorf. groups avoid unavailable times monitors derived from
the same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG _AVO D_UNAVAI LABLE_TI MES.

Limit idle times monitors |t groups limit idle times monitors derived from the same con-
straint whose resources attend the same events, giving sBee8BTAG LI M T_I DLE_TI MES

332 Chapter 13. Ejection Chains

to any group monitors.

Cluster busy times monitordt groups cluster busy times monitors derived from the
same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG CLUSTER BUSY_TI MES.

Limit busy times monitordt groups limit busy times monitors derived from the same con-
straint whose resources attend the same events, giving s§Bee®BTAG LI M T_BUSY_TI MES
to any group monitors.

Limit workload monitors.It groups limit workload monitors derived from the same con-
straint whose resources attend the same events, giving sBEe®BTAG LI M T_WORKLOAD to
any group monitors.

Limit active intervals monitors. It groups limit active intervals monitors de-
rived from the same constraint whose resources attend the same events, giving sub-tag
KHE_SUBTAG_LI M T_ACTI VE_I NTERVALS to any group monitors.

Fixed assignments between meets are taken into account when deciding whether two
resources attend the same events. As far as resource monitors are concerned, it is when the
resource is busy that matters, not which meets it attends.

KheEj ect i onChai nPrepar eMbni t or s also treats some resource monitors according to the
plan from Section 13.7.3, whether they are grouped or not:

. It detaches all attached avoid clashes monitors.

. For each attached avoid unavailable times momifior which a workload demand monitor
with originating monitomis present (all hard ones, usually), it detacines

* For each attached limit busy times monitofor which a workload demand monitor with
originating monitomis present (all hard ones satisfying the subset tree condition of Section
7.4.2, usually), ifris lower limit is O it detachesy otherwise it setsis cei | i ng attribute to
its maxi mumattribute, by callingheLi mi t BusyTi meshbni t or Set Cei | i ng.

* For each attached limit workload monitmrfor which a workload demand monitor with
originating monitomis present (all hard ones, usually), it setscei | i ng attribute to the
cycle length minus the number of workload demand monitorsiforesource (regardless
of origin), or O if this is negative, by callinigheLi mi t Wor kI oadMoni t or Set Cei | i ng.

Section 13.7.3 has the reasoning.

Finally, KheEj ect i onChai nPr epar eMbni t or s groups demand monitors as follows. If a
limit monitor containing these monitors is wanted, a separate call is needed (Section 13.7.5).

Ordinary demand monitorsi-or each set of meets such that the fixed assignment paths
out of those meets end at the same meet, it groups the demand monitors of those meets’ tasks,
giving sub-tag<HE_SUBTAG_MEET_DEMAND to any group monitors. The reasoning is that the only
practical way to repair an ordinary demand defect is to change the assignment of its meet (or
some other clashing meet), which will affect all the demand monitors grouped with it here.

Workload demand monitorsThese remain ungrouped. As explained in Section 13.7.3,
workload demand defects appear only indirectly, as competitors of ordinary demand defects.

13.7. Ejection chain time and resource repair functions 333

13.7.5. Secondary groupings

Section 9.8 introduces the concept of secondary groupings. The three ejection chain functions
need secondary groupings built on primary groupings for their start group monitors (but not
their continue group monitors, since they use the solution object for that), and other secondary
groupings for their limit monitors. These are the subject of this section.

KheEj ect i onChai nNodeRepai r Ti mes uses the group monitor returned by
KHE_GROUP_MONI TOR KheNodeTi meRepai r St art G- oupMoni t or Make(KHE_NODE node) ;

as its start group monitor. The result has subktdify SUBTAG_NCDE_TI ME_REPAI R. Its children

are monitors, or primary groupings of monitors where these are already present, of two kinds.
First are all assign time, prefer times, spread events, order events, and ordinary demand monitors
that monitor the meets ofode and its descendants, plus any meets whose assignments are fixed,
directly or indirectly, to them. Second are all resource monitors. Only preassigned resources are
assigned during time repair, but those assignments may cause resource defects which can only
be repaired by changing time assignments, just because the resources involved are preassigned.

KheEj ecti onChai nLayer Repai r Ti mes chooses one of the group monitors returned by

KHE_GROUP_MONI TOR KheLayer Ti meRepai r St art G oupMbni t or Make(
KHE_LAYER | ayer);

KHE_GROUP_MONI TOR KheLayer Ti meRepai r LongSt art G- oupMoni t or Make(
KHE_LAYER | ayer);

as its start group monitor, depending on op#enl ayer _repai r _| ong. The result has sub-tag
KHE_SUBTAG_LAYER_TI ME_REPAI R, with the same children as before, only limited to those that
monitor the meets and resourceslafer, or (if es_l ayer _repair_l ong istrue) of layers
whose index number is less than or equaldyer’s.

KheEj ect i onChai nRepai r Resour ces uses the group monitor returned by
KHE_GROUP_MONI TOR KheTaski ngSt art G oupMoni t or Make(KHE_TASKI NG t aski ng) ;

for its start group monitor. The result has sub-k&_SUBTAG TASKI NG, and its children are

the following monitors (or primary groupings of those monitors, where those already exist):
the assign resource, prefer resources, and avoid split assignments monitors, and the resource
monitors that monitor the tasks and resourcesaski ng. If the tasking is for a particular
resource type, only monitors of entities of that type are included.

To allow an ejection chain to unassign meets temporarily but prevent it from leaving meets
unassigned in the end, a limit monitor is imposed which rejects chains that allow the total cost of
assign time defects to increase. This monitor is created by calling

KHE GROUP_MONI TOR KheG oupEvent Moni t or s(KHE_SOLN sol n,
KHE_MONI TOR_TAG tag, KHE_SUBTAG STANDARD TYPE sub_tag);
passingHE_ASSI GN_TI ME_MONI TOR_TAG andKHE_SUBTAG_ASSI GN_TI ME as tag parameters.

To prevent the number of unmatched demand tixels from increasing, when that is requested
by ther esour ce_i nvari ant option, the group monitor returned by function

334 Chapter 13. Ejection Chains

KHE GROUP_MONI TOR KheAl | DemandGr oupMoni t or Meke(KHE_SOLN sol n) ;

is used as a limit monitor. Its sub-tag K8E_SUBTAG ALL_DEMAND, and its children are all
ordinary and workload demand monitors. Primary groupings are irrelevant to limit monitors, so
these last two functions take no account of them.

13.7.6. Augment functions

The augment functions passed to the ejector are private to KHE. This section explains what they
do in detail. It may be somewhat out of date.

The augment functions consult several options. @heepair_tines,es_|lint_node,
andes_repai r _resour ces options are particularly important because they limit the scope of
repairs. They cannot be set by the user—or rather, they can, but that would be futile because
they are reset within the main functions. Any repair which assigns or moves a meet consults
es_repair_tines, and only proceeds if it isrue. It tries moving each ancestor of the meet,
since that will also move the original meet; bueg_I i m t _node is nonNULL, it omits moves
of meets lying within nodes which are not proper descendargs dfi ni t _node. Any repair
which assigns or moves a task consatisr epai r _r esour ces, and only proceeds if it isr ue.

Here is the full list of repair operations executed by KHE’s augment functions.

Node swapsvhich usekheNodeMeet Swap (Section 10.2.1) to swap the assignments of the
meets of two nodes. If thes_nodes_bef or e_neet s option ist r ue, then if node swaps are tried
at all, they are tried before (rather than after) meet moves.

Basic and ejecting meet assignments and moves and Kempe meetvh@fesiove meets
(Section 10.2.2). Where it is stated that a Kempe meet move is tried, it is in fact tried only when
thees_kenpe_noves option (Section 13.7) isr ue, or it isl ar ge_I| ayer s and the meet to be
moved liesin at least one layer whose duration is at least 80% of the duration of the cycle. Where
it is stated that an ejecting meet assignment or move is tried, a basic meet assignment or move
is tried instead when thes_no_ej ecti ng_noves option ist r ue.

Fuzzy meet movashich move meets in a more elaborate way (Section 10.7.4). These are
not mentioned below, but they are tried after Kempe and ejecting meet moves, although only
when thees_fuzzy_noves option ist r ue and the current depth is 1.

Split moveswhich split a meet into two and Kempe-move one of the fragmentsyemnge
moveswhich Kempe-move one meet to adjacent to another and merge the two fragments. As
well as being used to repair split defects, split moves are used similarly to fuzzy meet moves:
although not mentioned below, they are tried after Kempe and ejecting meet moves, but only
when thees_spl i t _noves option ist r ue and the current depth is 1. These Kempe meet moves
are not influenced by thes_kenpe_noves option.

Ejecting task assignments and mqwelsich assign or move a task to a given resource and
then unassign any clashing tasks (Section 12.3).

Ejecting task-set movgshich use ejecting task moves to move a set of tasks to a common
resource, succeeding only if all of the moves that change anything succeed.

Meet-and-task moveshich Kempe-move a meet at the same time as moving one of its
tasks, succeeding only if both moves succeed.

Each repair is enclosed in callsdioeEj ect or Repai r Begi n andkheEj ect or Repai r End as

13.7. Ejection chain time and resource repair functions 335

usual. In the more complex cases, such as the last two on the list abosegtlees argument

of KheEj ect or Repai r End is set ta r ue only if all parts of the repair succeed. Some of the more
complex repairs are tried only when the current depth is 1, that is, when the defect being repaired
Is truly present, not introduced by some other repair.

Some alternative repairs are naturally tried one after another. The ejecting task moves of
a given task to each resource in its domain is one example. Here are three less obvious, but
nevertheless very useful sequences of alternative repairs.

A Kempe/ejecting meet moigea sequence of one or two alternative repairs, first a Kempe
meet move, then an ejecting meet move with the same parameters. The ejecting meet move
Is omitted when the Kempe meet move reports that it did only what a basic meet move would
have done, since in that case the ejecting move is identical to the Kempe move. This sequence
Is similar to making an ejecting move and then, on the next repair, favouring a particular
reassignment of the ejected meet(s) which is likely to work well. Fuzzy and split moves may
follow the Kempe and ejecting meet moves, as explained above.

A resource underload repaiior resource and time group is a sequence of alternative
repairs which aim to increase the number of timessusy withing. Unlesgyis the whole cycle,
for each task assignedvhoseoverlap(the number of times it is running withg) is less that its
duration, it tries all ejecting meet moves of the task’s meet which increase its overlap. After that
it tries an ejection tree repair like the one described below for cluster busy times defects, which
aims to empty out the entire time group—a quite different way to remove the defect.

A resource overload repaiior resource and time group is a sequence of alternative re-
pairs which aims to decrease the number of timisdusy withing. First, for each task assigned
but not preassignedwhose overlap is non-zero, it tries all ejecting task moves of the task to its
domain’sresources. Then, for each task assigned (including preassigrexte overlap is non-
zero, it tries all ejecting meet moves of the task’s meet which decrease the overlap.

Wherever possible, sequences of alternative repairs change the starting point of the traversal
of the alternatives on each call. For example, when trying alternative resources, the code is

for(i =0; i < KheResourceG oupResourceCount(rg); i++)
{
i ndex = (KheEj ector CurrAugnent Count(ej) + i) %
KheResour ceG oupResour ceCount (rg);
r = KheResour ceG oupResource(rg, index);
try a repair using r ...

}

The first resource tried depends on the number of augments so far, an essentially random number.
This simple idea significantly decreases final cost and run time.

Following is a description of what each augment function does when given a non-group
monitor with non-zero cost to repair. When given a group monitor with non-zero cost, since
the elements of a group all monitor the same thing in reality, the augment function takes any
individual defect from the group and repairs that defect.

Split events and distribute split events defeMest events are split into meets of suitable
durations during layer tree construction, but sometimes the layer tree does not remove all these
defects, or a split move introduces one. Inthose cases, the split analyser (Section 9.7.1) from the

336 Chapter 13. Ejection Chains

opti ons object is used to analyse the defects and suggest splits and merges which correct them.
For each split suggestion, for each meet conforming to the suggestion, a repair is tried which
splitsthe meet as suggested. For each merge suggestion, for each pair of meets conforming to the
suggestion, four combined repairs are tried, each consisting of, first, a Kempe meet move which
bring the two meets together, and second, the merge of the two meets. The four Kempe moves
move the first meet to immediately before and after the second, and the second to immediately
before and after the first.

Assign time defectd-or each monitored unassigned meet, all ejecting meet moves to a
parent meet and offset that would assign the meet to a time within its domain are tried.

Prefer times defectsFor each monitored meet assigned an unpreferred time, all
Kempe/ejecting meet moves to a parent meet and offset giving a preferred time are tried.

Spread events defect&or each monitored meet in an over-populated time group, all
Kempe/ejecting moves of the meet to a time group that it would not over-populate are tried; and
for each under-populated time group, for each meet whose removal would not under-populate its
time group, all Kempe/ejecting moves of it to the under-populated time group are tried.

Link events defectd hese are not repaired; they are expected to be handled structurally.

Order events defectd hese are currently ignored. It will not be difficult to find suitable
meet moves in the future.

Assign resource defectsor each monitored unassigned task, all ejecting assignments of
the task to resources in its domain are tried. Then ifethe epai r _ti nes option permits, all
combinations of a Kempe meet move of the enclosing meet and an ejecting assignment of the
task to resources in its domain are tried.

Prefer resources defect$or each monitored task assigned an unpreferred resource, all
ejecting moves of the task to preferred resources are tried.

Avoid split assignments defecior each resource participating in a split assignment there
isone repair: allinvolved tasks assigned that resource are unassigned, all involved tasks’domains
are restricted to the other participating resources, and a set of ejection chains is tried, each of
which attempts to reassign one of the unassigned tasks. The repair succeeds only if all these
chains succeed, making an ejection tree, not a chain. This is expensive and unlikely to work, so
it is only tried when the defect is a main loop defect or only one task needs to be unassigned.

Avoid clashes defect®void clashes monitors are detached during ejection chain repair,
since their work is done by demand monitors. So there are no avoid clashes defects.

Avoid unavailable times defect8.resource overload repair (see above) for the monitored
resource and the unavailable times is tried.

Limit idle times defectd-or each task assigned the monitored resource at the start or end of
a ‘day’ (actually, a time group being monitored), each Kempe/ejecting meet move of that task’s
meet such that the initial meet move reduces the number of idle times for that resource is tried.
Calculating this condition is not trivial, but the augment function does it exactly. Task moves
could help to repair limit idle times defects for unpreassigned resources, but in current data sets
the resources involved are usually preassigned, so task moves are not currently being tried.

After the repairs just given are tried, if the repair has depth 1 (if the defect was not created
by a previous repair on the current chain), a complex repair is tried which eliminates all idle times
for one resource on one day. Take the meets assigned that resource on that day. A retimetabling

13.7. Ejection chain time and resource repair functions 337

of those meets on that day with no clashes and no idle times is defined by a starting time for the
first meet and a permutation of the meets (their chronological order in the assignment). If there
arek meets and starting times that don't put the last meet off the end of the day, then there
ares [k! retimetablings in total. In practice this is a moderate number. For safety, only a limited
number of retimetablings is tried, by switching to a single permutation at each new node after a
fixed limit (currently 1000) is reached.

Cluster busy times defectH. the resource is busy in too few monitored time groups, all
ejecting meet moves are tried which move a meet which is not the only meet in a monitored time
group (either because every monitored time group it overlaps with overlaps with at least one
other meet, or because it does not overlap with any monitored time groups) to a monitored time
group in which it is. If the resource is busy in too many monitored time groups, then for each
monitored time groupg containing at least one meet, if the depth is 1 grcontains exactly
one meet, all the meetstig are unassigned, amgd and all monitored time groups containing no
meets are removed from the domains of all meets assigned the resource. Thisis an ejection tree
repair if more than one meet is unassigned: all of the unassigned meets must be reassigned for
success. Then_success_f n parameter okheEj ect or Repai r EndLong is used to ensure that
the domains are restored on success as well as on failure.

Limit busy times defectd-or each set of times when the resource is underloaded (resp.
overloaded), a resource underload (resp. overload) repair of the resource at those times is tried.

Limit workload defectslf the resource is overloaded, a resource overload repair is tried,
taking the set of times to be the entire cycle. There is currently no repair for underloads.

Ordinary and workload demand defect$.the defect has a workload demand monitor
competitor (possibly itself, although workload demand monitors rarely fail to match), a resource
overload repair is tried for the workload demand monitor’s resource and the domain of its
originating monitor. If the defect has no workload demand defect competitor, all ejecting meet
moves of competitor meets to anywhere different are tried; but meets within vizier nodes are not
moved in this case, since that would only shift the problem to a different time.

13.7.7. Repair operations for nurse rostering

This sectionis obsolete. It will be rewitten eventually. Meanwhile,see my KHE18 nurse rostering
solver paper.

Apart from the absence of time assignment, nurse rostering is characterized by constraints
that relate what a resource does on one day to what it does on adjacent days. Because of them,
it makes sense to use repairs which move small sets of tasks, from adjacent days, as a block from
one resource to another. Incidentally, at least two other authors of ejection chain nurse rostering
algorithms have come to this conclusion.

Suppose that a defect arises that might be repaired by an augment that asévigemr 1
tor 2, as carried out btheTaskMoveAugnent . Either ofr 1 andr 2, but not both, may b&ULL.
The idea offered here is that in the nurse rostering ¢hs@askMveAugnment should reinterpret
a request to moveask as a request to move several tasks from adjacent days, incliatikg

Which tasks should be chosen? Initially, they should all be assigned to whatekeis
assigned to initially (possibliMULL), otherwise the rationale for this kind of move is lost. The
number of adjacent days to include tasks from is harder to be sure about, except that, as we search

338 Chapter 13. Ejection Chains

in each direction fromiask’s day, we are obliged to stop after we reach the first or last day, and

if there is no task assigned whatsk is assigned to initially. Furthermore, 2 is already busy

on some day, it is not likely to be useful to give it another task on that day. So the search should
stop at the first case of that. So we have a different set of moves to make far2each

Our plan is to move justask to begin with, then ask plus one day, thenask plus 2 days,
and so on up tb days, wheré is a parameter that we can choose, by means of an option perhaps.
We will try moving all sets of from 1 t& days that includéask. Clearly,k must be small, say
4 at most. Only ask will be marked visited and checked for being visited.

The set of possible repairs here has two dimensions, one indexed by sets of days to move,
the other by 2. We could iterate in any order that maximizes efficiency. It would be good, for
example, to build task sets as required, and remember them from one resource to the next.

We also need to be able to handle ‘negative moves’, where we have a time group rather than
a task and the idea is to move something out of that time group or into it. This is done now by
KheNur seOver | oad, but not very effectively.

Appendix A. Modules Packaged with KHE

This chapter documents several modules packaged with KHE and used by it behind the scenes.
By including their header files the user may also use these modules.

A.l. Arenas and arrays
Note — the Ha library has been flown in from another project of the author’s, called Howard. Its
header file isoward_a. h.

This section describes Howard’s Ha library, which provides arenas and extensible arrays.

A.1.1. Arenas

An arena is an object (a pointer to a private struct) of t#eARENA. It represents an unlimited
amount ofarena memoryheap memory held in an arena so that it can be freed all at once later.
Starting from Version 2.1, all memory allocated by KHE is arena memory.

For creating and deleting arenas, the operations are

HA_ARENA HaAr enaMake(voi d) ;
voi d HaArenaDel et e(HA ARENA a);

HaAr enaMake creates an arendaAr enaDel et e deletes, freeing all its arena memory. Also,
voi d HaArenaCd ear (HA ARENA a);

frees most of’s memory, returning it to its state immediately afteAr enaMbke.

The author has had some unpleasant experiences witlmthec memory allocator
supplied with his Linux system on large runs with multiple threads, and he has concluded that
recycling memory viarel | oc andf r ee is best avoided. Accordingly, function

HaAr enaRecycl e(HA ARENA a) ;

IS provided, which is similar taAr enaC ear in that it tellsa that all of its objects exceptitself
are no longer wanted, but different in that it does not 'senemory. Instead, it retains it and
uses it for subsequent allocations.

HaAr enaRecycl e is usually used in conjunction with a free list of arenas. When an arena
Is needed, it is taken from this list if possible, otherwise it is creatadghByenavbke. When an
arenaa is no longer needediaAr enaRecycl e(a) is called andh is added to the free list. In this
way, memory is efficiently recycled without callifigee. FunctionKheAr enaSet Ar enaBegi n
andKheAr enaSet Ar enaEnd (Appendix A.1.2) do this.

Operations

voi d *HaAl l oc(HA ARENA a, size_ t size);
voi d Havake(X res, HA ARENA a);

339

340 Appendix A. Modules Packaged with KHE

allocate memoryHaAl | oc returns a pointer to at leastze_t bytes of arena memory from
aligned suitably for any data and initialized to zero. Magabbke setsres (which may have
any pointer typeX) to point to at leassi zeof (*res) bytes of memory obtained frofAl | oc.
These objects may not be resized. For resizable objects, see Section A.1.5.

Arenas obtain their memory fromul | oc (actuallycal | oc). Aslong asal | oc continues
to supply memory, an arena will continue to supply memory to the user. If a request for memory
fromcal | oc fails, thenHaAr enaMake andHaAl | oc returnNULL, andHaMake sets es to NULL.

The memory pointed to by a varialdeof type HA_ARENA is arena memory from areraa
This memory is freed along with the rest of the arena memory when the arena is deleted.

HaAl | oc initializes the memory to zero for two reasons. First, an uninitialized object field
can cause a program to behave differently each time it runs. If all object memory is initialized
to zero, an uninitialized field is still a bug, but at least the program behaves the same each time it
runs. SecondfaAr r ayCont ai ns (Section A.1.3) compares generic objects usergnp. When
these objects are structs with gaps in them, this will only be correct if the gaps are equal.

The cost of callingiaAr enaMake andHaAr enaDel et e is small enough to allow many small
arenasto come and go. A calldaAr enaMake generates one call tal | oc requesting 14 words
of memory, a few internal function calls which will certainly be inlined, and about 15 initializing
assignments. A call tHaAr enaDel et e generates one call fo ee and three assignments when
the arena is empty, growing logarithmically (i.e. negligibly slowly) as the amount of memory
allocated in the arena increases. Section A.1.5 has more detalil.

A.1.2. Arena sets

An arena sefis a set of arenas. It is a convenient place to store recycled arenas while they are
waiting for new uses. To create a hew, empty arena set, call

HA_ARENA_SET HaAr enaSet Make(HA ARENA a);

The arena set (but not its arenas) lies in areaad will be freed whea is freed.
In practice, what is mainly wanted is the ability to add an arena and extract one:

voi d HaArenaSet AddArena(HA_ARENA SET as, HA ARENA arena);
HA ARENA HaAr enaSet Last AndDel et e(HA_ARENA SET as);

HaAr enaSet AddAr ena addsar ena to as, andHaAr enaSet Last AndDel et e deletes and returns
the last arena froras. Also useful are

i nt HaArenaSet ArenaCount (HA_ARENA SET as);
HA ARENA HaAr enaSet Arena(HA ARENA SET as, int i);

which return the number of arenasas), and the th arena, counting from 0 as usual.

Typically, there is one arena set per thread. When a thread terminates, the arenas of its arena
set need to be passed on to the arena set of the parent thread. For this there is

voi d HaArenaSet Merge(HA ARENA SET dest _as, HA ARENA SET src_as);

It moves the arenas 6f c_as todest _as, leavingsr c_as empty.

A.1. Arenas and arrays 341

Since arena sets are mainly for recycling arenas, two convenience functions are offered:

HA ARENA HaAr enaSet Ar enaBegi n(HA_ ARENA SET as);
voi d HaAr enaSet ArenaEnd(HA ARENA SET as, HA ARENA a);

If as isnonNULL, HaAr enaSet Ar enaBegi n returns a fresh arena, extracted frasrif non-empty,
or else newly created, andAr enaSet Ar enaEnd callsHaAr enaRecycl e(a) then adds: to as.
If as isNULL, the two functions just calaAr enaMVake andHaAr enaDel et e.

For completeness, a few other operations are provided:

voi d HaArenaSet Cl ear (HA_ARENA SET as);
voi d HaAr enaSet Dr opFr onEnd(HA_ARENA SET as, int n);
voi d HaArenaSet Del et eArena(HA_ARENA SET as, HA ARENA arena);
bool HaArenaSet Cont ai nsArena(HA_ARENA_SET as, HA ARENA arena, int *pos);
voi d HaArenaSet Debug(HA ARENA SET as, int verbosity, int indent,
FILE *fp);

These cleaas back to the empty set, remove the lasirenas fronas, deletear ena (which must
be present) fromas, returnt r ue whenar ena liesinas, and produce a debug print a ontof p
with the given verbosity and indent.

A.1.3. Arrays

Like C’s native arrays, Ha’'s arrays ageneric they may have elements of any one type, of any
width, and the C compiler will report an error if there is a type mismatch. But, unlike C’s arrays,
Ha's arrays arextensible they may grow to any length during use.

The type of an extensible generic array must be declared usiyygedef invoking macro
HA_ARRAY. For example, the following declarations already appear witbwar d_a. h:

typedef HA ARRAY(bool) HA ARRAY BOOL;
typedef HA ARRAY(char) HA ARRAY NCHAR;
typedef HA ARRAY(wchar t) HA ARRAY CHAR
typedef HA ARRAY(short) HA_ ARRAY_ SHORT;
typedef HA ARRAY(int) HA ARRAY | NT;
typedef HA ARRAY(int64 t) HA ARRAY | NT64;
typedef HA ARRAY(void *) HA ARRAY VOl DP;
typedef HA ARRAY(char *) HA_ARRAY NSTRI NG
typedef HA ARRAY(wchar t *) HA ARRAY STRING
typedef HA ARRAY(f! oat) HA ARRAY FLOAT;
typedef HA ARRAY(doubl e) HA ARRAY DOUBLE;

Create your own array type by placing any type at all between the parentheses.

To gain access techar _t andi nt 64_t , howar d_a. h includes header filesrxchar . h> and
<stdint. h>. Use ofl ong just leads to trouble, in the author’s experience, since its width varies
across platforms, sot 64_t , a standard 64-bit signed integral type, is used instead.

A variable of any of these types is a struct (not a pointer to a struct) with three fields: a
typed pointer to arena memory holding the elements, the number of elements that that memory

342 Appendix A. Modules Packaged with KHE

canhold, and the number of elements that it currenliheshold. Structs are used rather than
pointers to structs because extensible arrays are mainly used as aids to the implementation of
other abstractions, and are thus usually private to one class or function, not shared. So there is
no problem in having their structs lie directly in class objects or on the call stack, rather than in
arena memory at the end of a pointer; and it is more efficient this way.

An array may be a field of an object that lies in one arena, while the array’s arena memory
liesin a differentarena. Butthat would be unusual, since the array would normally have the same
lifetime as the object, and thus would naturally belong in the same arena.

When an array is initialized, it contains no elements and no arena memory is allocated for it.
Its pointer to arena memory points to a shared empty array in its arena. Asthe array grows, arena
memory for it is allocated and reallocated, but always from the same arena. Each reallocation
approximately doubles the number of elements that the array can hold, ensuring that another
reallocation will not be needed soon, while wasting at most as much space as is used. Memory
freed by a reallocation becomes available to hold other resizable objects in the same arena.

If one array is assigned to another using the @perator or parameter passing, the arrays
will have separate copies of their three fields, yet share their elements. This is only safe when
the original array is not used afterwards, or the array’s length remains constant thereatfter.

Ha's array operations are macros, necessarily so since they are generic. They take structs as
parameters, not pointers to structs. This encourages the user to think of arrays as opague objects,
like file pointers and so on. A disadvantage of macros is that their parameters may be evaluated
more than once during a call. Unless explicitly stated otherwise, the user should assume that all
parameters of all array operations are evaluated more than once. In many cases they are.

The first operation on any array must be to initialize it by a call to
voi d HaArrayl nit (ARRAY X a, HA ARENA arena);

This setsa to empty and specifies the arena which will supply its memory when elements are
added later. Here and throughout this section, array operations are presented as though they are
functions, even though they are really macros, 8RRRY_X stands for the type created by

typedef HA ARRAY(X) ARRAY_X;
for any typeX. To find the arena that an initialized arrajies in, call
HA ARENA HaArrayAr ena(ARRAY X a);

In general, memory allocated by Howard’s functions can only be reclaimed by deleting the arena.
However, resizable objects such as arrays are an exception, and function

voi d HaArrayFree(ARRAY_X a);

frees the arena memory usedyyf any. This does not freeitself;a is not a pointer. It freesthe
memory holding the elements ef making it available to other resizable objecta®marena.

To find the number of elements currently stored in an array, call
int HaArrayCount (ARRAY_X a);

The elements have indexes froimto HaArrayCount (a) - 1 inclusive, as usual in C. For

A.1. Arenas and arrays 343
efficiency, array bounds are not checked by any Ha operation. To access the element with index
i, or the first element, or the last element, call

X HaArray(ARRAY X a, int i);
X HaArrayFirst (ARRAY X a);
X HaArraylLast (ARRAY X a);

HaArray andHaAr r ayFi r st evaluate their parameters only once, and all three operations can be
used as variables as well as values. So one can write, for example,

HaArray(frequencies, i)++;
to increment the element éf equenci es whose index i$, or
do_sonet hi ng(&HaArrayFi rst(a))

to pass a pointer to an element.
To add one element to an array, the operations are
X HaArrayAdd(ARRAY X a, int i, X Xx);

X HaArrayAddFi rst (ARRAY_X a, X x);
X HaArrayAddLast (ARRAY_X a, X X);

HaAr r ayAdd addsx to a at indexi , which may range from to HaAr rayCount (a) inclusive. It
makes room fox by shifting elements up one place, including reallocating arena memory if
necessary. It returns HaArrayAddFirst (a, x) is equivalent tddaArrayAdd(a, 0, x),and
HaAr rayAddLast (a, x) is a faster version dflaArrayAdd(a, HaArrayCount(a), Xx).

voi d HaArrayFill (ARRAY X a, int len, X x);

addsx 0 or more times to the end af stopping wheriaAr r ayCount (a) is at least en.
X HaArrayPut (ARRAY X a, int i, X Xx);

replaces the value at indexwith x and returng. It evaluates its parameters only once. And
voi d HaArrayMove(ARRAY X a, int dest i, int src_i, int len);

uses the @enmove function to move (that is, copy with overlapping allowed) tle@ elements
starting at indexsrc_i to indexdest _i . It assumes without checking thiagn >= 0 and that
src_i anddest _i are atleadt and at mostiaArrayCount (a) - |en. Itisused byHaAr r ayAdd
above andHaAr r ayDel et eAndShi ft below to do their shifting.

For searching an array there is
bool HaArrayContai ns(ARRAY X a, X x, int *pos);

It returng r ue if a containg, setting: pos to the index of its first occurrence; otherwise it returns
fal se, leaving+«pos unchanged. The individual comparisons are madeelbynp.

Two operations delete theh element, offering two ways to fill the gap it leaves behind:

344 Appendix A. Modules Packaged with KHE

voi d HaArrayDel et eAndShi ft (ARRAY X a, int i);
voi d HaArrayDel et eAndPl ug(ARRAY X a, int i);

HaAr r ayDel et eAndShi ft shifts the elements afterdown one placeiaAr r ayDel et eAndPl ug
assigns the last element to positigrthen deletes the last element. Operations

bool HaArrayFi ndDel et eAndShi ft (ARRAY X a, X x, int *pos);
bool HaArrayFi ndDel et eAndPl ug(ARRAY X a, X X, int *pos);

call HaArrayCont ai ns, returning what it returns but also usitigAr r ayDel et eAndShi ft or
HaAr r ayDel et eAndPl ug to delete the element it found, if any. There are also

voi d HaArrayDel et eLast (ARRAY X a);
voi d HaArrayDel etelLast Sli ce(ARRAY X a, int n);
voi d HaArrayd ear (ARRAY X a);

for deleting the last element, deleting the lagtlements (which can be done very efficiently),
and deleting the lastaAr r ayCount (a) elements, leaving the array empty. And

X HaArraylLast AndDel et e(ARRAY_X a);

returns the last element af and also deletes it frora. Deleting elements does not free any
memory. The vacated memory remains available to the array, should it decide to grow again.

Here are some more complex operations that change the contents of arrays.
voi d HaArraySwap(ARRAY_X a, int i, int j, Xtnp);

Swap the elements afat positions andj . Parameternp is a variable used to hold an element
temporarily while swapping.

voi d HaArrayWol eSwap(ARRAY_X a, ARRAY_X b, ARRAY X tnp);
Swap two whole arrays, that is, swap the contents of their structs, ugiregs a temporary.
voi d HaArrayAppend(ARRAY X dest, ARRAY X source, int i);

Append the elements abur ce to the end ofdest , leavingsour ce unchanged. Parameters
a variable used as an external cursor when scarsounge.

voi d HaArraySort (ARRAY X a, int(xconpar)(const void =, const void *));
Sorta by means of a call tgsort , usingconpar as the comparison function.

voi d HaArraySort Uni que(ARRAY X a,
i nt(*conpar)(const void *, const void *));

Like HaAr raySor t , except that after sorting, elements are deleted until no two adjacent elements
return 0 when compared usiagnpar . If this is done purely for uniqueifying, it is common to
implementconpar as a mere subtraction of two pointers. However, on a 64-bit architecture this
yields a 64-bit integer, and merely returning this castto the return type ofonpar , does not

work. Use a conditional expression returnirig0, or 1 instead.

A.1. Arenas and arrays 345

Finally, Ha offers iterator macros for traversing arrays:

HaArrayFor Each(ARRAY X a, X x, int i)
HaAr r ayFor EachRever se(ARRAY X a, X x, int i)

These iterate over the elementsofn forward or reverse order. Within each iteratinns one
element ofa andi is the index ofx in a. For example,

HaAr r ayFor Each(strings, str, i)
fprintf(stdout, "string %l: %\n", i, str);

prints the elements of arrayri ngs. Like all Howard’s iterators, both macros expand to
for(... ; ..., ...)

and may be used syntactically in any way that this construct may be.

A.1.4. Version string

MacroHA_HOMRD_VERSI ON is a wide character string defining the current version of Howard.
For example, its value was

L"Howard Version 1.0 (June 2011)"

at the time of writing.

A.1.5. Howard’s memory allocator

This section contains more information about Howard’s memory allocator than the user is likely
to need. It explains how memory is aligned, presents the operations for allocating resizable arena
memory, and describes how the allocator works.

Howard’s memory allocator promises to return memory aligned correctly for any kind
of data. However, there seems to be no standard way to find out what that alignment is. So
file howar d_a. h includes a typedef of a typeA ALl GN_TYPE, and the allocator assumes that
memory aligned with this type aligns with all types. By default this typedef is

typedef void *HA ALI GN TYPE
but it may be changed to any type whose width is at least the width of a poHat#grenaMake

checks this condition and aborts if it does not hold, since the implementation depends on it.

Resizable arena memoiy arena memory returned by functioreEResi zabl eAl | oc and
HaResi zabl eReAl | oc, defined below. Given a pointer to resizable arena memory, the allocator
can deduce what arena it is from and what its size is (in bytes):

HA ARENA HaResi zabl eArena(voi d *resizabl e);
si ze_t HaResi zabl eSi ze(voi d *resizabl e);

The value ofHaResi zabl eSi ze may be larger than the size requested whesi zabl e was
allocated. The functions for allocating and freeing resizable arena memory are

346 Appendix A. Modules Packaged with KHE

voi d *HaResi zabl eAl | oc(HA_ARENA a);
voi d *HaResi zabl eReAl | oc(voi d *resizable, size t size);
voi d HaResi zabl eFree(voi d *resi zabl e);

HaResi zabl eAl | oc returns a pointer t0 bytes of resizable arena memory from arend his

may seem useless, but experience shows that it produces the most convenient initial value. All
pointersto 0 bytes fromare shared, so there is no memory céeResi zabl eReAl | oc assumes

thatr esi zabl e points to resizable arena memory, and begins by finding its arena and size. If
si ze is no larger than this old sizeesi zabl e is returned. Ifsi ze is larger, a pointer tei ze

or more bytes of resizable arena memory from the same arena is returned. Its first old size bytes
are copied fromesi zabl e usingmentpy, andr esi zabl e is reclaimed for re-use by other calls

for resizable memory from the same arena (unless its size iBaBesi zabl eFr ee reclaims

resi zabl e just asHaResi zabl eReAl | oc does, but without allocating new memory.

Like ordinary arena memory, resizable arena memory is aligned suitably for any kind of
data. Resizable arena memory is not initialized to zero, however.

The remainder of this section describes the implementation of the arena memory allocator,
including how it tries to avoid various problems that memory allocators are prone to.

An arena obtains its memory froeal | oc. A piece of memory givento an arenadsf | oc
will be called achunk a piece of memory given to the user by an arena will be callddek

Let A besi zeof (HA_ALI GN_TYPE) . Since the memory returned has to align, every block
might as well contain (and does contain) a number of bytes which is a multiplelbthe num-
ber requested is not a multiple Afit is increased to the next multiple 8f The resulting wasted
memory is called thalignment overheadit will be negligible in practice, and often zero.

An arena cannot satisfy all the block requests it receives out of one chunk. So it calls
cal I oc more than once, and maintains a linked list of all the chunks it receives. The arena object
contains a pointer to the most recently obtained chunk; this chunk’s\firgtes hold a pointer
to the next most recently obtained chunk, and so on. The secbyigs in each chunk hold the
total number of words in the chunk, and the total number of words not yet allocated. Thus the
memory overhead per chunkdsl | oc’s overhead, plugA bytes to hold the the singly linked
list of chunks and the two integers.

The linked list serves two purposes. First, when the arena is deleted, its memory is freed
by traversing the list and freeing each chunk. The arena object itself, and the block list header
objects described below, lie within chunks like user blocks do, and so are freed when the chunks
are freed. Second, when a block is required, the first step is to try to obtain it from the first chunk
on the list. Later chunks may not be entirely used up, but they are never tried.

When one chunk holds many blocks, arena allocation is much better than general allocation.
Blocks are allocated contiguously within chunks, with no memory overhead other than the align-
ment overhead. Unless a new chunk is needed, allocating a block is very fast: just round up the
requested size, test whether memory is available in the first chunk, and make two assignments.

All chunks cannot be the same size, for two reasons. First, if they were, for memory
efficiency one would want that size to be large; but a large chunk would be wasteful if the arena
remains small, as it may do if there is one arena per function. Second, a request for a block whose
size is larger than the chunk size could not be satisfied.

Accordingly, the chunks obtained froeal | oc vary in size, as follows. The arena contains

A.1. Arenas and arrays 347

anormal sizdield. Whenever a new chunk is needed, the normal size isfirst increased. Then, if
the request is for less memory than the normal size, a chunk of the normal size is obtained from
cal I oc and placed first in the chunk list, and the request is satisfied from within that chunk. If
the request is for as much as or more memory than the normal size, a chunk of the requested size
is obtained frontal | oc and placed second in the chunk list, and the request is satisfied from this
chunk, which it fills completely.

The normal sizes ar@" - 2)A, for n= 4, n= 5, and so on. This ensures that memory is
not wasted on unnecessarily large chunks. Wdwhoc’s overhead is added, chunk sizes will
probably be powers of 2, and @agicreases, a thread-awai | oc will allocate chunks on cache
boundaries. Even ital | oc is not thread-aware, each arena should be accessed by only one
thread, which alone should give reasonable cache behaviour.

When an arena isrecycled, its chunks are moved to a different singly linked liscttded
chunk list and their memory is reset to 0. The chunk holding the arena object itself is treated
somewhat differently: it stays on the main chunk list, and only the part of its memory that does
not hold the arena object is reset to 0. When allocating memory, if the current chunk is too full,
then before making a new chunk, the recycled chunk list is examined. If it is non-empty, its first
chunk becomes the current chunk and the whole process is restarted. Otherwise a new chunk is
obtained frontal | oc as usual.

It remains to describe how resizable blocks are handled. The size of each resizable block
is R, Afor somen > 0, whereR, = 0 andR, = 312" - 1for n> 1 These numbers (0, 5, 11, 23,
47, ...) make good hash table sizes. From 5 onwards, each is obtained from its predecessor by
doubling and adding one.

Growing out of each arena object is a linked listbck list headerobjects. The first
block list header contairR, and a pointer to a singly linked list of all free blocks of sR¢\
(this particular pointer is alwaysLL); the second contairf, and a pointer to a singly linked
list of all free blocks of sizé&r;A and so on. Each block list header also contains a pointer to its
arena and a pointer to the block list header for the next larger size. Initially, only the first block
list header is present.

In addition to theR Abytes passed to the user, a resizable blockages, just in front of
the pointer returned to the user, holding a pointer to the block list header h&lditithe block
Is free, its second bytes holds a pointer to the next free resizable block of that size.

Given a user’s pointer to a resizable block, one can find its block list header by going back
bytes and following the pointer. The block list header gives access to the block’s arena and size,
and to the free block list of blocks of that size.

A resizable block of at least a given size can be obtained by searching the block list header
list for the first block list header whose block size is sufficiently large. New block list headers
are added if required as the search proceeds. Once the appropriate block list header is reached,
its first free block is returned to the user; or if it has no free blocks, a fresh block is obtained from
HaAl | oc, a pointer to the block list header is placed in its #kblytes, and a pointer to i¢a + 1xh
byte is returned to the usdfaResi zabl eReAl | oc begins its search for a block list header from
resi zabl e’s block list header. Most calls téaResi zabl eReAl | oc request blocks about double
the old size, so most traversals of the list of block list headers visit only one block list header,
ensuring that the time taken to find a new resizable block is usually a small constant.

The memory overhead &bytes per allocated block (holding the pointer to the block list

348 Appendix A. Modules Packaged with KHE

header), plus the space occupied by the block list headers (negligible once the blocks grow to
even moderate size), plus the free blocks, plus any unused space within allocated blocks.

The worst case is elicited by an arena containing a single extensible array that grows one
elementatatime. (Thiscase can be duplicated by growing two arrays in parallel.) Now, resizable
blocks are needed just because the application cannot predict how much memory will be needed.
Thus, the application might as well ask for sizes of the f&mA, and the extensible array
module does this. As the array grows, it leaves a trail of freed blocks behind it of(SizelgA,

(11+ 1A (23 + 1A, and soon. Theirtotal size isless than half the current block size. The current
block may itself be only half full, so at worst, three times as much memory is allocated as is used.
But none of this memory is completely lost: half of it is available for further growth of the array,
the other half is available for other arrays, and all of it is freed when the arena is deleted.

A.2. Strings and symbol tables

Note — the Hn library has been flown in from another project of the author’s, called Howard.
Three libraries,Hw,Hn,and Ho, are documented here, but only the Hn library is included in KHE.
Its header file isiowar d_n. h.

This section describes Howard’s Hw library, which provides operations on wide strings
(typewchar _t +), and symbol tables whose keys are wide strings. It also documents Howard’s
Hn library, which is the same except that its strings are narrow (type * instead of
wchar _t).

A.2.1. Strings

One handy use for extensible arrays is to build up strings piece by piece in arena memory,
similarly toopen_nenst r eamfrom POSIX-2008:

voi d HwStringBegi n(HA ARRAY CHAR ac, HA ARENA a);
voi d HwStringAdd(HA ARRAY CHAR xac, wchar t *format, ...);
wchar _t +=HwSt ri ngend(HA ARRAY CHAR ac);

HWSt ri ngBegi n andHwSt ri ngEnd are in fact macrosHwSt ri ngAdd is a function; note that a
reference to the array is passed, not the array it8IfARRAY_CHAR is defined by Ha and holds
an extensible array of wide charactersSt ri ngBegi n initializes this array to empty (like
HaArrayl ni t); WSt ri ngAdd appends a formatted string to the growing array;lewgd r i ngEnd
addsthefinal’ \ 0’ and returnsthe string. The string returnedi$t ri ngEnd (call it st r) may
be freed later, by calling eithefaArrayFree(ac) or, equivalentlyHaResi zabl eFree(str) .
There is also

voi d HwStringVAdd(HA_ARRAY_CHAR *ac, wchar_t *format, va_list args);

which is toHwSt ri ngAdd whatvwpri nt f istowprintf .

Thanks to a robust implementation, there is no limit on the size of any one of the formatted
strings added teac by these functions. There is an unchecked limitf_MAX - 1 on the total
length of the string, because tyg& ARRAY_CHAR stores an array length in ant field.

In between the calls tewst ri ngBegi n andHwSt ri ngEnd, ordinary array operations may

A.2. Strings and symbol tables 349

be applied tac as usual. For example,
HaArrayFill (ac, 80, L ');

pads outic to length 80 with blanks.

For the convenience of applications which sometimes need to build a string and sometimes
need to write to a file, functions

voi d HwStringAddOr Print (HA ARRAY CHAR *ac, FILE *fp,
const wchar _t *format, ...);

voi d HwStringVAddOr Print (HA ARRAY CHAR xac, FILE *fp,
const wchar t *format, va_ list args);

are defined. These are likewSt ri ngAdd and HwSt ri ngvVAdd whenac !'= NULL, and like
fwprintf andvfwprintf whenac == NULL (sof p had better be noRuLL in that case).

Hw offers three other functions that create strings in arena memory:

wchar _t «HwSt ri ngCopy(wechar _t *s, HA ARENA a);
wchar _t «HwStringSubstring(wchar t +s, int start, int len, HA ARENA a);
wchar _t +=HwSt ri ngMake(HA_ARENA a, const wchar _t *format, ...);

These are functions, not macros. The arena memory remains allocated until the arena is freed.
HwSt ri ngCopy returns a copy of, like the Linuxwcsdup. HwStri ngSubstring returns the
substring ofs which begins at positiost art , counting from 0, and has lengtkn, or less ifs

ends before thentWst ri ngMake returns a formatted string:

name = HwStringvake(a, L"%s/%s_ %", dir_name, file_name, version);
Thanks to a robust implementatid¢#St r i ngMake imposes no length limits. There is also
wchar _t +«HwStringVMake(HA ARENA a, const wchar _t =format, va_list args);

which is toHwSt ri ngvake whatvwpri ntf istowprintf .

Howard is written on the assumption that strings stored in memory will generally be wide
strings. Even so, some conversion is needed when interfacing with the operating system, so Hw
offers two functions that convert from and to narrow strings:

wchar _t =HwStringFromNarrow char *s, HA ARENA a);
char *HwStringToNarrowwchar t *s, HA ARENA a);

For examplefwst ri ngFr omNar r ow is useful for converting a command-line argument, which
is a narrow string, to a string, amtlSt ri ngToNar r owis useful for converting a file name to the
narrow string format required biyopen. These strings may be freed immediately by passing
them toHaResi zabl eFr ee, or kept until the arena is deleted later.

The standard C library offers several functions which query strimgs (p, wesst r, etc.).
These may be used on Hw’s strings. Hw supplements these functions with a few others:

int HwStringCount (wchar t *s);
bool HwStringl sEnpty(wchar t *s);

350 Appendix A. Modules Packaged with KHE

Return the length of, like wesl en; returnt r ue if s has count 0.
bool HwStringEqual (wchar _t *s1, wchar t *s2);
Returnt rue if s1 ands2 are equal.
bool HwStringContai ns(wchar t *s, wchar _t xsubstr, int =pos);

If substr occurs withins, returntrue with *pos set to the starting position of the first
occurrence osubst r withins. Otherwise returmal se with *pos not set.

bool HwStringBegi nsWth(whar_t *s, wchar_t *prefix);
bool HwStringEndsWth(wchar t *s, wchar _t *suffix);

Returnt rue if prefix occurs withins at the start, or isuf fi x occurs withins at the end.

A.2.2. Abort and assert
Hw offers two functions for checking assertions:

voi d HwAbort (wchar _t *fmt, ...);
voi d HwAssert (bool cond, wchar _t =fnt, ...);

HwAbor t ’'s parameters are the samengsi nt f ’s, but it prints ontcst der r and then callgbort .
HwAssert does nothingiftond istrue, and it does whatwAbort doesifcond isfal se. Itisa
function, not a macro, so its parameters must be well-defined whathe:is true or not.

A.2.3. Symbol tables

A symbol table is a set agntries each consisting of key, which is a string, and @alue whose
type is the same for all entries but is otherwise arbitrary. One table may contain any number of
entries. Entries may be added, deleted, and retrieved by key.

As for Ha’s arrays, and for the same reasons, Hw’s symbol tables are structs, not pointers to
structs, and the operations are macros. The implementation is a linear probing hash table, which
is essentially just an array (actually two arrays, one for keys, one for values). At any moment, not
all of the array’s elements contain entries. The table doubles in size when it becomes 80% full.

To define a symbol table type whose keys are strings ofwgpar _t * and whose values
have typeX, whereX is any type, write this:

typedef HW TABLE(X) TABLE X;

From now onTABLE_X stands for any type defined by a typedef like this one,)asthnds for
the type between the parentheses in that typedef. To initialize a symbol table, call

voi d HwTabl el nit (TABLE X table, HA ARENA a);
To find the arena containing a given table, call
HA ARENA HwTabl eArena(TABLE X table);

When the symbol table is no longer needed, its memory may be reclaimed by

A.2. Strings and symbol tables 351

voi d HwTabl eFree(TABLE X table);

This does not freeabl e itself (t abl e is not a pointer). It frees the memory used to hold the
arrays of keys and values, although not the keys and values themselves.

To add an entry to a symbol table, call

voi d HwTabl eAdd(TABLE X table, wchar _t *key, X value);
bool HwTabl eAddUni que(TABLE X tabl e, wchar _t xkey, X value, X other);

HwTabl eAdd adds a new entry with the given key and value to the table, even if that causes the
table to contain two or more entries with the same kéylabl eAddUni que, on the other hand,

first checks whether there is already an entry with the given key. If so, ibStegs to the value

of an existing entry with the given key and retufras se without changing the table. If not, it
adds the new entry and returitsie without settingpt her .

Two variants ofHwTabl eAdd andHwTabl eAddUni que are offered:

voi d HwTabl eAddHashed(TABLE X tabl e, int hash _code, wchar_t =*key,
X val ue);

bool HwTabl eAddUni queHashed(TABLE X tabl e, int hash_code, wchar_t =*key,
X value, X other);

These are the same as the originals, except for parahsstercode, which is assumed to be the
hash code okey (before reduction modulo the table size), as returneldidgbl eHash:

i nt HwTabl eHash(wchar t xkey);

Passing the hash code explicitly saves time when inserting the same entry into several tables.

Retrieval has three forms. The first is the ‘contains’ form, which merely reports whether an
entry with the given key is present:

bool HwTabl eCont ai ns(TABLE_X tabl e, wchar_t xkey, int pos);

bool HwTabl eCont ai nsHashed(TABLE_X tabl e, int hash_code, wchar_t xkey,
int pos);

bool HwTabl eCont ai nsNext (TABLE_X table, int pos);

HwTabl eCont ai ns returng r ue if t abl e contains an entry with the given key, settps to its
position in the table, ofral se if there is no such entry, in which capes is an empty position.
HwTabl eCont ai nsHashed is the same, except that it assumes btlaah_code is the hash code of

key (before reduction modulo the table sizéfjuTabl eCont ai nsNext assumes thaibs is a non-
empty position oft abl e; it searches the table beyond that point (wrapping around to the front
if necessary) for an entry with the same key as the one at that point.Huiled! eCont ai ns,

it returnst r ue or f al se depending on whether it finds such an entry, and it chapge$o its
position, or to an empty position.

The second form of retrieval is the ‘contains value’ form, which reports whether an entry
with the given key and value is present:

352 Appendix A. Modules Packaged with KHE

voi d HwTabl eCont ai nsVal ue(TABLE X table, wchar _t xkey, X val ue,
int pos);

voi d HwTabl eCont ai nsVal ueHashed(TABLE X table, int hash_code
X val ue, int pos);

HwTabl eCont ai nsVal ue hashes the key and then compares values along the table using the
C ‘==" operation, instead of comparing keys. It runs very quickly since it executes no string
comparisons. Owing to problems behind the scenes it does not return a Boolean result. Instead,
itis syntactically & or statement which sep®s to the position of the entry if present. Function
HwTabl eQccupi ed, defined below, may be used to determine the outcome, like this:

HwTabl eCont ai nsVal ue(table, "fred", fred, pos);
i f(HwTabl eCccupi ed(tabl e, pos))

{

/* fred is present at position pos */

}

HwTabl eCont ai nsVal ueHashed is the same, except that it avoids hashing the key as usual. In
fact it does not need to know the key, so the ugeglparameter is omitted.

The third form of retrieval is the ‘retrieve’form, which sets@ ue parameter to the value
associated with the given key if found, and leav&sue untouched if not:

bool HwTabl eRetrieve(TABLE X table, wchar_t xkey, X value, int pos);
bool HwTabl eRetri eveHashed(TABLE_X table, int hash_code, wchar_t xkey,
X val ue, int pos);
bool HwTabl eRetri eveNext (TABLE X table, X value, int pos);
Apart from setting/al ue, these are the same as the corresponding ‘contains’ versions.
Thepos parameters of retrieval functions have several uses. They are needed to ensure that
concurrent retrievals do not interfere with each other. They can be passed to

bool HwTabl eCccupi ed(TABLE X table, int pos);
wchar t =HwTabl eKey(TABLE X table, int pos);
X HwTabl eVal ue(TABLE X table, int pos);

which returnt r ue if position pos is occupied (has an entry), and if so, the key and value of the
entry at positiorpos. And they are used by the operations to be defined next.

Assuming that there is an entry at positjors,

voi d HwTabl eRepl ace(MTABLE X table, int pos, X value);
replaces the entry’s value, and

voi d HwTabl eDel et e(TABLE_X table, int pos);
deletes the entry. For example,

i f(HwTabl eContains(table, L"fred", pos))
HwTabl eDel et e(tabl e, pos);

A.2. Strings and symbol tables 353

deletes an entry with kay' f red", if there is one. Function
voi d HwTabl eCl ear (TABLE X tabl e);

deletes every entry in the table, leaving it empty.
For traversal there are iterator macros in the usual style:
voi d HwTabl eFor EachW t hKey(TABLE_X tabl e, wchar_t *key, X value, int pos)

voi d HwTabl eFor EachW t hKeyHashed(TABLE_X tabl e, int hash_code,
wchar _t +key, X value, int pos)

These visit each entry with a given keywTabl eFor EachW t hKeyHashed is the same as
HwTabl eFor EachW t hKey except that the user supplies the hash code as well as the key, as for
HwTabl eRet ri eveHashed. For example, to visit every person called r ed" in tablepeopl e:

HwTabl eFor EachW t hKey(peopl e, L"fred", person, pos)
{

visit person ...

}

On each iteration, this code s@ts son to a person with namie' f r ed" , andpos to the position
of that person in the table. A similar iterator macro visits every entry of the table:

voi d HwTabl eFor Each(TABLE X table, wchar t *key, X value, int pos)

The entries will be visited in an essentially random order, as usual with hash tables. For example,
the following code counts the number of entriesanl e:

count = 0;
HwTabl eFor Each(t abl e, key, val ue, pos)
count ++;

This number is not maintained automatically. Another fairly useless number is
i nt HwTabl eSi ze(TABLE X table);

which is the current array size. It will be somewhat larger than the current number of entries.

A.2.4. Narrow strings and symbol tables
This section describes Howard’s Hn library. Itisthe same as Hw except that its strimgsrang
(have typechar * instead ofachar _t *), so the description is brief.

For creating narrow strings in arena memory there are functions

voi d HnStringBegi n(HA_ARRAY_NCHAR anc, HA ARENA a);

voi d HnStringAdd(HA_ARRAY_NCHAR xanc, char =format, ...);

char *HnStringEnd(HA_ARRAY_NCHAR anc);
voi d HnStringVAdd(HA_ARRAY_NCHAR xanc, const char =format, va_list args)

(HnStri ngBegi n andHnSt ri ngEnd are macros). For either adding to a string in memory or

354 Appendix A. Modules Packaged with KHE

adding to a file, use functions

voi d HnStringAddOr Print (HA ARRAY NCHAR xanc, FILE *fp,
const char *format, ...);

voi d HnStringVAddOr Print (HA ARRAY NCHAR xanc, FILE =fp,
const char *format, va list args);

Other functions which create strings in arena memory are

char =HnStringCopy(char *s, HA ARENA a);

char *HnStringSubstring(char *s, int start, int len, HA ARENA a);
char =HnStringMake(HA ARENA a, const char *format, ...);

char *HnStringVMake(HA ARENA a, const char *format, va list args);
char *HnStringFromW de(wchar _t s, HA ARENA a);

wchar t =HnStringToW de(char *s, HA ARENA a);

For querying strings there are

int HnStringCount(char *s);

bool HnStringl senpty(char *s);

bool HnStringEqual (char *sl1, char *s2);

bool HnStringContains(char *s, char *substr, int xpos);
bool HnStringBegi nsWth(char s, char xprefix);

bool HnStringEndsWth(char *s, char xsuffix);

For handling white space there are

bool HnStringl s\WhiteSpaceOnl y(char *s);
char *HnStringCopyStripped(char *s, HA _ARENA a);

HnSt ri ngl sWhi t eSpaceOnl y returng r ue if s iSNULL or consists of white space charactersonly
(including whens is empty), andinSt ri ngCopyStri pped returns a copy of with any white
space characters at the beginning or end removedsiNULL or there are no non-white space
characters it returns the empty string.

For abort and assert there are

voi d HnAbort (char *fnt, ...);
voi d HnAssert(bool cond, char *fnt, ...);

A symbol table is defined by
typedef HN TABLE(X) TABLE_X:
and initialized, its arena returned, and freed by

voi d HnTabl el nit (TABLE_X table, HA ARENA a);
HA ARENA HnTabl eArena(TABLE X table);
voi d HnTabl eFree(TABLE_X tabl e);

Entries are added with

A.2. Strings and symbol tables

voi d HnTabl eAdd(TABLE X tabl e, char *key, X value);
bool HnTabl eAddUni que(TABLE X tabl e, char *key, X value, X other);

plus the two variants

voi d HnTabl eAddHashed(TABLE X tabl e, int hash _code, char =key,
X val ue);

bool HnTabl eAddUni queHashed(TABLE X tabl e, int hash_code, char =key,
X value, X other);

Hash codes are calculated with

i nt HnTabl eHash(char xkey);

Retrievals are carried out with

bool HnTabl eCont ai ns(TABLE_X tabl e, char +key, int pos);

bool HnTabl eCont ai nsHashed(TABLE_X table, int hash_code, char =*key,
int pos);

bool HnTabl eCont ai nsNext (TABLE_X table, int pos);

voi d HnTabl eCont ai nsVal ue(TABLE_X tabl e, char *key, X val ue,
int pos);

voi d HnTabl eCont ai nsVal ueHashed(TABLE_X tabl e, int hash_code,
X val ue, int pos);

bool HnTabl eRetrieve(TABLE X table, char *xkey, X value, int pos);

bool HnTabl eRetri eveHashed(TABLE_X table, int hash_code, char =*key,
X val ue, int pos);

bool HnTabl eRetri eveNext (TABLE X table, X value, int pos);

The positions returned by the retrieve operations may be used in

bool HnTabl eCccupi ed(TABLE X table, int pos);
char x*HnTabl eKey(TABLE X table, int pos);
X HnTabl eVal ue(TABLE X table, int pos);

To replace a value, delete an entry, or clear the table, call

voi d HnTabl eRepl ace(TABLE X table, int pos, X value);
voi d HnTabl eDel et e(TABLE X table, int pos);
voi d HnTabl eCl ear (TABLE X table);

To iterate over all entries with a given key, use iterator macros

voi d HnTabl eFor EachW t hKey(TABLE X table, char xkey, X value, int pos)
voi d HnTabl eFor EachW t hKeyHashed(TABLE X tabl e, int hash_code,
char xkey, X value, int pos)

To iterate over all entries, use

355

356 Appendix A. Modules Packaged with KHE

voi d HnTabl eFor Each(TABLE X tabl e, char xkey, X value, int pos)
Finally,
i nt HnTabl eSi ze(TABLE X tabl e);

returns the size of the hash table.

A.2.5. Object tables and groups

An object tableis a hash table indexed by nobkL pointers rather than strings. The value of
the pointer, not the value of what it points to, is used to index the table.

This section describes Howard’s Ho library, which implements object tables, offering
operations analogous to the symbol table operations from Hw and Hn.

An object table is defined by
typedef HO TABLE(X) TABLE_X;
and initialized, its arena returned, and freed by

void HoTabl el nit (TABLE X table, HA ARENA a);
HA ARENA HoTabl eArena(TABLE X tabl e);
voi d HoTabl eFree(TABLE X table);

Entries are added with

voi d HoTabl eAdd(TABLE_X table, void xkey, X value);
bool HoTabl eAddUni que(TABLE_X table, void xkey, X value, X other);

plus the two variants

voi d HoTabl eAddHashed(TABLE X tabl e, int hash _code, void *key,
X val ue);

bool HoTabl eAddUni queHashed(TABLE X tabl e, int hash_code, void *key,
X value, X other);

Hash codes are calculated with

i nt HoTabl eHash(void *key);

Unlike HwTabl eHash andHoTabl eHash, for efficiency this function is in fact a macro. Retrievals
are carried out with

A.2. Strings and symbol tables 357

bool HoTabl eCont ai ns(TABLE X table, void *key, int pos);

bool HoTabl eCont ai nsHashed(TABLE X tabl e, int hash_code, void xkey,
int pos);

bool HoTabl eCont ai nsNext (TABLE X table, int pos);

voi d HoTabl eCont ai nsVal ue(TABLE X table, void *key, X val ue,
int pos);

voi d HoTabl eCont ai nsVal ueHashed(TABLE X table, int hash_code
X val ue, int pos);

bool HoTabl eRetrieve(TABLE X table, void *key, X value, int pos);

bool HoTabl eRetri eveHashed(TABLE X table, int hash_code, void xkey,
X val ue, int pos);

bool HoTabl eRetri eveNext (TABLE X table, X value, int pos);

The positions returned by the retrieve operations may be used in

bool HoTabl eCccupi ed(TABLE X table, int pos);
voi d *HoTabl eKey(TABLE X table, int pos);
X HoTabl eVal ue(TABLE X table, int pos);

To replace a value, delete an entry, or clear the table, call

voi d HoTabl eRepl ace(TABLE X table, int pos, X value);
voi d HoTabl eDel et e(TABLE X table, int pos);
voi d HoTabl ed ear (TABLE_X tabl e);

To iterate over all entries with a given key, use iterator macros

voi d HoTabl eFor EachW t hKey(TABLE_X table, void +«key, X value, int pos)
voi d HoTabl eFor EachW t hKeyHashed(TABLE_X tabl e, int hash_code,
void +rkey, X value, int pos)

To iterate over all entries, use

voi d HoTabl eFor Each(TABLE_X table, void *key, X value, int pos)
Finally,
int HoTabl eSi ze(TABLE X tabl e);

returns the size of the table.

Ho also offers a version of the object table idea in which the objects have no corresponding
values. This is useful when the need is merely to build a set of objects and find out whether a
given object is present in the set or not. Ho calls this data structuvbjant group

An object group is not generic; its unique typeH3 GROUP. It is initialized, its arena
returned, and freed by

358 Appendix A. Modules Packaged with KHE

voi d HoG oupl nit (HO GROUP group, HA ARENA a);
HA ARENA HoGr oupAr ena(HO_ GROUP group);
voi d HoG oupFree(HO GRCUP group);

Entries are added with

voi d HoG oupAdd(HO GROUP group, void xkey);
bool HoG oupAddUni que(HO GROUP group, void xkey);

plus the two variants

voi d HoG oupAddHashed(HO GROUP group, int hash_code, void xkey);
bool HoG oupAddUni queHashed(HO GROUP group, int hash_code, void xkey);

Note the absence of values. Hash codes are calculated with
i nt HoG oupHash(void xkey);
which is in fact the same macro isTabl eHash. Retrievals are carried out with

bool HoG oupCont ai ns(HO GROUP group, void *key, int pos);

bool HoG oupCont ai nsHashed(HO_ GROUP group, int hash_code, void *key,
int pos);

bool HoG oupCont ai nsNext (HO GRCUP group, int pos);

There are n&ont ai nsVal ue or Retri eve operations. The positions returned by the contains
operations may be used in

bool HoG oupCQccupi ed(HO GROUP group, int pos);
voi d *HoG oupKey(HO GROUP group, int pos);

To delete an entry or clear the group, call

voi d HoG oupDel et e(HO GROUP group, int pos);
voi d HoG oupd ear (HO GROUP group);

To iterate over all entries with a given key, use iterator macros

voi d HoGr oupFor EachW t hKey(HO_GROUP group, void xkey, int pos)
voi d HoG oupFor EachW t hKeyHashed(HO_GROUP group, int hash_code,
void xkey, int pos)

To iterate over all entries, use

voi d HoG oupFor Each(HO GROUP group, void xkey, int pos)
Finally,

i nt HoG oupSi ze(HO_GROUP group);

returns the size of the group.

A.3. Variable-length bitsets 359

A.3. Variable-length bitsets

KHE comes with a C module called LSet for managing variable-length sets of smallish unsigned
integers implemented as bit vectors. The module consists of headehdileset . h and im-
plementation fil&khe_| set. c. These are stored and compiled with KHE, but they can also be
used separately. KHE formerly used LSet extensively behind the scenes (all its time groups,
resource groups, and event groups were represented both as arrays of elements and LSets of el-
ement index numbers), although now SSets (Appendix A.4) are used instead. LSet may be use-
ful when writing helper functions and solvers. To use it, simply inckite | set . h. Including

khe_sol vers. h does not automatically includére_| set . h as well.

File khe_l set . h begins with these two type definitions:
typedef struct |set_rec *LSET;
typedef HA ARRAY(LSET) ARRAY_ LSET;

The first defines the type of an LSet, and the second defines an array of LSets, as usual.

Internally, an LSet is represented by a pointer t&t auct containing a length followed
by the bit vector itself. When an element needs to be added that would overflow the currently
allocated memory, the whole LSet is freed and a new one is returned. This is not particularly
convenient for the user of LSet but it is the most efficient way.

Functions

LSET LSet New(void);
voi d LSet Free(LSET s);

create a new, empty LSet and free an LSet;
LSET LSet Copy(LSET s);

creates a fresh new LSet with the same valug d&aunction

voi d LSet Shift(LSET s, LSET *res, unsigned int k
unsi gned i nt max_nonzero);

takes two existing LSets,and+r es, and replaces the current value+ofs by s with k added

to each of its elements, except that elements which would thereby have value greater than
max_nonzer o are omitted. The oldr es will be freed and a new one allocated if necessary. This
arcane function is used behind the scenes to calculate shifted time domains. Function

voi d LSetd ear (LSET s);
clearss back to the empty set, and

voi d LSetlnsert(LSET *s, unsigned int i);
voi d LSetDel ete(LSET s, unsigned int i);

insert element (changing nothing if is already present) and delete it (changing nothing#
already absent). The valueiofs arbitrary but very large values are obviously undesirable, since
the bit vectors then become very large.

360 Appendix A. Modules Packaged with KHE

voi d LSet Assi gn(LSET *target, LSET source);

replaces the current value ot arget with the value ofsource, reallocating+t ar get if
necessary. The value is a copy, there is no sharing anywhere in the LSet module.

The next three functions implement the set operations of union, intersection, and difference,
replacing their first parameter’s value with the result of the operation:

voi d LSet Uni on(LSET *target, LSET source);
voi d LSetIntersection(LSET target, LSET source);
void LSetDifference(LSET target, LSET source);

The usual Boolean operations are available on LSets:

bool LSet Enpty(LSET s);

bool LSet Equal (LSET s1, LSET s2);

bool LSet Subset (LSET s1, LSET s2);

bool LSetDisjoint(LSET s1, LSET s2);

bool LSetContains(LSET s, unsigned int i);

These returmr ue whens is empty, whers1 ands2 are equal, whesl is a subset 0§2, when
s1 ands2 are disjoint, and whes contains . Functions

unsi gned int LSetM n(LSET s);
unsi gned int LSet Max(LSET s);

return the smallest and largest elements aéspectively, using an efficient table lookup on the
first or last non-zero byte. Both functions abors ifs empty. Function

int LSetLexical Cnp(LSET s1, LSET s2);

returns a negative, zero, or positive result depending on whethetexicographically less than,
equal to, or greater thaa®2. Function

voi d LSet Expand(LSET s, ARRAY_SHORT *add_t o)

assumes thatdd_t o is an initialized array, and adds the elements tf the array in increasing
order by repeated calls t@aAr r ayAddLast . Function

char *LSet Show LSET s);

returns a display of in static memory (so it is not thread-safe, but it does keep four separate
buffers, allowing it to be called several times in one line of debug output). Finally,

voi d LSet Test (FI LE =fp);

tests the module and prints its results ontofffle

A.4. Shiftable sets 361

A.4. Shiftable sets

KHE has a C module called SSet for managshiftable set®f integers. These are sets which
hold an integeshift which is added to each value, allowing shifted copies to be created very
efficiently, as needed when implementing time group neighbourhoods. A shifted copy may also
besliced that is, trimmed at each end to produce a subset of the original set.

The module consists of header fideet. h and implementation fileset.c. These are
stored and compiled with KHE, but they can also be used separately. To use SSet, simply include
sset. h. Includingkhe_sol vers. h does not automatically includset . h as well.

File sset . h contains this definition of typ8SET, representing one shiftable set:
typedef struct sset rec { ... } SSET;

We've omitted the contents, but they include an array of items, the shift, and a few other
things. The items are stored as themselves (as integers) in increasing order. SSets are sets, not
multisets—there are no duplicates among the items.

Type SSET is a struct, not a pointer to a struct, beca8SeT is intended as an aid to
implementing other modules, and values of tBSET are expected to be private fields of these
other modules’structs. Structs are better than pointersto structsin these cases, because they save
memory and avoid one level of indirection.

To pass arSSET as a parameter it is always best to pass its address, not the struct itself.
The following functions appear to violate this rule, but they are in fact macros which insert the
address-of operators for you. For example, the function given as

voi d SSet Uni on(SSET to_ss, SSET from ss);
below is really macro
#define SSetUnion(to_ss, fromss) SSetlnpl Union(&to_ss), & fromss))

and thus passes its SSet parameters by reference.

Each SSet object containg anal i zed flag which, when set, prohibits further changes to
the value of the set (although the set can be re-initialized). This has been included to prevent the
user from changing a set after slicing it, since that could change and indeed invalidate its slices.

Each SSet object also containg ace flag which is r ue when the SSet s a shifted version,
and perhaps a slice, of another set. This is used only when freeing an SSet: when an SSet is
freed, the memory used to hold its items is freed only whersthee flag isf al se, avoiding
freeing that memory multiple times. Of course, freeing an SSet invalidates all its shifted and
sliced versions. In the KHE application they are held nearby and freed at the same time.

To initialize (or re-initialize) an SSet to an unfinalized empty set with shift O, call
void SSetlnit(SSET ss, HA ARENA a);

Memory for the SSet will be taken from areama As usual with arenas, there is no operation to
free this memory; instead, it will be freed when the arena is deleted. To change the value of an
unfinalized SSet, use these functions:

362 Appendix A. Modules Packaged with KHE

voi d SSet d ear (SSET ss);

void SSetlnsert(SSET ss, int item;

voi d SSet Del et e(SSET ss, int item;

voi d SSet Uni on(SSET to_ss, SSET from ss);

void SSetlntersect(SSET to_ss, SSET fromss);
void SSetDifference(SSET to_ss, SSET fromss);

These cleass back to the empty set, insertem (or do nothing ifi t emis already present),
deletei t em(or do nothing ifi t emis not present), and change the value ofss to its union,
intersection, or difference withr om ss. Whent o_ss andfrom ss are the exact same object,
SSet Uni on andSSet | nt er sect do nothing, which is the mathematically correct thing to do, but
SSet Di f f er ence aborts, as a sanity measure.

Once these changes are complete, a call to
voi d SSetFinalize(SSET ss);

finalizesss. This causes later attempts to change it to abort with an error message. Function
bool SSet!|sFinalized(SSET ss);

returng r ue whenss has been finalized.
Function

voi d SSetlnitShifted(SSET to_ss, SSET fromss, int shift);

initializes (or re-initializes) o_ss to a finalized SSet holding the itemsfafom ss with shi ft
added to each item. The shift is stored separately, allowings to sharef rom ss’s item
memory. Herdrom ss must be finalized. Function

voi d SSetlnitShiftedAndSliced(SSET to_ss, SSET fromss, int shift,
int lower lim int upper_lim;

first carries out the same shift, but then it trimes ss at each end, removing all items with value
less thar ower _I i m and all items with value larger thampper _I i m Again,from ss must be
finalized and the item memory is shared witlom ss.

The following functions perform queries on SSets without changing their values:

i nt SSet Count (SSET ss);

int SSetGet(SSET ss, int i);
int SSetM n(SSET ss);

i nt SSet Max(SSET ss);

They return the cardinality afs; itsi th element, counting from 0 as usual, with the items stored
and thus returned in increasing order; its first (smallest) element; and its last (largest) element.
The last three functions are tiny macros and do not check that the calls are valid.

The following more complex queries are also offered:

A.4. Shiftable sets 363

bool SSet Enpt y(SSET sS);

bool SSet Equal (SSET ss1, SSET ss2);
bool SSet Subset (SSET ss1, SSET ss2);
bool SSet Di sj oi nt (SSET ssl1, SSET ss2);
bool SSet Contai ns(SSET ss, int item;

These returir ue whenss is empty, wherss1 is equal to, a subset of, or disjoint frass2, and
whenss contains t em
The current shift is returned by

int SSetShift(SSET ss);

However, calling this is unlikely to be a good idea, because it goes behind the abstraction.
For convenience, iterator macros are defined which expaina tioops:

SSet For Each(SSET ss, int *item int =*i)
SSet For EachRever se(SSET ss, int *item int =*i)

These iterate over the items &, setting«i t emand+i to each item and its index in turn. For
example, to sum the elements one would write

int total, item i;
total = 0;
SSet For Each(ss, &tem &)
total += item
SSet For EachRever se is like SSet For Each except that it iterates in reverse order.

Function

char =SSet Show(SSET ss);

returns a string stored in static memory showing the valss dbr examplée {0, 3-5}". When

the set is finalized an asterisk is appended to the string. A long result is neatly elided to fit into
the 200-character buffer set aside to hold it. Actually there are four such bufferlSSetrighow

may be called up to four times before one of its previous results is overwritten.

Function
voi d SSet Test (FI LE *fp);

carries out a fixed set of tests on this module, writing its resuftg to
The SSet module also offers tables indexed by SSets, as follows:

SSET_TABLE SSet Tabl eMake(HA_ARENA a) ;

voi d SSet Tabl el nsert (SSET_TABLE st, SSET ss, void xval);
bool SSet Tabl eRetrieve(SSET TABLE st, SSET ss, void *xval);
voi d SSet Tabl eDebug(SSET_TABLE st, int indent, FILE xfp);
voi d SSet Tabl eTest (FILE *fp);

SSet Tabl eMake returns a new, empty tablesSet Tabl eFr ee frees the memory used by .

364 Appendix A. Modules Packaged with KHE

SSet Tabl el nsert inserts an entry with keys (actuallyé&ss, and there is no copying of the
SSet) and valueal into st. It aborts with an error message if an entry with an equal key is
already present. It would be disastrous to chaswgyafter it has been inserted into a table, but
SSet Tabl el nsert does not actually requirgs to be finalized.SSet Tabl eRet ri eve retrieves
the entry with keys fromst , settingsval to its value and returning ue on success, and setting
+val to NULL and returnind al se on failure. FinallySSet Tabl eDebug produces a debug print
of st ontof p with the given indent, anfiSet Tabl eTest tests the table code, with outputftp.

The table is implemented by a trie structure; each item is used to index an extensible array.
Actually, for items after the first, the difference between the item and the previous item (always
non-negative because items are held in increasing order) is used. Sets whose items are large
integers should not be stored in these tables, because they will lead to excessively long arrays.

A.5. Priority queues

When a solver needs to visit things in priority order, it is easiest to just put them in an array and
sort them. Occasionally, however, their priorities change as solving proceeds, and then, since
resorting after every change is not efficient, a priority queue is needed.

KHE comes with a C priority queue module called PriQueue, consisting of header file
khe_pri queue. h and implementation fil&he_pri queue. c. These are stored and compiled
with KHE, but can also be used separately. To use PriQueue, simply indlader i queue. h.
Includingkhe. h does not automatically includére_pri queue. h as well. The implementation
uses a Floyd-Williams heap with back indexes. Each operation @fteg(n)) time at most.

File khe_pri queue. h begins with these type definitions:

t ypedef struct khe_priqueue_rec *KHE_PRI QUEUE;

typedef int64_t (*KHE_ PRI QUEUE_KEY_FN)(void *entry);
typedef int (*KHE_PRI QUEUE_ | NDEX GET_FN)(void *entry);
typedef void (*KHE_PRI QUEUE | NDEX_SET_FN)(void *entry, int index);

The first defines the type of a PriQueue as a pointer to a private record in the usual way. The
others define the types of callback functions stored within the PriQueue and called by it.

An entryis one element of a priority queue. PriQueue is generic: its entries are represented
by void pointers and may have any type consistent with that. Each entryldegssehich is its
priority in the priority queue, and andex which is used internally by PriQueue to point to its
position in the priority queue. A typical entry type would look like this:

typedef struct my_entry rec {

i nt64_t key; /* PriQueue key */
i nt i ndex; [* PriQueue index */
} *MY_ENTRY;

where. . . stands for other fields. PriQueue needs to retrieve the key, and to retrieve and set the
index, which is what the three callback functions are for. Here they are foMyETRY:

A.5. Priority queues 365

int64_t MyEntryKey(void xentry)

{

return ((MY_ENTRY) entry)->key;
}
int MEntrylndex(void *xentry)
{

return ((MY_ENTRY) entry)->i ndex;
}
voi d MyEntrySet|ndex(void *entry, int index)
{

((MY_ENTRY) entry)->i ndex = index;
}

PriQueue sets the value of an entry’s index field to a positive integer during an insertion, and to
zero during a deletion. Accordingly, the user should initialize it to zero, and then it can be used
to determine whether the entry is currently in a priority queue or not.

To create a new PriQueue, call

KHE_PRI QUEUE KhePr i QueueMake(KHE_PRI QUEUE_KEY_FN key,
KHE_PRI QUEUE_| NDEX_GET_FN i ndex_get
KHE_PRI QUEUE_| NDEX_SET_FN i ndex_set, HA ARENA a);

For the example above, the call would be
KhePri QueueMake(&WENt ryKey, &WEntryl ndex, &WEntrySet|ndex, a);

Initially the queue is empty. There is no operation to delete a priority queue; instead, it is deleted
when arena is deleted. To test whether a priority queue is empty or not, call

bool KhePri QueueEnpt y(KHE_PRI QUEUE p);
To insert an entry, call
voi d KhePri Queuel nsert (KHE_PRI QUEUE p, void *entry);

making sure that the entry’s key is defined beforehand; the index need not be, since it will be set
by PriQueue. Functions

voi d *KhePri QueueFi ndM n(KHE_PRI QUEUE p) ;
voi d *KhePri QueueDel et eM n(KHE_PRI QUEUE p) ;

return an entry with minimum key, assuming tipas not empty, andhePri QueueDel eteM n
removes the entry from the queue at the same time. Function

voi d KhePri QueueDel et eEnt ry(KHE_PRI QUEUE p, void *entry);

deletesnt ry from p; it must lie inp.
To update the priority of an entry, first change its key and then call

366 Appendix A. Modules Packaged with KHE

voi d KhePri QueueNoti f yKeyChange(KHE PRI QUEUE p, void xentry);

to informp that it has changed. This will changet ry’s order in the queue, moving it forwards
or backwards as required. Finally,

voi d KhePri QueueTest (FILE *fp);

tests the module and prints its results ontoffle

A.6. XML handling with KML

KML is a C module for reading and writing XML. It consists of a header file caltigd h, and
implementation files calledm . ¢ andkm _read. c. These are stored and compiled with the
KHE platform, andkhe_pl at f orm h includeskni . h. They can also be abstracted from it and
used separately, although they do useHhenemory module (Appendix A.1).

KHE uses KML to read and write XML. The KHE user encounters KML in exactly one
place: when reading an archive, an object of tijde ERRORis returned if there is a problem.

A.6.1. Representing XML in memory

TypeKM__ELT represents one node in an XML tree structure, including its label, attributes, and
children. The operations for queryingsl_ELT object are

int Kml Li neNunm(KML_ELT elt);
int Km Col Num(KML_ELT elt);
char =Km Label (KM._ELT elt);
KML_ELT Knl Parent (KM._ELT elt);
char =Km Text (KM._ELT elt);

Km Li neNumandKm Col Numreturn a line number and column number stored in the element,
presumably recording its position in some input file somewh&néLabel returns the label

of the element, andni Par ent returns its parent element in the tree structuré\ubt if none.

Km Text returns the text content @f t , or NULL if none.

For querying the attributes @f t the operations are

int Km AttributeCount (KML_ELT elt);

char =Km AttributeName(KM._ELT elt, int index);

char =Km AttributeVal ue(KM._ELT elt, int index);

bool Km Contai nsAttributePos(KM._ELT elt, char *name, int =index);
bool Km ContainsAttribute(KM._ELT elt, char *nane, char =*=*val ue);

Km AttributeCount returns the number otl t’s attributes, andkm Attri but eName and

Km AttributeVal ue return itsi ndex’th attribute’s name and value. The first attribute has
index 0. Negative indexes are allowedl means the last attribute? the second last, and
so on. Km Cont ai nsAttri but ePos returnstrue if elt contains an attribute with the giv-
en name, settingi ndex to its index if so; otherwise it returrfsal se and setsi ndex to - 1.

Km Cont ai nsAttri but e has the same return value, but it setsl ue to the attribute’s value if
found, and toNULL otherwise.

A.6. XML handling with KML 367

For querying the children ofl t the operations are

int Knl ChildCount (KM._ELT elt);

KML_ELT Knl Chi | d(KM._ELT elt, int index);

bool Km Cont ai nsChi | dPos(KM._ELT elt, char =label, int xindex);

bool Km ContainsChild(KM._ELT elt, char =label, KML_ELT *child elt);

Km Chi | dCount returns the number of children, akol Chi | d returns the ndex’th child, again
counting from 0 with negative indices allowe#n Cont ai nsChi | dPos returnstrue if elt
contains a child with the given label, settingndex to the index of the first such child if so;
otherwise it returntal se and setsi ndex to- 1. Km Cont ai nsChi | d has the same return value,
but it setschil d_el t to the first such child if found, and tdJLL otherwise.

There are operations for constructikid-_ELT objects directly:

KML_ELT Knl MakeElt(int line_num int col_num char +label, HA ARENA a);
voi d Km AddAttribute(KM._ELT elt, char *name, char xval ue);

voi d Km AddChi | d(KM__ELT elt, KM._ELT child);

voi d Km Del et eChi | d(KML_ELT elt, KM__ELT child);

voi d Km AddText (KML_ELT elt, char =*text);

voi d Knml AddFnt Text (KML_ELT elt, char =fnt, ...);

Km MakeEl t creates a new element with the given line number, column number, and label,
using memory from arena;, Km AddAttri but e adds an attributésml AddChi | d adds a child;

Km Del et eChi | d deletes a child; anidr AddText andKm AddFnt Text add text, either as given

or formatted usingprintf (with no risk of overflow). They may be called repeatedly on one

el t, in which case the successive texts are concatenated. All these functions store copies, kept
in arenaa, of the strings they are passed, not the original strings.

As usual throughout KHE, there is no operation for freeing the memory used by an element.
Instead, it is freed when arerds deleted. Typically, a whole tree is built in one arena, so that
it can be freed very efficiently by deleting the arena.

Itis not safe to retrieve a string from an element, delete the enclosing arena, and then attempt
to use the string. Such strings must be copied into a longer-lived arena. KHE’s operations all do
this, so there is no danger when KHE converts elements into archives, instances, etc.

A.6.2. Error handling and format checking

KML does not print any error messages; instead it reports an error by returning an object of type
KM._ERRCR, containing the line number and column number of the point of error, plus a message
explaining what the problem was:

i nt K ErrorLi neNum KM._ERRCOR ke);
i nt K Error Col Num(KM._ERRCR ke);
char *Km Error String(KM._ERRCR ke);

These objects can form the basis of error messages printed by the user.

KML's operations for reading a file check only for well-formedness, not for conformance to
a legal document type definition, nor for high-level semantic constraints. During the conversion

368 Appendix A. Modules Packaged with KHE

from KML_ELT to the user’s own data structure, other errors may be uncovered, and it is conve-
nient to be able to report those as objects of e ERROR also. Accordingly, operation

KM._ERROR Km Error Make(HA ARENA a, int line_num int col _num
char =fnt, ...);

is provided. It creates a new object of tyfd._ERRORin arenaa, initializes it with the given line
number, column number, and formatted text (apfomt f), and returnsit. There is also

KM._ERROR Km VError Make(HA ARENA a, int line_num int col_num
char «fnt, va_list ap);

which is toKni Er r or Make whatvprintf istoprintf,and

bool Km Error (KM._ERRCR *ke, HA ARENA a, int line_num int col_num
char *fnt, ...);

which is like Knl Err or Make except that it setske to the object it makes, and always returns
fal se. Thisis convenient for uses such as

i f(bad_thing discovered)
return Km Error(ke, a, line_num col_num "bad % thing", str);

which bails out of a function that returns a boolean indicating whether all is well.
To check whether 8M__ELT object conforms to a document type definition, call:

bool Km Check(KM._ELT elt, char *fnt, KM._ERROR xke);

If el't conforms to the definition expressed foyt , thent r ue is returned; otherwiséal se is
returned anedke is set to an object recording the nature of the error, including a line and column
number taken from eithext t itself or one of its children, as appropriate.

Parametefrnt describes the attributes and childrerebf —not the label okl t , which will
have already been checked by the tehe is examined, nor the children’s children, which may
be checked by the user during a recursive traversal 0 children. For example,

"+Ref erence : #Val ue"

says thatel t has an optional attribute whose namees$ er ence, and exactly one child whose
label isVal ue and whose body must contain text denoting an integer (no children). The part
before the colon specifies attributes, and the part after it (if there is a colon at all) specifies chil-
dren. Aninitial+ means optional, and an inittaimeans zero or more; neither means exactly one.
After that, an initialb means text (no children), and an initlaneans text representing an integer
(again, no children); neither means that there may be children. Here is a longer example:

"Reference : +#Duration +Ti me +Resources"

The element must have exactly one attribBéd,er ence. It has up to three children, an optional
integer Dur at i on, followed by an optionalli me, and finally an optionaResources. As
mentioned, the structure of the children may be checked by subsequent &allStteck.

A.6. XML handling with KML 369

A.6.3. Reading XML files
The simple way to read an XML file is to call

bool Km ReadFile(FILE *xfp, FILE *recho_fp, KM._ELT *res, KM._ERROR xke,
HA ARENA a);

Km ReadFi | e readd p, which must be open for reading UTF-8.elého_fp ! = NULL, it writes
everything it readstecho_f p, asa debugging aid. If there were no problems with the read,
is set to a newM__ELT object representing the XML that was found, amde is returned. The
operations of Appendix A.6.1 may be used to traversss. Otherwisexke is set to an error
object (Appendix A.6.2) describing the first error (reading stops thereY,arse is returned.

Km ReadFi | e skips over any prolog, then reads exactly one element (including its descen-
dants) front p, from the first tag iri p to the matching end tag, then skips over any epilog (trailing
comments, etc.) which involves skipping white space as well to see if epilog elements are there.
After Km ReadFi | e endsf p remainsopen, leaving it to the caller to either close it or keep reading
from it. At that point, either end of file will have been reached, or else the next character read
will be the first character that could not be part of the epilog, pushed backwsjagc.

All memory consumed bym ReadFi | e, including memory forres and its descendants,
and for+ke if needed, comes from arenaAfter everything useful has been extracted fraras
and its descendantsmay be deleted or recycled as usual.

XML files can be large, and it may be better to read and process them one pisegnmnt
atatime. A segmentis defined by an element calledds It consists of its root plus its root’s
descendants, excluding elements which are the roots of other segments, and their descendants.

There is aoot segmentvhose root element is the overall root. So every elementliesinone
segment, the one defined by its nearest ancestor (possibly itself) that is the root of a segment.

Reading in segments requries several steps. The first step is to call
KM._READER Km Reader Make(voi d =i npl, HA ARENA SET as, HA ARENA a);

This creates &M._READER object in arena. Thei npl parameter is a pointer back to the user’s
data structures, ares is an arena set which is the source of any arenas, additioagttat may
be needed, of which more later. Functions

voi d *Knl Reader | npl (KML_READER kr);
HA ARENA SET Knl Reader ArenaSet (KM._READER kr);
HA ARENA Km Reader Ar ena(KML_READER kr);

return the three attributes &f .

While the file is being read (while functiokm Reader ReadFi | eSegnent ed below is
running), callbacks are made to user code, which might detect a semantic error which should
abort the whole read. For thisthere is

voi d Knm Reader Fai | (KM._READER kr, KM._ERROR ke);

which uses a C long jump to return early fradm Reader ReadFi | eSegnent ed with errorke.
There is no operation to reclaim the memory consumedKd. aREADER object. As usual,

370 Appendix A. Modules Packaged with KHE

it is freed when its arena is deleted.
The second step is to make matching pairs of calls to these functions:

voi d Km Reader Decl ar eSegnent Begi n(KML_READER kr, char =path_nane,
KM._SEGQVENT_FN segnment _begin_fn);

voi d Km Reader Decl ar eSegnent End(KM._READER kr ,
KM._SEGQVENT_FN segnent _end _fn);

These give the path names of the elements which are to be the roots of segments. For example,
suppose that the file structure is

H ghSchool Ti net abl eAr chi ve
+l nst ances
*| nstance
+Sol uti onGroups
*Sol uti onGroup
*Sol ution

wheret+ means optionaf, means zero or more, and indenting indicates nesting, and suppose that
eachl nst ance, Sol uti onG oup, andSol ut i on is to be one segment. Then the calls are

Km Reader Decl ar eSegment Begi n(kr, "H ghSchool Ti net abl eArchive", & nl);
K Reader Decl ar eSegment Begi n(kr, "Instances/Instance", &fn2);
K Reader Decl ar eSegment End(kr, &fn3);
Km Reader Decl ar eSegnent Begi n(kr, "Sol uti onG oups/ Sol uti onG oup”, &fn4);
Km Reader Decl ar eSegment Begi n(kr, "Sol ution", &fn5);
Knl Reader Decl ar eSegnent End(kr, &f n6);
Km Reader Decl ar eSegnent End(kr, &fn7);
Km Reader Decl ar eSegment End(kr, &f n8);

using indenting to show the structure. They mimic the structure of the file. Each path name is

a sequence of one or more element names separated by slashes, and is relative to the enclosing
segment, except at the root. As a special case, an element name fitdy, bad then it will

match with any name.

In cases like those fdmst ance andSol uti on above, where there are no inner segments,
segnent _begi n_f n is called immediately beforgegnent _end_f n, as will be explained below.
In that case two callbacks are not needed, and so KML offers

voi d Knl Reader Decl ar eSegnment (KM._READER kr, char =*path_nane,
KM_._SEGVENT_FN segnent _fn);

to replace<m Reader Decl ar eSegment Begi n andKn Reader Decl ar eSegment End:

Km Reader Decl ar eSegnent Begi n(kr, "H ghSchool Ti net abl eArchive", & nl);
Km Reader Decl ar eSegment (kr, "Instances/|nstance", &fn2);
Km Reader Decl ar eSegrent Begi n(kr, "Sol uti onG oups/ Sol uti onG oup”, &f n3);
Km Reader Decl ar eSegnent (kr, "Solution", &f n4);
Km Reader Decl ar eSegrent End(kr, &f n5);
Km Reader Decl ar eSegrent End(kr, &f n6);

A.6. XML handling with KML 371

There is no substantial difference.
A path name can also be a sequence of path names separated by colons, like this:

"Hi ghSchool Ti nmet abl eAr chi ve: Enpl oyeeSchedul eAr chi ve"

Then elements indicated by all paths are the roots of segments, with the same inner segments.
The third step is to actually read the file, by calling

bool Knl Reader ReadFi | eSegnent ed(KML_READER kr, FILE *=fp, FILE xecho_fp,
KM._ERROR *ke) ;

Km Reader ReadFi | eSegment ed is similar toKnl ReadFi | e, except that n&M__ELT is returned.
It can be called multiple times on ol&L_READER, although not in parallel.

As Knl Reader ReadFi | eSegnented reads the file, it calls callback functions
segment _begi n_fn andsegment _end_f n at the beginning and end of each segment. In the
syntax that the user would use to declare these functions, they are

voi d segrment begi n_f n(KML_SEGVENT ks)
{

process ks ...

}

This allows the user access to each segment, at the start of the segment and again at the end.

The call onsegnent _begi n_f n does not occur at the moment its element begins in the
input file. That would not be useful, because none of the element’s content is available then.
Instead, the callback is delayed until the first inner segment is about to begin, or if there are no
inner segments, until the segment is about to end. At that point, the segment’s root contains data
that can be processed into an initial value for the corresponding object on the user side.

The call onsegnent _end_f n occurs as the segment’s root element is ending, and can be
used to finalize the corresponding user data structure. Either or betlgdnt _begi n_f n and
segnent _end_f n may beNULL, and then the corresponding callback is omitted.

The final step is to write the callback functions. Within each function, the user has access
to segmenks, to which the following functions may be applied:

KML_ELT Knl Segrent Root (KML_SEGVENT ks) ;
KM._READER Kml Segrent Reader (KM._SEGVENT ks) ;
HA ARENA Knl Segment Ar ena(KM._SEGVENT ks);

Km Segnent Root returns the root of the segment. From there one can explore the children, their
children, and so on, insofar as they exist at the moment that the callback occurs. One can never
reach the elements of any inner segments in this way, not even from the callback at the end of
the segment, because such elements are not made children of their (logical) parent elements in
the usual way. The same fact looked at from the other side means that the root element has no
parent, so there is no way to reach elements in the enclosing segment.

Km Segrment Reader returns theKM._READER object passed to the enclosing call to
Km Reader ReadFi | eSegrment ed. This is useful for reaching user data structures via
Km Reader | npl , ending the read early with failure viari Reader Fai | , and so on.

372 Appendix A. Modules Packaged with KHE

Km Segment Ar ena returns the segment’'s arena. This holds the segment object itself, its root
element, and the root element’s decendants. Care is needed not to create objects, for example
error objects, in a segment’s arena that are intended to outlast the segment. An alternative arena
that will outlast the segment kgl Reader Ar ena(Knl Segnent Reader (ks)) .

The use of arenas in segmented file reading is somewhat complex, in that the root segment is
a special case. Itsarena isthe arena pass@d Reader Make. That arena holds both the reader
object and the root segment, and is not deleted by KML. The user should delete or recycle it after
the whole read is over. Each of the other segments has its own arena, taken from the aena set
passed t&n Reader Make (or created, as usual,as is empty). This arena is deleted, or rather
recycled throughs, immediately after the segmeng'sgment _end_f n returns. So the user must
ensure that everything needed on the user side is extracted from the segment by that time. Itis
almost certainly a disastrous error to store the segment passed in the callback function, or any of
its elements, in user-side data structures.

A.6.4. Writing XML files
Writing an XML file begins with the creation of ¥M._FI LE object, by calling
KML_FI LE Km MakeFile(FILE +=fp, int initial _indent, int indent_step);

Pointer typeKM__FI LE, defined inkm . h, represents an XML file open for writing (never
reading). It holds a file pointer and a few attributes describing the state of the write, including a
current indent, used to produce neatly indented XML. Fienust be open for writing UTF-8
characters;ni ti al _i ndent is the initial indent, typically O, andndent _st ep is the number of
spaces to indent at each level, typically 2 or 4.

When reading an XML file using KML it is necessary to first read the file inkMa ELT
object, and then build the user data structure that is really wanted, while traversit\ tleT
object. The reverse procedure may be used for writing, by calling

void KM Wite(KM._ELT elt, KM._FILE kf);

Km Wite writesel t and its attributes and children recursivelykfa But it is also possible to
write directly to a file while traversing the user’s data structure, without UShgELT objects.
To do this, the operations are

voi d Km Begi n(KM._FI LE kf, char =l abel);

void Km Attribute(KM._FILE kf, char xnane, char =val ue);
voi d Knm Pl ai nText (KM._FILE kf, char =text);

voi d Km Fnt Text (KM._FI LE kf, char *fnt, ...);

voi d Km End(KM._FI LE kf, char x| abel);

Km Begi n begins an object with the given label, akd End ends it. KML does not check that

the labels match, even though they must. Immediately after caithBegi n, any number of

calls toKnt Attri but e are allowed; each adds one attribute, with the given name and value, to
the object just begun. After thatyl Pl ai nText may be called to add some text as the body of
the object, oKnl Fnt Text to add some formatted text as the body (wHexteand the following
parameters are suitable for passing ohpa nt f). Knl Pl ai nText prints the characteis<>" "

in their escape sequence formaifp; and so on)km Fnt Text does not, so it is best limited to

A.6. XML handling with KML 373

tasks that cannot generate such characters (printing numbers, etc.). Alternatively, any number of
nested calls t&ni Begi n ... Knl End may precede the matchimgi End, to add children.

For convenience, three operations are offered which write an entire element in one call:

void KM El tAttribute(KM._FILE kf, char =l abel, char x*nane, char =val ue);
voi d Km El t Pl ai nText (KM._FI LE kf, char =label, char *text);
voi d Km El t Fnt Text (KML_FI LE kf, char =label, char *=fnt, ...);

These are simple combinations of the functions above, only writing on one line (except newlines
in text). Km El t Attribute writes an object with the given label and attribute, but no body.
Km El t Pl ai nText andKm El t Fnt Text write an object with the given label, no attributes, and a
plain or formatted text body. A few other such functions are available, for whicknteé.

Appendix B. Implementation Notes

This chapter documents aspects of the implementation of KHE. It is included mainly for the
author’s own reference; it is not needed for using KHE.

B.1. Source file organization

The KHE platform is organized in object-oriented style, with one C source file for each major
type. Atype’sinternals are visible only withinitsfile; all access to them is via functions. Headers
for some of these functions appeaikire_pl at f or m h, making them available to the end user.
Headers for others appearkhe_i nt er ns. h, making them available only to the platform.

Although this section appliesto all source files, it is motivated by the problems of organizing
the source files of types defining parts of solutions. Some of these are quite large. For example,
file khe_meet . ¢, which holds the internals of typ@E_MEET, is about 5000 lines long.

There is a canonical order for the types representing parts of solutigis:SOLN,
KHE_MEET, KHE_MEET_BOUND, KHE TASK, KHE_ TASK_BOUND, KHE MARK, KHE_PATH, KHE NODE,
KHE_LAYER, KHE_ZONE, KHE_TASKI NG. The intention of defining this order is that these types
should be handled in this order whenever appropriate—in this Guide for example.

Source files are organized internally by dividing them submoduleavhich are segments
of the files separated by comments. Each submodule handles one aspect of the type. Hereis a
generic list of the submodules appearing in any one file, in their order of appearance:

Type declaration

Simple attributes (back pointers, visit numbers, etc.)
Creation and deletion

Relations with objects of the same type (copy, split, etc.)
Relations with objects of different types

File reading and writing

Debug

Simple attributes are easily handled attributes that are not closely related to any following
categories. They may appear in separate submodules, or be grouped into one submodule. Each
relation is one submodule (counting opposite operations, such as split and merge, as part of one
relation), except that a large relation may be broken into several submodules. Relations with
different types appear in the canonical order defined above.

An attempt has been made to keep the submodules in the same order as their functions
are presented in this Guide, except for debugging. Some submodules have no defined position
according to this rule, because they are present only to support other submodules, and offer no
functions to the end user. Those are placed where they seem to fit best.

374

B.2. Relations between objects 375

B.2. Relations between objects

This section explains how KHE maintains relations between objects. Not every relation is
maintained as explained here, but it is the author’s aim to achieve that in time.

The most common relation, by far, is thee-to-manyelation, in which one object is related
to any number of objects of the same or another type: one node contains any number of meets,
one meet contains any number of tasks, one meet is assigned any number of meets, and so on.

Let KHE_A be the type of the entity that there is one of, &t B be the type of the
entity that there are many of. KHE implements the relation by placing one attribute, of type
ARRAY_KHE_B, in KHE_A, holding the manyHE_B objects related t§HE_A, and two inKHE_B:

KHE A a;
i nt a_i ndex;

holding the oné&HE_A object related to this object, and this object’s index in that object’s array.
Any attributes of the relation, such as the offset attribute of the meet assignment relation, appear
alongside these two. In th&fE_A class file, functions

voi d KheAAddB(KHE_A a, KHE B b);
voi d KheADel et eB(KHE_A a, KHE B b);

are defined which add and delete elements of the relation, as well as th&hesARflount and
KheAB functions which iterate over the array. In tkide_B class file, functions

KHE_A KheBA(KHE_B b);

voi d KheBSet A(CKHE_B b, KHE_A a);

i nt KheBAl ndex(KHE_B b);

voi d KheBSet Al ndex(KHE_B b, int a_index);

get and set the anda_i ndex attributes ofb, supporting constant time deletions. Instead of
searchingfobina’sarraya_i ndex is used to find it directly. Itis overwritten by the entity at the

end of the array, whose index is then changed. Thisassumesthatthe order of the array’s elements
may be arbitrary, as is usually the case. The setter functions are private to the platform.

This plan allows &HE_B object to be unrelated to af¥fE_A object (just set ita attribute to
NULL), but does not suppomany-to-manyelations, where BHE_B object may be related to any
number ofKHE_A objects. On the rare occasions when KHE needs this kind of relation, it adapts
the familiar edge lists implementation of graphs: it defines a g4ie A REL_B representing
one element of the many-to-many relation, and installs one one-to-many relatiokHEomto
KHE_A_REL_B, and another frorKHE_B to KHE_A_REL_B. This givesKHE_A_REL_B attributes

KHE A a;
i nt a_i ndex;
KHE B b;
i nt b_i ndex;

and places it in arrays in bo#mtity_a andentity_b. Now the operations for adding and
deleting an element of the relation must add or delete two one-to-many relations, as well as
creating or deleting onleHE_A_REL_B object, which is done using a free list to save time.

376 Appendix B. Implementation Notes

B.3. Kernel operations

The promises made in connection with marks and paths, that all operations that change a solution
can be undone (except changesto visit numbers), and that undoing a deletion recreates the object
at its original address, have significant implications for the implementation.

The KHE platform has an inner layer called gwution kernelor just thekerne| consisting
of a set of private operations, call&drnel operationswhich change a solution. Each kernel
operation has a name of the forkheEnt it yKer nel Op, whereEntity is the data type and
Op is the operation. It is the kernel operations that are stored in paths. All operations (except
operations on visit numbers) change the solution only by calling kernel operations, so if those are
correctly done, undone, and redone, all operations will be correctly done, undone, and redone.

For the record, here is the complete list of kernel operations:

KheMeet Ker nel Set Back
KheMeet Ker nel Add
KheMeet Ker nel Del et e
KheMeet Ker nel Spl i t
KheMeet Ker nel Mer ge
KheMeet Ker nel Move
KheMeet Ker nel Assi gnFi x
KheMeet Ker nel Assi gnUnFi x
KheMeet Ker nel AddMeet Bound
KheMeet Ker nel Del et eMeet Bound
KheMeet Ker nel Set Aut oDonai n

KheMeet BoundKer nel Add

KheMeet BoundKer nel Del et e

KheMeet BoundKer nel AddTi meG oup
KheMeet BoundKer nel Del et eTi neG oup

KheLayer Ker nel Set Back
KheLayer Ker nel Add
KheLayer Ker nel Del et e
KheLayer Ker nel AddChi | dNode
KheLayer Ker nel Del et eChi | dNode
KheLayer Ker nel AddResour ce
KheLayer Ker nel Del et eResour ce

KheTaskKer nel Set Back
KheTaskKer nel Add
KheTaskKer nel Del et e
KheTaskKer nel Spl it
KheTaskKer nel Mer ge
KheTaskKer nel Move
KheTaskKer nel Assi gnFi x
KheTaskKer nel Assi gnUnFi x
KheTaskKer nel AddTaskBound
KheTaskKer nel Del et eTaskBound

KheTaskBoundKer nel Add
KheTaskBoundKer nel Del et e

KheNodeKer nel Set Back

KheNodeKer nel Add

KheNodeKer nel Del et e

KheNodeKer nel AddPar ent

KheNodeKer nel Del et ePar ent

KheNodeKer nel SwapChi | dNodesAndLayer s
KheNodeKer nel AddMeet

KheNodeKer nel Del et eMeet

KheZoneKer nel Set Back
KheZoneKer nel Add
KheZoneKer nel Del et e
KheZoneKer nel AddMeet Of f set
KheZoneKer nel Del et eMeet O f set

Each KheEnt it yKernel Op function has a companioheEntit yKer nel QpUndo function.
KheEnt it yKer nel Op carries out its operation and adds itself to the solution’s path, if present.
KheEnt i t yKer nel OpUndo undoes whakheEnt i t yKer nel Op did, only without removing itself
from the solution’s path, since it is called by a function that has already done that.

B.3. Kernel operations 377

A redo must be identical to the original operation, because both can be inverted by calling
KheEnt i t yKer nel QpUndo and removing one record from the solution path. So there are no
KheEnt i t yKer nel QpRedo functions;KheEnt i t yKer nel Op functions are called instead.

Some operations come in opposing pairs (split and merge, fix and unfix, and so on), such
that doing one is the same as undoing the other, except that a do or redo adds a record to the
solution’s path, whereas an undo does not. In these cases the implementation contains one
private function callekheEntityDoOpl and another callegheEnt it yDoOp2, whereOpl and
p2 are opposing pairs. These functions carry out the two operations without touching the so-
lution’s path. TherkheEnti t yKer nel Op1, KheEnt it yKer nel Op2, KheEnt i t yKer nel OplUndo,
and KheEnt i t yKer nel Op2Undo are each implemented by one call &heEntityDoOpl or
KheEnt it yDoOp2, plus an addition to the solution’s path if the operation isUnotb.

Operations that create and delete objects are awkward, as it turns out, so the rest of this
section is devoted to them. The meet split and merge operations are particularly awkward, so we
will start with the regular creation and deletion operations, generically n&hedaht i t yMake
andKheEnt i t yDel et e, and treat meet splitting and merging afterwards.

Solution objects are recycled through free lists held in the enclosing solution. When a new
object is needed, it is taken from the free list, or from the solution’s arena if the free list is empty.
When an object is no longer needed, it is added to the free list. When the solution is deleted, and
only then, the objects on the free list are deleted as part of the deletion of the arena. Free lists
not only save time in handling the objects, they also save time in handling any extensible arrays
within those objects: those arrays remain initialized while the object is on the free list.

An operation which obtains a new object from a memory allocator or free list cannot be
a kernel operation, because then a redo would not re-create the object at its previous memory
location. An operation which returns an object to a memory allocator or free list cannot be a
kernel operation, because an undo would not re-create the object at its previous memory location.
So only the part okheEnt i t yMake which initializes the object and links it into the solution is
the kernel operation, and only the partkhieEnt i t yDel et e which unlinks the object from the
solution is the kernel operation. This leads to this picture of the life cycle of a kernel object:

KheEnt i t yDoMake KheEnt i t yDoGet KheEnt i t yDoAdd

“nonexis freelist

KheEnt it yUnGet KheEnt i t yUnAdd

Statenonexistmeans that the object does not existglist means that it exists on a free list;
unlinkedmeans that it exists, not on a free list, not linked to the solution, but referenced from
somewhere on some path; dinked means that it exists and is linked to the solution.

KheEnt i t yDoMake obtains a fresh object from the memory allocator and initializes its
private arrays. There is no correspondfhgEnt i t yUnMake operation, because memory is freed
only by deleting arenas, not directly.

KheEntityDoGet obtains a fresh object from the free list, or frétreEnt i t yDoMake if the
free list is empty. Either way, the object’s arrays are initialized, although not necessarily empty.
Objects returned bheEnt i t yDoMake do not actually enter the free listheEnt i t yUnGet does
the opposite, adding the object it is given to the free list.

KheEnt i t yDoAdd initializes the unlinked object it is given, assuming that its private arrays

378 Appendix B. Implementation Notes

are initialized, although not necessarily empty (it clears them), and links it into the solution.
KheEnt i t yUnAdd does the opposite, unlinking the object it is given from the solution.

The kernel operationgheEntityKernel Add and KheEntityKernel Del ete and their
Undo companions are each implemented by one catheknt i t yDoAdd or KheEnti t yUnAdd,
plus an addition to the solution path if the function is not an unideeEnt i t yKer nel Add
and KheEntityKernel Del ete form an opposing pair, as defined above, except that
KheEnt i t yKer nel Del et e may include a call t&heEnt i t yUnGet as explained below.

The public function that creates a kernel objedteEnt it yMake, is KnheEntit yDoGet
followed by KheEnti t yKer nel Add. The public function that deletes oréheEnt i tyDel et e,
begins with kernel operations that help to unlink the object (unassignments and so on), then ends
with KheEnt i t yKer nel Del et e.

An object can be referenced from the solution and from paths, and there is no simple rule
saying when to cakheEnti t yUnGet to add it to the free list. To solve this problem, an integer
reference count field is placed in each kernel object, counting the number of references to the
object. Not all references are counted. References from paths at points where the objectis added
or deleted are counted. For example, in a path’s record of a meet split or merge, the reference
to the second meet is counted, but not the first. So reference counts increase when paths grow or
are copied, and decrease when paths shrink or are deleted KAdgot i t yDoAdd adds 1to the
count,an&heEnt i t yUnAdd subtracts 1. This summarizesreferencesfrom the solution generally
in one unit of the count.

When the reference count falls to zeibeEnt i t yUnGet is called to return the object to the
free list. This could happen during a callkioeEnt i t yUnAdd, or when a path shrinks: during a
call toKhePat hDel et e, or while undoing, which shrinks the solution’s main path.

An unlinked object could have come from the free list, and so could contain no useful
information. It would be a mistake fétheEnt i t yDoAdd to assume that the object it is given has
passed througkheEnt i t yUnAdd and retains useful information from when it was previously
linked. InsteadkheEnt it yDoAdd must initialize every field of the object it is given, assuming
that its arrays are initialized, but not that they contain useful information.

An example of getting this wrong would be to try to preserve the list of tasks of a meet in
itst asks array when it is unlinked, in a mistaken attempt to ensure that they remain available for
whenthe meetisrecreated. What really happens is that before deleting thighwldstt Del et e
deletesits tasks, so records of those task deletions appear on the solution path just before the meet
deletion. When an undo recreates the meet, it immediately goes on to recreate the tasks, without
any need for their preservation in the dormant meet.

A meet split is similar to a creation of the second meet, and a meet merge is similar to a
deletion of the second meet. The main new problem is that tasks need to be split and merged
too. So separate kernel operations are defined for splitting the meet itself and for splitting one
of its tasks, and conversely for merging two meets and for merging two of their tasks. The user
operation for meet splitting does a kernel meet split followed by a sequence of kernel task splits,
and the user operation for meet merging does the opposite.

The key advantage of doing it this way is that tasks are stored explicitly in paths, and their
reference counters take account of this. So the usual method of handling the allocation and
deallocation of entities generally, described above, applies without change to the tasks created
and deleted by meet splitting and merging.

B.3. Kernel operations 379

Meet bounds are related to meets in much the same way as tasks are. Once again, the kernel
meet split operation does not make meet bounds for the split-off meet; instead, they are made
by separate kernel meet bound creation operations, and thus will be undone before a meet split
Is undone. Task bounds are handled similarly.

Paths have negligible time cost compared with the operations they record; and their space
cost is moderate, provided they are not used to record wandering methods like tabu search.
Reference counting as implemented here also costs very little: in time, a few simple steps, only
carried out when creating or deleting a kernel object, not each time the object is referenced; and
In space, one integer per kernel object.

B.4. Monitor updating

When the user executes an operation that changes the state of a solution, KHE works out the
revised cost. For efficiency, this must be done incrementally. This section explains how it is
done—»but just for information: the functions defined here cannot be called by the user.

The monitors are linked into a network that allows state changing operations to flow
naturally to where they need to go. Only attached monitors are linked in; detached ones are
removed, so that no time is wasted on them. The full list of basic operations that affect cost is

KheMeet Make KheMeet Mer ge KheTaskMake

KheMeet Del et e KheMeet Assi gn KheTaskDel et e

KheMeet Spl i t KheMeet UnAssi gn KheTaskAssi gn
KheTaskUnAssi gn

Six originate inKHE_MEET objects, four irKHE_TASK objects. From there their impulses flow to
objects of three private types:

KheMeet Make
KheMeet Del et e
KheMeet Spl i t
KheMeet Mer ge Add
KheMeet Assi gn Del ete
KheMeet UnAssi gn Split
Mer ge
Assi gnTi me
UnAssi gnTi me
KHE _MEET » KHE_EVENT I N _SOLN
Split Add
Merge Del ete
Assi gnTi me Split
UnAssi gnTi ne Mer ge
v Assi gnResour ce

KHE_TASK UnAssi gnResour ce »| KHE_EVENT RESOURCE I N_SOLN

4:Taskwake Spli

KheTaskDel et e Mer ge

KheTaskAssi gn Assi gnTi e

KheTaskUnAssi gn UnA_ssi gnTi ne
Assi gnResour ce KHE_RESOURCE_| N_SOLN
UnAssi gnResour ce

380 Appendix B. Implementation Notes

KHE_EVENT_| N_SOLN holds information about one event in a solution: the meets derived from

it (whereKheEvent Meet gets its values from), a list of ‘event resource in solution’ objects, one
for each of its event resources, and a list of monitors, possibly including a timetable (timetables
are monitors).KHE_EVENT_RESOURCE_I N_SOLN holds information about one event resource in

a solution: the tasks derived from it, and a list of monitoksE_RESOURCE_| N_SOLN holds
information about one resource in a solution: the tasks it is currently assigned to, and a list of
monitors, usually including a timetable.

The connections are fairly self-evident. For exampl&hiéMeet Make is called to make a
meet derived from a given instance event, then that event’s event in solution object needs to know
this, and theAdd operation (full namekheEvent | nSol nAddMeet) informs it. KheMeet Assi gn
only generates afssi gnTi me call when the assignment links the meet, directly or indirectly, to
a cycle meet, assigning a time to it. Event resource in solution objects are not told about time
assignments and unassignments. Calls only pass from a tasktalsjletd a resource in solution
object whert ask is assigned a resource.

The connections leading out §HE_EVENT_I N_SCLN are as follows:

KHE_EVENT | N_SOLN

Add Add

Del ete Del ete

Split Split

Mer ge Mer ge

Assi gnTi e » KHE_SPLI T_EVENTS _MONI TOR
UnAssi gnTi me

= KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR

~| KHE_ASSI GN_TI ME_MONI TOR

~| KHE_PREFER TI MES_MONI TOR

~| KHE_EVENT_TI METABLE_MONI TOR

~| KHE_SPREAD EVENTS_MONI TOR

\

KHE_ORDER_EVENTS_MONI TOR

Split events and distribute split events monitors do not need to know about time assignment and
unassignment. Based on the calls they receive, they keep track of meet durations and report cost
accordingly. Assign time and prefer times monitors are even simpler; they report cost depending
on whether the meets reported to them are assigned times or not.

Event timetables are used by link events constraints, which need to know the times when
the event’s meets are running, ignoring clashes, which is just what timetables offer.

A spread events monitor is connected to the event in solution objects corresponding to each
of the eventsitisinterested in. It keeps track of how many meets from those events collectively
have starting times in each of its time groups, and calculates deviations accordingly. Spread
events monitors are not attached to timetables because, although their monitoring is similar,

B.4. Monitor updating 381

there are significant differences: spread events monitor time groups come with upper and lower
limits, making them not sharable in general, and the quantity of interest is the number of distinct
meets that intersect each time group, not the number of busy times calculated by the time group
monitors attached to timetables.

An order events monitor is connected to the two event in solution objects corresponding to
the two events it is interested in. These keep track of the events’ meets, including their number,
and the monitor itself keeps track of the number of unassigned meets. So determining whether
both events have at least one meet, and whether there are no unassigned meets, take constant
time. If both conditions are satisfied, the monitor traverses both sets of meets to calculate the
deviation and cost when a meet is added, deleted, or assigned a time. (In practice, events subject
to order events constraints do not split, so this too takes constant time.) The other operations are
faster: unassigning a time produces cost 0, and splitting and merging do not change the cost.

The connections leading out BHE_EVENT_RESOURCE_| N_SOLN are

KHE_EVENT RESOURCE_| N_SOLN

Add

Del ete

Split

Mer ge

Assi gnResour ce
UnAssi gnResour ce

4

KHE_ASSI GN_RESOURCE_MONI TCR

/

KHE_PREFER_RESOURCES MONI TOR

\

KHE_AVOl D_SPLI T_ASSI GNVENTS_MONI TOR

Y

KHE_LI M T_RESOURCES_MONI TOR

None of these monitors cares about time assignments and unassignments. Assign resource
monitors and prefer resources monitors are very simple, reporting cost depending on whether the
tasks passed to them are assigned or not.

An avoid split assignments monitor is connected to one event resource in solution object
for each event resource in its point of application. It keeps track of a multiset of resources, one
element for each assignment to each task it is monitoring, and its cost depends on the number of
distinct resources in that multiset.

A limit resources monitor is connected to one event resource in solution object for each
event resource it monitors. It keeps count of the number of assignments of resources from its
resource group.

The connections leading out 8HE_RESOURCE_| N_SCLN are

382 Appendix B. Implementation Notes

KHE_RESOURCE_| N_SOLN

Split Assi gnResour ce

Mer ge UnAssi gnResour ce

Assi gnTi ne

UnAssi gnTi e » KHE LI M T_WORKLOAD MONI TOR
Assi gnResour ce

UnAssi gnResour ce

~| KHE_RESOURCE_TI METABLE_MONI TOR

Limit workload constraints do not need to know about time assignments, evidently, but they also
do not need to know about splits and merges, since these do not change the total workload.

Calculating workloads is then very simple. Each meet receives a workload when it is
created, and when a resource is assigned, the workload limit monitors attached to its resource in
solution object are updated, and pass revised costs to the solution.

KHE_RESOURCE_TI METABLE_MONI TOR receives many kinds of calls. However, since it main-
tains a timetable containing tasks with assigned times, all these can be mapped to just two in-
coming operations, which we calldTaskAt Ti me andDel et eTaskAt Ti me. For example, a split
maps to on@el et eTaskAt Ti me and twoAddTaskAt Ti me calls. The outgoing operations are

KHE_RESOURCE_TI METABLE_MONI TOR

Assi g_nTi rr_eNonCl ash ChangeC ashCount
nAsstgnTl meNond ash Fl ush ~| KHE_AVOI D CLASHES MONI TOR

KHE_TI ME_GROUP_MONI TOR

\

An avoid clashes monitor is notified whenever the number of meets at any one time increases to
more than 1 or decreases from more than 1 (oper&tiangeC ashCount above). It uses these
notifications to maintain its deviation. It updates the solution whEruah is received from the
timetable at the end of the operation.

The other monitors are attached to the timetable at each time they are interested in, and are
notified when one of those times becomes busy (when its number of meets increases from 0 to
1) and when it becomes free (when its number of meets decreases from 1 to 0), by operations
Assi gnTi meNonC ash andUnAssi gnTi neNonCl ash above.

A time group monitor monitors one time group within one timetable. It is attached to its
timetable at the times of its time group, so is notified when one of those times becomes busy or
free. It keeps track of the number of busy and idle times in its time group. As an optimization,
the number of idle times is calculated only when at least one limit idle times monitor is attached
to the time group monitor; otherwise the number is taken to be 0.

Old and new values for the number of busy and idle times are stored, and when a flush is
received they are propagated onwards via operatiangeBusyAndl dl e:

B.4. Monitor updating 383

KHE_TI ME_GROUP_NMONI TOR

AddBusyAndl dl e
Del et eBusyAndl dl e
ChangeBusyAndl dl e

»| KHE_AVO D_UNAVAI LABLE_TI MES_MONI TOR

~| KHE_LI'M T_I DLE_TI MES_MONI TOR

~| KHE_CLUSTER BUSY_TI MES_MONI TOR

~| KHE_LI'M T_BUSY_TI MES_MONI TOR

~| KHE_LI M T_ACTI VE_| NTERVALS_MONI TOR

When a monitor is attached, functiéddBusyAndl dl e is called instead, and when a monitor is
detached, functiobel et eBusyAndl dl e is called instead.

An unavailable times monitor is connected to a time group monitor monitoring the
unavailable times. It receives an updated number of busy times@nanyeBusyAndl dl e and
reports any change of cost to the solution.

A limitidle times monitor is connected to the time group monitors corresponding to the time
groups of its constraint. It receives updated idle counts from each of them, and based on them
it maintains its deviation.

A cluster busy times monitor is connected to the time group monitors corresponding to the
time groups of its constraint. It is interested in whether the busy counts it receives from them
change from zero to non-zero, or conversely.

A limit busy times monitor is connected to the time group monitors corresponding to the
time groups of its constraint. It receives updated busy counts from each of them, and based on
them it maintains its deviation.

A limit active intervals monitor is connected to the time group monitors corresponding to
the time groups of its constraint. Itis interested in whether the busy counts it receives from them
change from zero to non-zero, or conversely. Using a data structure holding the current set of
active intervals, it maintains its deviation by tracking changes in their lengths (Appendix B.6).

B.5. Monitor attachment and unattachment

Monitor attachment and unattachment are constrained by some basic facts: they can occur at
any time while a solver is running; unattachment is intended to save time, which means that an
unattached monitor must be genuinely unlinked from the solution; and an unattached monitor
has cost 0. Also, it is convenient to bring a monitor into existence in the unattached state and
then attach it, because there is a lot of shared code between creation and attachment.

When a monitor is unattached, it is in theattached statelts cost is O by definition, and its
at tached flag isf al se. Any other attributes that change as the solution changes are in principle
undefined, because an unattached monitor, including these attributes, is usually out of date.
However a monitor’s invariant is free to assign particular values to any of these attributes in the

384 Appendix B. Implementation Notes

unattached state, if that is convenient.

A monitor becomes attached in two steps. The first step is to convert the unattached state
into theunlinked statgwhich is the appropriate state for the monitor when it is formally attached
but not yet linked in to the constraint propagation network.attsached flag ist r ue, and its
attributes that change as the solution changes (including its cost) have well-defined values, and
its cost has been reported to its parents. The second step is to call on each relevant part of the
constraint propagation network, informing it that the monitor is now attached and wants to
receive updates. Each such part will call back with an initial update, that the monitor usesto bring
itself fully up to date.

It is true that one could take a different approach, in which the monitor’s state is not
well-defined, and cost is not reported to parents, until after the monitor is fully linked in to the
constraint propagation network. However, linking to part of the solution or to a monitor often
has the same effect on the monitor as a change of state in that part of the solution or monitor, and
the approach taken here brings out that commonality.

Returning now to our two-step approach, we give some examples of unlinked states. To
keep above the details we confine ourselves touthimked cost the monitor’s cost in the
unlinked state. This s often 0, but not always. Here are a few examples.

The unlinked cost of an assign resource monitor is 0, because it is not linked to any event
resources, and so it cannot be aware of any unassigned ones.

The unlinked cost of a limit busy times monitor is 0, because its cost is summed over its
time groups, and initially it is linked to none.

The main causes of non-zero unlinked costs are minimum limits. Consider a limit workload
monitor with a minimum limit. When it is unlinked, it has no evidence that its resource is
assigned any work at all, and so its unlinked deviation is the cost of being assigned nothing.

In general, the process of attachment of momittwoks like this:

m >attached = true;
if(unlinked cost > 0)
{
m >cost = unlinked_cost;
report to parents the cost change fromO0 to m >cost;

}

add the links fromthe solution and other nonitors to m

As previously explained, the last step produces callbackstitat further change its state, and so
possibly its cost. Unattachment reverses what attachment did:

renove the links fromthe solution and other nonitors to m
assert(m >cost == unlinked cost);
if(unlinked cost > 0)
{
report to parents the cost change from m>cost to O;
m >cost = O;
}

m >attached = fal se;

B.6. The limit active intervals monitor 385

B.6. The limit active intervals monitor

Monitors can be quite lengthy to implement, given the many state-changing operations they need
to accept. However they are usually straightforward, once one understands the basic structure of
taking a state change in, producing a new cost, and reporting it if it changed.

The limit active intervals monitor has a much longer and more complex implementation
than the other monitors. Finding an efficient and semantically coherent implementation was
challenging, so this section documents that implementation in detail.

The basic data structure is a sequencgré group infaobjects, one for each time group,
holding four fields: a pointer to the time group monitor for that time group, a polaritystate
andintervalfields. A time group info object will be referred to here simply as a time group.

The state field contains the time group’s state. The user is encouraged to believe that there
are two states, active and inactive, but in fact there are three: active, inactivgemoheaning
that the monitor cannot assume that the time group is either active or inactive.

As Jeff Kingston's paper on history [10] explains, a limit active intervals monitor is
actually aprojectionof a larger monitor spanning the full cycle. Hisst ory_bef or e attribute
says how many active time groups there are immediately preceding the current monitor, and its
hi story_after attribute says how many time groups (in any state) there are following it. The
time group sequence is extended at each end to accommodateithesdime groups:

0 cut of f _i ndex

a ai ; aio | o

hi story_before hi story_after

This diagram illustrates several points. Tieal (non-virtual) time groups are represented by

the white box. The first has index 0. But some indexes outside this range are permitted: down
to - hi story_before, and up tocount + history_after - 1, wherecount is the number

of real time groups. Actual objects are not present in the two extended parts of the range, but
nevertheless the monitor’s functions accept these indexes. They behave as though each time
group in the left part is active, and each time group in the right part is open. In this way, the
virtuality of these time groups is hidden, except that it is not possible to change their state.

One could simplify the implementation by creating objects for all time groups, but that
would be a mistake. It would be safe enough ioist ory_bef ore, buthi story_after
could be very large, and creating all those extra time groups would waste time and memory.

A real time group can be active, inactive, or open. It is open when it lies at or after the
cutoff index and its busy count is zero. Otherwise, it is either active or inactive, depending on
its busy count and polarity in the usual way. A virtual time group is active when it lies in the
hi st ory_bef or e range, and open when it lies in thest ory_af t er range, except that all
time groups (real and virtual) are inactive when the monitor is not attached.

This definition exposes the similarity between cutoff indexes and history after: both specify
that some part of the cycle is not being solved, and hence that time groups there may be open.

There is an asymmetry in when a time group is open which needs explanation. When areal
time group at or after the cutoff index is busy (because of a preassignment, say, or task grouping),
its activity or inactivity, depending on its polarity, is known, so considering it to be open, while
possible, entails a loss of potentially valuable information. But when a real time group at or after

386 Appendix B. Implementation Notes

the cutoff index is not busy, its activity or inactivity is not known, so its state must be open.

The implementation could be made more symmetrical if it was able to justify an assertion
that the busy count of some time group is O for a definite reason (for example, because of an avoid
unavailable times constraint), and thus can be used to determine that the state is active or inactive,
depending on the polarity. This seems to require the addition to the platform of an operation that
declares that it has been decided that a certain resource will not be assigned anything at a certain
time. Such an operation has not been added and it seems unlikely that it ever will be added.

At any rate, we now know what time groups (real and virtual) there are, and how the state
of each time group is defined. So we have a firm foundation to build intervals on. In doing so
we will forget that some time groups are virtual. We will also forget why time groups have the
states they have, and simply take those states as given.

An interval is a sequence of adjacent time groups. dgtive interva) or a-interval is a
maximal sequence of adjacent active time groups. Maximum limits are checked by comparing
the lengths of the a-intervals with the limit. Ago-intervalis a maximal sequence of adjacent
time groups, each of which is either active or open. Minimum limits are checked by comparing
the lengths of the ao-intervals with the minimum limit.

There is a problem here: if an ao-interval is entirely open (if it contains no active time
groups), then it is not defective. Just one active time group is enough to make all well again. For
now we will pretend that this is not a problem. We’'ll return to it and fix it later.

An interval is represented by an object in the usual way, containing indexes defining its end-
points, and its cost. One option would be to maintain a list of a-intervals when the monitor has a
non-trivial maximum limit, and a list of ao-intervals when the monitor has a non-trivial minimum
limit. However, given that many monitors have both and that open time groups are uncommon,
this seems too expensive. What we actually do is maintain a list of ao-intervals only.

When a time group changes state for any reason, the sequence of ao-intervals is adjusted to
take account of the change. The relevant ao-intervals are easily reached, because each active and
each open time group contains a pointer to its enclosing interval. It may be necessary to lengthen
an adjacent interval, or merge two intervals that become adjacent, or even to delete an interval
(when the changing time group was its only element). Each interval that changes recalculates its
cost and reports the change in cost to the monitor, which passes on the total change in cost.

New intervals come from a free list of interval objects in the monitor; deleted intervals
return there. So once a solve is well under way there is little or no memory allocation.

It is trivial for an ao-interval to check itself against a minimum limit, because it knows its
own length. (We are still ignoring the problem of ao-intervals with no active time groups.) To
check itself against a maximum limit, it might seem that it needs to find all the a-intervals within
itself and check them against the limit. This is potentially slow. Of particular concern are cases
where there is a small cutoff index, and hence, potentially, a long ao-interval extending past it,
with a-intervals (produced by preassignments, say) scattered along it.

Here, however, we use the fact that the cost of a limit active intervals monitor when there
is a cutoff index is open to negotiation. We include the following in its definitianlations of
limits by active intervals that begin at or after the cutoff index attract no.cokts is a plausible
part of what it means to install a cutoff index; but its real reason for being there is efficiency.

Where then are the a-intervals whose costs we need to calculate? They must begin before

B.6. The limit active intervals monitor 387

the cutoff index, so they must lie in ao-intervals that begin before the cutoff index. They cannot
be preceded by open time groups, because all open time groups lie at or after the cutoff index.
So the a-intervals we need are exactly those whose first time group is the first time group of its
enclosing ao-interval, which itself must begin before the cutoff index.

For each ao-interval, even after the cutoff index, leinisal a-interval be the a-interval (if
any) whose first time group is the ao-interval’s first time group. Record in each ao-interval the
length of its initial a-interval, or O if there is no initial a-interval. When the ao-interval'sfirsttime
group is before the cutoff index, compare this with the maximum limit and generate a cost.

These initial a-interval lengths are easy to maintain as time groups change state and intervals
are merged and split. At the worst, when a time group changes from open to active just at the end
of the initial a-interval, the time groups from there on must be scanned to see how much longer
the initial a-interval has become.

Finally, we can now solve the problem of ao-intervals with no active time groups. Since
open time groups can only occur at or after the cutoff index, such intervals always begin at or
after the cutoff index. And we have just introduced a rule which requires all such intervals to
have no cost. Problem solved.

B.7. An arena and arena set plan

Arenas and arena sets can be used to allocate and free memory very efficiently. However, if their
advantages are to be realized, a carefully worked out plan for them is needed.

Some basic facts constrain this plan. Although arenas are cheap to create, still their number
should be minimized, since from one point of view every arena creation is an unproductive use of
time and memory; and it caltsl | oc and thus may produce contention. Accordingly, all objects
that are known to have the same lifetime should share an arena. For example, any significant
solver will allocate memory while it is running, but after it ends its effect will be confined to
changesin the solution it worked on. So it makes sense for all memory allocated by a solver to be
kept in a single arena, and for that arena to be deleted or recycled as one of the final steps of that
solver. Again, the objects making up one solution will all be deleted together (except the solution
object itself, which may need to survive as a placeholder), so they should lie in one arena.

To maximize the re-use of memory, two rules are needed. First, there should be as few arena
sets as possible, since then there will be as few idle arenas as possible. The minimum number
of arena sets is one per thread, because arena sets have no locking and cannot be shared between
threads. It would be possible to have locked arena sets and create just one global arena set that
all arenas come from, but that approach has not been followed, because even though there would
be very little contention for this arena set, still we prefer to avoid all unnecessary locking.

When a thread ends, its arena set is deleted, after moving its arenas across into the arena set
of the parent thread, the one that will be continuing. Care is needed here when the thread’s arena
set is stored in other objects that are continuing, as KHE stores it in solution objects.

KHE stores the arena set in solution objects but nowhere else. When the thread ends, the
arena set field of every solution that is being kept is set to the parent thread’s arena set, leaving
no trace of the thread arena set in any continuing object.

The second rule for maximizing re-use of memory is that every arena should be taken
from an arena set and returned to an arena set when it is no longer néadeehavbke and

388 Appendix B. Implementation Notes

HaAr enaDel et e should not be called directly. The main issue here is ensuring that an arena set
Is available at every point in the program. For the implementer of KHE, and for users who write
their own multi-threaded programs, this takes some care; but for most users of KHE, it is trivial,
because KHE supplies a suitable arena set with every solution, that the user can obtain arenas
from via functionheSol nAr enaBegi n andkheSol nAr enaEnd (Section 4.2.2).

We also need to consider modules which assist solvers, such as the priority queue or
weighted bipartite matching modules. Such modules might not wish to get their memory from
KheSol nAr enaBegi n and KheSol nAr enaEnd, because they want to be independent of KHE
solution objects and rely only on Ha, or because they can use the same arena as the solver that
callsthem, saving arena creations. These modules typically accept an arena parameter, and offer
no operation to delete themselves, that being done when the arena they are passed is deleted.

The remainder of this section analyses an issue that has puzzled the author. In general, it
arises when it is not known whether a program is going to break into multiple threads or not.

When a solution is created afresh, it is clear that it is going to be solved, and it can be passed
the arena set of the thread it is being solved by. Different solutions may thus have different arena
sets. Butwhen a solution isread, the read is part of a single thread that reads many solutions, and
all solutions would naturally share a single arena set (and do so in the current implementation).

Now consider reading some solutions and resuming solving them in parallel. KHE offers
no functions for doing this, but there is nothing to prevent it, except that there will be a contention
problem in their shared arena set.

However, there is a way out. There is no contention within individual arenas, because each
solution occupies a separate arena (in fact two, owing to the placeholder issue). So the answer
is to create one new arena set for each solution and install it by c&Hefpl nSet Ar enaSet .

Then parallel solving can proceed without problems. Solutions can even be deleted in parallel:
the arenas freed by deletions will be recycled into the new arena sets, not into the old one.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. Ahuja, O. Ergun, J. Orlin, and A. Punnen. A survey of very large-scale neighbourhood
search technique®iscrete Applied Mathematid23 75-102 (2002).

J.Csimaand C. C. Gotlieb. Tests on a computer method for constructing school timetables.
Communications of the ACW| 160-163 (1964).

Fred Glover. Ejection chains, reference structures and alternating path methods for
traveling salesman problemBiscrete Applied Mathemati&b, 223—-253 (1996).

C. C. Gotlieb. The construction of class-teacher timetableBrde. IFIP Congresspages
73-77,1962.

Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar. A case study for
timetablingin a Dutch secondary school.Aractice and Theory of Automated Timetabling

VI (Sixth International Conference, PATAT2006, Czech Republic, August 2006, Selected
Papers)pages 267-279. Springer Lecture Notes in Computer Science 3867, 2007.

Jeffrey H. Kingston. The KTS high school timetabling web site (Version 1.4), September
2006. URLhttp://www.it.usyd.edu.au/~jeff

Jeffrey H. Kingston. Hierarchical timetable construction.Piractice and Theory of Auto-
mated Timetabling VI (Sixth International Conference, PATAT2006, Brno, Czech Republic,
August 2006, Selected Papersages 294-307. Springer Lecture Notes in Computer Sci-
ence 3867, 2007.

Jeffrey H. Kingston. The KTS high school timetabling systemPtactice and Theory of
Automated Timetabling VI (Sixth International Conference, PATAT2006, Czech Republic,
August 2006, Selected Paperppges 308-323. Springer Lecture Notes in Computer
Science 3867, 2007.

Jeffrey H. Kingston. Resource assignment in high school timetabling?AIRAT2008
(Seventh international conference on the Practice and Theory of Automated Timetabling,
Montreal, August 20082008.

[10] Jeffrey H. Kingston. Modelling history in nurse rostering. PATAT 2018 (Twelfth

international conference on the Practice and Theory of Automated Timetabling, Vienna,
August 2018)pages 97-111, 2018.

[11] Jeffrey H. Kingston, Gerhard Post, and Greet Vanden Berghe. A unified nurse rostering

model based on XHSTT. IBATAT 2018 (Twelfth international conference on the Practice
and Theory of Automated Timetabling, Vienna, August 2@Hg)es 81-96, 2018.

[12] Carol Meyers and James B. Orlin. Very large-scale neighbourhood search techniques in

timetabling problems. IRractice and Theory of Automated Timetabling VI (Sixth Interna-

389

390 References

tional Conference, PATAT2006, Brno,Czech Republic, August 2006, Selected Paues)
24-39. Springer Lecture Notes in Computer Science 3867, 2007.

[13] Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngas, Cimmo Nurmi,
Gerhard Post, David Ranson, and Henri Ruizenaar. An XML format for benchmarks in
high school timetabling. IRATATO08 (Seventh international conference on the Practice and
Theory of Automated Timetabling, Montreal, August 202808.

[14] D. de Werra. Construction of school timetables by flow methdtié:OR — Canadian
Journal of Operations Research and Information Proces8jig—-22 (1971).

