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Chapter 1. Introduction
Some instances of high school timetabling problems, taken from institutions in several countries
and specified formally in an XML format called XHSTT, have recently become available [13].
For the first time, the high school timetabling problem can be studied in its full generality.

KHE is an open-source ANSI C library, released under the GNU public licence, which aims
to provide a fast and robust foundation for solving instances of high school timetabling problems
expressed in the XHSTT format. Users of KHE may read and write XML files, create solutions,
and add and change time and resource assignments using any algorithms they wish. The cost of
the current solution is always available, kept up to date by a hand-coded constraint propagation
network. KHE also offers features inherited from the author’s KTS system [6, 8], notably layer
trees and matchings, and solvers for several major sub-tasks.

KHE is intended for production use, but it is also a research vehicle, so new versions will
not be constrained by backward compatibility. Please report bugs to me atjeff@it.usyd.edu.au. I
will release a corrected version within a few days of receiving a bug report, wherever possible.

This introductory chapter explains how to install and use KHE, surveys its data types, and
describes some operations common to many types.

1.1. Installation and use

KHE has a home page, at

http://jeffreykingston.id.au/khe/

The current version of KHE is a gzipped tar file in that directory. The current version of this
documentation (a PDF file) is also stored there. The names of these files change with each
release; they are most easily downloaded using links on the home page.

Originally, ‘KHE’ stood for ‘Kingston’s High School Timetabling Engine’, but it now
covers all timetabling software released by me: the platform, the solvers, HSeval (which drives
the HSEval web site), my nurse rostering software, and anything else I release in the future. So
‘KHE’no longer stands for anything, except possibly ‘Kingston’s Humungous Enterprise’.

I have used different kinds of version numbers over the years, but starting with Version 2.1
I am reverting to the traditional form, of a major release number and minor release number sepa-
rated by a dot. Each KHE release is a release of all my software under a single version number.

A program that incorporates the KHE platform can gain access to the current version
number by calling

char *KheVersionNumber(void);
char *KheVersionBanner(void);

For example, if Version 2.6 is compiled into the program that calls these functions, their results
will be "2.6" and"Version 2.6 (March 2021)".

2
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To install KHE, download a release and unpack it usinggunzip andtar xf as usual. The
resulting directory,khe, contains a makefile, somesrc_* directories holding the source files of
KHE, and somedoc_* directories holding the source files of this documentation. Consult the
makefile for information about what’s what in the distribution, and how to install and use KHE.

Starting with Version 2.1, the KHE source files are divided into three parts: the platform
(whose interface is filekhe_platform.h), the solvers (khe_solvers.h), and a main program.
This allows users to use only the platform, or it and the solvers, or those plus a main program.
The distribution also contains two source directories holding my nurse rostering software.

1.2. The data types of KHE

This section is an overview of KHE’s data types. The following chapters have the details.

TypeKHE_ARCHIVE represents one archive, that is, a collection of instances plus a collection
of solution groups. TypeKHE_SOLN_GROUP represents one solution group, that is, a set of
solutions of the instances of the archive it lies in. The word ‘solution’ is abbreviated to ‘soln’
wherever it appears in the KHE interface. Use of these types is optional: instances do not have
to lie in archives, and solutions do not have to lie in solution groups.

Type KHE_INSTANCE represents one instance of the high school timetabling problem.
KHE_TIME_GROUP represents a set of times;KHE_TIME represents one time.KHE_RESOURCE_TYPE
represents a resource type (typicallyTeacher, Room, Class, or Student); KHE_RESOURCE_GROUP
represents a set of resources of one type; andKHE_RESOURCE represents one resource.

Type KHE_EVENT_GROUP represents a set of events;KHE_EVENT represents one event,
including all information about its time. TypeKHE_EVENT_RESOURCE represents one resource
element within an event. TypeKHE_CONSTRAINT represents one constraint. This could have any
of the constraint types of the XML format (it is their abstract supertype).

TypeKHE_SOLN represents one solution, complete or partial, of a given instance, optionally
lying within a solution group. TypeKHE_MEET represents one meet (KHE’s commendably brief
name for what the XML format calls a solution event, split event, or sub-event: one event as it
appears in a solution), including all information about its time. TypeKHE_TASK represents one
piece of work for a resource to do: one resource element within a meet.

KHE supports multi-threading by ensuring that each instance and its components (of
typeKHE_INSTANCE, KHE_TIME_GROUP, and so on) is immutable after loading of the instance is
completed, and that operations applied to one solution object do not interfere with operations
applied simultaneously to another. Thus, after instance loading is completed, it is safe to create
multiple threadswith differentKHE_SOLN objects in each thread,all referring to the same instance,
and operate on those solutions in parallel. No such guarantees are given for operating on the
same solution from different threads.

1.3. Common operations

This section describes some miscellaneous operations that are common to many data types.

Whenever KHE creates an object, any string-valued attributes of that object passed by the
user are not stored directly; instead, malloced copies are stored. If the object is later deleted, the
malloced copy is deleted along with it. Thus, whatever its origin, a string-valued attribute has
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the same lifetime as the object itself.

Use of KHE often involves creating objects that contain references to KHE entities (objects
of types defined by KHE) alongside other information. Sometimes it is necessary to go back-
wards, from a KHE entity to a user-defined object. Accordingly,each KHE entity containsaback
pointerwhich the user is free to set and retrieve, using calls which look generically like this:

void KheEntitySetBack(KHE_ENTITY entity, void *back);
void *KheEntityBack(KHE_ENTITY entity);

All back pointers are initialized toNULL. In general, KHE itself does not set back pointers. The
exception is that some solvers packaged with KHE set the back pointers of the solution entities
they deal with. This is documented where it occurs.

Timetables often contain symmetries of various kinds. In high school timetabling, the
student group resources of one form are often symmmetrical: they attend the same kinds of
events over the course of the cycle.

Knowledge of similarity can be useful when solving. For example, it might be useful to
timetable similar events attended by student group resources of the same form at the same time.
Accordingly, several KHE entities offer an operation of the form

bool KheEntitySimilar(KHE_ENTITY e1, KHE_ENTITY e2);

which returnstrue if KHE considers that the two entities are similar. If they are the exact same
entity, they are always considered similar. In other cases, the definition of similarity varies with
the kind of entity, although it follows a common pattern: evidence both in favour of similarity
and against it is accumulated, and there needs to be a significant amount of evidence in favour,
and more evidence in favour than against. For example, an event containing no event resources
will never be considered similar to any event except itself, since positive evidence, such as
requests for the same kinds of teachers, is lacking.

Similarity is not a transitive relation in general. In other words, ife1 ande2 are similar, and
e2 ande3 are similar, that does not imply thate1 ande3 are similar. There is a heuristic aspect
to it that seems inevitable,although the intention is to stay on the safe side: to declare two entities
to be similar only when they clearly are similar.

Another operation that applies to many entities, albeit a humble one, is printing the current
state of the entity as an aid to debugging. The KHE operations for this mostly take the form

void KheEntityDebug(KHE_ENTITY entity, int verbosity,
int indent, FILE *fp);

They produce a debug print ofentity ontofp.

Theverbosity parameter controls how much detail is printed. Any value is acceptable. A
zero or negative value always prints nothing. Every positive value prints something, and as the
value increases, more detail is printed, depending, naturally, on the kind of entity. Value 1 tries
to print the minimum amount of information needed to identify the entity, often just its name.

If indent is non-negative, a multi-line format is used in which each line begins with at least
indent spaces. Ifindent is negative, the print appears on one line with no indent and no con-
cluding newline. Since space is limited, verbosity may be reduced whenindent is negative.
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Many entities are organized hierarchically. Depending on the verbosity, printing an entity
may include printing its descendants. Their debug functions are passed a value forindent which
is 2 larger than the value received (when non-negative), so that the hierarchy is represented in the
debug output by indenting. The debug print of one entity usually begins with[ and ends with a
matching], making it easy to move around the printed hierarchy using a text editor.

1.4. KHE for employee scheduling

Recent versions of KHE support the employee scheduling data format XESTT as well as the high
school timetabling format XHSTT. XESTT is the same as XHSTT except for a few extensions,
which are documented on the HSEval web site.

KHE knows whether it is dealing with XESTT or XHSTT, but it does not care—it supports
XESTT, which includes supporting XHSTT. When using KHE for high school timetabling,
several parameters of KHE functions have to be given values that indicate that the extensions
available in XESTT are not used. This mainly affects the operations for creating cluster busy
times and limit busy times constraints.



Chapter 2. Archives and Solution Groups

This chapter describes theKHE_ARCHIVE andKHE_SOLN_GROUP data types, representing archives
and solution groups as in the XML format. Their use is optional, since instances are not required
to lie in archives, and solutions are not required to lie in solution groups.

2.1. Archives

An archive is defined in the XML format to be a collection of instances together with groups
of solutions to those instances. There may be any number of instances and solution groups. To
create a new, empty archive, call

KHE_ARCHIVE KheArchiveMake(char *id, KHE_MODEL model, HA_ARENA_SET as);

Parameterid is an identifier for the archive. It may beNULL, but only if the archive is not going
to be written. Parametermodel says what problem the archive models, for which see just below.
Parameteras is the thread arena set used for obtaining memory. Appendix A.1.2 introduces
arena sets, and Appendix B.7 explains why one arena set per thread is good. You can also pass
NULL for as, but there will be some loss of efficiency in memory allocation which could be
critical when handling large archives.

Although created to support the XHSTT high school timetabling model, KHE also supports
an extended version of XHSTT, used for nurse rostering. Accordingly, typeKHE_MODEL is

typedef enum {
KHE_MODEL_HIGH_SCHOOL_TIMETABLE,
KHE_MODEL_EMPLOYEE_SCHEDULE

} KHE_MODEL;

The model affects the initial tag read byKheArchiveRead and written byKheArchiveWrite,
which is <HighSchoolTimetableArchive> when it isKHE_MODEL_HIGH_SCHOOL_TIMETABLE
and<EmployeeScheduleArchive> when it isKHE_MODEL_EMPLOYEE_SCHEDULE. Instances also
have a model, which must agree with the model of any archive they lie in. Thus, it is not possible
to mix instances with different models in one archive. Functions

char *KheArchiveId(KHE_ARCHIVE archive);
KHE_MODEL KheArchiveModel(KHE_ARCHIVE archive);

return these attributes of an archive. To set and retrieve the back pointer (Section 1.3), call

void KheArchiveSetBack(KHE_ARCHIVE archive, void *back);
void *KheArchiveBack(KHE_ARCHIVE archive);

Archive metadata may be set and retrieved by calling

6
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void KheArchiveSetMetaData(KHE_ARCHIVE archive, char *name,
char *contributor, char *date, char *description, char *remarks);

void KheArchiveMetaData(KHE_ARCHIVE archive, char **name,
char **contributor, char **date, char **description, char **remarks);

The values retrieved are copies of those passed in,as usual. The initial values are allNULL. When
a metadata value is required when writing an archive, anyNULL or empty values are written as
"No name", "No contributor", etc. There is also

char *KheArchiveMetaDataText(KHE_ARCHIVE archive)

which returns a string containing the metadata as a paragraph of English text, for example

This archive is XHSTT-2014, assembled by Gerhard Post on 2 March 2014.

The string lies in the archive’s arena and is deleted when the archive is deleted.

Initially an archive contains no instances and no solution groups. Solution groups are added
automatically as they are created, because every solution group lies in exactly one archive. An
instance may be added to an archive by calling

bool KheArchiveAddInstance(KHE_ARCHIVE archive, KHE_INSTANCE ins);

KheArchiveAddInstance returnstrue if it succeeds in addingins to archive, andfalse

otherwise, which can either be becausearchive already contains an instance withins’s Id, or
because the instance and archive models differ. The instance will appear after any instances
already present. An instance may be deleted from an archive (but not destroyed) by calling

void KheArchiveDeleteInstance(KHE_ARCHIVE archive, KHE_INSTANCE ins);

KheArchiveDeleteInstance aborts if ins is not in archive. If there are any solutions for
ins in archive, they are deleted too. The gap left by deleting the instance is filled by shuffling
subsequent instances up one place.

To visit the instances of an archive, call

int KheArchiveInstanceCount(KHE_ARCHIVE archive);
KHE_INSTANCE KheArchiveInstance(KHE_ARCHIVE archive, int i);

The first returns the number of instances inarchive, and the second returns thei’th of those
instances, counting from 0 as usual in C. There is also

bool KheArchiveRetrieveInstance(KHE_ARCHIVE archive, char *id,
KHE_INSTANCE *ins, int *index);

If archive contains an instance with the givenid, this function setsins to that instance and
*index to its index inarchive and returnstrue; otherwise it sets*ins to NULL and*index to
-1 and returnsfalse. And

bool KheArchiveContainsInstance(KHE_ARCHIVE archive,
KHE_INSTANCE ins, int *index);

is the function to call when the instance is given and just its index is needed.
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For visiting the solution groups of an archive, call

int KheArchiveSolnGroupCount(KHE_ARCHIVE archive);
KHE_SOLN_GROUP KheArchiveSolnGroup(KHE_ARCHIVE archive, int i);

similarly to visiting instances. There is also

bool KheArchiveRetrieveSolnGroup(KHE_ARCHIVE archive, char *id,
KHE_SOLN_GROUP *soln_group);

which retrieves a solution group byid.

2.2. Solution groups

A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool KheSolnGroupMake(KHE_ARCHIVE archive, char *id,
KHE_SOLN_GROUP *soln_group);

Here archive is compulsory, and the solution group is added to it. Parameterid is the Id
attribute from the XML file; it is optional, withNULL meaning absent, although it is compulsory
if archive is to be written later. If the operation is successful, thentrue is returned with
*soln_group set to the new solution group; if not (which can only be becauseid is already the
Id of a solution group ofarchive), thenfalse is returned with*soln_group set toNULL.

To delete a solution group, including deleting it from its archive, call

void KheSolnGroupDelete(KHE_SOLN_GROUP soln_group);

The solutions withinsoln_group are not deleted.

To set and retrieve the back pointer (Section 1.3) of a solution group, call

void KheSolnGroupSetBack(KHE_SOLN_GROUP soln_group, void *back);
void *KheSolnGroupBack(KHE_SOLN_GROUP soln_group);

as usual. To retrieve the archive and Id, call

KHE_ARCHIVE KheSolnGroupArchive(KHE_SOLN_GROUP soln_group);
char *KheSolnGroupId(KHE_SOLN_GROUP soln_group);

Solution group metadata may be set and retrieved by calling

void KheSolnGroupSetMetaData(KHE_SOLN_GROUP soln_group,
char *contributor, char *date, char *description,
char *publication, char *remarks);

void KheSolnGroupMetaData(KHE_SOLN_GROUP soln_group,
char **contributor, char **date, char **description,
char **publication, char **remarks);

As usual, copies of the strings are stored, not the originals. As for archive metadata, any of these
strings may beNULL or empty. KHE substitutes values"No contributor", "No date", etc. for
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such values when writing an archive, or omits them altogether when XHSTT allows. Also,

char *KheSolnGroupMetaDataText(KHE_SOLN_GROUP soln_group);

returns a string containing the metadata as a paragraph of terse English text. The string lies in
the solution group’s arena and will be deleted when the solution group is deleted.

Initially a solution group has no solutions. These are added and deleted by calling

void KheSolnGroupAddSoln(KHE_SOLN_GROUP soln_group, KHE_SOLN soln);
void KheSolnGroupDeleteSoln(KHE_SOLN_GROUP soln_group, KHE_SOLN soln);

A solution can only be added when its instance lies in the solution group’s archive.

To visit the solutions of a solution group, call

int KheSolnGroupSolnCount(KHE_SOLN_GROUP soln_group);
KHE_SOLN KheSolnGroupSoln(KHE_SOLN_GROUP soln_group, int i);

Solutions have no Ids, so there is noKheSolnGroupRetrieveSoln function. When solutioni is
deleted,KheSolnGroupSolnCount decreases by 1, solutioni+1 becomes solutioni, and so on.
To visit the solutions of a solution group that solve a particular instance, call

KHE_SOLN_SET KheSolnGroupInstanceSolnSet(KHE_SOLN_GROUP soln_group,
KHE_INSTANCE ins);

Or if the index of the instance in thesoln_group’s archive is known, one can call

KHE_SOLN_SET KheSolnGroupInstanceSolnSetByIndex(
KHE_SOLN_GROUP soln_group, int index);

As described just below,KHE_SOLN_SET is a set of solutions. The set returned by these functions
holds the solutions insoln_group for the indicated instance. It is stored insoln_group and must
not be modified by the user, except that it may be sorted. KHE updates it as solutions are added
and deleted from its enclosing solution group, and deletes it when its instance is deleted.

2.3. Solution sets

Like a solution group, a solution set contains a set of solutions. But, unlike a solution group, that
is all it contains: it is not considered to lie in any archive, and it has no Id and no metadata.

To create a new, empty solution set, and to delete it (but not its solutions), call

KHE_SOLN_SET KheSolnSetMake(HA_ARENA a);

As usual it (but not its solutions) will be deleted whena is deleted. There is also

void KheSolnSetClear(KHE_SOLN_SET ss);

which empties outss without deleting it. To add a solution, and to delete one, call

void KheSolnSetAddSoln(KHE_SOLN_SET ss, KHE_SOLN soln);
void KheSolnSetDeleteSoln(KHE_SOLN_SET ss, KHE_SOLN soln);
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To find out if a solution set contains a given solution, call

bool KheSolnSetContainsSoln(KHE_SOLN_SET ss, KHE_SOLN soln, int *pos);

It returnstrue if ss containssoln, setting*pos to its index inss if so.

To visit the elements of a solution set, call

int KheSolnSetSolnCount(KHE_SOLN_SET ss);
KHE_SOLN KheSolnSetSoln(KHE_SOLN_SET ss, int i);

They have the order they were inserted in, unless this has been changed by calling either of

void KheSolnSetSort(KHE_SOLN_SET ss,
int(*compar)(const void *, const void *));

void KheSolnSetSortUnique(KHE_SOLN_SET ss,
int(*compar)(const void *, const void *));

KheSolnSetSort sorts the solutions according to comparison functioncompar, which must be
suitable for passing toqsort. KheSolnSetSortUnique is the same, but afterwards it removes all
but one of each run of solutions for whichcompar returns 0.

One comparison function is already written, in one form that makes sense to people and
another that makes sense toqsort:

int KheIncreasingCostTypedCmp(KHE_SOLN soln1, KHE_SOLN soln2);
int KheIncreasingCostCmp(const void *t1, const void *t2);

It sorts the solution set so that the solutions have increasing cost. Solutions with equal cost
have increasing running time. Invalid solutions are treated as though they have infinite cost, and
solutions with no running time recorded are treated as though they have infinite running time.

Finally,

void KheSolnSetDebug(KHE_SOLN_SET ss, int verbosity,
int indent, FILE *fp);

sends a debug print ofss to fp with the given verbosity and indent.

2.4. Reading archives

KHE reads and writes archives in XHSTT, a standard XML format [13], and in XESTT, an
extension of XHSTT for employee scheduling problems [10, 11]. To read an archive, call

bool KheArchiveRead(FILE *fp, HA_ARENA_SET as, KHE_ARCHIVE *archive,
KML_ERROR *ke, bool audit_and_fix, bool resource_type_partitions,
bool infer_resource_partitions, bool limit_busy_recode,
bool allow_invalid_solns, KHE_SOLN_TYPE soln_type, FILE *echo_fp);

File fp must be open for reading UTF-8, and it remains open after the call returns. If, starting
from its current position,fp contains a legal XML archive, thenKheArchiveRead sets*archive
to that archive, passing itas as its arena set parameter, and*ke toNULL and returnstrue with fp
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moved to the first character after the archive. If there was a problem reading the file, then it sets
*archive to NULL and*ke to an error object and returnsfalse. Any reports in the archive are
discarded without checking.

TypeKML_ERROR is from the KML module packaged with KHE. A full description of the
KML module appears in Section A.5. Given an object of typeKML_ERROR, operations

int KmlErrorLineNum(KML_ERROR ke);
int KmlErrorColNum(KML_ERROR ke);
char *KmlErrorString(KML_ERROR ke);

return the line number, the column number, and a string description of the error.

KheArchiveRead builds the archive using the functions of this guide; there is nothing
special about the archive it builds. The model, for the archive and instances, depends on the
initial tag: KHE_MODEL_HIGH_SCHOOL_TIMETABLE when it is<HighSchoolTimetableArchive>,
andKHE_MODEL_EMPLOYEE_SCHEDULE when it is<EmployeeScheduleArchive>.

The audit_and_fix, resource_type_partitions, infer_resource_partitions, and
limit_busy_recode parameters are passed on toKheInstanceMakeEnd (Section 3.1).
KheArchiveRead builds complete representations of the solutions it reads. To be precise, it
calls functionsKheSolnMakeCompleteRepresentation, KheSolnAssignPreassignedTimes,
andKheSolnAssignPreassignedResources (Section 4.3), but notKheSolnMatchingBegin or
KheSolnEvennessBegin (Chapter 7).

Usually, if there are errors in the file,KheArchiveRead returnsfalse and sets*ke to the
first error. But ifallow_invalid_solns istrue, then some errors lying in solutions are handled
differently: the erroneous solutions are converted to invalid placeholders (Section 4.2.6). Each
invalid placeholder solution contains its first error, and none of its errors causefalse to be
returned or*ke to be set. Not all errors, not even all errors lying in solutions, can be handled in
this way; those that cannot causeKheArchiveRead to returnfalse and set*ke as usual.

Each valid solution is passed to functionKheSolnTypeReduce along with parameter
soln_type. If soln_type isKHE_SOLN_ORDINARY this does nothing, but other values reduce the
solution to a placeholder, freeing up a lot of memory which is re-used for reading other solutions.
The value ofsoln_type may not beKHE_SOLN_INVALID_PLACEHOLDER. See Section 4.2.6 for
KheSolnTypeReduce and the other choices forsoln_type.

KheArchiveRead callsKmlReadFile (Section A.5.3),passingecho_fp to it. The characters
read are echoed toecho_fp if it is non-NULL; it would normally beNULL.

2.5. Reading archives incrementally

A large archive may have to be read one solution at a time. For this, call
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bool KheArchiveReadIncremental(FILE *fp, HA_ARENA_SET as,
KHE_ARCHIVE *archive, KML_ERROR *ke, bool audit_and_fix,
bool resource_type_partitions, bool infer_resource_partitions,
bool limit_busy_recode, bool allow_invalid_solns,
KHE_SOLN_TYPE soln_type, FILE *echo_fp,
KHE_ARCHIVE_FN archive_begin_fn, KHE_ARCHIVE_FN archive_end_fn,
KHE_SOLN_GROUP_FN soln_group_begin_fn,
KHE_SOLN_GROUP_FN soln_group_end_fn, KHE_SOLN_FN soln_fn, void *impl);

The return value and the parameters up toecho_fp inclusive are as forKheArchiveRead. The
remaining parameters are callback functions, except the last,impl, which is not used by KHE
but is instead passed through to the calls on the callback functions. Any or all of the callback
functions may beNULL, in which case the corresponding callbacks are not made.

Callback functionarchive_begin_fn is called byKheArchiveReadIncremental at the
start of the archive. It must be written by the user like this:

void archive_begin_fn(KHE_ARCHIVE archive, void *impl)
{
...

}

Its archive parameter is set to the archive thatKheArchiveReadIncremental will eventually
build, the one it returns in its*archive parameter; itsimpl parameter contains the value of the
impl parameter ofKheArchiveReadIncremental. At the time of this call,archive contains its
Id, metadata, and model attributes, but no instances and no solution groups.

Callback functionarchive_end_fn is called at the end of the archive, just before
KheArchiveReadIncremental itself returns:

void archive_end_fn(KHE_ARCHIVE archive, void *impl)
{
...

}

When this function is called,archive contains all of its instances and solution groups. If
KheArchiveReadIncremental returnstrue, there has been one callback toarchive_begin_fn

and one toarchive_end_fn, if non-NULL.

Callback functionsoln_group_begin_fn is called at the start of each solution group:

void soln_group_begin_fn(KHE_SOLN_GROUP soln_group, void *impl)
{
...

}

Itssoln_group parameter is set to one of the solution groups that the final archive will eventually
contain, and itsimpl parameter is as before. At the time of this call,soln_group contains its
Id and MetaData, andKheSolnGroupArchive(soln_group) returns the enclosing archive, but
there are no solutions insoln_group.

Callback functionsoln_group_end_fn is called at the end of each solution group:
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void soln_group_end_fn(KHE_SOLN_GROUP soln_group, void *impl)
{
...

}

At the time of this call,soln_group contains all its solutions.

Finally, callback functionsoln_fn is called after each solution is read:

void soln_fn(KHE_SOLN soln, void *impl)
{
...

}

The solution is complete, andKheSolnSolnGroup(soln) returns the enclosing solution group.

The purpose of incremental reading is to process the solutions as they are read, so that
they can be deleted and their memory reclaimed. For example, to replace each solution by a
placeholder, passNULL for all callbacks exceptsoln_fn, which would be defined like this:

void soln_fn(KHE_SOLN soln, void *impl)
{
if( KheSolnType(soln) == KHE_SOLN_ORDINARY )
KheSolnReduceToPlaceholder(soln, false);

}

The test is needed only ifallow_invalid_solns is true. KheSolnReduceToPlaceholder

(Section 4.2.6) reclaims most of the memory ofsoln, leaving just thesoln object itself and a
few attributes, including its cost. In this way, the total memory cost is reduced to not much more
than the memory needed to hold the instances,but enough information is retained to support oper-
ations which (for example) print tables of solutions and their costs. Of course,KheArchiveRead

has thesoln_type parameter which can be used to instruct it to do these reductions anyway.

Other applications might processsoln in some way (print timetables, for example) before
finishing with a call toKheSolnReduceToPlaceholder, or evenKheSolnDelete.

2.6. Reading archives from the command line

Reading an archive from the command line basically means opening the file named by a
command-line argument and callingKheArchiveRead. Beyond that, there may be a need to
process the archive before using it, for example to remove its solution groups. Function

KHE_ARCHIVE KheArchiveReadFromCommandLine(int argc, char *argv[],
int *pos, HA_ARENA_SET as, bool audit_and_fix,
bool resource_type_partitions, bool infer_resource_partitions,
bool limit_busy_recode, bool allow_invalid_solns,
KHE_SOLN_TYPE soln_type, FILE *echo_fp);

offers a standard way to do that. Hereargc andargv are exactly as they were passed to the main
program, and*pos is an index intoargv, to a point where the name of an archive is expected.
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KheArchiveReadFromCommandLine first opens the file whose name isargv[*pos], calls
KheArchiveRead, and increments*pos to inform the caller that the argument at*pos has been
processed. The name may be-, meaning standard input. Then, while command-line arguments
beginning with-x, -i, -X, and-I follow the name, it modifies the in-memory version of the
archive as instructed by those arguments. Finally, it returns the archive, with*pos moved to the
index of the first unprocessed argument, or toargc if the argument list becomes exhausted.

The-x, -i, -X, and-I arguments have this syntax and meaning:

-x<id>{,<id>}

Delete instances (and their solutions) with the given Ids.

-i<id>{,<id>}

Include only instances (and their solutions) with the given Ids; delete all other instances.

-X<id>{,<id>}

Delete solution groups with the given Ids.

-I<id>{,<id>}

Include only solution groups with the given Ids; delete all other solution groups.

As a special case,-X with no ids means to delete all solution groups.

Arguments-x and-i may not be used together, and-X and-I may not be used together.
If there is a problem,KheArchiveReadFromCommandLine prints a message and callsexit(1).

At present there is noKheArchiveReadFromCommandLineIncremental function combin-
ing KheArchiveReadFromCommandLine with KheArchiveReadIncremental.

2.7. Writing archives and solution groups

To write an archive to a file, call

void KheArchiveWrite(KHE_ARCHIVE archive, bool with_reports, FILE *fp);

File fp must be open for writing UTF-8 characters, and it remains open after the call returns. If
with_reports is true, each written solution contains aReport section evaluating the solution.

If the archive’s model isKHE_MODEL_HIGH_SCHOOL_TIMETABLE, the initial tag written tofp
will be <HighSchoolTimetableArchive>. If the model isKHE_MODEL_EMPLOYEE_SCHEDULE,
the initial tag will be<EmployeeScheduleArchive>.

Ids and names are optional in KHE but compulsory when writing XML: if any are missing,
KheArchiveWrite writes an incomplete file and aborts with an error message. They will all be
present whenarchive was produced byKheArchiveRead.

If any of archive’s solutions are invalid or unwritable placeholders,KheArchiveWrite

aborts. Ifwith_reports is true, any placeholder solution at all causes an abort.

When an event has a preassigned time, there is a problem if one of its meets is not assigned
that time. If the meet is assigned some other time (which is possible in KHE, although not easy),
then writing that time will cause the solution to be declared invalid when it is re-read. If the meet
is not assigned any time, then, whether or not the preassigned time is written, the meaning is that
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the preassigned time is assigned, which is not the true state of the solution. The same problem
arises with preassigned event resources whose tasks are not assigned the preassigned resource.

Accordingly,KheArchiveWrite also writes an incomplete file and aborts with an error
message when it encounters a meet (or task) derived from a preassigned event (or event resource)
whose assigned time (or resource) is unequal to the preassigned time (or resource).

When writing solutions,KheArchiveWrite writes as little as possible. It does not write an
unassigned or preassigned task. It does not write a meet if its duration equals the duration of the
corresponding event, its time is unassigned or preassigned,and its tasks are not written according
to the rule just given (see also Section 4.3).

Two similar functions are

void KheArchiveWriteSolnGroup(KHE_ARCHIVE archive,
KHE_SOLN_GROUP soln_group, bool with_reports, FILE *fp);

void KheArchiveWriteWithoutSolnGroups(KHE_ARCHIVE archive, FILE *fp);

They also writearchive, omitting all its solution groups, or all of them exceptsoln_group.
They have been superseded, in practice, byKheArchiveReadFromCommandLine (Section 2.6).
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An instanceis a particular case of the high school timetabling problem, for a particular term
or semester of a particular school. This chapter describes theKHE_INSTANCE data type, which
represents instances as defined in the XML format.

3.1. Creating instances

To make a new, empty instance, call

KHE_INSTANCE KheInstanceMakeBegin(char *id, KHE_MODEL model,
HA_ARENA_SET as);

Parameterid is the Id attribute from the XML file; it is optional, withNULL meaning absent.
Parametermodel is the model, as forKheArchiveMake, andas is the thread arena set, also as for
KheArchiveMake. Functions

char *KheInstanceId(KHE_INSTANCE ins);
KHE_MODEL KheInstanceModel(KHE_INSTANCE ins);

retrieve these attributes.

For the convenience of functions that reorganize archives, an instance may lie in any
number of archives. To add an instance to an archive and delete it from an archive, call functions
KheArchiveAddInstance and KheArchiveDeleteInstance from Section 2.1. To visit the
archives containing a given instance, call

int KheInstanceArchiveCount(KHE_INSTANCE ins);
KHE_ARCHIVE KheInstanceArchive(KHE_INSTANCE ins, int i);

in the usual way.

To set and retrieve the back pointer ofins, call

void KheInstanceSetBack(KHE_INSTANCE ins, void *back);
void *KheInstanceBack(KHE_INSTANCE ins);

as usual.

After the instance has been completed, using functions still to be defined, call

bool KheInstanceMakeEnd(KHE_INSTANCE ins, bool audit_and_fix,
bool resource_type_partitions, bool infer_resource_partitions,
bool limit_busy_recode, char **error_message);

This must be done, single-threaded, before any solution is created. It checks the instance
and initializes various constant data structures used to speed the solution process. Parameter

16
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audit_and_fix is described just below,resource_type_partitions is the subject of Section
3.5.5,infer_resource_partitions is the subject of Section 3.5.6, andlimit_busy_recode
affects how limit busy times constraints are handled, so is described in Section 3.7.15.
KheInstanceMakeEnd sets*error_message to NULL and returnstrue when it finds no prob-
lems; when there is something wrong it sets*error_message to an error message describing the
first problem and returnsfalse. In principle the problem could be nearly anything, although at
present the only problems detected byKheInstanceMakeEnd are cases where the time groups
used by limit idle times constraints (Section 3.7.13) are not compact.

Even when an instance is formally valid, it may have features that suggest that something is
wrong,such as resourceswithout avoid clashesconstraints. Whenaudit_and_fix istrue,KHE
audits the instance and fixes any problems it finds. At present, it checks for pairs of events joined
by a link events constraint whose event constraints differ,and adds events as points of application
of those constraints to remove the differences. Other checks may be added in future.

Instance metadata may be set and retrieved by calling

void KheInstanceSetMetaData(KHE_INSTANCE ins, char *name, char *contributor,
char *date, char *country, char *description, char *remarks);

void KheInstanceMetaData(KHE_INSTANCE ins, char **name, char **contributor,
char **date, char **country, char **description, char **remarks);

Copies of the strings passed in are stored, not the originals. As for archive and solution group
metadata, KHE allows any instance metadata objects or strings to beNULL or empty, and when
writing an instance it substitutes values"No name","No contributor", etc., for such values, or
omits them altogether when XHSTT allows. Also,

char *KheInstanceMetaDataText(KHE_INSTANCE ins);

returns a string containing the metadata as a paragraph of English text. The string lies in the
instance’s arena and will be deleted when the instance is deleted.

3.2. Visiting and retrieving the components of instances

An instance may contain any number of time groups, times, resource types, event groups, events,
and constraints. These are added by the functions that create them, to be given later.

To visit all the time groups of an instance, or retrieve a time group byid, call

int KheInstanceTimeGroupCount(KHE_INSTANCE ins);
KHE_TIME_GROUP KheInstanceTimeGroup(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveTimeGroup(KHE_INSTANCE ins, char *id,
KHE_TIME_GROUP *tg);

The first returns the number of time groups inins. The second returns thei’th time group,
counting from 0 as usual in C. The third searches for a time group ofins with the givenid; if
found, it sets*tg to it and returnstrue, otherwise it leaves*tg unchanged and returnsfalse.

Only time groups created by user calls toKheTimeGroupMake (Section 3.4.1) are found by
KheInstanceTimeGroupCount, KheInstanceTimeGroup, and KheInstanceRetrieveTimeGroup.
Some other time groups are created automatically by KHE, but they are accessed in other ways.
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They include one time group for each time, holding just that time; a time group holding the full
set of times of the instance; and an empty time group. These last two are returned by

KHE_TIME_GROUP KheInstanceFullTimeGroup(KHE_INSTANCE ins);
KHE_TIME_GROUP KheInstanceEmptyTimeGroup(KHE_INSTANCE ins);

Time groups may also be created during solving (Section 4.4). Those too are not accessible via
KheInstanceTimeGroupCount, KheInstanceTimeGroup, or KheInstanceRetrieveTimeGroup.

To visit all the times of an instance, or retrieve a time by Id, call

int KheInstanceTimeCount(KHE_INSTANCE ins);
KHE_TIME KheInstanceTime(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveTime(KHE_INSTANCE ins, char *id, KHE_TIME *t);

These work in the same way as the functions above for visiting and retrieving time groups.

To visit all the resource types of an instance, or retrieve a resource type byid, call

int KheInstanceResourceTypeCount(KHE_INSTANCE ins);
KHE_RESOURCE_TYPE KheInstanceResourceType(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveResourceType(KHE_INSTANCE ins, char *id,
KHE_RESOURCE_TYPE *rt);

These work in the same way as the corresponding functions for visiting and retrieving time
groups and times. Resource types have operations which give access to their resource groups and
resources. For convenience there are also operations

bool KheInstanceRetrieveResourceGroup(KHE_INSTANCE ins, char *id,
KHE_RESOURCE_GROUP *rg);

bool KheInstanceRetrieveResource(KHE_INSTANCE ins, char *id,
KHE_RESOURCE *r);

which search all the resource types ofins for a resource group or resource with the givenid. It
is also possible to bypass resource types and visit all resources directly, by calling

int KheInstanceResourceCount(KHE_INSTANCE ins);
KHE_RESOURCE KheInstanceResource(KHE_INSTANCE ins, int i);

in the usual way. The resources will be visited in the order they were created.

To visit all the event groups of an instance, or to retrieve an event group byid, call

int KheInstanceEventGroupCount(KHE_INSTANCE ins);
KHE_EVENT_GROUP KheInstanceEventGroup(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveEventGroup(KHE_INSTANCE ins, char *id,

KHE_EVENT_GROUP *eg);

These work in the usual way.

Some event groups are created automatically by KHE, including one event group for each
event, holding just that event; an event group holding the full set of events of the instance; and
an empty event group. These last two are returned by
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KHE_EVENT_GROUP KheInstanceFullEventGroup(KHE_INSTANCE ins);
KHE_EVENT_GROUP KheInstanceEmptyEventGroup(KHE_INSTANCE ins);

Automatically defined event groups are not visited byKheInstanceEventGroupCount and
KheInstanceEventGroup. Even more event groups may be created during solving. Those also
do not appear in the list of event groups of the original instance.

To visit the events of an instance, or to retrieve an event byid, call

int KheInstanceEventCount(KHE_INSTANCE ins);
KHE_EVENT KheInstanceEvent(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveEvent(KHE_INSTANCE ins, char *id, KHE_EVENT *e);

Two reasons for visiting all events have already been taken care of, by functions

bool KheInstanceAllEventsHavePreassignedTimes(KHE_INSTANCE ins);
int KheInstanceMaximumEventDuration(KHE_INSTANCE ins);

KheInstanceAllEventsHavePreassignedTimes returnstrue if all events have preassigned
times. KheInstanceMaximumEventDuration returns the maximum event duration, or0 when
there are no events. In the usual representation of nurse rostering, their values aretrue and1.

To visit the event resources of an instance, call

int KheInstanceEventResourceCount(KHE_INSTANCE ins);
KHE_EVENT_RESOURCE KheInstanceEventResource(KHE_INSTANCE ins, int i);

The event resources may also be visited via their events.

To visit all the constraints of an instance, or to retrieve a constraint byid, call

int KheInstanceConstraintCount(KHE_INSTANCE ins);
KHE_CONSTRAINT KheInstanceConstraint(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveConstraint(KHE_INSTANCE ins, char *id,

KHE_CONSTRAINT *c);

These work in the usual way. There is also

int KheInstanceConstraintOfTypeCount(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

which returns the number of constraints with the givenconstraint_tag. At present there is no
way to visit these constraints, other than to visit all constraints and select the ones with that tag.

3.3. Constraint density

Within a given instance, thedensityof a given kind of constraint is the number of applications
of constraints of that kind, divided by the number of places where constraints of that kind could
apply. The density is a floating-point number, usually between 0 and 1, although it can exceed
1, since constraints of the same kind may apply at one place. KHE offers functions
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int KheInstanceConstraintDensityCount(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

int KheInstanceConstraintDensityTotal(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

returning the number of applications of constraints of kindconstraint_tag in ins (thedensity
count), and the number of places where constraints of that kind could apply inins (thedensity
total). The density is the quotient of these two quantities, unless the density total is 0, in which
case the density is undefined, although it may be reported as 0.0 in that case. Precise definitions
of the density count and density total are given for each kind of constraint in Section 3.7.

The first time either of these functions is called for any value ofconstraint_tag, the
results of both functions are calculated for all values ofconstraint_tag and stored inins. So
multi-threaded calls on these functions are only safe if one single-threaded call is made first.

3.4. Times

3.4.1. Time groups

A time group, representing a set of times, is created and added to an instance by calling

bool KheTimeGroupMake(KHE_INSTANCE ins, KHE_TIME_GROUP_KIND kind,
char *id, char *name, KHE_TIME_GROUP *tg);

This works like all creations of named objects do in KHE: ifid is non-NULL andins already
contains a time group with thisid, it returnsfalse and creates nothing; otherwise it creates a
new time group, sets*tg to point to it, and returnstrue.

Parameterkind has type

typedef enum {
KHE_TIME_GROUP_KIND_ORDINARY,
KHE_TIME_GROUP_KIND_WEEK,
KHE_TIME_GROUP_KIND_DAY,
KHE_TIME_GROUP_KIND_SOLN,
KHE_TIME_GROUP_KIND_AUTO

} KHE_TIME_GROUP_KIND;

KHE_TIME_GROUP_KIND_ORDINARY is the usual kind. The XML format allows some time groups
to be referred to as Weeks and Days, although they do not differ from other time groups in any
other way. ValuesKHE_TIME_GROUP_KIND_WEEK andKHE_TIME_GROUP_KIND_DAY record this
usage; they matter only when reading and writing XML files, not when solving. The last two
values cannot be passed toKheTimeGroupMake, although they may be returned by function
KheTimeGroupKind below. KHE_TIME_GROUP_KIND_SOLN is the kind of time groups returned
by KheSolnTimeGroupEnd (Section 4.4), andKHE_TIME_GROUP_KIND_AUTO is the kind of time
groups created automatically by KHE.

Theid andname parameters may beNULL; they are used only when writing XML, when
they represent the compulsory Id and Name attributesof the time group. Irrespective of the order
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time groups are created in, to conform with the XML rules,when writing time groups KHE writes
days first, then weeks, then ordinary time groups; it does not write any other time groups.

To set and retrieve the back pointer oftg, call

void KheTimeGroupSetBack(KHE_TIME_GROUP tg, void *back);
void *KheTimeGroupBack(KHE_TIME_GROUP tg);

in the usual way. The other attributes may be retrieved by calling

KHE_INSTANCE KheTimeGroupInstance(KHE_TIME_GROUP tg);
KHE_TIME_GROUP_KIND KheTimeGroupKind(KHE_TIME_GROUP tg);
char *KheTimeGroupId(KHE_TIME_GROUP tg);
char *KheTimeGroupName(KHE_TIME_GROUP tg);

Initially the time group is empty. There are several operations for changing its set of times:

void KheTimeGroupAddTime(KHE_TIME_GROUP tg, KHE_TIME t);
void KheTimeGroupSubTime(KHE_TIME_GROUP tg, KHE_TIME t);
void KheTimeGroupUnion(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);
void KheTimeGroupIntersect(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);
void KheTimeGroupDifference(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);

These add a time totg, remove a time, replacetg’s set of times with its union or intersecton
with the set of times oftg2, and with the difference oftg’s times andtg2’s times. The first two
operations are treated as set operations, soKheTimeGroupAddTime does nothing ift is already
present, andKheTimeGroupSubTime does nothing ift is not already present.

Changes to the time groups of an instance are not allowed afterKheInstanceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct time
groups for their own use (Section 4.4).

In addition to time groups created by the user, many time groups are created automatically
by KHE, with such useful values as the full set of times of the cycle and the empty set of times
(Section 3.2), all singleton sets of times (Section 3.4), and various other values, associated with
constraints. All these time groups are created duringKheInstanceMakeEnd, and in every case,
KHE first checks whether there is a user-defined time group with the desired value, and if so, it
uses that time group instead of creating a new one. When it does create a new time group, that
time group hasKHE_TIME_GROUP_KIND_AUTO for kind andNULL for Id and name,except that time
groups returned byKheTimeGroupNeighbour may have an Id and name, as explained below.

The times of any time group are visited by

int KheTimeGroupTimeCount(KHE_TIME_GROUP tg);
KHE_TIME KheTimeGroupTime(KHE_TIME_GROUP tg, int i);

These work in the same way as the visit functions for instances above. And

bool KheTimeGroupContains(KHE_TIME_GROUP tg, KHE_TIME t, int *pos);
bool KheTimeGroupEqual(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
bool KheTimeGroupSubset(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
bool KheTimeGroupDisjoint(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
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returntrue if tg containst (setting*pos to its position in the time group), iftg1 andtg2 contain
the same times, if the times oftg1 are a subset of the times oftg2, and if the times oftg1
andtg2 are disjoint. There is nothing to prevent two distinct time groups from containing the
same times.

There are also

int KheTimeGroupTypedCmp(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
int KheTimeGroupCmp(const void *t1, const void *t2);

which are typed and untyped versions of a comparison function that may be used to sort an array
of time groups into a canonical order. The precise order is not specified other than that a return
value of 0 indicates that the two time groups are equal.

Here are some miscellaneous time group functions. Function

bool KheTimeGroupIsCompact(KHE_TIME_GROUP tg);

returnstrue whentg is compact: when it is empty or there are no gaps in its times, taken in
chronological order. Function

int KheTimeGroupOverlap(KHE_TIME_GROUP tg, KHE_TIME time, int durn);

returns the number of times that a meet starting attime with durationdurn overlaps withtg.

A key function for KHE’s handling of time is

KHE_TIME_GROUP KheTimeGroupNeighbour(KHE_TIME_GROUP tg, int delta);

It returns a time group containingtg’s times shifteddelta places, wheredelta may be any
integer. KheTimeGroupNeighbour(tg, 0), for example, is a time group with the same times
astg, possibly but not necessarilytg itself; andKheTimeGroupNeighbour(tg, -1) holds the
times that immediately precedetg’s. The time group will be empty ifdelta is such a large
(positive or negative) number that all the times are shifted off the cycle.

Time group neighbours are created automatically by KHE. As explained above, KHE will
use existing user-defined time groups wherever possible, to avoid creating new ones. When
it does create a new one, it assigns it an Id and name. This is useful because, although time
group neighbours are never printed in XML files, names for them are needed when reporting
the calculation made by a monitor for a constraint with a non-NULL AppliesToTimeGroup. For
example, given time grouptg with Id "Mon" and name"Monday", if

KheTimeGroupNeighbour(tg, 5)

has to be created it is assigned Id"Mon+5" and name"Monday+5". It is best to avoid giving
user-defined time groups names like these ones, although there can be no name clashes, strictly
speaking, because time group neighbours are not stored in any table indexed by Id or name.
KheInstanceRetrieveTimeGroup, for example, only retrieves user-defined time groups.

KheTimeGroupNeighbour accepts time groups returned byKheTimeGroupNeighbour,
but the result can be odd. Supposetg2 = KheTimeGroupNeighbour(tg, 5) is called, andtg
has 7 times buttg2 has only 4, because 3 oftg’s times shifted off the end. A subsequent call
to KheTimeGroupNeighbour(tg2, -5) may return another time group with 4 times, but it is
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more likely to return a time group equal totg. This is for efficiency: if, every time a time went
off either end, a whole new neighbourhood was constructed, then neighbourhood construction
would go on forever. There are no such peculiarities when times do not shift off either end.

To speed up loading nurse rostering instances with long cycles, the time group returned by
KheAvoidUnavailableTimesConstraintUnavailableTimes usually has no neighbourhood.
The same goes forKheAvoidUnavailableTimesConstraintAvailableTimes , and also for
KheLimitBusyTimesConstraintDomain andKheLimitWorkloadConstraintDomain. A call to
KheTimeGroupNeighbour will abort with an error message if it is given one of these time groups.
The user should not worry about this until it happens; it probably never will.

As an aid to debugging, function

void KheTimeGroupDebug(KHE_TIME_GROUP tg, int verbosity,
int indent, FILE *fp);

printstg ontofp with the given verbosity and indent, as usual (Section 1.3). Verbosity 1 prints
either the Id of the time group, or the first and last time (at most) enclosed in braces.

3.4.2. Times

A time is created and added to an instance by calling

bool KheTimeMake(KHE_INSTANCE ins, char *id, char *name,
bool break_after, KHE_TIME *t);

As usual, afalse return value is only possible whenid is non-NULL and already in use by another
time object. Parametersid andname may beNULL, and are used only when writing XML.

Parameterbreak_after says that a break occurs after this time, so that, for example,
an event of duration 2 could not begin here. This is not an XML feature; when representing
XML this parameter should always befalse. Within KHE itself it is used only by function
KheSolnSplitCycleMeet and its associated operations (Section 4.5.3).

To set and retrieve the back pointer of a time, call functions

void KheTimeSetBack(KHE_TIME t, void *back);
void *KheTimeBack(KHE_TIME t);

as usual. The other attributes are retrieved by

KHE_INSTANCE KheTimeInstance(KHE_TIME t);
char *KheTimeId(KHE_TIME t);
char *KheTimeName(KHE_TIME t);
bool KheTimeBreakAfter(KHE_TIME t);
int KheTimeIndex(KHE_TIME t);

KheTimeIndex returns an automatically generated index number fortime: 0 for the first time
created,1for the second,and so on. The times of an instance form a sequence,not a set, and must
be created in chronological order. This is unlike resources, events, etc., whose order of creation
does not matter. The XML format requires times to appear in this same order. Function
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bool KheTimeHasNeighbour(KHE_TIME t, int delta);

returnstrue when there is a time whose index is the index oft plusdelta, wheredelta may be
any integer, negative, zero, or positive. Function

KHE_TIME KheTimeNeighbour(KHE_TIME t, int delta);

returns this time when it exists, and aborts when it does not.

For sorting an array of times into chronological order there is

int KheTimeTypedCmp(KHE_TIME t1, KHE_TIME t2);
int KheTimeCmp(const void *t1, const void *t2);

KheTimeCmp is suitable for passing toqsort, or toHaArraySort.

When calculating with the chronological ordering of time—deciding whether two meets
are adjacent, and so on—it is often best to callKheTimeIndex to obtain the indexes of the times
involved and work with them. However, these functions may help to avoid time indexes:

bool KheTimeLE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeLT(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeGT(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeGE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeEQ(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeNE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);

They returntrue whenKheTimeNeighbour(time1, delta1)’s time index is less than or equal
to KheTimeNeighbour(time2, delta2)’s, and so on. The neighbours need not exist; the func-
tions simply convert times into indexes and perform the indicated integer operations. Also,

int KheTimeIntervalsOverlap(KHE_TIME time1, int durn1,
KHE_TIME time2, int durn2);

takes two time intervals, one beginning attime1 with durationdurn1, the other beginning at
time2 with durationdurn2, and returns the number of times lying in both intervals. For example,
the result will be 0 when either interval ends before the other begins. Similarly,

bool KheTimeIntervalsOverlapInterval(KHE_TIME time1, int durn1,
KHE_TIME time2, int durn2, KHE_TIME *overlap_time, int *overlap_durn);

returnstrue when KheTimeIntervalsOverlap is non-zero, and sets*overlap_time and
*overlap_durn to the starting time and duration of the overlap; otherwise it returnsfalse.

For convenience, a time group is available for each time, holding just that time. Function

KHE_TIME_GROUP KheTimeSingletonTimeGroup(KHE_TIME t);

returns this time group. It cannot be changed.

The events preassigned a particular time can be visited by

int KheTimePreassignedEventCount(KHE_TIME t);
KHE_EVENT KheTimePreassignedEvent(KHE_TIME t, int i);
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KheTimePreassignedEventCount(t) returns the number of events preassigned timet, and
KheTimePreassignedEvent(t, i) returns theith of these events, counting from 0 as usual.

3.5. Resources

3.5.1. Resource types

A resource type, representing one broad category of resources, such as the teachers or rooms, is
created and added to an instance in the usual way by the call

bool KheResourceTypeMake(KHE_INSTANCE ins, char *id, char *name,
bool has_partitions, KHE_RESOURCE_TYPE *rt);

Attributesid andname represent the optional XML Id and Name attributes as usual. Its back
pointer may be set and retrieved by

void KheResourceTypeSetBack(KHE_RESOURCE_TYPE rt, void *back);
void *KheResourceTypeBack(KHE_RESOURCE_TYPE rt);

as usual, and its other attributes may be retrieved by

KHE_INSTANCE KheResourceTypeInstance(KHE_RESOURCE_TYPE rt);
int KheResourceTypeIndex(KHE_RESOURCE_TYPE rt);
char *KheResourceTypeId(KHE_RESOURCE_TYPE rt);
char *KheResourceTypeName(KHE_RESOURCE_TYPE rt);
bool KheResourceTypeHasPartitions(KHE_RESOURCE_TYPE rt);

KheResourceTypeIndex(rt) returns the index ofrt in the enclosing instance, that is, the value
of i for whichKheInstanceResourceType returnsrt.

Attributehas_partitions is not an XML feature, and should be given valuefalse when
reading an XML instance. It indicates that there is a unique partitioning of the resources of this
resource type, defined by a collection of specially marked resource groups calledpartitions. For
example, the resources of a student groups resource type might be partitioned into forms, or the
resources of a teachers resource type might be partitioned into faculties. When a resource type
has partitions, each of its resources must lie in exactly one partition.

Each resource type contains an arbitrary number of resource groups, representing sets
of resources of its type. Resource groups are added to a resource type automatically by the
functions that create them. To visit all the resource groups of a given resource type, or to retrieve
a resource group with a givenid from a given resource type, call

int KheResourceTypeResourceGroupCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypeResourceGroup(KHE_RESOURCE_TYPE rt,
int i);

bool KheResourceTypeRetrieveResourceGroup(KHE_RESOURCE_TYPE rt,
char *id, KHE_RESOURCE_GROUP *rg);

These work in the usual way. The partitions of a resource type may be visited by
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int KheResourceTypePartitionCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypePartition(KHE_RESOURCE_TYPE rt, int i);

KheResourceTypePartitionCount returns 0 whenrt does not have partitions.

Some resource groups are made automatically by KHE, including one resource group for
each resource, holding just that resource; a resource group holding the full set of resources of
the resource type; and an empty resource group. These last two are returned by

KHE_RESOURCE_GROUP KheResourceTypeFullResourceGroup(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypeEmptyResourceGroup(KHE_RESOURCE_TYPE rt);

Automatically made resource groups are not visited byKheResourceTypeResourceGroupCount

and KheResourceTypeResourceGroup. Even more resource groups may be created during
solving, but those do not appear in the list of resource groups of the original instance.

To visit all the resources of a given resource type, or to retrieve a resource of a given
resource type byid, call

int KheResourceTypeResourceCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE KheResourceTypeResource(KHE_RESOURCE_TYPE rt, int i);
bool KheResourceTypeRetrieveResource(KHE_RESOURCE_TYPE rt,
char *id, KHE_RESOURCE *r);

in the usual way.

Three functions, which should be called only after the instance is complete, are offered
for summarising how complex the task of assigning resources of a given type is. The values of
these functions are calculated as the instance is built and kept, so one call on any of them costs
practically nothing. The first is

bool KheResourceTypeDemandIsAllPreassigned(KHE_RESOURCE_TYPE rt);

It returnstrue if every event resource of typert is preassigned. In practice this is always true
for student group resource types, and often for teachers, but rarely for rooms. The second is

int KheResourceTypeAvoidSplitAssignmentsCount(KHE_RESOURCE_TYPE rt);

It returns the number of points of application of avoid split assignmentsconstraints that constrain
event resources of this type. The larger this number is, the more difficult the resource assignment
problem for resources of this type is likely to be. Finally,

int KheResourceTypeLimitResourcesCount(KHE_RESOURCE_TYPE rt);

returns the number of points of application of limit resources constraints that have this resource
type. See Section 12.7.3 for an application of this function.

3.5.2. Resource groups

A resource group is created and added to a resource type by the call
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bool KheResourceGroupMake(KHE_RESOURCE_TYPE rt, char *id, char *name,
bool is_partition, KHE_RESOURCE_GROUP *rg)

This function returnsfalse only whenid is non-NULL and some other resource group of type
rt has thisid. The resource group lies in resource typert with the usualid andname attributes.
Attributeis_partition is not an XML feature, and should be given valuefalse when reading
an XML instance. It may betrue only if attributehas_partitions of the resource group’s
resource type istrue, in which case it indicates that this resource group is a partition, that is, one
of those resource groups which define the unique partitioning of the resources of that type.

To set and retrieve the back pointer of a resource group, call

void KheResourceGroupSetBack(KHE_RESOURCE_GROUP rg, void *back);
void *KheResourceGroupBack(KHE_RESOURCE_GROUP rg);

as usual. The other attributes may be retrieved by calling

KHE_RESOURCE_TYPE KheResourceGroupResourceType(KHE_RESOURCE_GROUP rg);
KHE_INSTANCE KheResourceGroupInstance(KHE_RESOURCE_GROUP rg);
char *KheResourceGroupId(KHE_RESOURCE_GROUP rg);
char *KheResourceGroupName(KHE_RESOURCE_GROUP rg);
bool KheResourceGroupIsPartition(KHE_RESOURCE_GROUP rg);

KheResourceGroupInstance returns the resource group’s resource type’s instance.

Initially the resource group is empty. Several operations change its resources:

void KheResourceGroupAddResource(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
void KheResourceGroupSubResource(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
void KheResourceGroupUnion(KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP rg2);
void KheResourceGroupIntersect(KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP rg2);
void KheResourceGroupDifference(KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP rg2);

These addr to rg, remover, replacerg’s set of resources with its union or intersecton with
the set of resources ofrg2, and with the difference ofrg’s resources andrg2’s resources. All
the resources and resource groups involved must be of the same type. The first two operations
are treated as set operations, soKheResourceGroupAddResource does nothing ifr is already
present, andKheResourceGroupSubResource does nothing ifr is not already present.

These functions may not be used to alter resource groups which define partitions. When a
resource type has partitions, each of its resources is added to its partition when it is created.

Changes to the resource groups of an instance are not allowed afterKheInstanceMakeEnd

is called, since instances are immutable after that point. However, solutions may construct
resource groups for their own use (Section 4.4).

There are also several operations for finding the cardinality of unions, intersections, etc.,
without changing anything:
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int KheResourceGroupUnionCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupIntersectCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupDifferenceCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupSymmetricDifferenceCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

Building symmetric differences is awkward, so at present there is no operation for it, only this
operation for finding its cardinality.

There are also predefined resource groups, for the complete set of resources of each
resource type and the empty set of resources of each type (see Section 3.5.1 for those), and one
for each resource of the instance, containing just that resource (Section 3.5). The resources in
predefined resource groups may not be changed.

The resources of any resource group are visited by

int KheResourceGroupResourceCount(KHE_RESOURCE_GROUP rg);
KHE_RESOURCE KheResourceGroupResource(KHE_RESOURCE_GROUP rg, int i);

These work in the usual way. And

bool KheResourceGroupContains(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
bool KheResourceGroupEqual(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

bool KheResourceGroupSubset(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

bool KheResourceGroupDisjoint(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

returntrue if rg containsr, if rg1 andrg2 contain the same resources, if the resources ofrg1

form a subset of the resources ofrg2, and if the resources ofrg1 andrg2 are disjoint. Two
distinct resource groups may contain the same resources, so it is best not to apply the C equality
operator to resource groups.

There are also

int KheResourceGroupTypedCmp(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupCmp(const void *t1, const void *t2);

which are typed and untyped versions of a comparison function that may be used to sort an array
of resource groups into a canonical order. The precise order is not specified other than that a
return value of 0 indicates that the two resource groups are equal.

After a resource group is finalized, function

KHE_RESOURCE_GROUP KheResourceGroupPartition(KHE_RESOURCE_GROUP rg);

may be called. Ifrg is non-empty and its resources share a partition, the result is that partition,
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otherwise the result isNULL. SinceKheResourceGroupPartition is called when monitoring
evenness, for efficiency the result is precomputed and stored inrg when it is finalized.

As an aid to debugging, function

void KheResourceGroupDebug(KHE_RESOURCE_GROUP rg, int verbosity,
int indent, FILE *fp);

printsrg ontofp with the given verbosity and indent, as described for debug functions in general
in Section 1.3. Verbosity 1prints the Id of the resource group in some cases, and the first and last
resource (at most) enclosed in braces in others.

3.5.3. Resources

A resource is created and added to its resource type by the call

bool KheResourceMake(KHE_RESOURCE_TYPE rt, char *id, char *name,
KHE_RESOURCE_GROUP partition, KHE_RESOURCE *r);

A resource type is compulsory;id andname are the usual optional XML Id and Name.

Unlike KheResourceGroupMake, which returnsfalse when itsid parameter is non-NULL
and some other resource group of the same resource type already has that Id,KheResourceMake

returnsfalse and sets*r toNULL when itsid parameter is non-NULL and some other resourceof
any resource typealready has its Id. This is because predefined event resources are permitted to
identify a resource by its Id alone, and so resource Ids must be unique among all the resources of
the instance, not merely among resources of a given type.

The partition attribute is not an XML feature, and should be given valueNULL when
reading an XML instance. It must be non-NULL if and only if rt’s has_partitions attribute is
true, in which case its value must be a resource group of typert whoseis_partition attribute
istrue, and it indicates that the new resource lies in the specified partition. The new resource will
be added to the partition by this function, and no separate call toResourceGroupAddResource

to do this is necessary or even permitted.

To set and retrieve the back pointer of a resource, call

void KheResourceSetBack(KHE_RESOURCE r, void *back);
void *KheResourceBack(KHE_RESOURCE r);

as usual. The other attributes may be retrieved by the calls

KHE_INSTANCE KheResourceInstance(KHE_RESOURCE r);
int KheResourceInstanceIndex(KHE_RESOURCE r);
KHE_RESOURCE_TYPE KheResourceResourceType(KHE_RESOURCE r);
int KheResourceResourceTypeIndex(KHE_RESOURCE r);
char *KheResourceId(KHE_RESOURCE r);
char *KheResourceName(KHE_RESOURCE r);
KHE_RESOURCE_GROUP KheResourcePartition(KHE_RESOURCE r);

KheResourceInstance returns r’s instance, andKheResourceInstanceIndex returns r’s
index in that instance: the value ofi for which KheInstanceResource(ins, i) returnsr.
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KheResourceResourceType returnsr’s resource type, andKheResourceResourceTypeIndex
returnsr’s index in that type: the value ofi for which KheResourceTypeResource(rt, i)

returnsr. Unlike the index numbers of times,which indicate chronological order, resource index
numbers have no semantic significance. They are made available only for convenience.

A resource group is created automatically for each resourcer, holding justr. Function

KHE_RESOURCE_GROUP KheResourceSingletonResourceGroup(KHE_RESOURCE r);

returns this resource group. This resource group may not be changed. To visit the resource
groups containingr (not including automatically generated ones), call

int KheResourceResourceGroupCount(KHE_RESOURCE r);
KHE_RESOURCE_GROUP KheResourceResourceGroup(KHE_RESOURCE r, int i);

in the usual way.

The event resources thatr is preassigned to are made available by calling

int KheResourcePreassignedEventResourceCount(KHE_RESOURCE r);
KHE_EVENT_RESOURCE KheResourcePreassignedEventResource(KHE_RESOURCE r,
int i);

Naturally, the entire instance has to be loaded for these to work correctly. At present there is no
way to visit events containing event resource groups containing a given resource.

Some constraints apply to resources. When these constraints are created, they are added to
the resources they apply to. To visit all the constraints applicable to a given resource, call

int KheResourceConstraintCount(KHE_RESOURCE r);
KHE_CONSTRAINT KheResourceConstraint(KHE_RESOURCE r, int i);

There may be any number of avoid clashes constraints, avoid unavailable times constraints, limit
idle times constraints, cluster busy times constraints, limit busy times constraints, limit workload
constraints, and limit active intervals constraints, in any order. There are also

KHE_TIME_GROUP KheResourceHardUnavailableTimeGroup(KHE_RESOURCE r);
KHE_TIME_GROUP KheResourceHardAndSoftUnavailableTimeGroup(
KHE_RESOURCE r);

KheResourceHardUnavailableTimeGroup returns the union of the domains of the required
unavailable timesconstraintsofr. KheResourceHardAndSoftUnavailableTimeGroup does the
same, except that the domains of all unavailable times constraints are included. Both functions
return the empty time group when there are no applicable constraints.

These two public functions are used by KHE when calculating lower bounds:

bool KheResourceHasAvoidClashesConstraint(KHE_RESOURCE r, KHE_COST cost);
int KheResourcePreassignedEventsDuration(KHE_RESOURCE r, KHE_COST cost);

KheResourceHasAvoidClashesConstraint returnstrue if some avoid clashes constraint of
combined weight greater thancost applies tor; KheResourcePreassignedEventsDuration
returns the total duration of events which are both preassignedr and either preassigned a time
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or subject to an assign time constraint of combined cost greater thancost.

As an aid to sorting arrays of resources, functions

int KheResourceTypedCmp(KHE_RESOURCE r1, KHE_RESOURCE r2);
int KheResourceCmp(const void *t1, const void *t2);

are offered.KheResourceTypedCmp returns the instance index ofr1 minus the instance index
of r2. KheResourceCmp is basically the same, but in the form suited for passing toqsort, and
hence toHaArraySort andHaArraySortUnique.

As an aid to debugging, function

void KheResourceDebug(KHE_RESOURCE r, int verbosity,
int indent, FILE *fp)

produces a debug print of resourcer onto filefp with the given verbosity and indent,as described
for debug functions in general in Section 1.3.

3.5.4. Resource layers

A resource layeris the set of events containing a preassignment of a given resourcer which is
the subject of a hard avoid clashes constraint. A resource layer’s events may not overlap in time:
they must spread horizontally across the timetable, hence the term ‘layer’. Within a solution, the
meets derived from the events of one resource layer form asolution layer, or justlayer.

Layers are important in high school timetabling, at least for student group resources, since
the total duration of their events is often close to the total duration of the cycle, and hence these
events strongly constrain each other. The following operations are available on the layer ofr:

int KheResourceLayerEventCount(KHE_RESOURCE r);
KHE_EVENT KheResourceLayerEvent(KHE_RESOURCE r, int i);
int KheResourceLayerDuration(KHE_RESOURCE r);

The first two work together in the usual way to return the events of the resource layer. They
are sorted by increasing event index. If the resource is not preassigned to any events, or
has no required avoid clashes constraint, thenKheResourceLayerEventCount returns 0.
KheResourceLayerDuration returns the total duration of the events of the layer. In the unlike-
ly case thatr is assigned to the same event twice, the event still appears only once in the list of
events of the layer, and contributes its duration only once to the layer duration.

3.5.5. Resource type partitioning

Suppose that Science laboratoriesare never used asordinaryclassrooms,and ordinaryclassrooms
are never used as Science laboratories. Then it doesn’t matter whether Science laboratories are
considered to have resource typeRoom or some other type specific to them. The advantage of
giving them their own type is that it makes it clear to solvers that assigning Science laboratories
is a completely separate problem from assigning other rooms.

Resource type partitioningis KHE’s name for a radical kind of resource partitioning, in
which each partition becomes a resource type. Under suitable circumstances it will recognize,
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for example, that Science laboratories can be given their own resource type, and it will transform
the instance accordingly. It is attempted only when the user explicitly asks for it, by setting the
resource_type_partitions parameter ofKheInstanceMakeEnd to true.

Consider any resource typert (before partitioning). Suppose that there is an event resource
of typert which is not subject to a prefer resources constraint with non-zero hard cost. Then this
event resource could be assigned any resource of typert, and so partitioning will not succeed
and will not be attempted, even when requested.

So suppose now that there are none of these event resources. Initialize by placing each
resource in its own partition. For each pair of resources referenced (either directly or via a
resource group) by a prefer resources constraint with non-zero hard cost, merge their partitions.
If, at the end, there are two or more partitions, create new resource types to hold these partitions
and replace each reference tort in the instance by a reference to one of these new resource types.
(Actually,rt is retained and used to hold one of its own partitions.)

After this process ends, resource groups may exist that contain resources of two or more
types. These resource groups are arbitrarily assigned the resource type of their first resource;
they are exceptions to the usual rule that all resources of a resource group have the same type.

Resource types for whichhas_partition istrue are ignored by resource type partitioning.
But KheInstanceMakeEnd does resource type partitioning before inferring resource partitions
(Section 3.5.6), so a resource type created by resource type partitioning can have partitions.

There is no way to undo resource type partitioning. However, if the instance is written to a
file it will display no trace of it: the resources, resource groups, and event resources all revert to
their original types, and the resource types created by partitioning are not written. It is done this
way because resource type partitioning is offered to help solvers, not to transform instances.

The implementation of resource type partitioning is incomplete in one respect: although
KheResourceGroupResourceType returns a new resource type created by partitioning whenever
its first resource is moved to such a type, the resource types themselves do not know that the re-
source groups have changed their types, so functionsKheResourceTypeResourceGroupCount,
KheResourceTypeResourceGroup, andKheResourceTypeRetrieveResourceGroup behave as
though no partitioning has occurred. FunctionsKheResourceTypeDemandIsAllPreassigned

andKheResourceTypeAvoidSplitAssignmentsCount may also return incorrect values, as may
KheResourceTypeLimitResourcesCount. These problems will be corrected if needed.

The names assigned to resource types created by partitioning don’t matter very much, but
some attempt has been made to choose reasonable names, to help make debug and testing output
readable. One of the resource types is the original one and it retains its original name. If there is a
partition that contains more than half of the affected resources, that partition will be represented
by this original resource type, otherwise there is no simple rule to say which partition it will
represent. The other, newly created resource types will have names of the formpart1:part2.
Herepart1 is the name of the original resource type;part2 is the name of a resource group if
that resource group contains exactly the resources of the new resource type (as often happens),
or the name of one of the resources of the newly created type otherwise.
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3.5.6. Resource similarity and inferring resource partitions

Following the general approach introduced in Section 1.3, KHE offers function

bool KheResourceSimilar(KHE_RESOURCE r1, KHE_RESOURCE r2);

which returnstrue when resourcesr1 andr2 are similar: when they lie in similar resource
groups and are preassigned to similar events. The exact definition is given below.

KheResourceSimilar often succeeds in recognising that student group resources from the
same form are similar, and that teacher resources from the same faculty are similar. However, it
needs positive evidence to work with. For example,when there are no student or teacher resource
groups, and each event contains one preassigned student group resource,one preassigned teacher
resource, and a request for one ordinary classroom, there is no basis for grouping the resources
and each will be considered similar only to itself.

Resource partitions (Section 3.5.1) are not part of the XML format. But they are useful
when solving, soKheInstanceMakeEnd has aninfer_resource_partitions parameter which,
whentrue, causes partitions to be added to each resource typert that lacks them. Afterwards,
KheResourceTypeHasPartitions(rt) will be true, KheResourceGroupIsPartition(rg)

will be true for some of the resource groups ofrt, and KheResourcePartition(r) will
return a non-NULL partition for each resourcer. All this is exactly as though the partitions had
been entered explicitly, except that any specially created resource groups will not be visited by
KheResourceTypeResourceGroupCount andKheResourceTypeResourceGroup.

The algorithm for inferring resource partitions is a simple application of resource similarity.
Build a graph in which each node corresponds to one resource,and an edge joins two nodes when
their resources are similar. The partitions are the connected components of this graph.

To decide whether two resources are similar or not, two non-negative integers, thepositive
evidenceand thenegative evidence, are calculated as explained below. The two resources are
similar if the positive evidence exceeds the negative evidence by at least two.

Evidence comes from two sources: the resource groups that the resources lie in, and the
events that the resources are preassigned to. A resource group isadmissible(i.e. admissible
as evidence) if its number of resources is at least two and at most one third of the number
of resources of its resource type. Inadmissible resource groups are considered to contain no
useful information and are ignored. Each case of an admissible resource group containing both
resources counts as two units of positive evidence,and each case of an admissible resource group
containing one resource but not the other counts as one unit of negative evidence.

A definition of what it means for two events to be similar appears in Section 3.6.2. Each
case of an event preassigned one resource being similar to an event preassigned the other counts
as two units of positive evidence. Each case of an event preassigned one resource for which there
is no similar event preassigned the other counts as one unit of negative evidence. The cases are
distinct, in the sense that each event participates in at most one case.

3.6. Events
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3.6.1. Event groups

An event group, representing a set of events, is created and added to an instance by calling

bool KheEventGroupMake(KHE_INSTANCE ins, KHE_EVENT_GROUP_KIND kind,
char *id, char *name, KHE_EVENT_GROUP *eg);

As usual, it returnsfalse only whenid is non-NULL andins already contains an event group
with thisid. To set and retrieve the back pointer, call

void KheEventGroupSetBack(KHE_EVENT_GROUP eg, void *back);
void *KheEventGroupBack(KHE_EVENT_GROUP eg);

as usual. The other attributes may be retrieved by the calls

KHE_INSTANCE KheEventGroupInstance(KHE_EVENT_GROUP eg);
KHE_EVENT_GROUP_KIND KheEventGroupKind(KHE_EVENT_GROUP eg);
char *KheEventGroupId(KHE_EVENT_GROUP eg);
char *KheEventGroupName(KHE_EVENT_GROUP eg);

The event group kind is a value of type

typedef enum {
KHE_EVENT_GROUP_KIND_COURSE,
KHE_EVENT_GROUP_KIND_ORDINARY

} KHE_EVENT_GROUP_KIND;

The XML format allows some event groups to be referred to as Courses, although they do not
differ from other event groups in any other way. Thekind attribute records this distinction; it is
only used by KHE when reading and writing XML files, not when solving.

Irrespective of the order event groups are created in, to conform with the XML rules, when
writing event groups KHE writes courses first, then ordinary event groups.

Initially the event group is empty. There are several operations for changing its events:

void KheEventGroupAddEvent(KHE_EVENT_GROUP eg, KHE_EVENT e);
void KheEventGroupSubEvent(KHE_EVENT_GROUP eg, KHE_EVENT e);
void KheEventGroupUnion(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);
void KheEventGroupIntersect(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);
void KheEventGroupDifference(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);

These add an event toeg, remove an event, replaceeg’s set of events with its union or intersecton
with the set of events ofeg2, and with the difference ofeg’s events andeg2’s events. The first
two operations are treated as set operations, soKheEventGroupAddEvent does nothing ife is
already present, andKheEventGroupSubEvent does nothing ife is not already present.

Changes to the event groups of an instance are not allowed afterKheInstanceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct event
groups for their own use (Section 4.4).

There are also predefined event groups, for the complete set of events of the instance and
for the empty set of events (Section 3), and one for each event of the instance, containing just
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that event (Section 3.6). The events in predefined event groups may not be changed.

To visit the events of an event group, functions

int KheEventGroupEventCount(KHE_EVENT_GROUP eg);
KHE_EVENT KheEventGroupEvent(KHE_EVENT_GROUP eg, int i);

are used in the usual way. And

bool KheEventGroupContains(KHE_EVENT_GROUP eg, KHE_EVENT e);
bool KheEventGroupEqual(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);
bool KheEventGroupSubset(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);
bool KheEventGroupDisjoint(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);

returntrue if eg containse, if eg1 andeg2 contain the same events, if the events ofeg1 are a
subset of the events ofeg2, and if the events ofeg1 andeg2 are disjoint. There is nothing to
prevent two distinct event groups from containing the same events.

Some constraints apply to event groups. When these are created, they are added to the event
groups they apply to. To visit all the constraints that apply to a given event group, call

int KheEventGroupConstraintCount(KHE_EVENT_GROUP eg);
KHE_CONSTRAINT KheEventGroupConstraint(KHE_EVENT_GROUP eg, int i);

There may be any number of avoid split assignments constraints, spread events constraints, link
events constraints, and limit resources constraints, in any order. Function

void KheEventGroupDebug(KHE_EVENT_GROUP eg, int verbosity,
int indent, FILE *fp);

produces a debug print ofeg ontofp with the given verbosity and indent, in the usual way.

3.6.2. Events

An event is created and added to an instance by calling

bool KheEventMake(KHE_INSTANCE ins, char *id, char *name, char *color,
int duration, int workload, KHE_TIME preassigned_time, KHE_EVENT *e);

This returnsfalse only if id is non-NULL and is already theid of an event ofins. Parameter
color is an optional color for use when printing timetables. If non-NULL, its value must be a
legal Web colour ("#7CFC00" for example, or a colour name). A duration and workload are
compulsory (the XML specification states that a missing workload is taken to be equal to the
duration), but the preassigned time may beNULL. The back pointer is set and retrieved by

void KheEventSetBack(KHE_EVENT e, void *back);
void *KheEventBack(KHE_EVENT e);

as usual, and the other attributes may be retrieved by
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KHE_INSTANCE KheEventInstance(KHE_EVENT e);
char *KheEventId(KHE_EVENT e);
char *KheEventName(KHE_EVENT e);
char *KheEventColor(KHE_EVENT e);
int KheEventDuration(KHE_EVENT e);
int KheEventWorkload(KHE_EVENT e);
KHE_TIME KheEventPreassignedTime(KHE_EVENT e);

There are two other useful query functions. First,

int KheEventIndex(KHE_EVENT e);

returns the index number ofe (0 for the first event inserted, 1 for the next, etc.). This number has
no timetabling significance; it is included merely for convenience. Second,

int KheEventDemand(KHE_EVENT e);

returns thedemandof e, defined to be its duration multiplied by the number of its event resources
(in matching terms, the number of demand tixels). This is included as a measure of the overall
bulk of an event, useful for sorting events by estimated difficulty of timetabling.

Each event also contains any number of event resources. These are added to their events as
they are created. To visit them, call

int KheEventResourceCount(KHE_EVENT e);
KHE_EVENT_RESOURCE KheEventResource(KHE_EVENT e, int i);

in the usual way. There is also

bool KheEventRetrieveEventResource(KHE_EVENT e, char *role,
KHE_EVENT_RESOURCE *er);

which retrieves an event resource frome with the givenrole. If there is such an event resource,
it sets*er to it and returnstrue. If not,*er is not changed andfalse is returned.

Each event also contains any number of event resource groups. These are added to their
events as they are created. To visit them, call

int KheEventResourceGroupCount(KHE_EVENT e);
KHE_EVENT_RESOURCE_GROUP KheEventResourceGroup(KHE_EVENT e, int i);

as usual.

For convenience, an event group is created for each event, holding just that event. Call

KHE_EVENT_GROUP KheEventSingletonEventGroup(KHE_EVENT event);

to retrieve this event group. Other events may not be added to it.

Some constraints apply to events. When these constraints are created, they are added to the
events they apply to. To visit all the constraints applicable to a given event, call

int KheEventConstraintCount(KHE_EVENT e);
KHE_CONSTRAINT KheEventConstraint(KHE_EVENT e, int i);
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There may be any number of assign time constraints, prefer times constraints, split events
constraints, and distribute split events constraints, in any order, except that an event with a
preassigned time cannot have assign time constraints and prefer times constraints.

Following the general pattern given in Section 1.3, function

bool KheEventSimilar(KHE_EVENT e1, KHE_EVENT e2);

returnstrue if e1 ande2 are similar: if they have the same duration and similar event resources.
The exact definition is as follows. An event isadmissibleif it has one or more admissible event
resources. An event resource is admissible if its hard domain (reflecting its prefer resources con-
straints and any preassignment) is an admissible resource group, as defined in Section 3.5.6. An
event is always similar to itself. Two distinct events are similar if they are admissible, have equal
durations, and their admissible event resources (taken in any order) have equal hard domains.

There is also

bool KheEventMergeable(KHE_EVENT e1, KHE_EVENT e2, int slack);

which returnstrue if e1 ande2 could reasonably be considered to be split fragments of a single
larger event: if their event resources correspond, ignoring differences in the order in which they
appear in the two events. Ifslack is non-zero,KheEventMergeable returnstrue even if up
to slack event resources ine1 do not correspond with any event resource ine2 and vice versa.
Two event resources correspond when they have the same resource type, the same preassigned
resource, equal hard domains as returned byKheEventResourceHardDomain, and equal
hard-and-soft domains as returned byKheEventResourceHardAndSoftDomain. Like those two
functions,KheEventMergeable can only be called after the instance is complete.

A reasonable way to decide whether two events must be disjoint in time is to call

bool KheEventSharePreassignedResource(KHE_EVENT e1, KHE_EVENT e2,
KHE_RESOURCE *r);

If e1 ande2 share a preassigned resource which has a required avoid clashes constraint, this
function returnstrue and setsr to one such resource; otherwise it returnsfalse and setsr to
NULL. It should only be called after the instance is complete.

Function

void KheEventDebug(KHE_EVENT e, int verbosity, int indent, FILE *fp);

produces a debug print ofe ontofp with the given verbosity and indent, in the usual way.

3.6.3. Event resources

An event resource is created and added to an event by the call

bool KheEventResourceMake(KHE_EVENT event, KHE_RESOURCE_TYPE rt,
KHE_RESOURCE preassigned_resource, char *role, int workload,
KHE_EVENT_RESOURCE *er);

This returnsfalse only when the optionalrole parameter (used only when writing XML) is
non-NULL and there is already an event resource withinevent with this value forrole. Parameter
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preassigned_resource is an optional resource preassignment and may beNULL.

To set and retrieve the back pointer of an event resource, call

void KheEventResourceSetBack(KHE_EVENT_RESOURCE er, void *back);
void *KheEventResourceBack(KHE_EVENT_RESOURCE er);

as usual. The other attributes may be retrieved by

KHE_INSTANCE KheEventResourceInstance(KHE_EVENT_RESOURCE er);
int KheEventResourceInstanceIndex(KHE_EVENT_RESOURCE er);
KHE_EVENT KheEventResourceEvent(KHE_EVENT_RESOURCE er);
int KheEventResourceEventIndex(KHE_EVENT_RESOURCE er);
KHE_RESOURCE_TYPE KheEventResourceResourceType(KHE_EVENT_RESOURCE er);
KHE_RESOURCE KheEventResourcePreassignedResource(KHE_EVENT_RESOURCE er);
char *KheEventResourceRole(KHE_EVENT_RESOURCE er);
int KheEventResourceWorkload(KHE_EVENT_RESOURCE er);

KheEventResourceInstance is the enclosing instance;KheEventResourceInstanceIndex is
the index ofer in that instance (the numberi such thatKheInstanceEventResource(ins, i)

returnser). KheEventResourceEvent is the enclosing event;KheEventResourceEventIndex
is the index ofer in that event (the numberi such thatKheEventResource(e, i) returnser).

Some constraints apply to event resources. When these are created, they are added to the
event resources they apply to. To visit the constraints that apply to a given event resource, call

int KheEventResourceConstraintCount(KHE_EVENT_RESOURCE er);
KHE_CONSTRAINT KheEventResourceConstraint(KHE_EVENT_RESOURCE er, int i);

There may be any number of assign resource constraints, prefer resources constraints, and avoid
split assignments constraints, in any order, except that an event resource with a preassigned
resource cannot have assign resource constraints and prefer resources constraints. If thei’th
constraint is an avoid split assignments constraint, function

int KheEventResourceConstraintEventGroupIndex(KHE_EVENT_RESOURCE er, int i);

may be called to find the event group index within that constraint that containser. (It returns-1
if the i’th constraint is not an avoid split assignments constraint.)

After the instance is complete but not before, function

KHE_MAYBE_TYPE KheEventResourceNeedsAssignment(KHE_EVENT_RESOURCE er);

may be called to determine whether the constraints oner mean that it needs assignment (i.e. that
not assigning it would produce a positive hard or soft cost). Its return type is

typedef enum {
KHE_NO,
KHE_MAYBE,
KHE_YES

} KHE_MAYBE_TYPE;
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KHE_YES means that it does need assignment,because at least one assign resource constraint with
positive cost applies to it;KHE_MAYBE means that there is no case forKHE_YES, but at least one
limit resources constraint with positive cost and positive minimum limit applies to it; andKHE_NO

means that there is no case forKHE_YES or KHE_MAYBE.

Also after the instance is complete, functions

KHE_RESOURCE_GROUP KheEventResourceHardDomain(KHE_EVENT_RESOURCE er);
KHE_RESOURCE_GROUP KheEventResourceHardAndSoftDomain(KHE_EVENT_RESOURCE er);

return domains suited toer. The resource group returned byKheEventResourceHardDomain is
the intersection of the domains of the required prefer resources constraints, with weight greater
than 0, ofer and other event resources that share a required avoid split assignments constraint of
weight greater than 0 wither, either directly or indirectly via any number of intermediate event
resources. If any of these event resources is preassigned, then the singleton resource groups
containing the preassigned resources are intersected along with the other groups. The same is
true ofKheEventResourceHardAndSoftDomain, except that both hard and soft prefer resources
and avoid split assignments constraints are used, producing smaller domains in general.

These functions are not recommended for use when solving, sinceKheTaskTreeMake offers
a more sophisticated way of initializing the domains of tasks.KheEventResourceHardDomain

is used when deciding whether events are similar.

Also after the instance has ended, function

bool KheEventResourceEquivalent(KHE_EVENT_RESOURCE er1,
KHE_EVENT_RESOURCE er2);

may be called to decide whetherer1 ander2 areequivalent. Two event resources are equivalent
when they lie in the same event, and for every resourcer, assigningr toer1 has the same cost as
assigningr to er2, becauseer1 ander2 are monitored by equivalent constraints: constraints of
the same kinds with the same weights and other attributes (domains, basically) that affect cost.

The value returned byKheEventResourceEquivalent is based on values computed
duringKheInstanceMakeEnd, soKheEventResourceEquivalent is very fast. To ensure that
KheInstanceMakeEnd itself does not run slowly, only event resources that are adjacent in their
events are tested for equivalence, and for their constraints to be pronounced equivalent they
must appear in the same order. So whenKheEventResourceEquivalent returnstrue, the event
resources really are equivalent; but when it returnsfalse, they may or may not be equivalent.

Function

void KheEventResourceDebug(KHE_EVENT_RESOURCE er, int verbosity,
int indent, FILE *fp);

produces a debug print ofer ontofp with the given verbosity and indent, in the usual way.

3.6.4. Event resource groups

An event resource group is created and added to an event by the call

KHE_EVENT_RESOURCE_GROUP KheEventResourceGroupMake(KHE_EVENT event,
KHE_RESOURCE_GROUP rg);
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Its attributes may be retrieved by calling

KHE_EVENT KheEventResourceGroupEvent(KHE_EVENT_RESOURCE_GROUP erg);
KHE_RESOURCE_GROUP KheEventResourceGroupResourceGroup(
KHE_EVENT_RESOURCE_GROUP erg);

In addition to making a new event resource group object,KheEventResourceGroupMake

calls KheEventResourceMake once for each resource ofrg, with the resource for its
preassigned_resource parameter and the obviousvalues for itsother parameters. Thissatisfies
the semantic requirement that adding a resource group should be just like adding its resources
individually. These added event resources appear on the list of event resources of the event just
like other event resources; they can be distinguished from them only by calling

KHE_EVENT_RESOURCE_GROUP KheEventResourceEventResourceGroup(
KHE_EVENT_RESOURCE er);

which returns the event resource group that causeder to be created when there is one, andNULL

whener was created directly. For example, when printing XML files, KHE calls this function
once for each event resource, to decide whether it should be printed explicitly or omitted because
it is part of an event resource group. Function

void KheEventResourceGroupDebug(KHE_EVENT_RESOURCE_GROUP erg,
int verbosity, int indent, FILE *fp);

produces a debug print oferg ontofp with the given verbosity and indent, in the usual way.

3.7. Constraints

Some attributes of constraints are common to all kinds of constraints; others vary from one kind
of constraint to another. Accordingly, KHE offers typeKHE_CONSTRAINT, which is the abstract
supertype of all kinds of constraints, and one subtype of this type for each kind of constraint.

To set and retrieve the back pointer of a constraint object, call

void KheConstraintSetBack(KHE_CONSTRAINT c, void *back);
void *KheConstraintBack(KHE_CONSTRAINT c);

as usual. To retrieve the other attributes common to all kinds of constraints, use functions

KHE_INSTANCE KheConstraintInstance(KHE_CONSTRAINT c);
char *KheConstraintId(KHE_CONSTRAINT c);
char *KheConstraintName(KHE_CONSTRAINT c);
bool KheConstraintRequired(KHE_CONSTRAINT c);
int KheConstraintWeight(KHE_CONSTRAINT c);
KHE_COST KheConstraintCombinedWeight(KHE_CONSTRAINT c);
KHE_COST_FUNCTION KheConstraintCostFunction(KHE_CONSTRAINT c);
int KheConstraintIndex(KHE_CONSTRAINT c);
KHE_CONSTRAINT_TAG KheConstraintTag(KHE_CONSTRAINT c);

KheConstraintInstance returns the instance;KheConstraintId and KheConstraintName
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return the constraint’s Id and Name (as usual, these are optional in KHE, needed only when
writing XML). KheConstraintRequired is true when the Required attribute is true.

KheConstraintWeight is the weight given to violations of the constraint. As explained
in Section 6.1,KheConstraintCombinedWeight is similar, except that hard constraints are
weighted more heavily;KHE_COST is also defined there.KheConstraintCostFunction is the
cost function used when calculating the cost of deviations, of type

typedef enum {
KHE_STEP_COST_FUNCTION,
KHE_LINEAR_COST_FUNCTION,
KHE_QUADRATIC_COST_FUNCTION

} KHE_COST_FUNCTION;

KheConstraintIndex returns an automatically generated index number forc: 0 for the first
constraint created, 1 for the second, and so on.KheConstraintTag is the type tag which
determines which concrete kind of constraint this is, with type

typedef enum {
KHE_ASSIGN_RESOURCE_CONSTRAINT_TAG,
KHE_ASSIGN_TIME_CONSTRAINT_TAG,
KHE_SPLIT_EVENTS_CONSTRAINT_TAG,
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT_TAG,
KHE_PREFER_RESOURCES_CONSTRAINT_TAG,
KHE_PREFER_TIMES_CONSTRAINT_TAG,
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT_TAG,
KHE_SPREAD_EVENTS_CONSTRAINT_TAG,
KHE_LINK_EVENTS_CONSTRAINT_TAG,
KHE_ORDER_EVENTS_CONSTRAINT_TAG,
KHE_AVOID_CLASHES_CONSTRAINT_TAG,
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_IDLE_TIMES_CONSTRAINT_TAG,
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_BUSY_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_WORKLOAD_CONSTRAINT_TAG,
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT_TAG,
KHE_LIMIT_RESOURCES_CONSTRAINT_TAG,
KHE_CONSTRAINT_TAG_COUNT

} KHE_CONSTRAINT_TAG;

The last value is not a valid tag; it counts the number of constraints, allowing code of the form

for( tag = 0; tag < KHE_CONSTRAINT_TAG_COUNT; tag++ )
...

to be written which visits every tag, now and in the future.

The number of points of application of a constraint is returned by

int KheConstraintAppliesToCount(KHE_CONSTRAINT c);

For an assign resource constraint this is the total number of event resources; for a split events
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constraint it is the total number of events plus the sizes of the event groups; and so on.

Given a tag, one can obtain a string representation of the constraint name by calling

char *KheConstraintTagShow(KHE_CONSTRAINT_TAG tag);
char *KheConstraintTagShowSpaced(KHE_CONSTRAINT_TAG tag);

The first returns an unspaced form ("AssignResourceConstraint" and so on), the second
returns a spaced form ("Assign Resource Constraint" and so on). There is also

KHE_CONSTRAINT_TAG KheStringToConstraintTag(char *str);

which implements the inverse function, from unspaced constraint names to constraint tags, and

char *KheCostFunctionShow(KHE_COST_FUNCTION cf);

which returns a cost function’s string representation, and

void KheConstraintDebug(KHE_CONSTRAINT c, int verbosity,
int indent, FILE *fp);

which produces a debug print ofc ontofp with the given verbosity and indent. This just calls
the appropriate debug function for the downcast value:KheAssignResourceConstraintDebug,
KheAssignTimeConstraintDebug, and so on.

The names of the concrete subtypes themselves are

KHE_ASSIGN_RESOURCE_CONSTRAINT
KHE_ASSIGN_TIME_CONSTRAINT
KHE_SPLIT_EVENTS_CONSTRAINT
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KHE_PREFER_RESOURCES_CONSTRAINT
KHE_PREFER_TIMES_CONSTRAINT
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KHE_SPREAD_EVENTS_CONSTRAINT
KHE_LINK_EVENTS_CONSTRAINT
KHE_ORDER_EVENTS_CONSTRAINT
KHE_AVOID_CLASHES_CONSTRAINT
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KHE_LIMIT_IDLE_TIMES_CONSTRAINT
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT
KHE_LIMIT_BUSY_TIMES_CONSTRAINT
KHE_LIMIT_WORKLOAD_CONSTRAINT
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT
KHE_LIMIT_RESOURCES_CONSTRAINT

Downcasting and upcasting betweenKHE_CONSTRAINT and each of these subtypes,using C casts,
is a normal part of the use of KHE. Alternatively,since C casts can also be used for unsafe things,
explicit functions are offered for upcasting:
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KHE_CONSTRAINT KheFromAssignResourceConstraint(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_CONSTRAINT KheFromAssignTimeConstraint(
KHE_ASSIGN_TIME_CONSTRAINT c);

KHE_CONSTRAINT KheFromSplitEventsConstraint(
KHE_SPLIT_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromDistributeSplitEventsConstraint(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromPreferResourcesConstraint(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_CONSTRAINT KheFromPreferTimesConstraint(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidSplitAssignmentsConstraint(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromSpreadEventsConstraint(
KHE_SPREAD_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromLinkEventsConstraint(
KHE_LINK_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromOrderEventsConstraint(
KHE_ORDER_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidClashesConstraint(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidUnavailableTimesConstraint(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitIdleTimesConstraint(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromClusterBusyTimesConstraint(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitBusyTimesConstraint(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitWorkloadConstraint(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitActiveIntervalsConstraint(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitResourcesConstraint(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

and for downcasting:
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KHE_ASSIGN_RESOURCE_CONSTRAINT
KheToAssignResourceConstraint(KHE_CONSTRAINT c);

KHE_ASSIGN_TIME_CONSTRAINT
KheToAssignTimeConstraint(KHE_CONSTRAINT c);

KHE_SPLIT_EVENTS_CONSTRAINT
KheToSplitEventsConstraint(KHE_CONSTRAINT c);

KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KheToDistributeSplitEventsConstraint(KHE_CONSTRAINT c);

KHE_PREFER_RESOURCES_CONSTRAINT
KheToPreferResourcesConstraint(KHE_CONSTRAINT c);

KHE_PREFER_TIMES_CONSTRAINT
KheToPreferTimesConstraint(KHE_CONSTRAINT c);

KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KheToAvoidSplitAssignmentsConstraint(KHE_CONSTRAINT c);

KHE_SPREAD_EVENTS_CONSTRAINT
KheToSpreadEventsConstraint(KHE_CONSTRAINT c);

KHE_LINK_EVENTS_CONSTRAINT
KheToLinkEventsConstraint(KHE_CONSTRAINT c);

KHE_ORDER_EVENTS_CONSTRAINT
KheToOrderEventsConstraint(KHE_CONSTRAINT c);

KHE_AVOID_CLASHES_CONSTRAINT
KheToAvoidClashesConstraint(KHE_CONSTRAINT c);

KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KheToAvoidUnavailableTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_IDLE_TIMES_CONSTRAINT
KheToLimitIdleTimesConstraint(KHE_CONSTRAINT c);

KHE_CLUSTER_BUSY_TIMES_CONSTRAINT
KheToClusterBusyTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_BUSY_TIMES_CONSTRAINT
KheToLimitBusyTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_WORKLOAD_CONSTRAINT
KheToLimitWorkloadConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT
KheToLimitActiveIntervalsConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_RESOURCES_CONSTRAINT
KheToLimitResourcesConstraint(KHE_CONSTRAINT c);

The downcasting functions check that their parameter is of the correct type, and abort if not.

3.7.1. Assign resource constraints

An assign resource constraint is created and added to an instance by

bool KheAssignResourceConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_ASSIGN_RESOURCE_CONSTRAINT *c);
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This accepts the attributes common to all constraints, followed by an optionalrole, which is
specific to this kind of constraint. As usual, if successful it returnstrue, setting*c to the new
constraint; if not (which can only be becauseid is non-NULL and equal to the Id of an existing
constraint ofins), then it returnsfalse, setting*c to NULL.

The attributes common to all kinds of constraints may be retrieved by upcasting to
KHE_CONSTRAINT and calling the relevant operations on that type. The attribute specific to assign
resources constraints may be retrieved by calling

char *KheAssignResourceConstraintRole(KHE_ASSIGN_RESOURCE_CONSTRAINT c);

Initially the constraint has no points of application. There are two ways to add them. The first
is to giveNULL for role, then add the event resources that this constraint applies to by calling

void KheAssignResourceConstraintAddEventResource(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT_RESOURCE er);

as often as necessary. It is an error to call this function whener contains a preassigned resource,
since assign resource constraints do not apply to event resources with preassigned resources. To
visit the event resources ofc, call

int KheAssignResourceConstraintEventResourceCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT_RESOURCE KheAssignResourceConstraintEventResource(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

as usual.

The second way to add event resources, used when reading XML files, is to give a non-NULL

value forrole, then add events and event groups. To add events and visit them, the calls are

void KheAssignResourceConstraintAddEvent(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT e);

int KheAssignResourceConstraintEventCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT KheAssignResourceConstraintEvent(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

To add event groups and visit them, the calls are

void KheAssignResourceConstraintAddEventGroup(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheAssignResourceConstraintEventGroupCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT_GROUP KheAssignResourceConstraintEventGroup(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

When this is done, KHE stores the events and event groups in the constraint so that they can be
written out again correctly later,but it also works out which event resources the constraint applies
to and callsKheAssignResourceConstraintAddEventResource for each of them, taking due
note of the XML rule that it does not apply when an event does not contain an event resource
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with the specified role, or when such an event resource has a preassigned resource.

Function

void KheAssignResourceConstraintDebug(KHE_ASSIGN_RESOURCE_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the assign resources constraints of an instance (Section 3.3) is
their number of their points of application divided by the number of event resources without
preassigned resources.

3.7.2. Assign time constraints

An assign time constraint is created and added to an instance by

bool KheAssignTimeConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_ASSIGN_TIME_CONSTRAINT *c);

As usual, if successful it returnstrue, setting*c to the new constraint; if not (which can only
be becauseid is non-NULL and equal to the Id of an existing constraint ofins), then it returns
false, setting*c toNULL. The attributes may be retrieved by upcasting toKHE_CONSTRAINT and
calling the relevant operations on that type.

The points of application of an assign time constraint are events, and the XML file allows
them to be given individually and in groups. To add individual events and visit them, call

void KheAssignTimeConstraintAddEvent(KHE_ASSIGN_TIME_CONSTRAINT c,
KHE_EVENT e);

int KheAssignTimeConstraintEventCount(KHE_ASSIGN_TIME_CONSTRAINT c);
KHE_EVENT KheAssignTimeConstraintEvent(KHE_ASSIGN_TIME_CONSTRAINT c,
int i);

To add groups of events and visit them, call

void KheAssignTimeConstraintAddEventGroup(KHE_ASSIGN_TIME_CONSTRAINT c,
KHE_EVENT_GROUP eg);

int KheAssignTimeConstraintEventGroupCount(
KHE_ASSIGN_TIME_CONSTRAINT c);

KHE_EVENT_GROUP KheAssignTimeConstraintEventGroup(
KHE_ASSIGN_TIME_CONSTRAINT c, int i);

The XML specification states that assign time constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function
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void KheAssignTimeConstraintDebug(KHE_ASSIGN_TIME_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the assign times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.3. Split events constraints

A split events constraint is created and added to an instance by

bool KheSplitEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int min_duration, int max_duration, int min_amount,
int max_amount, KHE_SPLIT_EVENTS_CONSTRAINT *c);

in the usual way. Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and
calling the relevant operation on that type. The exceptions are

int KheSplitEventsConstraintMinDuration(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMaxDuration(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMinAmount(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMaxAmount(KHE_SPLIT_EVENTS_CONSTRAINT c);

which return the various attributes specific to split events constraints.

The points of application are events, and, as for assign time constraints, these may be added
and visited individually:

void KheSplitEventsConstraintAddEvent(KHE_SPLIT_EVENTS_CONSTRAINT c,
KHE_EVENT e);

int KheSplitEventsConstraintEventCount(KHE_SPLIT_EVENTS_CONSTRAINT c);
KHE_EVENT KheSplitEventsConstraintEvent(KHE_SPLIT_EVENTS_CONSTRAINT c,
int i);

and also in groups:

void KheSplitEventsConstraintAddEventGroup(
KHE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheSplitEventsConstraintEventGroupCount(
KHE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheSplitEventsConstraintEventGroup(
KHE_SPLIT_EVENTS_CONSTRAINT c, int i);

All the events are linked to the constraint, unlike for assign time constraints.

Function

void KheSplitEventsConstraintDebug(KHE_SPLIT_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);
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produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the split events constraints of an instance (Section 3.3) is their
number of points of application divided by the total number of events.

3.7.4. Distribute split events constraints

A distribute split events constraint is created and added to an instance by

bool KheDistributeSplitEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int duration, int minimum, int maximum,
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT *c);

in the usual way. Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and
calling the relevant operation on that type. The exceptions are

int KheDistributeSplitEventsConstraintDuration(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

int KheDistributeSplitEventsConstraintMinimum(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

int KheDistributeSplitEventsConstraintMaximum(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

which return the various attributes specific to distribute split events constraints.

The points of application are events, and, as for split events constraints, these may be added
and visited individually:

void KheDistributeSplitEventsConstraintAddEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT e);

int KheDistributeSplitEventsConstraintEventCount(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT KheDistributeSplitEventsConstraintEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, int i);

and also in groups:

void KheDistributeSplitEventsConstraintAddEventGroup(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheDistributeSplitEventsConstraintEventGroupCount(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheDistributeSplitEventsConstraintEventGroup(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, int i);

All the events are linked to the constraint.

Function

void KheDistributeSplitEventsConstraintDebug(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);
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produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the distribute split events constraints of an instance (Section 3.3)
is their number of points of application divided by the total number of events.

3.7.5. Prefer resources constraints

A prefer resources constraint is created and added to an instance by

bool KhePreferResourcesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_PREFER_RESOURCES_CONSTRAINT *c);

As usual, the only reason for returningfalse is that id is non-NULL and there is already a
constraint inins with this id. Most of the attributes may be retrieved by upcasting to
KHE_CONSTRAINT and calling the relevant operations on that type; the exception isrole, which
is retrieved by calling

char *KhePreferResourcesConstraintRole(KHE_PREFER_RESOURCES_CONSTRAINT c);

since it is specific to this constraint type.

In the XML specification, the resources that make up the domain of the constraint may be
added in groups or individually. To add them in groups, and to visit the groups, call

bool KhePreferResourcesConstraintAddResourceGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KhePreferResourcesConstraintResourceGroupCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_RESOURCE_GROUP KhePreferResourcesConstraintResourceGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

Thebool result type ofKhePreferResourcesConstraintAddResourceGroup (and other func-
tions below) is explained at the end of this section. To add and visit resources individually, call

bool KhePreferResourcesConstraintAddResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_RESOURCE r);

int KhePreferResourcesConstraintResourceCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_RESOURCE KhePreferResourcesConstraintResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

After the instance is complete, but not before, function

KHE_RESOURCE_GROUP KhePreferResourcesConstraintDomain(
KHE_PREFER_RESOURCES_CONSTRAINT c);

returns the domain ofc as a single resource group. If exactly one resource group or one resource
was added, this resource group will be that resource group or the automatically created singleton
resource group for that resource; otherwise it will be created by taking the union of everything
added. This resource group may be used like any other, except for a problem in one special case:
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when no resource groups or resources are added, the domain is not only an empty resource group
but also has aNULL resource type.

There is also

KHE_RESOURCE_GROUP KheLimitResourcesConstraintDomainComplement(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

which returns the complement of the domain, that is, the set of resources of the same type as the
domain that are not in it. This will not work whenc’s domain is empty.

The points of application of prefer resources constraints are event resources, and they
are handled in the same way as for assign resource constraints. That is, one can load the event
resources directly by having aNULL value forrole and calling

bool KhePreferResourcesConstraintAddEventResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT_RESOURCE er);

int KhePreferResourcesConstraintEventResourceCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT_RESOURCE KhePreferResourcesConstraintEventResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

or load them indirectly by loading events:

bool KhePreferResourcesConstraintAddEvent(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT e);

int KhePreferResourcesConstraintEventCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT KhePreferResourcesConstraintEvent(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

and event groups:

bool KhePreferResourcesConstraintAddEventGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT_GROUP eg,
KHE_EVENT *problem_event);

int KhePreferResourcesConstraintEventGroupCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT_GROUP KhePreferResourcesConstraintEventGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

WhenKhePreferResourcesConstraintAddEventGroup returnsfalse, problem_event is set
to the first event that caused the problem. The rules for skipping inappropriate events are as for
assign resource constraints.

The resources, resource groups, and event resources of a prefer resources constraint all have
a resource type attribute. All these resources types must be equal. This is why the operations
above for adding a resource, resource group, event resource,event, or event group all have abool

result type: they all returnfalse and add nothing if the operation would add an entity with a
different resource type from something added previously.

Function
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void KhePreferResourcesConstraintDebug(KHE_PREFER_RESOURCES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of prefer resources constraints (Section 3.3) is the number of points
of application divided by the number of event resources without preassigned resources.

3.7.6. Prefer times constraints

A prefer times constraint is created and added to an instance by

bool KhePreferTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int duration, KHE_PREFER_TIMES_CONSTRAINT *c);

As usual, the only possible reason for returningfalse is thatid is non-NULL and there is already a
constraint inins with thisid. A duration is optional; to not give one (meaning that the constraint
applies for all durations), use the special valueKHE_ANY_DURATION, a synonym for 0.

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operations on that type; the exception isduration, which is retrieved by calling

int KhePreferTimesConstraintDuration(KHE_PREFER_TIMES_CONSTRAINT c);

since it is specific to this constraint type.

In the XML specification, the times that make up the domain of the constraint may be added
in groups or individually. To add them in groups, and to visit the groups, call

void KhePreferTimesConstraintAddTimeGroup(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KhePreferTimesConstraintTimeGroupCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KhePreferTimesConstraintTimeGroup(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

To add and visit times individually, call

void KhePreferTimesConstraintAddTime(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_TIME t);

int KhePreferTimesConstraintTimeCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_TIME KhePreferTimesConstraintTime(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

After the instance is complete, but not before, function

KHE_TIME_GROUP KhePreferTimesConstraintDomain(
KHE_PREFER_TIMES_CONSTRAINT c);

returns the domain ofc as a single time group. If exactly one time group or one time was added,
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this time group will be that time group or the automatically created singleton time group for that
time; otherwise it will be created by taking the union of everything added. This time group may
be used like any other.

The points of application of prefer times constraints are events, and they can be added and
visited individually:

void KhePreferTimesConstraintAddEvent(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_EVENT e);

int KhePreferTimesConstraintEventCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_EVENT KhePreferTimesConstraintEvent(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

or in groups:

void KhePreferTimesConstraintAddEventGroup(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KhePreferTimesConstraintEventGroupCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_EVENT_GROUP KhePreferTimesConstraintEventGroup(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

The XML specification states that prefer times constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function

void KhePreferTimesConstraintDebug(KHE_PREFER_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the prefer times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.7. Avoid split assignments constraints

An avoid split assignments constraint is created and added to an instance by

bool KheAvoidSplitAssignmentsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT *c);

As usual, the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type, except that to retrieve therole attribute the call is

char *KheAvoidSplitAssignmentsConstraintRole(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);
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Therole attribute may beNULL.

The handling of the points of application of an avoid split assignments constraint is
somewhat complex, because one point of application is fundamentally a set of event resources
(the XML file identifies each set by an event group and a role), so that the points of application
overall form a set of sets of event resources. We will first explain how to add these points of
application when reading an XML file, and then how to do it directly.

When reading an XML file, a non-NULL role is passed, and then each event group is added
in the usual way. To add an event group and to visit the event groups, the calls are

bool KheAvoidSplitAssignmentsConstraintAddEventGroup(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, KHE_EVENT_GROUP eg,
KHE_EVENT *problem_event);

int KheAvoidSplitAssignmentsConstraintEventGroupCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheAvoidSplitAssignmentsConstraintEventGroup(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int i);

Behind the scenes, the appropriate event resources are retrieved from the events of each event
group and added automatically, so that nothing further needs to be done. Afalse result
returned byKheAvoidSplitAssignmentsConstraintAddEventGroup indicates that one of the
events ofeg does not contain an event resource with the required non-NULL role. In this case,
*problem_event will contain the first event ofeg with this problem on return.

When the instance is not derived from an XML file it may be more convenient to add
event resources directly. For the sake of this case,role may beNULL, and theeg parameter of
KheAvoidSplitAssignmentsConstraintAddEventGroup may also beNULL. If either isNULL,
event resources are not added automatically.

To add event resources manually, and to visit event resources (whether added automatically
or manually), the calls are

void KheAvoidSplitAssignmentsConstraintAddEventResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index,
KHE_EVENT_RESOURCE er);

int KheAvoidSplitAssignmentsConstraintEventResourceCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index);

KHE_EVENT_RESOURCE KheAvoidSplitAssignmentsConstraintEventResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index, int er_index);

These functions add an event resource to theeg_index’th point of application ofc, return the
number of event resources at that point, and return theer_index’th event resource at that point.
They define the required set of sets of event resources.

Usually, constraints are added to the instance and to the entities they apply to. For avoid
split assignments constraints this would mean adding the constraint to the instance and the event
groups. This is done, but, for convenience, each avoid split assignments constaint is also added
to each of its event resources.

Function
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void KheAvoidSplitAssignmentsConstraintDebug(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density (Section 3.3) is the number of event resources in all points of
application divided by the number of event resources without preassigned resources.

3.7.8. Spread events constraints

A spread events constraint is created and added to an instance by

bool KheSpreadEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_SPREAD ts, KHE_SPREAD_EVENTS_CONSTRAINT *c);

where typeKHE_TIME_SPREAD is explained below. Most of the attributes may be retrieved by
upcasting toKHE_CONSTRAINT and calling the relevant operation on that type. The exception is

KHE_TIME_SPREAD KheSpreadEventsConstraintTimeSpread(
KHE_SPREAD_EVENTS_CONSTRAINT c);

which returns the time spread. TypeKHE_TIME_SPREAD is an object which describes the time
groups that the constraint requires the event group to spread through, and the limits on the
number of events that may touch each time group. Time spread objects are immutable, and may
be shared among any number of constraints. To create a time spread object, call

KHE_TIME_SPREAD KheTimeSpreadMake(KHE_INSTANCE ins);

Initially this has no time groups. To add them, call

void KheTimeSpreadAddLimitedTimeGroup(KHE_TIME_SPREAD ts,
KHE_LIMITED_TIME_GROUP ltg);

repeatedly. To retrieve the limited time groups of a time spread, call

int KheTimeSpreadLimitedTimeGroupCount(KHE_TIME_SPREAD lts);
KHE_LIMITED_TIME_GROUP KheTimeSpreadLimitedTimeGroup(
KHE_TIME_SPREAD lts, int i);

An object of typeKHE_LIMITED_TIME_GROUP contains what one element of a time spread needs:
a time group plus a minimum and maximum number of events. It may be created by calling

KHE_LIMITED_TIME_GROUP KheLimitedTimeGroupMake(KHE_TIME_GROUP tg,
int minimum, int maximum);

and functions

KHE_TIME_GROUP KheLimitedTimeGroupTimeGroup(KHE_LIMITED_TIME_GROUP ltg);
int KheLimitedTimeGroupMinimum(KHE_LIMITED_TIME_GROUP ltg);
int KheLimitedTimeGroupMaximum(KHE_LIMITED_TIME_GROUP ltg);
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retrieve its attributes.

Two other operations on time spreads, available only after the instance is complete, provide
information that may be useful to solvers:

bool KheTimeSpreadTimeGroupsDisjoint(KHE_TIME_SPREAD ts);
bool KheTimeSpreadCoversWholeCycle(KHE_TIME_SPREAD ts);

KheTimeSpreadTimeGroupsDisjoint returnstrue when the time groups ofts’s limited time
groups are pairwise disjoint.KheTimeSpreadCoversWholeCycle returnstrue when every time
of the cycle appears in at least one of the time groups ofts’s limited time groups.

Spread events apply to event groups; the operations for adding and visiting them are

void KheSpreadEventsConstraintAddEventGroup(
KHE_SPREAD_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheSpreadEventsConstraintEventGroupCount(
KHE_SPREAD_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheSpreadEventsConstraintEventGroup(
KHE_SPREAD_EVENTS_CONSTRAINT c, int i);

as usual.

Function

void KheSpreadEventsConstraintDebug(KHE_SPREAD_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the spread events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.9. Link events constraints

A link events constraint is created and added to an instance by

bool KheLinkEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_LINK_EVENTS_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type. One point of application of a link events constraint is an event group; one
constraint may contain any number of these. The operations for adding them are

void KheLinkEventsConstraintAddEventGroup(KHE_LINK_EVENTS_CONSTRAINT c,
KHE_EVENT_GROUP eg);

int KheLinkEventsConstraintEventGroupCount(KHE_LINK_EVENTS_CONSTRAINT c);
KHE_EVENT_GROUP KheLinkEventsConstraintEventGroup(

KHE_LINK_EVENTS_CONSTRAINT c, int i);

as usual.

Function
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void KheLinkEventsConstraintDebug(KHE_LINK_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the link events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.10. Order events constraints

An order events constraint is created and added to an instance by

bool KheOrderEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_ORDER_EVENTS_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type.

One point of application of an order events constraint is a pair of instance events, together
with integer minimum and maximum separations. To add one point of application, call

void KheOrderEventsConstraintAddEventPair(KHE_ORDER_EVENTS_CONSTRAINT c,
KHE_EVENT first_event, KHE_EVENT second_event, int min_separation,
int max_separation);

Both min_separation andmax_separation must be non-negative. Infinity, the default value
of max_separation in the XML format, is implemented by passingINT_MAX.

To retrieve the number of points of application and the attributes of each, call

int KheOrderEventsConstraintEventPairCount(
KHE_ORDER_EVENTS_CONSTRAINT c);

KHE_EVENT KheOrderEventsConstraintFirstEvent(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

KHE_EVENT KheOrderEventsConstraintSecondEvent(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

int KheOrderEventsConstraintMinSeparation(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

int KheOrderEventsConstraintMaxSeparation(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

in the usual way. The value ofKheOrderEventsConstraintEventPairCount(c) is the same
as the value ofKheConstraintAppliesToCount((KHE_CONSTRAINT) c).

Function

void KheOrderEventsConstraintDebug(KHE_ORDER_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the order events constraints of an instance (Section 3.3) is their
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number of points of application divided by the number of events.

3.7.11. Avoid clashes constraints

An avoid clashes constraint is created and added to an instance by

bool KheAvoidClashesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_AVOID_CLASHES_CONSTRAINT *c);

as usual. The attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type.

Avoid clashes constraints apply to resource groups and resources. To add and visit resource
groups, the operations are

void KheAvoidClashesConstraintAddResourceGroup(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheAvoidClashesConstraintResourceGroupCount(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheAvoidClashesConstraintResourceGroup(
KHE_AVOID_CLASHES_CONSTRAINT c, int i);

while to add and visit resources the operations are

void KheAvoidClashesConstraintAddResource(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE r);

int KheAvoidClashesConstraintResourceCount(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_RESOURCE KheAvoidClashesConstraintResource(
KHE_AVOID_CLASHES_CONSTRAINT c, int i);

These all work in the usual way. There is also

int KheAvoidClashesConstraintResourceOfTypeCount(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resourcesof typertwhich are pointsof application ofc. In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

Function

void KheAvoidClashesConstraintDebug(KHE_AVOID_CLASHES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the avoid clashes constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.
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3.7.12. Avoid unavailable times constraints

An avoid unavailable times constraint is created and added to an instance by

bool KheAvoidUnavailableTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT *c);

in the usual way. To add the resource groups and resources defining the points of application,
and to visit them, call

void KheAvoidUnavailableTimesConstraintAddResourceGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheAvoidUnavailableTimesConstraintResourceGroupCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheAvoidUnavailableTimesConstraintResourceGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

for resource groups and

void KheAvoidUnavailableTimesConstraintAddResource(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheAvoidUnavailableTimesConstraintResourceCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_RESOURCE KheAvoidUnavailableTimesConstraintResource(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

for individual resources. The XML format allows the unavailable times themselves to be defined
by both time groups and times. To add time groups and visit them, call

void KheAvoidUnavailableTimesConstraintAddTimeGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheAvoidUnavailableTimesConstraintTimeGroupCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintTimeGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

To add individual times and visit them, call

void KheAvoidUnavailableTimesConstraintAddTime(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_TIME t);

int KheAvoidUnavailableTimesConstraintTimeCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_TIME KheAvoidUnavailableTimesConstraintTime(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

These functions all work in the usual way. Function

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintUnavailableTimes(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);
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returns a time group containing the union of the time groups and times ofc, and

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintAvailableTimes(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

returns a time group containing the complement of those times. Both functions may be called
only after construction of the instance is complete. The time groups they return will usually not
have neighbourhoods (Section 3.4.1). This is not likely to cause problems.

Function

void KheAvoidUnavailableTimesConstraintDebug(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the avoid unavailable times constraints of an instance (Section
3.3) is the number of points of application divided by the number of resources.

3.7.13. Limit idle times constraints

A limit idle times constraint is created and added to an instance by

bool KheLimitIdleTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int minimum, int maximum, KHE_LIMIT_IDLE_TIMES_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are

int KheLimitIdleTimesConstraintMinimum(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);
int KheLimitIdleTimesConstraintMaximum(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

which are specific to this kind of constraint.

A limit idle times constraint requires time groups, which are added and visited by calling

void KheLimitIdleTimesConstraintAddTimeGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitIdleTimesConstraintTimeGroupCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheLimitIdleTimesConstraintTimeGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

After the instance ends, the following queries are available:

bool KheLimitIdleTimesConstraintTimeGroupsDisjoint(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

bool KheLimitIdleTimesConstraintTimeGroupsCoverWholeCycle(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

They returntrue when the time groups ofc are pairwise disjoint, and when their union covers
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the whole cycle.

A limit idle times constraint also requires the resource groups and resources which define
its points of application. Resource groups are added and visited by calling

void KheLimitIdleTimesConstraintAddResourceGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitIdleTimesConstraintResourceGroupCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitIdleTimesConstraintResourceGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheLimitIdleTimesConstraintAddResource(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitIdleTimesConstraintResourceCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_RESOURCE KheLimitIdleTimesConstraintResource(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

in the usual way.

Function

void KheLimitIdleTimesConstraintDebug(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The constraint density of the limit idle times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.14. Cluster busy times constraints

A cluster busy times constraint is created and added to an instance by

bool KheClusterBusyTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
bool allow_zero, KHE_CLUSTER_BUSY_TIMES_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are
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KHE_TIME_GROUP KheClusterBusyTimesConstraintAppliesToTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

int KheClusterBusyTimesConstraintMinimum(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

int KheClusterBusyTimesConstraintMaximum(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

bool KheClusterBusyTimesConstraintAllowZero(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg must beNULL andallow_zero must befalse. There is also

bool KheClusterBusyTimesConstraintLimitBusyRecode(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

It returnstrue whenc is a recoded limit busy times constraint, for which see Section 3.7.15.

After the instance is complete, functions

int KheClusterBusyTimesConstraintAppliesToOffsetCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

int KheClusterBusyTimesConstraintAppliesToOffset(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

may be used to visit theapplies-to offsets, or justoffsets, of c. If applies_to_tg isNULL, there is
one offset,with value 0. Ifapplies_to_tg is empty, there are no offsets. Otherwise, lett0 be the
first time inapplies_to_tg. There is one offset for each timeti in applies_to_tg, including
t0, such that whenKheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time
in c, the result is a legal time index.

A cluster busy times constraint requires time groups, which are added and visited by

void KheClusterBusyTimesConstraintAddTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg, KHE_POLARITY po);

int KheClusterBusyTimesConstraintTimeGroupCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheClusterBusyTimesConstraintTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i, int offset, KHE_POLARITY *po);

where typeKHE_POLARITY is

typedef enum {
KHE_NEGATIVE,
KHE_POSITIVE

} KHE_POLARITY;

In the high school model, the polarity must beKHE_POSITIVE. When visiting, to get the original
time groups, setoffset to 0; to get the time groups being monitored by monitorm, set it to
KheClusterBusyTimesMonitorOffset(m).

Convenience functions
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bool KheClusterBusyTimesConstraintAllPositive(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

bool KheClusterBusyTimesConstraintAllNegative(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

returntrue when all of the time groups added so far have polarityKHE_POSITIVE, or all have
polarityKHE_NEGATIVE. In real instances one of these two functions will usually returntrue. In
nurse rostering the main exceptions are constraints that implement unwanted patterns. Also,

bool KheClusterBusyTimesConstraintTimeGroupsDisjoint(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

bool KheClusterBusyTimesConstraintTimeGroupsCoverWholeCycle(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

returntrue when the time groups ofc are pairwise disjoint, and when their union covers the
whole cycle. These functions should only be called after the instance is complete. Also,

bool KheClusterBusyTimesConstraintRange(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int offset,
KHE_TIME *first_time, KHE_TIME *last_time);

sets*first_time and *last_time to the chronologically first and last times monitored
by c at offset, and returnstrue. Hereoffset must be a legal offset (a value returned by
KheClusterBusyTimesConstraintAppliesToOffset above). In the unlikely event ofc having
no time groups, the function returnsfalse with *first_time and*last_time set toNULL.

To add the resource groups and resources defining the points of application, use

void KheClusterBusyTimesConstraintAddResourceGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheClusterBusyTimesConstraintResourceGroupCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheClusterBusyTimesConstraintResourceGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

for resource groups and

void KheClusterBusyTimesConstraintAddResource(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheClusterBusyTimesConstraintResourceCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE KheClusterBusyTimesConstraintResource(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

for individual resources. There is also

int KheClusterBusyTimesConstraintResourceOfTypeCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resourcesof typertwhich are pointsof application ofc. In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.
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For employee scheduling only, to add and retrieve a value representing the number of time
groups preceding this constraint, calledai in Jeff Kingston’s paper on history [10], call

void KheClusterBusyTimesConstraintAddHistoryBefore(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int val);

int KheClusterBusyTimesConstraintHistoryBefore(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

WhenKheClusterBusyTimesConstraintAddHistoryBefore is not called, the value is 0.

For employee scheduling only, to add and retrieve a value representing the number of time
groups following this constraint, calledci in the history paper, call

void KheClusterBusyTimesConstraintAddHistoryAfter(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int val);

int KheClusterBusyTimesConstraintHistoryAfter(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

WhenKheClusterBusyTimesConstraintAddHistoryAfter is not called, the value is 0.

For employee scheduling only, to add and retrieve a value for one resource representing the
number of active time groups preceding this constraint, calledxi in the history paper, call

void KheClusterBusyTimesConstraintAddHistory(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r, int val);

int KheClusterBusyTimesConstraintHistory(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

WhenKheClusterBusyTimesConstraintAddHistory is not called for somer, the value is 0.

KHE does not check that resources in history calls are points of application ofc. It aborts
if any conflicting history values are received.

Function

void KheClusterBusyTimesConstraintDebug(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The number of points of application of a cluster busy times constraintc is its total number
of resources multiplied byKheClusterBusyTimesConstraintAppliesToOffsetCount(c) .
The constraint density of the cluster busy times constraints of an instance (Section 3.3) is their
total number of points of application divided by the number of resources in the instance.

Suppose that a cluster busy times constraint requires some resource to be busy for at most
20 out of 28 days. This is the same as requiring the resource to be free for at least 8 out of the 28
days. Here is a general statement of what is going on here, along with a proof.

Theorem. Suppose cluster busy times constraintc has minimum limita, maximum limitb,
andn time groups. Suppose cluster busy times constraintc′ has minimum limitn − b, maximum
limit n − a, the same hardness, cost function, and weight asc, and the same time groups asc, only
with their polarities reversed. Ifchas history valuesai,xi (one for each resource), andci, suppose
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thatc′ has the sameai andci values asc, but that each of itsxi values is changed toai − xi. Then
in every solution,c andc′ have equal cost.

Proof. The proof depends on the fact that when a time group’s polarity is reversed, so is
its activity. If positive time groupg is active, it is busy, so one of its times is busy. Ifg is made
negative, one of its times is still busy, so it is inactive. If positive time groupg is inactive,none of
its times is busy. Ifg is made negative, still none of its times is busy, so it is active. And so on.

Let Sbe an arbitrary solution, and suppose thatc hask active time groups inS. Then the
deviation ofc is

d(c) = max(0,a − k,k − b)

But c′ hasn − k active time groups inS, because the time groups are the same as inc but their
polarity, and hence their activity as we have seen, is reversed. So the deviation ofc′ is

d(c′) = max(0, (n − b) − (n − k), (n − k) − (n − a))

which simplifies to max(0,k − b,a − k) which equalsd(c).
When history is present, there areai time groups preceding the first time group but not

explicitly represented,xi of which are active; and there areci time groups following the last time
group, again not explicitly represented, whose activity is unknown. When these times groups’
polarities are reversed, there will still beai time groups preceding the first time group, but now
ai − xi of them will be active; and there will still beci time groups following the last time group,
whose activity remains unknown.

3.7.15. Limit busy times constraints

A limit busy times constraint is created and added to an instance by

bool KheLimitBusyTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
bool allow_zero, KHE_LIMIT_BUSY_TIMES_CONSTRAINT *c);

Most of these attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type. The exceptions are

KHE_TIME_GROUP KheLimitBusyTimesConstraintAppliesToTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

int KheLimitBusyTimesConstraintMinimum(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

int KheLimitBusyTimesConstraintMaximum(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

bool KheLimitBusyTimesConstraintAllowZero(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg must beNULL andallow_zero must befalse.
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After the instance is complete, functions

int KheLimitBusyTimesConstraintAppliesToOffsetCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

int KheLimitBusyTimesConstraintAppliesToOffset(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

may be used to visit theapplies-to offsets, or justoffsets, of c. If applies_to_tg isNULL, there is
one offset,with value 0. Ifapplies_to_tg is empty, there are no offsets. Otherwise, lett0 be the
first time inapplies_to_tg. There is one offset for each timeti in applies_to_tg, including
t0, such that whenKheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time
in c, the result is a legal time index.

A limit busy times constraint requires time groups, which are added and visited by

void KheLimitBusyTimesConstraintAddTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitBusyTimesConstraintTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheLimitBusyTimesConstraintTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int offset, int i);

To get the original time groups, setoffset to 0; to get the time groups monitored by monitorm,
set it toKheLimitBusyTimesMonitorOffset(m).

After the instance is complete, these two functions may be called:

KHE_TIME_GROUP KheLimitBusyTimesConstraintDomain(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

bool KheLimitBusyTimesConstraintLimitsWholeCycle(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KheLimitBusyTimesConstraintDomain returns thedomainof c: the union of its time groups.
It may be used like any time group, except that it may have no neighbourhood (Section 3.4.1).
This function should probably not exist; it is irrelevant to solving, because the limits are applied
to each time group separately.KheLimitBusyTimesConstraintLimitsWholeCycle returns
true whenc contains a time group equal to the whole cycle.

A limit busy times constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

void KheLimitBusyTimesConstraintAddResourceGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitBusyTimesConstraintResourceGroupCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitBusyTimesConstraintResourceGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

and individual resources are added and visited by calling
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void KheLimitBusyTimesConstraintAddResource(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitBusyTimesConstraintResourceCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE KheLimitBusyTimesConstraintResource(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

in the usual way. There is also

int KheLimitBusyTimesConstraintResourceOfTypeCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resourcesof typertwhich are pointsof application ofc. In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

Function

void KheLimitBusyTimesConstraintDebug(KHE_LIMIT_BUSY_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The number of points of application of a limit busy times constraintc is its total number
of resources multiplied byKheLimitBusyTimesConstraintAppliesToOffsetCount(c) . The
constraint density of the limit busy times constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

KheInstanceMakeEnd (Section 3.1) has alimit_busy_recode option which affects limit
busy times constraints. When it is false they are handled in the usual way. When it is true,
some limit busy times constraints are replaced by equivalent cluster busy times constraints when
solving. Their monitors are more flexible in some ways; for example, they accept cutoff limits.

What happens,precisely, is this. For each time group of each limit busy timesconstraint that
has a minimum limit, a cluster busy times constraint is added to the instance which has the exact
same meaning as the limit busy times constraint does on that time group. (It has a singleton time
group for each time of the time group, and the same limits and cost function.) This constraint
appears on lists of constraints in the usual way, but if the instance is printed out later it is omitted
from the print. Furthermore, when a solution object is created, monitors are created for the
cluster busy times constraints but not for the original limit busy times constraints.

3.7.16. Limit workload constraints

A limit workload constraint is created and added to an instance by

bool KheLimitWorkloadConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
bool allow_zero, KHE_LIMIT_WORKLOAD_CONSTRAINT *c);

Most of these attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type. The exceptions are
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KHE_TIME_GROUP KheLimitWorkloadConstraintAppliesToTimeGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

int KheLimitWorkloadConstraintMinimum(KHE_LIMIT_WORKLOAD_CONSTRAINT c);
int KheLimitWorkloadConstraintMaximum(KHE_LIMIT_WORKLOAD_CONSTRAINT c);
bool KheLimitWorkloadConstraintAllowZero(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg must beNULL andallow_zero must befalse.

After the instance is complete, functions

int KheLimitWorkloadConstraintAppliesToOffsetCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

int KheLimitWorkloadConstraintAppliesToOffset(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

may be used to visit theapplies-to offsets, or justoffsets, of c. If applies_to_tg isNULL, there is
one offset,with value 0. Ifapplies_to_tg is empty, there are no offsets. Otherwise, lett0 be the
first time inapplies_to_tg. There is one offset for each timeti in applies_to_tg, including
t0, such that whenKheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time
in c, the result is a legal time index.

A limit workload constraint has optional time groups (not permitted in the high school
model), which are added and visited by

void KheLimitWorkloadConstraintAddTimeGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitWorkloadConstraintTimeGroupCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_TIME_GROUP KheLimitWorkloadConstraintTimeGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int offset, int i);

To get the original time groups,setoffset to0; to get the time groups monitored by monitorm, set
it to KheLimitWorkloadMonitorOffset(m). Adding no time groups is semantically equivalent
to adding one time group holding all the timesof the instance. So when no time groups are added,
after the instance is finalized,KheLimitWorkloadConstraintTimeGroupCount(c) is 1, and
KheLimitWorkloadConstraintTimeGroup(c, 0, 0) is KheInstanceFullTimeGroup(ins).
Nevertheless, in this special caseKheArchiveWrite does not write any time groups.

Also after the instance is complete, these two functions may be called:

KHE_TIME_GROUP KheLimitWorkloadConstraintDomain(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

bool KheLimitWorkloadConstraintLimitsWholeCycle(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KheLimitWorkloadConstraintDomain returns thedomainof c: the union of its time groups.
If no time groups were added, it returns the set of all the times in the instance. This time group
may be used like any other, except that it might have no neighbourhood (Section 3.4.1). This
function should probably not exist; it is irrelevant to solving, because the limits are applied to
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each time group separately.KheLimitWorkloadConstraintLimitsWholeCycle returnstrue
whenc contains a time group equal to the whole cycle.

A limit workload constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

void KheLimitWorkloadConstraintAddResourceGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitWorkloadConstraintResourceGroupCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitWorkloadConstraintResourceGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheLimitWorkloadConstraintAddResource(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitWorkloadConstraintResourceCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_RESOURCE KheLimitWorkloadConstraintResource(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

in the usual way.

Function

void KheLimitWorkloadConstraintDebug(KHE_LIMIT_WORKLOAD_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The number of points of application of a limit workload constraintc is its total number
of resources multiplied byKheLimitWorkloadConstraintAppliesToOffsetCount(c) . The
constraint density of the limit workload constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

3.7.17. Limit active intervals constraints

Limit active intervals constraints are allowed only withKHE_MODEL_EMPLOYEE_SCHEDULE.
Although they have their own semantics, syntactically they are almost the same as cluster busy
times constraints: the only differences are the change of name and the absence ofAllowZero.

A limit active intervals constraint is created and added to an instance by

bool KheLimitActiveIntervalsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are
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KHE_TIME_GROUP KheLimitActiveIntervalsConstraintAppliesToTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

int KheLimitActiveIntervalsConstraintMinimum(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

int KheLimitActiveIntervalsConstraintMaximum(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

which are specific to this kind of constraint.

After the instance is complete, functions

int KheLimitActiveIntervalsConstraintAppliesToOffsetCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

int KheLimitActiveIntervalsConstraintAppliesToOffset(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i);

may be used to visit theapplies-to offsets, or justoffsets, of c. If applies_to_tg isNULL, there is
one offset,with value 0. Ifapplies_to_tg is empty, there are no offsets. Otherwise, lett0 be the
first time inapplies_to_tg. There is one offset for each timeti in applies_to_tg, including
t0, such that whenKheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time
in c, the result is a legal time index.

A limit active intervals constraint requires time groups, which are added and visited by

void KheLimitActiveIntervalsConstraintAddTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_TIME_GROUP tg,
KHE_POLARITY po);

int KheLimitActiveIntervalsConstraintTimeGroupCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_TIME_GROUP KheLimitActiveIntervalsConstraintTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i, int offset,
KHE_POLARITY *po);

where typeKHE_POLARITY is as for cluster busy times constraints. When visiting, to get the
original time groups, setoffset to 0; to get the time groups being monitored by monitorm, set
it to KheLimitActiveIntervalsMonitorOffset(m).

Convenience functions

bool KheLimitActiveIntervalsConstraintAllPositive(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

bool KheLimitActiveIntervalsConstraintAllNegative(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

returntrue when all of the time groups added so far have polarityKHE_POSITIVE, or all have
polarityKHE_NEGATIVE. In real instances it is almost certain that one of these will returntrue.

To add the resource groups and resources defining the points of application, use
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void KheLimitActiveIntervalsConstraintAddResourceGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitActiveIntervalsConstraintResourceGroupCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitActiveIntervalsConstraintResourceGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i);

for resource groups and

void KheLimitActiveIntervalsConstraintAddResource(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitActiveIntervalsConstraintResourceCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_RESOURCE KheLimitActiveIntervalsConstraintResource(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i);

for individual resources. There is also

int KheLimitActiveIntervalsConstraintResourceOfTypeCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resourcesof typertwhich are pointsof application ofc. In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

To add and retrieve a value representing the number of time groups preceding this
constraint, calledai in Jeff Kingston’s paper on history [10], call

void KheLimitActiveIntervalsConstraintAddHistoryBefore(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int val);

int KheLimitActiveIntervalsConstraintHistoryBefore(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

WhenKheLimitActiveIntervalsConstraintAddHistoryBefore is not called, the value is 0.

To add and retrieve a value representing the number of time groups following this
constraint, calledci in the history paper, call

void KheLimitActiveIntervalsConstraintAddHistoryAfter(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int val);

int KheLimitActiveIntervalsConstraintHistoryAfter(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

WhenKheLimitActiveIntervalsConstraintAddHistoryAfter is not called, the value is 0.

To add and retrieve a value for one resource representing the number of active time groups
preceding this constraint, calledxi in the history paper, call

void KheLimitActiveIntervalsConstraintAddHistory(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE r, int val);

int KheLimitActiveIntervalsConstraintHistory(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE r);
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WhenKheLimitActiveIntervalsConstraintAddHistory is not called forr, the value is 0.

KHE does not check that resources in history calls are points of application ofc. It aborts
if a history value is given twice in the same constraint.

Function

void KheLimitActiveIntervalsConstraintDebug(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The number of points of application of a limit active intervals constraintc is its number
of resources timesKheLimitActiveIntervalsConstraintAppliesToOffsetCount(c) . The
constraint density of the limit active intervals constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

3.7.18. Limit resources constraints

Limit resources constraints are allowed only withKHE_MODEL_EMPLOYEE_SCHEDULE.

A limit resources constraint is created and added to an instance by

bool KheLimitResourcesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int minimum, int maximum, KHE_LIMIT_RESOURCES_CONSTRAINT *c);

Most of these attributes may be retrieved by upcasting toKHE_CONSTRAINT and calling the
relevant operation on that type; the exceptions are

int KheLimitResourcesConstraintMinimum(KHE_LIMIT_RESOURCES_CONSTRAINT c);
int KheLimitResourcesConstraintMaximum(KHE_LIMIT_RESOURCES_CONSTRAINT c);

which are specific to this kind of constraint. These values are optional in XESTT files; a missing
minimum is represented by 0, and a missing maximum is represented byINT_MAX.

To add and visit the resource groups and resources required by this constraint, call

bool KheLimitResourcesConstraintAddResourceGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitResourcesConstraintResourceGroupCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitResourcesConstraintResourceGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

and
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bool KheLimitResourcesConstraintAddResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitResourcesConstraintResourceCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

KHE_RESOURCE KheLimitResourcesConstraintResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

After the instance has ended, function

KHE_RESOURCE_GROUP KheLimitResourcesConstraintDomain(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

returns a resource group containing the union of all these resource groups and resources (which
must all have the same type). There is also

KHE_RESOURCE_GROUP KheLimitResourcesConstraintDomainComplement(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

which returns the complement of the domain, that is, the set of resources of the same type as the
domain that are not in it.

To add and visit the event groups which are this constraint’s points of application, call

void KheLimitResourcesConstraintAddEventGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheLimitResourcesConstraintEventGroupCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

KHE_EVENT_GROUP KheLimitResourcesConstraintEventGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

XESTT also allows individual events to be given, interpreted as singleton event groups. When
KHE reads an XESTT file, an individual evente is added by a call to

KheLimitResourcesConstraintAddEventGroup(c, KheEventSingletonEventGroup(e));

When KHE writes an XESTT file, it makes two passes over the list of event groups, first writing
all event groups whose number of events is not 1, then writing all event groups whose number
of events is 1, the latter written as individual events rather than as event groups.

To add and visit the roles of the constraint, call

void KheLimitResourcesConstraintAddRole(
KHE_LIMIT_RESOURCES_CONSTRAINT c, char *role);

int KheLimitResourcesConstraintRoleCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

char *KheLimitResourcesConstraintRole(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

In practice, these should all be distinct, but no-one is checking.

Although the points of application are described as event groups, at the implementation
level they are really sets of event resources. There is a way to bypass event groups and roles
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and create these sets of event resources directly. First, to create one point of application, call
KheLimitResourcesConstraintAddEventGroup with NULL for the event group. Then call

void KheLimitResourcesConstraintAddEventResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int eg_index, KHE_EVENT_RESOURCE er);

to add an event resources to theeg_index’th point of application. Instances containing points
of application created in this way cannot be written.

To visit the event resources of theeg_index’th point of application, call

int KheLimitResourcesConstraintEventResourceCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int eg_index);

KHE_EVENT_RESOURCE KheLimitResourcesConstraintEventResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int eg_index, int er_index);

Before the instance ends, these functions only visit the event resources added by
KheLimitResourcesConstraintAddEventResource. After the instance ends, they also visit
the event resources defined by the event group (if present) and roles.

Function

void KheLimitResourcesConstraintDebug(KHE_LIMIT_RESOURCES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent, in the usual way.

The number of points of application of a limit resources constraint is its number of event
groups. The constraint density of the limit resources constraints of an instance is the number
of event resources in all points of application divided by the number of event resources without
preassigned resources.
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4.1. Overview

A solution is represented by an object of typeKHE_SOLN (‘solution’is always abbreviated to ‘soln’
in the KHE interface). Any number of solutions may exist and be operated on simultaneously.
Instances are immutable after creation,and operations that change instances only assemble them,
they do not disassemble them. In contrast, each operation that changes a solution is paired with
one that changes it back. This supports not just the assembly of a fixed solution, such as one read
from a file, but also the changes and testing of alternatives needed when solving an instance.

Within each solution areKHE_MEET objects representing meets (also called split events or
sub-events), each of which may be assigned a time, andKHE_TASK objects representing the re-
source elements of meets, each of which may be assigned a resource. Although most meets are
derived from events and most tasks are derived from event resources, these derivations are op-
tional. Only meets and tasks that are so derived are considered part of the solution to the original
instance, but other meets and tasks may be present to help with solving. Several meets may be
derived from one event; these are the split events or sub-events of that event in the solution.

At all times, the solution (however incomplete it may be) has a definite numericalcost,
a 64-bit integer measuring the badness of the solution which is always available via function
KheSolnCost (Chapter 6). It may be used to guide the search for good solutions.

A solution must obey a condition called thesolution invariantthroughout its lifetime; this
is an unbreakable constraint. A precise statement of the solution invariant appears in Section 4.9.
Every operation that changes a solution in a way that could violate the invariant is implemented
with two functions, which look generically like this:

bool KheOperationCheck(...);
bool KheOperation(...);

The two functions accept the same inputs and return the same value in a given solution state. The
first returnstrue if the change would not violate the invariant, but itself changes nothing. The
second also returnstrue if the change would not violate the invariant, but in that case it also
makes the change. It changes nothing if the change would violate the invariant.

The relationshipbetween the solution invariant and the constraintsof the original instance is
rather subtle. Should a constraint be incorporated into the invariant, so that no solution (not even
a partial solution) will ever violate it? KHE leaves this question to the user. Some operations do
incorporate constraints into the solution invariant, but those operations are all optional.

Some aspects of solution entities that may be changed have operations of the form

void KheEntityAspectFix(ENTITY e);
void KheEntityAspectUnFix(ENTITY e);
bool KheEntityAspectIsFixed(ENTITY e);

74
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The first fixes that aspect of the entity—prevents later operations from changing it; the second
removes the fix; the third returnstrue when the fix is in place. Initially everything is unfixed.
Fixing a fixed aspect, and unfixing an unfixed aspect, do nothing. When the current value of
some aspect will remain unchanged for a long time, fixing that aspect may have a significant
efficiency payoff. This is because fixing detaches attached monitors (Chapter 6) whose cost is
0 and cannot change while the current fixes are in place, which can save a lot of time. Unfixing
attaches those unattached monitors which could have non-zero cost given the unfix.

There are three levels of operations. At the lowest level arebasic operations, which
carry out basic queries and changes to a solution, such as assigning or unassigning the time of
a meet. Above them arehelper functions, which implement commonly needed sequences of
basic operations, such as swaps. Some helper functions utilize optimizations that make them
significantly more efficient than the equivalent sequences of basic operations.

At the highest level aresolvers, which make large-scale changes to solutions. A complete
algorithm for solving an instance is a solver, but so are operations with more modest scope, such
as assigning times to the meetings of one form, assigning rooms, and so on.

KHE supplies many solvers, documented in later chapters, and the user is free to write
others. As a matter of good design, solvers should not have behind-the-scenes access to KHE’s
data structures; they should use only the operations described in this guide and made available
by header filekhe_platform.h. They may of course call other solvers. The solvers supplied
by KHE follow this rule.

4.2. Top-level operations

This section presents functions that operate on objects of typeKHE_SOLN. Later sections present
functions that operate on the components of solutions (meets, tasks, and so on).

4.2.1. Creation, deletion, and copy

To create a solution for a given instance, initially with no meets or tasks, call

KHE_SOLN KheSolnMake(KHE_INSTANCE ins, HA_ARENA_SET as);

KheInstanceMakeEnd(ins) must have been called and returned beforeKheSolnMake is called.
Parameteras may beNULL; for the effect of passing a non-NULL value, see Section 4.2.2 below.

To deletesoln and everything in it, and remove it from its solution groups, if any, call

void KheSolnDelete(KHE_SOLN soln);

The memory consumed bysoln and everything in it will be freed. Each solution lies in its
own memory arena, allowing its deletion to be carried out very efficiently: just delete its arena.
Actually, there are two arenas, one holding thesoln object, the other holding everything else.
This is needed in case the user chooses to reduce a solution to a placeholder (Section 4.2.6).

Another way to create a solution is

KHE_SOLN KheSolnCopy(KHE_SOLN soln, HA_ARENA_SET as);
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It returns a copy ofsoln. Parameteras is as forKheSolnMake. The copy is exact except that it
does not lie in any solution groups. Immutable elements, such as anything from the instance,and
time, resource, and event groups created within the solution, are shared, as are back pointers.

Copying is useful when forking a solution process part-way through: the original solution
may continue down one thread, and the copy, which is quite independent, may be given to the
other thread. Care is needed in one respect, however: it is not safe to make two copies of one
solution simultaneously, even though the original solution is unaffected by copying it. This is
because the copy algorithm uses temporary forwarding pointers in the objects of the solution.

Even semantically unimportant things, such as the order of items in sets, are preserved by
KheSolnCopy. If the same solution algorithm is run on the original and the copy, and it does
not depend on anything peculiar such as elapsed time or the memory addresses of its objects,
it should produce the same solution. The author has verified this forKheGeneralSolve2014

(Section 8.3). Diversity can be obtained by changing the copy’s diversifier (Section 4.2.4).

The specification ofqsort states that when two elements compare equal, their order in the
final result isundefined. So the author has tried to eliminateall such cases in the comparison func-
tions packaged with KHE. Index numbers, returned by functions such asKheMeetSolnIndex

andKheTaskSolnIndex, are useful for breaking ties consistently as a last resort.

As an aid to debugging, function

void KheSolnDebug(KHE_SOLN soln, int verbosity, int indent, FILE *fp);

prints information about the current solution onto filefp with the given verbosity and indent,
as described for debug functions in general in Section 1.3. Verbosity 1 prints just the instance
name and current cost, verbosity 2 adds a breakdown of the current cost by constraint type (only
constraint types with non-zero cost are printed), verbosity 3 adds debug prints of the solution’s
defects (Section 6.2), and verbosity 4 prints further details.

4.2.2. Solutions and arenas

Solutions can take up a lot of memory, and memory allocation and deallocation can become a
serious bottleneck. KHE has a strategy for mitigating this problem. The idea is not to delete the
arenas used by solutions and solvers, but rather, within each thread separately, to recycle them.

This is done by creating one arena setas (Appendix A.1.2) per thread, and passingas to
each call toKheSolnMake made by the thread. Then the arenas needed to construct the solution
are taken fromas when it has them, and only created afresh whenas is empty. When the
solution is deleted or made into a placeholder, each arenaa which is no longer needed is not
freed. Instead, it is added toas after callingHaArenaRecycle(a). If as is passed to other calls
to KheSolnMake made by the same thread, these arenas will be used to store those solutions.

KHE does not make the mistake of sharing one arena set across threads. That would require
arena sets to be lockable, which they are not. Appendix B.7 has more on these kinds of issues.

Solvers can participate in this efficient form of recycling too. Instead of creating an arena
afresh by a call toHaArenaMake, a solver can call

HA_ARENA KheSolnArenaBegin(KHE_SOLN soln, bool large);

This will extract an arena fromsoln’s arena set if it is non-NULL and non-empty; otherwise it
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will return an arena created byHaArenaMake. Either way, it will return an arena whoselarge
attribute equalslarge.

The right value forlarge is almost certain to befalse, because large arenas are intended
only for when a very large amount of memory is expected to be used. By nominating a few
arenas as large, the largest demands for memory are concentrated in a few arenas, reducing the
overall demand for memory. At present there is one large arena for the internals of each solution,
which is recycled when the solution is deleted or converted into a placeholder.

When the arena is no longer required and its memory can be made available for other uses,
the solver can call

void KheSolnArenaEnd(KHE_SOLN soln, HA_ARENA a);

If soln has a non-NULL arena set, this callsHaArenaRecycle(a) and adds the recycled arena to
that set. Otherwise it callsHaArenaDelete. This is a convenient interface for solvers to use to
obtain the arenas they need, without having to worry about the details of arena recycling.

For completeness, there are functions to set and retrieve a solution’s arena set:

void KheSolnSetArenaSet(KHE_SOLN soln, HA_ARENA_SET as);
HA_ARENA_SET KheSolnArenaSet(KHE_SOLN soln);

Here as may beNULL. Appendix B.7 documents one use for these functions, although the
ordinary user of KHE is unlikely to need them.

4.2.3. Simple attributes

A solution may lie in any number of solution groups. To add it to a solution group and delete
it from a solution group, use functionsKheSolnGroupAddSoln andKheSolnGroupDeleteSoln
from Section 2.2. To visit the solution groups containingsoln, call

int KheSolnSolnGroupCount(KHE_SOLN soln);
KHE_SOLN_GROUP KheSolnSolnGroup(KHE_SOLN soln, int i);

in the usual way.

A solution is always for a particular instance, fixed when the solution is created. Function

KHE_INSTANCE KheSolnInstance(KHE_SOLN soln);

returns the instance that the solution is for.

A solution has an optional Description attribute which may contain arbitrary text saying
what is distinctive about the solution. This attribute may be set and retrieved by calling

void KheSolnSetDescription(KHE_SOLN soln, char *description);
char *KheSolnDescription(KHE_SOLN soln);

The default value isNULL, meaning no description.

A solution also has an optional RunningTime attribute giving the wall clock time to produce
the solution, in seconds. This attribute may be set and retrieved by calling
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void KheSolnSetRunningTime(KHE_SOLN soln, float running_time);
bool KheSolnHasRunningTime(KHE_SOLN soln, float *running_time);

If KheSolnSetRunningTime has been called, thenKheSolnHasRunningTime returnstrue with
*running_time set to the most recent value passed byKheSolnSetRunningTime. Otherwise it
returnsfalse with *running_time set to-1.0. It would be impossible for KHE to ensure that
the value stored in this field is honest, and it does not try to.

There is also a function for comparing two solutions by their running times. It comes in two
versions, one which makes sense to people, and another which makes sense toqsort:

int KheSolnIncreasingRunningTimeTypedCmp(KHE_SOLN soln1, KHE_SOLN soln2);
int KheSolnIncreasingRunningTimeCmp(const void *t1, const void *t2);

Solutions without a running time are treated as though they have a very large running time.

Solution objects and their components have back pointers in the usual way. These may be
changed at any time. To set and retrieve the back pointer of a solution object, call

void KheSolnSetBack(KHE_SOLN soln, void *back);
void *KheSolnBack(KHE_SOLN soln);

as usual.

4.2.4. Diversification

One strategy for finding good solutions is to find many solutions and choose the best. This only
works when the solutions are diverse, creating a need to find ways to produce diversity.

Each solution contains a non-negative integerdiversifier. Its initial value is 0, but it may be
set and retrieved at any time by

void KheSolnSetDiversifier(KHE_SOLN soln, int val);
int KheSolnDiversifier(KHE_SOLN soln);

When solutions are created that need to be diverse, each is given a different diversifier. When an
algorithm reaches a point where it could equally well follow any one of several paths, it consults
the diversifier when making its choice.

Suppose the diversifier has valued and a point is reached where there arec alternatives, for
somec ≥ 1. A simple approach is to choose theith alternative (counting from 0), where

i = d % c;

We call a functionD(d,c) which returns an integeri s.t.0 ≤ i < c adiversification function.

How should we choose diversifiers and diversification functions to ensure that we really
do get diversity? One possibility is to start with a random integer and change it using a random
number generator, passing the current value as seed, each time the diversifier is consulted. But
there is no way to analyse the effect of this, so instead we are going to examine what happens
when the diversifiers are fixed successive integers starting from 0.

What we want is a little hard to grasp. Suppose that, at some points in the algorithm, it
is offered a choice between 1 alternative; at others, there are 2 alternatives, and so on, with a
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maximum ofnalternatives. For a given diversifier, there aren! different functions of the number
of choices. Ideally we would want all of these functions to turn up asd varies over its range.

It is not obvious, but it is a fact that the modulus function above does turn up every function
whenn is 1, 2 or 3, but whenn is 4 it produces 12 distinct functions, only half the possible 24
functions, as the following tables, obtained by runningkhe -d4, show:

  d |  1  2
----+------
  0 |  0  0
  1 |  0  1
----+------

  d |  1  2  3
----+---------
  0 |  0  0  0
  1 |  0  1  1
  2 |  0  0  2
  3 |  0  1  0
  4 |  0  0  1
  5 |  0  1  2
----+---------

  d |  1  2  3  4
----+------------
  0 |  0  0  0  0
  1 |  0  1  1  1
  2 |  0  0  2  2
  3 |  0  1  0  3
  4 |  0  0  1  0
  5 |  0  1  2  1
  6 |  0  0  0  2
  7 |  0  1  1  3
  8 |  0  0  2  0
  9 |  0  1  0  1
 10 |  0  0  1  2
 11 |  0  1  2  3
 12 |  0  0  0  0  (same as 0)
 13 |  0  1  1  1  (same as 1)
 14 |  0  0  2  2  (same as 2)
 15 |  0  1  0  3  (same as 3)
 16 |  0  0  1  0  (same as 4)
 17 |  0  1  2  1  (same as 5)
 18 |  0  0  0  2  (same as 6)
 19 |  0  1  1  3  (same as 7)
 20 |  0  0  2  0  (same as 8)
 21 |  0  1  0  1  (same as 9)
 22 |  0  0  1  2  (same as 10)
 23 |  0  1  2  3  (same as 11)
----+------------

Each row is one value ofd, and each column is one value ofc. What this means is that if, during
the course of one run, no more than 4 choices are offered at any one point, then only 12 distinct
solutions can emerge, no matter how many are begun.

The most natural diversification function which produces distinct outcomes is probably

(d / fact(c - 1)) % c

wherefact is the factorial function. (To avoid overflow, in practice one stops multiplying as
soon as the value exceedsd.) Each line is something like the binary representation ofd, only in
a factorial number system rather than binary:



80 Chapter 4. Solutions

  d |  1  2
----+------
  0 |  0  0
  1 |  0  1
----+------

  d |  1  2  3
----+---------
  0 |  0  0  0
  1 |  0  1  0
  2 |  0  0  1
  3 |  0  1  1
  4 |  0  0  2
  5 |  0  1  2
----+---------

  d |  1  2  3  4
----+------------
  0 |  0  0  0  0
  1 |  0  1  0  0
  2 |  0  0  1  0
  3 |  0  1  1  0
  4 |  0  0  2  0
  5 |  0  1  2  0
  6 |  0  0  0  1
  7 |  0  1  0  1
  8 |  0  0  1  1
  9 |  0  1  1  1
 10 |  0  0  2  1
 11 |  0  1  2  1
 12 |  0  0  0  2
 13 |  0  1  0  2
 14 |  0  0  1  2
 15 |  0  1  1  2
 16 |  0  0  2  2
 17 |  0  1  2  2
 18 |  0  0  0  3
 19 |  0  1  0  3
 20 |  0  0  1  3
 21 |  0  1  1  3
 22 |  0  0  2  3
 23 |  0  1  2  3
----+------------

But there is still a problem: if all alternatives have 4 choices, say, then the first 6 threads will
produce the same result despite differing ind. The solution to this seems to be function

(d / fact(c - 1) + d % fact(c - 1)) % c

Delightfully, it produces

  d |  1  2
----+------
  0 |  0  0
  1 |  0  1
----+------

  d |  1  2  3
----+---------
  0 |  0  0  0
  1 |  0  1  1
  2 |  0  0  1
  3 |  0  1  2
  4 |  0  0  2
  5 |  0  1  0
----+---------

  d |  1  2  3  4
----+------------
  0 |  0  0  0  0
  1 |  0  1  1  1
  2 |  0  0  1  2
  3 |  0  1  2  3
  4 |  0  0  2  0
  5 |  0  1  0  1
  6 |  0  0  0  1
  7 |  0  1  1  2
  8 |  0  0  1  3
  9 |  0  1  2  0
 10 |  0  0  2  1
 11 |  0  1  0  2
 12 |  0  0  0  2
 13 |  0  1  1  3
 14 |  0  0  1  0
 15 |  0  1  2  1
 16 |  0  0  2  2
 17 |  0  1  0  3
 18 |  0  0  0  3
 19 |  0  1  1  0
 20 |  0  0  1  1
 21 |  0  1  2  2
 22 |  0  0  2  3
 23 |  0  1  0  0
----+------------
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and is diverse up toc = 8at least. Function

int KheSolnDiversifierChoose(KHE_SOLN soln, int c);

implements this function, returning a non-negative integer less thanc.

It is quite reasonable foreveryalgorithm faced with an arbitrary choice to diversify. It is
easy to do, and it provides a continual prodding towards diversity that should drive solutions with
different diversifiers further and further apart as solving continues, always provided that there
are sufficiently many choices.

4.2.5. Visit numbers

Some algorithms, such as tabu search and ejection chains, need to know whether some part of
the solution has changed recently. KHE supports this with a system ofvisit numbers.

A visit number is just an integer stored at some point in the solution. The KHE platform
initializes visit numbers (to 0) and copies them, but does not otherwise use them. The user is free
to set their values in any way at any time, using operations that look generically like this:

void KheSolnEntitySetVisitNum(KHE_SOLN_ENTITY e, int num);
int KheSolnEntityVisitNum(KHE_SOLN_ENTITY e);

But there is also a conventional way to use visit numbers, as follows.

The solution object contains aglobal visit numberwhich is used differently from the others.
The following operations are applicable to it:

void KheSolnSetGlobalVisitNum(KHE_SOLN soln, int num);
int KheSolnGlobalVisitNum(KHE_SOLN soln);
void KheSolnNewGlobalVisit(KHE_SOLN soln);

The first two operations are not usually used directly. The third increases the global visit number
by one. This new value has not previously been assigned to any visit number.

The visit numbers of other solution entities should never exceed the global visit number.
The operations for other solution entities look generically like this:

void KheSolnEntitySetVisitNum(KHE_SOLN_ENTITY e, int num);
int KheSolnEntityVisitNum(KHE_SOLN_ENTITY e);
bool KheSolnEntityVisited(KHE_SOLN_ENTITY e, int slack);
void KheSolnEntityVisit(KHE_SOLN_ENTITY e);
void KheSolnEntityUnVisit(KHE_SOLN_ENTITY e);

TypeSOLN_ENTITY is fictitious and so are these functions; they just display the standard pattern.
The first two are the standard ones. The third returns the value of the condition

KheSolnVisitNum(soln) - KheSolnEntityVisitNum(e) <= slack

wheresoln is the solution containinge. The fourth setse’s visit number to its solution object’s
visit number, and the last sets it to one less than its solution’s visit number.

These operations may be used to implement tabu search efficiently as follows. Suppose for
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example that a change to the assignment ofmeet is to remain tabu until at leasttabu_len other
changes have been made. The code for this is

if( !KheMeetVisited(meet, tabu_len) )
{
KheSolnNewVisit(KheMeetSoln(meet));
KheMeetVisit(meet);
... change the assignment of meet ...

}

To ensure that everything is visitable initially, call

KheSolnSetVisitNum(soln, tabu_len);

It is easy to generalize this code to other operations.

One form of the ejection chains algorithm requires that once a meet (or other entity) has
been changed during the current visit, it must remain tabu until a new visit is started in the outer
loop of the algorithm. The code for this is

if( !KheMeetVisited(meet, 0) )
{
KheMeetVisit(meet);
... change the assignment of meet ...

}

A variant of this idea makesmeet tabu to recursive calls, but not tabu for the entire remainder of
the current visit. The code for this is

if( !KheMeetVisited(meet, 0) )
{
KheMeetVisit(meet);
... change the assignment of meet and recurse ...
KheMeetUnVisit(meet);

}

Only meets in the direct line of the recursion are tabu.

4.2.6. Placeholder and invalid solutions

A placeholder solution is a solution which is missing most of what an ordinary solution has,
either because it is invalid, or to save memory. Function

KHE_SOLN_TYPE KheSolnType(KHE_SOLN soln);

may be used to find out whether a solution is a placeholder. Its return value has type
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typedef enum {
KHE_SOLN_INVALID_PLACEHOLDER,
KHE_SOLN_BASIC_PLACEHOLDER,
KHE_SOLN_WRITABLE_PLACEHOLDER,
KHE_SOLN_ORDINARY

} KHE_SOLN_TYPE;

The first three values indicate thatsoln is a placeholder of some kind, as follows.

KHE_SOLN_INVALID_PLACEHOLDER means thatsoln is an invalid placeholder: it became
a placeholder because it has some problem. In practice this can only happen when reading a
solution from an archive (Section 2.4). We usually just say thatsoln is invalid. Function

KML_ERROR KheSolnInvalidError(KHE_SOLN soln);

returns the first error that madesoln invalid, orNULL if soln is not invalid. For typeKML_ERROR,
see Section A.5.2. An invalid solution offers few functions: for example, it has no cost.

KHE_SOLN_BASIC_PLACEHOLDER means thatsoln is abasic placeholder: all of the objects
belowsoln (all its meets, tasks, and so on) have been deleted. This frees a great deal of memory,
which is the point of it, but it makessoln unusable except that the following functions remain
available and return their previous values:

char *KheSolnDescription(KHE_SOLN soln);
void *KheSolnBack(KHE_SOLN soln);
KHE_INSTANCE KheSolnInstance(KHE_SOLN soln);
bool KheSolnHasRunningTime(KHE_SOLN soln, float *running_time);
int KheSolnSolnGroupCount(KHE_SOLN soln);
KHE_SOLN_GROUP KheSolnSolnGroup(KHE_SOLN soln, int i);
void *KheSolnImpl(KHE_SOLN soln);
int KheSolnDiversifier(KHE_SOLN soln);
int KheSolnVisitNum(KHE_SOLN soln);
KHE_COST KheSolnCost(KHE_SOLN soln);

FunctionKheSolnTypeReduce below is also still available.

KHE_SOLN_WRITABLE_PLACEHOLDER is likeKHE_SOLN_BASIC_PLACEHOLDER except that the
solution can also be written byKheArchiveWrite (Section 2.7), because a brief private record of
who is assigned to what is retained.KheArchiveWrite will abort if it is asked to write an invalid
or basic placeholder. Even a writable placeholder cannot be written ifKheArchiveWrite has
been asked to write a report along with each solution.

Finally,KHE_SOLN_ORDINARY indicates thatsoln is an ordinary solution (not a placeholder),
supporting the full range of operations including access to its meets, tasks, and so on. When
a solution is created, it is an ordinary solution. A placeholder solution cannot be created
directly; an ordinary solution must be created and then reduced to a placeholder, using function
KheSolnTypeReduce below. This ensures that the solution cost is correct.

Placeholder solutions may be used to build tables of solutions showing costs and running
times; but they cannot be used to find cost breakdowns by constraint type, or to print timetables,
and so on. Writable placeholder solutions are good when solving, both for solutions produced
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by the solver and for solutions which are already in the archive and just need to be read in and
written out again. Function

void KheSolnTypeReduce(KHE_SOLN soln, KHE_SOLN_TYPE soln_type,
KML_ERROR ke);

changes the type ofsoln to soln_type. If soln_type is KHE_SOLN_INVALID_PLACEHOLDER,
ke must be non-NULL, and a copy of it becomes the value returned byKheSolnInvalidError.
Otherwiseke is not used and should beNULL.

KheSolnTypeReduce can only change the type to something equal or lower. For example, it
can reduce an ordinary solution to any kind of placeholder, but it cannot reduce a placeholder to
an ordinary solution,because the data is lost. Changing the type to what it already is does nothing
except replaceKheSolnInvalidError if the type isKHE_SOLN_INVALID_PLACEHOLDER.

4.2.7. Traversing the components of solutions

A solution has many components: principally tasks and meets, but also other objects. They can
all be visited, using the functions defined in this section.

To visit the meets of a solution, in an unspecified order, call

int KheSolnMeetCount(KHE_SOLN soln);
KHE_MEET KheSolnMeet(KHE_SOLN soln, int i);

The meets visited include thecycle meetsdescribed in Section 4.5.3. To visit the meets of a
solution derived from a given event, call

int KheEventMeetCount(KHE_SOLN soln, KHE_EVENT e);
KHE_MEET KheEventMeet(KHE_SOLN soln, KHE_EVENT e, int i);

The first returns the number of meets derived frome (possibly 0), and the second returns thei’th
of these meets, in an unspecified order.

To visit the tasks of a solution, in an unspecified order, call

int KheSolnTaskCount(KHE_SOLN soln);
KHE_TASK KheSolnTask(KHE_SOLN soln, int i);

To visit the tasks derived from a given event resource, call

int KheEventResourceTaskCount(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_TASK KheEventResourceTask(KHE_SOLN soln, KHE_EVENT_RESOURCE er,
int i);

There is one for each meet derived from the event containinger.

A solution may also containnodesand taskings, as explained in Chapter 5. To visit the
nodes in an unspecified order, call

int KheSolnNodeCount(KHE_SOLN soln);
KHE_NODE KheSolnNode(KHE_SOLN soln, int i);
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To visit the taskings, call

int KheSolnTaskingCount(KHE_SOLN soln);
KHE_TASKING KheSolnTasking(KHE_SOLN soln, int i);

in the usual way.

4.3. Complete representation and preassignment conversion

A solution is acomplete representationwhen it satisfies the following two conditions:

• For each evente of the solution’s instance, the total duration of the meets derived frome is
equal to the duration ofe;

• For each event resourceer of the solution’s instance, each meet derived from the event
containinger contains a task derived fromer.

Complete representation does not rule out extra meets or tasks. It has nothing to do with being
a complete solution, in the sense of assigning a time to every meet and a resource to every task.

KHE does not require a solution to be a complete representation, since that would be too
restrictive when building and modifying solutions. However, the cost it reports for a solution is
correct only when that solution is a complete representation. This is because, behind the scenes,
KHE needs to be able to see a meet with no assigned time in order for it to realize that an assign
time constraint is being violated, and similarly for the other constraints.

There is a standard procedure, part of the XML specification, for converting a solution into
a complete representation:

1. For each evente of the solution’s instance, if there are no meets derived frome, then insert
one meet whose duration is the duration ofe, and whose assigned time is the preassigned
time ofe, or is absent ife has no preassigned time. Initially, this meet contains no tasks, but
that may be changed by the third rule.

2. If now there is an evente such that the total duration of the meets derived frome is not equal
to the duration ofe, then that is an error and the XML file is rejected.

3. For each event resourceer of each evente of the instance, for each meet derived frome, if
that meet does not contain a task derived fromer, then add one. Its assigned resource is the
preassigned resource ofer if there is one, or is absent ifer has no preassigned resource.

This procedure, minus the conversions from preassignments to assignments, is implemented by

bool KheSolnMakeCompleteRepresentation(KHE_SOLN soln,
KHE_EVENT *problem_event);

For each evente, it finds the total duration of the meets derived frome. If that is greater than
the duration ofe it returnsfalse with *problem_event set toe. If it is less, then one meet
derived frome is added whose duration makes up the difference. The domain of this meet
has the usual default value: the preassigned time ofe if any, or else the largest legal domain,
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KheSolnPackingTimeGroup(soln) (Section 4.5.3). Then, within each meet derived from an
event, just created or not, it adds a task for each event resourceer not already represented. The
domain of this task has the usual default value: the preassigned resource ofer if any, or else the
largest legal domain,KheResourceTypeFullResourceGroup(rt), wherert is er’s resource type.

KheSolnMakeCompleteRepresentation has two uses. The first is inKheArchiveRead
(Section 2.4), which applies it to each solution it reads, as the XML specification requires, and
then calls these two public functions to convert preassignments into assignments:

void KheSolnAssignPreassignedTimes(KHE_SOLN soln);
void KheSolnAssignPreassignedResources(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt);

KheSolnAssignPreassignedTimes assigns the obvious time to each preassigned unassigned
meet.KheSolnAssignPreassignedResources assigns the obvious resource toeach preassigned
unassigned task of typert (any type ifrt is NULL).

The second use forKheSolnMakeCompleteRepresentation is to build a solution from
scratch, ready for solving. The solution returned byKheSolnMake has no meets except for
the initial cycle meet, and it has no tasks.KheSolnMakeCompleteRepresentation is a very
convenient way to add both. When solving, it is usually called immediately afterKheSolnMake

andKheSolnSplitCycleMeet (Section 4.5.3). The solution changes as solving proceeds, but it
remains a complete representation throughout, except perhaps during brief reconstructions. A
call to KheSolnAssignPreassignedResources is also a good idea, since it does no harm and
ensures that resource constraints involving preassigned resources will contribute to the cost of
the solution as soon as the meets they are preassigned to are assigned times. On the other hand,
it may be better not to assign preassigned times at this point; Section 10.4 has the alternatives.

4.4. Solution time, resource, and event groups

Groups are important in solving. A solver needs to be able to construct its own, since the ones
declared in the instance might not be enough. (Conceivably, a solver could need its own times
and resources as well, but that possibility is not currently supported.) Accordingly, the following
functions are provided for constructing a time group while solving:

void KheSolnTimeGroupBegin(KHE_SOLN soln);
void KheSolnTimeGroupAddTime(KHE_SOLN soln, KHE_TIME t);
void KheSolnTimeGroupSubTime(KHE_SOLN soln, KHE_TIME t);
void KheSolnTimeGroupUnion(KHE_SOLN soln, KHE_TIME_GROUP tg2);
void KheSolnTimeGroupIntersect(KHE_SOLN soln, KHE_TIME_GROUP tg2);
void KheSolnTimeGroupDifference(KHE_SOLN soln, KHE_TIME_GROUP tg2);
KHE_TIME_GROUP KheSolnTimeGroupEnd(KHE_SOLN soln);

The first operation begins the process; the next five do what the corresponding operations for
instance time groups do, and the last operation returns the finished time group. Its kind will be
KHE_TIME_GROUP_KIND_ORDINARY, and itsid andname attributes will beNULL.

A similar set of operations constructs a resource group:
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void KheSolnResourceGroupBegin(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);
void KheSolnResourceGroupAddResource(KHE_SOLN soln, KHE_RESOURCE r);
void KheSolnResourceGroupSubResource(KHE_SOLN soln, KHE_RESOURCE r);
void KheSolnResourceGroupUnion(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
void KheSolnResourceGroupIntersect(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
void KheSolnResourceGroupDifference(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
KHE_RESOURCE_GROUP KheSolnResourceGroupEnd(KHE_SOLN soln);

and an event group:

void KheSolnEventGroupBegin(KHE_SOLN soln);
void KheSolnEventGroupAddEvent(KHE_SOLN soln, KHE_EVENT e);
void KheSolnEventGroupSubEvent(KHE_SOLN soln, KHE_EVENT e);
void KheSolnEventGroupUnion(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
void KheSolnEventGroupIntersect(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
void KheSolnEventGroupDifference(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
KHE_EVENT_GROUP KheSolnEventGroupEnd(KHE_SOLN soln);

All the usual operations may be applied to these groups. The functions usesoln as a factory
object instead of the group itself, to ensure that groups are complete and immutable (apart from
their back pointers) by the time they are given to the user. Groups are deleted when their solution
is deleted. They know which instance they are for, but the instance, being immutable after
creation, is not aware of their existence.

Within one solution, when calls toKheSolnTimeGroupEnd return groups containing the
same elements, the objects returned are the same too. This is done using a hash table of time
groups. It allows the user to experiment with many time groups, without worrying about their
memory cost. This is not being done for resource and event groups yet; it should be.

4.5. Meets

A meet is created by calling

KHE_MEET KheMeetMake(KHE_SOLN soln, int duration, KHE_EVENT e);

This creates and adds tosoln a new meet of the given duration, which must be at least 1. Ife is
non-NULL, it indicates that this meet is derived from evente. Initially the meet contains no tasks;
they must be added separately. A meet may be deleted from its solution by calling

void KheMeetDelete(KHE_MEET meet);

Any tasks withinmeet are also deleted. Ifmeet is assigned to another meet, or any other meets
are assigned to it, all those assignments are removed. The meet is also deleted from any node
(Section 5.2) it may lie in.

The back pointer of a meet may be set and retrieved by

void KheMeetSetBack(KHE_MEET meet, void *back);
void *KheMeetBack(KHE_MEET meet);
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and the visit number by

void KheMeetSetVisitNum(KHE_MEET meet, int num);
int KheMeetVisitNum(KHE_MEET meet);
bool KheMeetVisited(KHE_MEET meet, int slack);
void KheMeetVisit(KHE_MEET meet);
void KheMeetUnVisit(KHE_MEET meet);

Function

char *KheMeetId(KHE_MEET meet);

returns a string which is supposed to uniquely identify the meet. Most of the time, this is the Id
of the meet’sevent, followed, if the event is split into more than one meet,by a colon and an index
number identifying the meet within the event. Some special meets (e.g. cycle meets) have an Id
beginning and ending with"/".

The result ofKheMeetId(meet) is created whenKheMeetId(meet) is first called, and
stored inmeet so that it does not have to be created over and over. If it is used only for debugging,
as is the intention, there is virtually no cost in running time or memory when debugging is off.
There is some uncertainty over the choice of index number when meets are split and joined.

The other attributes of a meet are accessed by

KHE_SOLN KheMeetSoln(KHE_MEET meet);
int KheMeetSolnIndex(KHE_MEET meet);
int KheMeetDuration(KHE_MEET meet);
KHE_EVENT KheMeetEvent(KHE_MEET meet);

These return the enclosing solution,meet’s index in that solution (that is, the value ofi for which
KheSolnMeet(soln, i) returnsmeet), its duration, and the event thatmeet is derived from
(possiblyNULL). Index numbers change when meets are deleted (the hole left by the deletion of
a meet, if not last, is plugged by the last meet), so care is needed. There is also

bool KheMeetIsPreassigned(KHE_MEET meet, TIME *time);

which returnstrue whenKheMeetEvent(meet) != NULL and that event has a preassigned time;
meet is called apreassigned meetin that case. Iftime != NULL, then*time is set to the event’s
preassigned time ifmeet is preassigned, and toNULL otherwise.

When deciding what order to assign meets in, it is handy to have some measure of how
difficult they are to timetable. Functions

int KheMeetAssignedDuration(KHE_MEET meet);
int KheMeetDemand(KHE_MEET meet);

attempt to provide this.KheMeetAssignedDuration is the duration ofmeet if it is assigned, or 0
otherwise.KheMeetDemand(meet) is the sum, overmeet and all meets assigned tomeet, directly
or indirectly, of the product of the duration of the meet and the number of tasks it contains. This
value is stored in the meet and kept up to date as solutions change, so a call onKheMeetDemand

costs almost nothing.

A task is added to its meet when it is created, and removed from its meet when it is deleted.
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To visit the tasks of a meet, call

int KheMeetTaskCount(KHE_MEET meet);
KHE_TASK KheMeetTask(KHE_MEET meet, int i);
bool KheMeetRetrieveTask(KHE_MEET meet, char *role, KHE_TASK *task);
bool KheMeetFindTask(KHE_MEET meet, KHE_EVENT_RESOURCE er,
KHE_TASK *task);

The first two traverse the tasks. The order of tasks within meets is not significant, and it may
change as tasks are created and deleted.KheMeetRetrieveTask retrieves a task which is derived
from an event resource with the givenrole, if present.KheMeetFindTask is similar, but it looks
for a task derived from event resourceer, rather than for a role. There are also

bool KheMeetContainsResourcePreassignment(KHE_MEET meet,
KHE_RESOURCE r, KHE_TASK *task);

bool KheMeetContainsResourceAssignment(KHE_MEET meet,
KHE_RESOURCE r, KHE_TASK *task);

which returntrue if meet contains a task preassigned or assignedr, setting*task to one if so.
Here a task is considered to be preassigned if it is derived from a preassigned event resource.

A meet contains an optionalassignment, which assigns the meet to a particular offset in
another meet, thereby fixing its time relative to the starting time of the other meet, and atime
domainwhich restricts the times it may start at to an arbitrary subset of the times of the cycle.
These attributes are described in detail in later sections.

A meet may optionally be contained in one node (Chapter 5). Functions

KHE_NODE KheMeetNode(KHE_MEET meet);
int KheMeetNodeIndex(KHE_MEET meet);

return the node containingmeet, and the index ofmeet in that node, orNULL and-1 if none.

As an aid to debugging, function

void KheMeetDebug(KHE_MEET meet, int verbosity, int indent, FILE *fp);

printsmeet ontofp with the given verbosity and indent (for which see Section 1.3). Verbosity 1
prints just an identifying name; verbosity 2 adds the chain of assignments leading out ofmeet.

The name is usually the name ofmeet’s event, between quotes. If there is more than one
meet corresponding to that event, this will be followed by a colon and the numberi for which
KheEventMeet(soln, e, i) equalsmeet. Alternatively, ifmeet is a cycle meet (Section 4.5.3),
the name is its starting time (a time name or else an index) between slashes.

4.5.1. Splitting and merging

A meet may be split into two meets whose durations sum to the duration of the original meet:

bool KheMeetSplitCheck(KHE_MEET meet, int duration1, bool recursive);
bool KheMeetSplit(KHE_MEET meet, int duration1, bool recursive,
KHE_MEET *meet1, KHE_MEET *meet2);
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These functions follow the pattern described earlier for operations that might violate the solution
invariant, in that both returntrue if the split is permitted. The second actually carries out the
split, setting*meet1 and*meet2 to the new meets if the split is permitted, and leaving them
unchanged if not. The original meet,meet, is undefined after a successful split, unlessmeet1

or meet2 is set to&meet (this may seem dangerous, but it does what is wanted whether the split
succeeds or not). The split meet may be a cycle meet, in which case so are the two fragments.

The first new meet,*meet1, has durationduration1, and the second,*meet2, has the
remaining duration. Parameterduration1 must be such that both meets have duration at least 1,
otherwise both functions abort. Their back pointers are set to the back pointer ofmeet. If meet
is assigned,*meet1 has the same target meet and offset asmeet, while*meet2 has the same target
meet, but its offset isduration1 larger, making the two meets adjacent in time.

If recursive istrue, any meets assigned tomeet that span the split point will also be split,
into one meet for the part overlapping*meet1 and one for the part overlapping*meet2. This
process proceeds recursively as deeply as required.

The two split functions returntrue if these two conditions hold:

• Eitherrecursive is true, or else no meets assigned tomeet span the split point.

• The meets resulting from each split have copies of the meet bounds (Section 4.5.4) of the
meets they are fragments of. Nevertheless their domains usually change, owing to meet
bounds with specificduration attributes. This must cause no incompatibilities with the
domains of other meets connected to them by assignments, allowing for offsets. When a
cycle meet (Section 4.5.3) splits, the two fragments have the appropriate singleton domains.
Domain incompatibilities cannot occur in that case.

If these conditions hold,meet is said to besplittableatduration1.

When a meet splits, its tasks split too. This produces what is typically required when
assigning rooms: the fragments are free to be assigned different resources. The other possibility,
where the fragments are required to be assigned the same resource, can be obtained by assigning
the fragmentary tasks to each other. This must be done separately.

The next two functions are concerned with merging two meets into one:

bool KheMeetMergeCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetMerge(KHE_MEET meet1, KHE_MEET meet2, bool recursive,
KHE_MEET *meet);

Parametersmeet1 andmeet2 become undefined after a successful merge, unlessmeet is set to
&meet1 or &meet2.

If recursive istrue, after mergingmeet1 andmeet2,KheMeetMerge searches for pairs of
meets, one formerly assigned to the end ofmeet1, the other formerly assigned to the beginning
of meet2, which are mergeable according toKheMeetMergeCheck, and merges each such pair.
This process proceeds recursively as deeply as required.KheMeetMergeCheck has norecursive
parameter because its result does not depend on whether the merge is recursive.

The functions returntrue if all these conditions hold:

• The two meets are distinct.
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• The two meets have the same value ofKheMeetIsCycleMeet (Section 4.5.3).

• The two meets have the same value ofKheMeetEvent, possiblyNULL.

• The two meets have the same value ofKheMeetNode, possiblyNULL.

• The two meets are both either assigned to the same meet, or not assigned. If assigned, the
offset of one (it may be either)must equal the offset plus duration of the other, ensuring they
are adjacent in time. Cycle meets, although never assigned, must also be adjacent in time.

• The two meets have the same number of tasks, and the order of their tasks may be permuted
so that corresponding tasks are compatible. Two tasks are compatible when they have the
same taskings, domains, event resources, and assignments.

• The result meet takes over the meet bounds (Section 4.5.4) of one of the meets being
merged. Nevertheless its domain usually changes, owing to meet bounds with non-zero
duration attributes. This must cause no incompatibilities with the domains of other meets
connected to it by assignments, allowing for offsets. When cycle meets (Section 4.5.3)
merge, the result meet has the singleton domain of the chronologically first meet. Domain
incompatibilities cannot occur in that case.

If all these conditions hold,meet1 and meet2 are said to bemergeable. These conditions
usually hold trivially when merging the results of a previous split. The merged meet’s attributes
(including its meet bounds and the order of its tasks) may come from eithermeet1 or meet2; the
choice is deliberately left unspecified, and the user must not depend on it.

It is now clear whyKheMeetMergeCheck does not need arecursive parameter: because
none of the conditions just given depend on whether the merge is recursive. Recursive merges
are only attempted whenKheMergeCheck says they will succeed. So instead of preventing the
top-level merge, an unacceptable recursive merge simply does not happen.

4.5.2. Assignment

KHE’s basic operations do not include assigning a time to a meet. A meet is either unassigned or
else assigned to another meet at a given offset, fixing the starting times of the two meets relative
to each other, but not assigning a specific time to either. For example, ifm1 is assigned tom2
at offset 2, then whatever timem2 eventually starts at,m1 will start two times later. Of course,
ultimately meets need to be assigned times. This is done by assigning them to special meets
calledcycle meets(Section 4.5.3).

Assigning one meet to another supportshierarchical timetabling, in which several meets
are timetabled relative to each other, then the whole group is timetabled into a larger context, and
so on. One simple application is in handling link events constraints. Assigning all the linked
events except one to that exception guarantees that the linked events will be simultaneous; the
time eventually assigned to the exception becomes the time assigned to all.

The fundamental meet assignment operations are

bool KheMeetMoveCheck(KHE_MEET meet, KHE_MEET target_meet, int offset);
bool KheMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset);
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KheMeetMove changes the assignment ofmeet from whatever it is now totarget_meet at
offset. If target_meet is NULL, the move is an unassignment andoffset is ignored.

These functions follow the usual pattern, returningtrue if the move can be carried out, with
KheMeetMove actually doing it if so. They returntrue if all of the following conditions hold:

• KheMeetAssignIsFixed (see below) returnsfalse.

• Themeet parameter is not a cycle meet.

• The move actually changes the assignment: eithertarget_meet isNULL andmeet’s current
assignment is non-NULL, or target_meet is non-NULL andmeet’s current assignment is not
to target_meet atoffset.

• Theoffset parameter is in range: iftarget_meet is non-NULL, thenoffset >= 0 and
offset <= KheMeetDuration(target_meet) - KheMeetDuration(meet);

• If target_meet is non-NULL, then the time domain (Section 4.5.4) oftarget_meet is a
subset of the time domain ofmeet, allowing for offsets.

• The node rule (Section 4.9) would not be violated if the move was carried out.

If all these conditions hold, thenmeet is said to bemoveableto target_meet at offset.
Returningfalse when the move changes nothing reflects the practical reality that no solver
wants to waste time on such moves.

KHE offers several convenience functions based onKheMeetMoveCheck andKheMeetMove.
For assigning a meet there is

bool KheMeetAssignCheck(KHE_MEET meet, KHE_MEET target_meet, int offset);
bool KheMeetAssign(KHE_MEET meet, KHE_MEET target_meet, int offset);

Assigning is the same as moving except thatmeet is expected to be unassigned to begin with, and
KheMeetAssignCheck andKheMeetAssign returnfalse if not. For unassigning there is

bool KheMeetUnAssignCheck(KHE_MEET meet);
bool KheMeetUnAssign(KHE_MEET meet);

Unassigning is the same as moving toNULL. For swapping there is

bool KheMeetSwapCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetSwap(KHE_MEET meet1, KHE_MEET meet2);

A swap is two moves, one ofmeet1 to whatevermeet2 is assigned to, and the other ofmeet2 to
whatevermeet1 is assigned to. It succeeds whenever those two moves succeed.

KheMeetSwap has two useful properties. First, exchanging the order of its parameters never
affects what it does. Second, the code fragment

if( KheMeetSwap(meet1, meet2) )
KheMeetSwap(meet1, meet2);

leaves the solution in its original state whether the swap occurs or not.



4.5. Meets 93

A variant of the swapping idea calledblock swappingis offered:

bool KheMeetBlockSwapCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetBlockSwap(KHE_MEET meet1, KHE_MEET meet2);

Block swapping is the same as ordinary swapping except that it treats one very special case in
a different way: the case when both meets are initially assigned to the same meet, at different
offsets which cause them to be adjacent, but not overlapping, in time. In this case, both meets
remain assigned to the same meet afterwards, and the later meet is assigned the offset of the
earlier one, but the earlier one is not necessarily assigned the offset of the later one. Instead, it
is assigned that offset which places it adjacent to the other meet.

For example,when swapping a meet of duration 1assigned to the first time on Monday with
a meet of duration 2 assigned to the second time on Monday,KheMeetBlockSwap would move
the first meet to the third time on Monday, not the second time. This is much more likely to work
well when the two meets have preassigned resources in common. It is the same as an ordinary
swap when the meets have the same duration, but it is different when their durations differ. The
two useful properties of ordinary swaps also hold for block swaps.

A meet’s assignment may be retrieved by calling

KHE_MEET KheMeetAsst(KHE_MEET meet);
int KheMeetAsstOffset(KHE_MEET meet);

These return the meet thatmeet is assigned to, and the offset into that meet. If there is no
assignment, the values returned areNULL and-1.

Although a meet may only be assigned to one meet, any number of meets may be assigned
to a meet, each with its own offset. Functions

int KheMeetAssignedToCount(KHE_MEET target_meet);
KHE_MEET KheMeetAssignedTo(KHE_MEET target_meet, int i);

visit all the meets that are assigned to a given meet, in an unspecified order which could change
when a meet is assigned to or unassigned fromtarget_meet. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.)

Given that a meet can be assigned to another meet at some offset, it follows that a chain of
assignments can be built up, from one meet to another and another and so on. Function

KHE_MEET KheMeetRoot(KHE_MEET meet, int *offset_in_root);

returns theroot of meet: the last meet on the chain of assignments leading out ofmeet. It also
sets*offset_in_root to the offset ofmeet in its root meet, which is just the sum of the offsets
along the assignment path. One function which usesKheMeetRoot is

bool KheMeetOverlap(KHE_MEET meet1, KHE_MEET meet2);

This returnstrue if meet1 andmeet2 can be proved to overlap in time, because they have the
same root meet, and their offsets in that root meet and durations make them overlap. Also,

bool KheMeetAdjacent(KHE_MEET meet1, KHE_MEET meet2, bool *swap);
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returnstrue if meet1 andmeet2 can be proved to be immediately adjacent in time (but not
overlapping), because they have the same root meet, and their offsets in that root meet and
durations make them adjacent. If so, it also sets*swap to true if meet2 precedesmeet1, and to
false otherwise. Again, the meets are required to have the same root meet. This implies that
a meet assigned to the end of one cycle meet (Section 4.5.3) is not reported to be adjacent to a
meet assigned to the start of the next cycle meet. This is usually what is wanted in practice.

Meet assignments may be fixed and unfixed, by calling

void KheMeetAssignFix(KHE_MEET meet);
void KheMeetAssignUnFix(KHE_MEET meet);
bool KheMeetAssignIsFixed(KHE_MEET meet);

Any attempt to change the assignment ofmeet will fail while the fix is in place. When several
events are linked by a link events constraint, assigning the meets of all but one of them to the
meets of that one and fixing those assignments, or assigning the meets of all of them to some
other set of meets and fixing those assignments, has a significant efficiency payoff.

A call to KheMeetMoveCheck(meet, target_meet, offset) returnsfalse irrespective
of target_meet andoffset whenmeet is a cycle meet or its assignment is fixed. Function

bool KheMeetIsMovable(KHE_MEET meet);

returnstrue when neither of these conditions holds, so thatKheMeetMoveCheck can be expected
to returntrue for at least some target meets and offsets.

Two similar functions follow chains of fixed assignments:

KHE_MEET KheMeetFirstMovable(KHE_MEET meet, int *offset_in_result);
KHE_MEET KheMeetLastFixed(KHE_MEET meet, int *offset_in_result);

KheMeetFirstMovable returns the first meetm on the chain of assignments out ofmeet such
that KheMeetIsMovable(m) holds. If there is no such meet it returnsNULL. It is used when
changing the time assigned tomeet: this can be done only by changing the assignment of
KheMeetFirstMovable(meet), or of a movable meet further along the chain, and this is only
possible when the result is non-NULL. KheMeetLastFixed returns the last meet on the chain of
fixed assignments out ofmeet; that is, it follows the chain of assignments out ofmeet until it
reaches a meet whose target meet isNULL or whose assignment is not fixed, and returns that meet.
Its result is always non-NULL, and could be a cycle meet. It is used to decide whether two meets
are fixed to the same meet,directly or indirectly. In both functions, the result could bemeet itself,
and*offset_in_result is set to the offset ofmeet in the result, if non-NULL.

4.5.3. Cycle meets and time assignment

Even if most meets are assigned to other meets, there must be a way to associate a particular
starting time with a meet eventually. Rather than having two kinds of assignment, one to a meet
and one to a time, which might conflict, KHE has a special kind of meet called acycle meet. A
cycle meet has typeKHE_MEET as usual, and it has many of the properties of ordinary meets. But
it is also associated with a particular starting time (and its domain is fixed to just that time and
cannot be changed), and so by assigning a meet to a cycle meet one also assigns a time.
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A cycle meet cannot be assigned to another meet; its assignment is fixed toNULL and cannot
be changed. Cycle meets may be split (their offspring are also cycle meets) and merged. They
may even be deleted, but that is not likely to ever be a good idea.

The user cannot create cycle meetsdirectly. Instead,one cycle meet is created automatically
whenever a solution is created. The starting time of thisinitial cycle meetis the first time of the
cycle, and its duration is the number of times of the cycle. When solving, it is usual to split the
initial cycle meet into one meet for each block of times not separated by a meal break or the end
of a day, to prevent other meets from being assigned timeswhich cause them to span these breaks.
A function for this appears below. When evaluating a fixed solution, it is usual to not split the
initial cycle meet, since the other meets already have unchangeable starting times and durations,
and splitting the initial cycle meet might prevent them from being assigned to cycle meets.

To find out whether a given meet is a cycle meet, call

bool KheMeetIsCycleMeet(KHE_MEET meet);

Cycle meets appear on the list of all meets contained in a solution. They are not stored separately
anywhere. So the way to find them all is

for( i = 0; i < KheSolnMeetCount(soln); i++ )
{
meet = KheSolnMeet(soln, i);
if( KheMeetIsCycleMeet(meet) )
visit_cycle_meet(meet);

}

However, cycle meets are usually near the front of the list, so this can be optimized as follows:

time_count = KheInstanceTimeCount(KheSolnInstance(soln));
durn = 0;
for( i = 0; i < KheSolnMeetCount(soln) && durn < time_count; i++ )
{
meet = KheSolnMeet(soln, i);
if( KheMeetIsCycleMeet(meet) )
{
visit_cycle_meet(meet);
durn += KheMeetDuration(meet);

}
}

The loop terminates as soon as the total duration of the cycle meets visited reaches the number
of times in the instance.

Solutions offer several functions whose results depend on cycle meets. They notice when
cycle meets are split, and adjust their results accordingly. Functions

KHE_MEET KheSolnTimeCycleMeet(KHE_SOLN soln, KHE_TIME t);
int KheSolnTimeCycleMeetOffset(KHE_SOLN soln, KHE_TIME t);

return the unique cycle meet running at timet, and the offset oft within that meet. Function
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KHE_TIME_GROUP KheSolnPackingTimeGroup(KHE_SOLN soln, int duration);

returns a time group containing the times at which a meet of the given duration may begin. For
example, if the initial cycle meet has not been split,KheSolnPackingTimeGroup(soln, 2) will
contain every time except the last in the cycle; if the initial cycle meet has been split into one
meet for each day, it will contain every time except the last in each day; and so on.

As mentioned earlier,when solving it is usual to split the initial cycle meet into one fragment
for each maximal block of times not spanning a meal break or end of day. The XML format
does not record this information, but solver

void KheSolnSplitCycleMeet(KHE_SOLN soln);

is able to infer it, as follows. Say that two events ofsoln’s instance are related if they share
a required link events constraint with non-zero weight. Find the equivalence classes of the
reflexive transitive closure of this relation. For each class, examine the required split events
constraints with non-zero weight of the events of the class to determine what durations the meets
derived from the events of this class may have. Also determine whether the starting time of the
class is preassigned, because one of its events has a preassigned time.

For each permitted duration, consult the required prefer times constraints of non-zero
weight of the events of the class to see when its meets of that duration could begin. If a meetm

with duration 2 can begin at timet, there cannot be a break after timet; if a meetm with duration
3 can begin at timet, there cannot be a break after timet or after the time followingt, if any;
and so on. Accumulating all this information for all classes determines the set of times which
cannot be followed by a break. All other times can be followed by a break, and the initial cycle
event is split at these times, and also at times where a break is explicitly allowed by function
KheTimeBreakAfter from Section 3.4.2.

These functions move a meet to a time, following the familiar pattern:

bool KheMeetMoveTimeCheck(KHE_MEET meet, KHE_TIME t);
bool KheMeetMoveTime(KHE_MEET meet, KHE_TIME t);

They work by convertingt into a cycle meet and offset, via functionsKheSolnTimeCycleMeet
andKheSolnTimeCycleMeetOffset above, and callingKheMeetMoveCheck andKheMeetMove.
Meets may also be assigned to cycle meets directly, usingKheMeetMove and the rest. The direct
route is more convenient in general solving, since time assignment is then not a special case.

The following functions are also offered:

bool KheMeetAssignTimeCheck(KHE_MEET meet, KHE_TIME t);
bool KheMeetAssignTime(KHE_MEET meet, KHE_TIME t);
bool KheMeetUnAssignTimeCheck(KHE_MEET meet);
bool KheMeetUnAssignTime(KHE_MEET meet);
KHE_TIME KheMeetAsstTime(KHE_MEET meet);

The first four are wrappers forKheMeetAssignCheck, KheMeetAssign, KheMeetUnAssignCheck,
andKheMeetUnAssign. KheMeetAsstTime follows the assignments ofmeet as far as possible, and
if it arrives in a cycle meet, it returns the starting time ofmeet; otherwise it returnsNULL.
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4.5.4. Meet domains and bounds

Each meet contains a time group called itsdomain, retrievable by calling

KHE_TIME_GROUP KheMeetDomain(KHE_MEET meet);

When a meet is assigned a time, that time must be an element of its domain.

More precisely, the solution invariant says thatmeet’s domain must be a superset of the
domain of the meet it is assigned to, if any, adjusted for offsets. So, given a chain of assignments
beginning atmeet and ending at a cycle meet, the domain ofmeet must be a superset of the
domain of the cycle meet,adjusted for offsets. Since the domain of a cycle meet is a singleton set
defining a time, the time assigned tomeet by this chain of assignments lies inmeet’s domain.

Meet domains cannot be set directly. Instead,meet boundobjects influence them. This
may seem unnecessarily complicated, but meet bounds have several major advantages over
setting domains directly, including allowing restrictions on domains to be added and removed
independently, and doing the right thing when meets split and merge.

When meets split and merge, their durations change, and this usually requires a change of
domain. For example,a meet of duration 2 cannot be assigned the last time on any day, but if it is
split, the fragments may be. Accordingly, a meet bound object stores a whole set of time groups,
one for each possible duration. Only one time group influences a meet’s domain at any moment:
the one corresponding to the meet’s current duration. But the others remain in reserve for when
the meet’s duration is changed by a split or merge.

To create a meet bound object, call

KHE_MEET_BOUND KheMeetBoundMake(KHE_SOLN soln,
bool occupancy, KHE_TIME_GROUP dft_tg);

See below for theoccupancy anddft_tg parameters. To delete a meet bound object, call

bool KheMeetBoundDeleteCheck(KHE_MEET_BOUND mb);
bool KheMeetBoundDelete(KHE_MEET_BOUND mb);

This includes deletingmb from each meet it is added to, and is permitted when all of those
deletions are permitted, according toKheMeetDeleteMeetBoundCheck, defined below.

To retrieve the attributes defined when a meet bound is created, call

KHE_SOLN KheMeetBoundSoln(KHE_MEET_BOUND mb);
bool KheMeetBoundOccupancy(KHE_MEET_BOUND mb);
KHE_TIME_GROUP KheMeetBoundDefaultTimeGroup(KHE_MEET_BOUND mb);

These are rarely accessed in practice.

As mentioned above, a meet bound is supposed to define a time group for each possible
duration. These time groups can be set manually by making any number of calls to

void KheMeetBoundAddTimeGroup(KHE_MEET_BOUND mb,
int duration, KHE_TIME_GROUP tg);

Each declares that whenmb is applied to a meet of the givenduration, it restricts its domain to



98 Chapter 4. Solutions

be a subset oftg. They may be retrieved by

KHE_TIME_GROUP KheMeetBoundTimeGroup(KHE_MEET_BOUND mb, int duration);

In both functions,duration may be any positive integer, provided it is not unreasonably large.
Two calls toKheMeetBoundAddTimeGroup with the sameduration are pointless, but if they
occur, the second takes effect. There is no need to specify a time group for every possible
duration: durations other than those covered by calls toKheMeetBoundAddTimeGroup are
assigned time groups using theoccupancy anddft_tg arguments ofKheMeetBoundMake. To
explain them we need to delve deeper.

There are really two kinds of domains. Those we have dealt with so far may be called
starting-time domains, because they restrict the starting times of meets. They are appropriate, for
example, when expressing prefer times and spread events constraints (which constrain starting
times)structurally. The others may be calledoccupancy domains, because they restrict the whole
set of times a meet occupies, not just its starting time. For example, a meet of duration 2 should
not start immediately before a time when one of its resources is unavailable: the complement of
a resource’s set of unavailable times is an occupancy domain, not a starting-time domain.

KHE works directly only with starting-time domains, not occupancy domains, so what is
needed is a function to convert an occupancy domain into a starting-time domain:

KHE_TIME_GROUP KheSolnStartingTimeGroup(KHE_SOLN soln, int duration,
KHE_TIME_GROUP tg);

This returns the set of times that a meet of the given duration could start without any part of
it lying outsidetg. In other words, it accepts occupancy domaintg and returns the equivalent
starting-time domain for a meet of the given duration. Whenduration is 1, the result is justtg.
As duration increases the result shrinks, eventually becoming empty.

To return to meet bounds. Whenoccupancy is false, the time group used by the meet
bound for durations not set explicitly isdft_tg. It may be best to set all durations explicitly in
this case. Whenoccupancy is true, the value used for any unspecified duration is

KheSolnStartingTimeGroup(soln, duration, dft_tg);

These values could be passed explicitly, but this way they can be (and are) created only when
needed, and there is no need to know the maximum duration. For example, letavailable_tg be
the set of times that some resource is available. Then the meet bound created by

KheMeetBoundMake(soln, true, available_tg);

ensures that a meet lies entirely within this set of times, whatever duration it has.

A meetm may have any number of meet bounds. Its domain is the intersection, over all
its meet boundsmb, of KheMeetBoundTimeGroup(mb, KheMeetDuration(m)), or the full cycle if
none. A meet bound may be added to any number of meets. To add a meet bound, call

bool KheMeetAddMeetBoundCheck(KHE_MEET meet, KHE_MEET_BOUND mb);
bool KheMeetAddMeetBound(KHE_MEET meet, KHE_MEET_BOUND mb);

These follow the usual form, returningtrue when the addition is permitted (when the change
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in meet’s domain it causes does not violate the solution invariant), withKheMeetAddMeetBound

actually carrying out the addition in that case. To delete a meet bound from a meet, call

bool KheMeetDeleteMeetBoundCheck(KHE_MEET meet, KHE_MEET_BOUND mb);
bool KheMeetDeleteMeetBound(KHE_MEET meet, KHE_MEET_BOUND mb);

This too is not always permitted, because it may increasemeet’s domain, which may violate the
solution invariant with respect to the domains of meets assigned tomeet.

While a meet bound is added to at least one meet, it is not permitted to change its time
groups (that is, calls toKheMeetBoundAddTimeGroup are prohibited).

To visit the meet bounds added to a given meet, call

int KheMeetMeetBoundCount(KHE_MEET meet);
KHE_MEET_BOUND KheMeetMeetBound(KHE_MEET meet, int i);

as usual. To visit the meets to which a given meet bound has been added, call

int KheMeetBoundMeetCount(KHE_MEET_BOUND mb);
KHE_MEET KheMeetBoundMeet(KHE_MEET_BOUND mb, int i);

The relationship between meets and meet bounds is a many-to-many one.

When a meet is split, its meet bounds are added to both fragments; and when two meets
are merged, one (either) of the two sets of meet bounds is used for the merged meet. Although
the meet bounds are the same, the durations change, so the domains may change too. Splits and
merges are only permitted when the new domains do not violate the solution invariant.

Adding a meet bound to a meet has some cost in run time, but is fast enough to use within
solvers. Meet bound objects are obtained from free lists held in the solution object. Time groups
are immutable during solving and may be shared.

WhenKheMeetMake makes a meet derived from an event with a preassigned time, it adds
to the meet a meet bound whose default time group is the singleton time group containing that
time. No other special arrangements are made for meets derived from preassigned events.

4.5.5. Automatic domains

Cycle meets have fixed singleton domains, and meets derived from events can also be assigned
fixed domains, based on their durations and the constraints that apply to them.

When solving hierarchically there may be other meets, lying at intermediate levels, for
which there is no obvious fixed domain. Instead, the domain of such a meet needs to be the
largest domain consistent with the domains of the meets assigned to it: the intersection of those
domains, allowing for offsets, or the full set of times if no meets are assigned to it.

As meets are assigned to and unassigned from such a meet, its domain changes automatical-
ly. At any moment it does have a domain,however,defined by the rule just given,and thisdomain
must satisfy the solution invariant as usual.

A newly created meet has a fixed domain. To convert it to the automatic form, call

bool KheMeetSetAutoDomainCheck(KHE_MEET meet, bool automatic);
bool KheMeetSetAutoDomain(KHE_MEET meet, bool automatic);
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Assigningtrue to automatic gives the meet an automatic domain. This will returnfalse if
meet is a cycle meet, or ifmeet is derived from an event or contains tasks, as discussed below.
Assigningfalse returns the meet to a fixed domain. Meet bounds are not affected by automatic
domains; what is affected is whether they are used to construct the domain or not.

KheMeetDomain returnsNULL when the meet has an automatic domain. It is important not
to mistake this for ‘having no domain,’a concept not defined by KHE. Function

KHE_TIME_GROUP KheMeetDescendantsDomain(KHE_MEET meet);

returns the intersection of the domains of the descendantsofmeet, includingmeet itself,adjusted
for offsets, or the full time group if there are no such meets or they all have automatic domains.
It may thus be used to find the true domain of a meet whenKheMeetDomain returnsNULL. It is
relatively slow and not intended for use during solving.

When a meet with an automatic domain is split, its two fragments have automatic domains.
When two meets are joined, they must both either have automatic domains or not; and if both do,
then the joined meet has an automatic domain.

A meet with an automatic domain may not be derived from an event, and it may not have
tasks. These two conditions are naturally satisfied by the kinds of meets that need automatic
domains. They are necessary, since otherwise KHE would be forced to maintain explicit
domains as meets are assigned and unassigned, which would not be efficient. As it is, automatic
domains are implemented by having the domain test bypass meets whose domains are automatic,
as though each such meet was replaced by the collection of meets assigned to it.

4.6. Tasks

A task is a demand for one resource. It is created by calling

KHE_TASK KheTaskMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_MEET meet, KHE_EVENT_RESOURCE er);

The task lies insoln and has resource typert. When parametermeet is non-NULL, the task
lies withinmeet, representing a demand for one resource, of typert, at the times whenmeet is
running. Whenmeet isNULL, the task still demands a resource, but at no times, making it useful
only as a target for the assignment of other tasks, as explained below.

Parameterer may be non-NULL only whenmeet is non-NULL and derived from some event
e. In that case,er must be one ofe’s event resources. Its presence causes the task to consider
itself to be derived from event resourceer.

When first created, a meet has no tasks. They must be created separately by calls to
KheTaskMake. FunctionKheSolnMakeCompleteRepresentation (Section 4.3)does this. When
a task’s enclosing meet splits, the task splits too. And when two meets merge, their tasks must
be compatible and are merged pairwise, inversely to the split.

A task contains an optionalassignmentto another task, and aresource domainwhich
restricts the resources it may be assigned to an arbitrary subset of the resources of its type. These
attributes are described in detail in later sections.

A task may be deleted by calling
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void KheTaskDelete(KHE_TASK task);

This removes the task from its meet, if any, and unassigns any assignments involving the task.

The back pointer of a task may be set and retrieved by

void KheTaskSetBack(KHE_TASK task, void *back);
void *KheTaskBack(KHE_TASK task);

as usual, and the usual visit number operations are available:

void KheTaskSetVisitNum(KHE_TASK task, int num);
int KheTaskVisitNum(KHE_TASK task);
bool KheTaskVisited(KHE_TASK task, int slack);
void KheTaskVisit(KHE_TASK task);
void KheTaskUnVisit(KHE_TASK task);

Function

char *KheTaskId(KHE_TASK task);

returns a string which is supposed to uniquely identify the task. Most of the time, this is the Id of
the task’s meet, followed by a dot and an index number identifying the task within the meet (the
first task has index 0, the second has index 1, and so on). Some special tasks (e.g. cycle meets)
have an Id beginning and ending with"/".

The result ofKheTaskId(task) is created whenKheTaskId(task) is first called, and
stored intask so that it does not have to be created over and over. If it is used only for debugging,
as is the intention, there is virtually no cost in running time or memory when debugging is off.

The attributes of a task related to its meet may be retrieved by

KHE_MEET KheTaskMeet(KHE_TASK task);
int KheTaskMeetIndex(KHE_TASK task);
int KheTaskDuration(KHE_TASK task);
float KheTaskWorkload(KHE_TASK task);

If there is no meet,KheTaskMeet returnsNULL andKheTaskDuration andKheTaskWorkload
return 0. If there is a meet and event resource,KheTaskWorkload returns the workload of the
task, defined in accord with the XML format’s definition to be

w(task) =
d(meet)w(er)

d(e)

whered(meet) is the duration oftask’s meet,w(er) is the workload oftask’s event resource,and
d(e) is the duration oftask’s meet’s event. See below for the similar and more generally useful
KheTaskTotalDuration andKheTaskTotalWorkload operations. There is also

float KheTaskWorkloadPerTime(KHE_TASK task);

which returns the workload per time,w(er)/ d(e). This is used when evaluating limit workload
constraints, so for efficiency it is calculated just once when the task is created, and stored in the
task. Other attributes of a task may be accessed by
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KHE_SOLN KheTaskSoln(KHE_TASK task);
int KheTaskSolnIndex(KHE_TASK task);
KHE_RESOURCE_TYPE KheTaskResourceType(KHE_TASK task);
KHE_EVENT_RESOURCE KheTaskEventResource(KHE_TASK task);

These return the solution containingtask, the index oftask in its solution (the value ofi for
whichKheSolnTask(soln, i) returnstask), the task’s resource type, and its event resource (if
any). Index numbers may change when tasks are deleted (what actually happens is that the hole
left by the deletion of a task, if not last, is plugged by the last task), so care is needed. Also,

bool KheTaskIsPreassigned(KHE_TASK task, KHE_RESOURCE *r);

returnstrue when KheTaskEventResource(task) != NULL and that event resource has a
preassigned resource;task is called apreassigned taskin that case. Ifr != NULL, then*r is set
to the event resource’s preassigned resource iftask is preassigned, and toNULL otherwise.

Two tasks are said to beequivalentwhen, if they were assigned and those assignments were
swapped, effectively nothing would change. Function

bool KheTaskEquivalent(KHE_TASK task1, KHE_TASK task2);

returnstrue whentask1 and task2 are derived from equivalent event resources according
to KheEventResourceEquivalent (Section 3.6.3), their enclosing meets must have the same
duration and the same assigned time (which could beNULL), their domains are equal, and their
child tasks are pairwise equivalent. What the tasks are currently assigned to, if anything, has no
influence on whether they are equivalent.

Ideally the specification would say that there must be some matching of the two sets of child
tasks such that each matched pair is equivalent. However that would require sorting the child
tasks in some non-trivial way and has not been implemented. SoKheTaskEquivalent is similar
to KheEventResourceEquivalent in that when it returnstrue, the tasks really are equivalent,
but when it returnsfalse, they may or may not be equivalent.

A task may lie in atasking, which is an arbitrary set of tasks (Section 5.5). Functions

KHE_TASKING KheTaskTasking(KHE_TASK task);
int KheTaskTaskingIndex(KHE_TASK task);

return the tasking containingtask and the index oftask in that tasking, orNULL and-1 if the
task does not lie in a tasking. Finally,

void KheTaskDebug(KHE_TASK task, int verbosity, int indent, FILE *fp);

produces the usual debug print oftask ontofp with the given verbosity and indent.

4.6.1. Assignment

Just as KHE assigns one meet to another meet, not to a time, so it assigns one task to another task,
not to a resource. Accordingly, the assignment operations for tasks parallel those for meets, the
main difference being that there is no offset.

The fundamental task assignment operations are
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bool KheTaskMoveCheck(KHE_TASK task, KHE_TASK target_task);
bool KheTaskMove(KHE_TASK task, KHE_TASK target_task);

KheTaskMove changes the assignment oftask to target_task. If target_task is NULL, the
move is an unassignment. These operations follow the usual pattern, returningfalse and chang-
ing nothing if they cannot be carried out. Here is the full list of reasons why this could happen:

• task’s assignment is fixed;

• task is a cycle task (Section 4.6.2);

• the move changes nothing:target_task is the same astask’s current assignment;

• target_task is non-NULL and the resource domain (Section 4.6.3) oftarget_task is not
a subset of the resource domain oftask.

As for meet moves, returningfalse when the move changes nothing reflects the practical reality
that no solver wants to waste time on such moves.

KHE offers several convenience functions based onKheTaskMoveCheck andKheTaskMove.
For assigning a task there is

bool KheTaskAssignCheck(KHE_TASK task, KHE_TASK target_task);
bool KheTaskAssign(KHE_TASK task, KHE_TASK target_task);

Assigning is the same as moving except thattask is expected to be unassigned to begin with, and
KheTaskAssignCheck andKheTaskAssign returnfalse if not. For unassigning there is

bool KheTaskUnAssignCheck(KHE_TASK task);
bool KheTaskUnAssign(KHE_TASK task);

Unassigning is the same as moving toNULL. For swapping there is

bool KheTaskSwapCheck(KHE_TASK task1, KHE_TASK task2);
bool KheTaskSwap(KHE_TASK task1, KHE_TASK task2);

A swap is two moves, one oftask1 to whatevertask2 is assigned to, and the other oftask2
to whatevertask1 is assigned to. It succeeds whenever those two moves succeed. As for meet
swaps, exchanging the parameters changes nothing, and code fragment

if( KheTaskSwap(task1, task2) )
KheTaskSwap(task1, task2);

leaves the solution in its original state whether the swap occurs or not.

A task’s assignment may be retrieved by calling

KHE_TASK KheTaskAsst(KHE_TASK task);

If there is no assignment,NULL is returned. Although a task may only be assigned to one task,
any number of tasks may be assigned to a task. Functions
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int KheTaskAssignedToCount(KHE_TASK target_task);
KHE_TASK KheTaskAssignedTo(KHE_TASK target_task, int i);

visit all the tasks that are assigned totarget_task, in an unspecified order which could change
when a task is assigned or unassigned fromtarget_task. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.) Functions

int KheTaskTotalDuration(KHE_TASK task);
float KheTaskTotalWorkload(KHE_TASK task);

return the total duration and workload oftask and the tasks assigned to it, directly or indirectly.
These functions are usually more appropriate thanKheTaskDuration andKheTaskWorkload.

Given that a task can be assigned to another task, a chain of assignments can be built up,
from one task to another and so on. Function

KHE_TASK KheTaskRoot(KHE_TASK task);

returns theroot of task: the last task on the chain of assignments leading out oftask, possibly
task itself. The result is neverNULL, but it could be a cycle task (Section 4.6.2). Function

KHE_TASK KheTaskProperRoot(KHE_TASK task);

is like KheTaskRoot except that it excludes assignments to cycle tasks from the chain of
assignments it follows. The result is a cycle task only whentask itself is a cycle task. Also,

bool KheTaskIsProperRoot(KHE_TASK task);

returnstrue whentask is a proper root task: when it is not a cycle task, and is either unassigned
or assigned directly to a cycle task.

The next function is offered as an aid to solvers, to help them to decide whether they should
try to assign a resource to a given task, or not:

bool KheTaskNeedsAssignment(KHE_TASK task);

Irrespective of whethertask is currently assigned or not, this function returnstrue whentask
needs to be assigned a resource in order to avoid a positive cost (hard or soft) among the event
resource constraints that apply to it, taking the rest of the current solution as fixed.

This function is mainly useful when repairing solutions. When constructing initial solutions
it will often be misleading, since when none of the tasks subject to a limit resources constraint
with a positive minimum limit is assigned (as is the case initially), it will say that all of them need
assignment, when in fact only some of them (enough to reach the limit) need assignment.

Although the idea ofKheTaskNeedsAssignment is simple enough, there are several
wrinkles, which we explain now by describing the implementation.

First,KheTaskNeedsAssignment finds the proper root oftask, as defined just above, and
applies itself to that task. This is because the intention is to determine whethertask needs
assignment to a resource, not to another task, and assignments to other tasks are taken as fixed.
It’s best, on the whole, iftask itself is already a proper root task.
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The next step is to check the tasks assigned totask recursively. If any of them need
assignment, then so doestask. Otherwise, it remains to checktask itself.

If task is not derived from an event resource, then it does not need assignment. Otherwise,
KheTaskNeedsAssignment callsKheEventResourceNeedsAssignment (Section 3.6.3). If this
returnsKHE_NO or KHE_YES, KheTaskNeedsAssignment returnsfalse or true immediately. If
it returnsKHE_MAYBE, thentask’s monitors are searched for limit resources monitorsm with a
positive minimum limit, and each is handled as follows.

If m is below the limit, then irrespective of whether or nottask is assigned, clearly it needs
to be assigned. Otherwise,m is at or above the limit. Iftask is either unassigned or assigned a
resource of no interest tom, then it does not need to be assigned, since other tasks are satisfying
m. This leaves one awkward case:m is satisfied, buttask is assigned in a way that contributes to
that satisfaction, and it may be that if it was not assigned,m would not be satisfied.

We need to work out what would happen if the task was unassigned. We do that by finding
the total duration of all descendant tasks of the proper root task that are monitored bym, and
comparing their total duration with the amount by whichm exceeds its limit.

A similar function is

KHE_COST KheTaskAssignmentCostReduction(KHE_TASK task);

This returns the total amount by which the cost of the event resource constraints that monitor
task (and any tasks assigned, directly or indirectly, totask) reduce whentask is assigned. As
for KheTaskNeedsAssignment, this function does not care whethertask is assigned or not, and
it applies itself to the proper root oftask, so it is probably best iftask is its own proper root.
The result could be negative, if assigningtask has bad consequences: causing the maximum
limit of a limit resources constraint to be exceeded, or whentask is subject to a prefer resources
constraint with an empty domain. The result is inexact when the cost function is not linear, and
also when two tasks are subject to the same limit resourcesconstraint and one is assigned,directly
or indirectly, to the other.

Task assignments may be fixed and unfixed as usual, by calling

void KheTaskAssignFix(KHE_TASK task);
void KheTaskAssignUnFix(KHE_TASK task);
bool KheTaskAssignIsFixed(KHE_TASK task);

The assignment oftask cannot be changed while the fix is in place. When several tasks are
linked by an avoid split assignments constraint, assigning all but one of them to that one and fix-
ing those assignments, or assigning all of them to some other task and fixing those assignments,
has a significant efficiency payoff. Function

KHE_TASK KheTaskFirstUnFixed(KHE_TASK task);

returns the first task on the chain of assignments out oftask whose assignment is not fixed (pos-
siblytask), orNULL if none. A solver can change the resource assigned totask only by changing
the assignment ofKheTaskFirstUnFixed(task), or of a task further along the chain.
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4.6.2. Cycle tasks and resource assignment

Just as meets are assigned times by assigning them, directly or indirectly, to cycle meets, so tasks
are assigned resources by assigning them, directly or indirectly, tocycle tasks. A cycle task
has typeKHE_TASK as usual, and it has many of the properties of ordinary tasks. But it is also
associated with a particular resource (and its domain is fixed to just that resource and cannot be
changed), and so by assigning a task to a cycle task one also assigns a resource.

The user cannot create cycle tasks directly. Instead, one cycle task is created automatically
for each resource whenever a solution is created. The firstKheInstanceResourceCount tasks
of a solution are its cycle tasks, in the order the resources appear in the instance. Function

bool KheTaskIsCycleTask(KHE_TASK task);

returnstrue whentask is a cycle task. Function

KHE_TASK KheSolnResourceCycleTask(KHE_SOLN soln, KHE_RESOURCE r);

returns the cycle task representingr in soln.

These functions move a task to a resource, following the familiar pattern:

bool KheTaskMoveResourceCheck(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskMoveResource(KHE_TASK task, KHE_RESOURCE r);

They first produce a target task. Ifr is non-NULL this is the cycle task returned by function
KheSolnResourceCycleTask above, otherwise it isNULL. Then they callKheTaskMoveCheck
andKheTaskMove. Tasks may also be assigned to cycle tasks directly, usingKheTaskMove etc.

The following functions are also offered:

bool KheTaskAssignResourceCheck(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskAssignResource(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskUnAssignResourceCheck(KHE_TASK task);
bool KheTaskUnAssignResource(KHE_TASK task);
KHE_RESOURCE KheTaskAsstResource(KHE_TASK task);

The first four are wrappers forKheTaskAssignCheck, KheTaskAssign, KheTaskUnAssignCheck,
andKheTaskUnAssign. KheTaskAsstResource follows the assignmentsoftask as far as possible.
If it arrives at a cycle task, it returns the resource represented by that task, else it returnsNULL.

To find the tasks assigned a given resource, either directly or indirectly via other tasks, call

int KheResourceAssignedTaskCount(KHE_SOLN soln, KHE_RESOURCE r);
KHE_TASK KheResourceAssignedTask(KHE_SOLN soln, KHE_RESOURCE r, int i);

When a resourcer is assigned to a task, the task and all tasks assigned to it, directly or indirectly,
go on the end ofr’s sequence. Whenr is unassigned from a task, the task and all tasks assigned
to it, directly or indirectly, are removed, and the gaps are plugged by tasks taken from the end.
The sequence does not includer’s cycle task.

In practice, tasks are of three kinds:cycle tasks, which represent resources;unfixed tasks,
which require assignment to cycle tasks; andfixed tasks, whose assignments are fixed to unfixed
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tasks, relinquishing responsibility for assigning a resource to those tasks. Resource assignment
algorithms are concerned with assigning or reassigning unfixed tasks.

4.6.3. Task domains and bounds

Each task contains a resource group called itsdomain, retrievable by calling

KHE_RESOURCE_GROUP KheTaskDomain(KHE_TASK task);

When a task is assigned a resource, that resource must be an element of its domain.

More precisely, the solution invariant says thattask’s domain must be a superset of the
domain of the task it is assigned to, if any. So, given a chain of assignments beginning attask

and ending at a cycle task, the domain oftask must be a superset of the domain of the cycle task.
Since the domain of a cycle task is a singleton set defining a resource, the resource assigned to
task by this chain of assignments lies intask’s domain.

Task domains cannot be set directly. Instead,task boundobjects influence them. Task
bounds work in the same way as meet bounds, except that the complications introduced by meet
splitting are absent. To create a task bound object, call

KHE_TASK_BOUND KheTaskBoundMake(KHE_SOLN soln, KHE_RESOURCE_GROUP rg);

To delete a task bound object, call

bool KheTaskBoundDeleteCheck(KHE_TASK_BOUND tb);
bool KheTaskBoundDelete(KHE_TASK_BOUND tb);

This includes deletingtb from each task it is added to, and is permitted when all of those
deletions are permitted, according toKheTaskDeleteTaskBoundCheck, defined below.

To retrieve the attributes defined when a task bound is created, call

KHE_SOLN KheTaskBoundSoln(KHE_TASK_BOUND tb);
KHE_RESOURCE_GROUP KheTaskBoundResourceGroup(KHE_TASK_BOUND tb);

These are rarely accessed in practice.

A task may have any number of task bounds. Its domain is the intersection, over all its task
boundstb, of KheTaskBoundResourceGroup(tb), or the full set of resources of its type if none.
A task bound may be added to any number of tasks. To add a task bound, call

bool KheTaskAddTaskBoundCheck(KHE_TASK task, KHE_TASK_BOUND tb);
bool KheTaskAddTaskBound(KHE_TASK task, KHE_TASK_BOUND tb);

These follow the usual form, returningtrue when the addition is permitted (when the change
in task’s domain it causes does not violate the solution invariant), withKheTaskAddTaskBound

actually carrying out the addition in that case. To delete a task bound from a task, call

bool KheTaskDeleteTaskBoundCheck(KHE_TASK task, KHE_TASK_BOUND tb);
bool KheTaskDeleteTaskBound(KHE_TASK task, KHE_TASK_BOUND tb);

This too is not always permitted, because it may increasetask’s domain, which may violate the
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solution invariant with respect to the domains of tasks assigned totask.

To visit the task bounds added to a given task, call

int KheTaskTaskBoundCount(KHE_TASK task);
KHE_TASK_BOUND KheTaskTaskBound(KHE_TASK task, int i);

as usual. To visit the tasks to which a given task bound has been added, call

int KheTaskBoundTaskCount(KHE_TASK_BOUND tb);
KHE_TASK KheTaskBoundTask(KHE_TASK_BOUND tb, int i);

The relationship between tasks and task bounds is a many-to-many one.

Adding a task bound to a task has some cost in run time, but is fast enough to use within
solvers. The implementation parallels the one described previously for meet bounds.

WhenKheTaskMake makes a task derived from an event resource which has a preassigned
resource, it adds to the task a task bound whose resource group is the singleton resource group
containing that resource. No other special arrangements are made for tasks derived from
preassigned event resources.

4.7. Resource availability

Evaluators and solvers may wish to know how available a resource is: how much more work it
could do without becoming overloaded. This section presents KHE’s functions for this.

4.7.1. Resource availability functions

Themaximum loadof a resourcer is the maximum amount of work thatr could do without
violating any resource constraint of non-zero weight (hard or soft). Thecurrent load is the
amount of work thatr is doing now (in a given solution), and itsavailable loadis its maximum
load minus its current load. Available load could be negative, in which caser is overloaded. In
that case, at least one of its resource constraints of non-zero weight must be violated.

Here ‘load’refers to either of two measures: the total number of times occupied by the tasks
thatr is assigned to, or their total workload.

The maximum load is the maximum,over all timetables forr which do not violate any ofr ’s
preassignments or resource constraints, of the load of the timetable. These two functions return
an estimate of the maximum load, which is usually the true value but may be higher:

bool KheResourceMaxBusyTimes(KHE_SOLN soln, KHE_RESOURCE r, int *res);
bool KheResourceMaxWorkload(KHE_SOLN soln, KHE_RESOURCE r, float *res);

If they can show that constraints limitr’s maximum load to a non-trivial value, they returntrue
and set*res to that value. Otherwise they returnfalse with *res set toINT_MAX or FLT_MAX.

KheResourceMaxBusyTimes andKheResourceMaxWorkload depend only on the instance,
not on the solution. They are presented as they are because their results are cached in the solution
by the first call, ensuring that subsequent calls take almost no time. This is important, because
they are slow. (The other option which supports caching, which is to calculate them for every
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resource while finalizing the instance, seems too burdensome for users who do not need them.)

Next come two functions which calculate the current load:

int KheResourceBusyTimes(KHE_SOLN soln, KHE_RESOURCE r);
float KheResourceWorkload(KHE_SOLN soln, KHE_RESOURCE r);

These return the total duration of the tasks currently assignedr in soln, and their total
workload. They could be implemented by traversing the tasks assignedr using functions
KheResourceAssignedTaskCount andKheResourceAssignedTask (Section 4.6.2), but in fact
KHE keeps track of their values as tasks are assigned and unassigned, so they are very fast.

Finally come two functions that calculate availability:

bool KheResourceAvailableBusyTimes(KHE_SOLN soln, KHE_RESOURCE r, int *res);
bool KheResourceAvailableWorkload(KHE_SOLN soln, KHE_RESOURCE r, float *res);

These are the same asKheResourceMaxBusyTimes andKheResourceMaxWorkload, except they
subtract the current load from*res when they returntrue. So*res could be negative here.

4.7.2. How resource availability is calculated

This section explains howKheResourceMaxBusyTimes and KheResourceMaxWorkload are
implemented. We start withKheResourceMaxBusyTimes. Owing to caching it does its work
only once per resource, so it is more concerned with finding a good limit than running quickly.

A resource’s maximum number of busy times depends on its avoid unavailable times, limit
busy times, and cluster busy times constraints of non-zero weight, soft as well as hard. There are
cases where this number is easy to find. For example, it could be the maximum limit of a limit
busy times constraint whose time group is the entire cycle. But there are other,more complicated
possibilities. A cluster busy times constraint might limit the number of busy days, and then limit
busy timesconstraintsmight limit the number of busy timeson each day. Or there might be limits
on each day or week, which need to be added to give the overall limit.

Possibilities like these explain whyKheResourceMaxBusyTimes is not always exact. It
proceeds as follows, for each resource separately. The following applies to one resource,r.

An avail nodeis a set of times plus a non-negative integer limit. Its meaning is thatr is
constrained to be busy for at most the limit number of times from the set.

At various points in the following description, it says that an avail nodex with a given set
of times and limit is created. This statement is to be understood as subject to these rules:

• If a timet is known to lie in an avail node with limit 0 containing justt, thent can be omitted
from every other node without changing the node’s limit. All such times are deleted from
x’s times beforex is created, and before the following rules are applied.

• If x’s limit is equal to or larger than its number of times, thenx offers no useful information
and it is not created. This includes all avail nodes whose set of times is empty.

• If several avail nodes containing the same set of times are created forr, only one of them,
one whose limit is minimal, is kept; the others are either not created at all, or destroyed when
a node with a smaller limit is created.
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Here is the algorithm forKheResourceMaxBusyTimes. Its first phase usesr ’s constraints to
create avail nodes wherever they can be justified, as follows. These four cases are handled first:

1. Suppose that all events have preassigned times, as occurs in nurse rostering but not high
school timetabling. Suppose that at some timet, all of the event resources ofr ’s type in the
events running att are preassigned resources other thanr. Thent is unassignable as far as
r is concerned. For each sucht, create one avail node containing limit 0 andt.

2. If r is subject to an avoid unavailable times constraint of non-zero weight, then create one
avail node for each time of the constraint, containing limit 0 and that time.

3. If r is subject to a limit busy times constraint of non-zero weight with maximum limit 0,
then create one avail node for each time of the constraint, containing limit 0 and that time.

4. If r is subject to a cluster busy times constraint of non-zero weight with maximum limit
0, then create one avail node for each time in each positive time group of the constraint,
containing limit 0 and that time.

Next, the algorithm handles these four cases. It makes two passes over the relevant constraints,
because a node derived from one can open the way to nodes derived from others.

5. If r is subject to a limit busy times constraint of non-zero weight with maximum limit
m > 0, then create one avail node for each time group of the constraint, whose times are the
times of the time group, and whose limit ism.

6. Suppose thatr is subject to cluster busy times constraintc of non-zero weight with maxi-
mum limit m > 0. For each positive time groupg of c, define a set of times and a limit as
follows. The set of times consists of the times ofg, minus any for which there is an avail
node with limit 0 containing just that time. The limit is the number of times in that set,
unless there is already an avail node whose times are the times of that set, in which case the
limit is that node’s limit. Then define an avail node as follows. Sort the limitsof the positive
time groups, as just defined, into decreasing order. The new node’s times are the times of
the positive time groups, and its limit is the sum of the firstmof the sorted limits.

When history is present, the maximum limitm is replaced by max(0,m− xi) in accordance
with the meaning of history. Ifm < xi the resource is overloaded even if every time group
is inactive, but that possibility is not taken into account here.
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7. Suppose thatr is subject to cluster busy times constraintc of non-zero weight with a
non-zero minimum limit (including not allowing zero). This may be the same constraint
as in the previous point. Thenc may be converted into an equivalent cluster busy times
constraintc′ with the same time groups, but with their polarities reversed, and maximum
limit equal to the number of time groups minus the minimum limit. For example, ifc says
thatr must be free on at least 8 out of 28 days, thenc′ says thatr must be busy on at most
20 out of 28 days. So make this conversion (notionally) and apply the previous point. For
a proof that the conversion is correct in general, see the end of Section 3.7.14.

When history is present, suppose thatc hasn time groups, minimum limitm, and history
valuesai andxi. According to the conversion, the revised history value isai − xi, and the
revised limit (now a maximum limit) isn − m. So altogether the maximum limit comes
to max(0, (n − m) − (ai − xi)).

8. Suppose thatr is subject to a limit workload constraintcof non-zero weight with maximum
limit m. For each time groupg of c, proceed as follows. For each timet of g, find w(t,r ),
the minimum workload per time thatr could incur when it is busy att. Sort thew(t,r ) of
g into increasing order, and letk be the largest integer such that the sum of the firstk of the
w(t,r ) does not exceedm. Thenk is the largest number of times thatr can be busy within
g without violatingc, so create an avail node containing the times ofg with limit k.

To findw(t,r ), proceed as follows. LetSbe the set of all event resources whose type is the
type of r. Make the following definitions:

• wuu is the minimum, over all event resourcess ∈ Sthat lie in unpreassigned events and
are themselves unpreassigned, of the workload per time ofs.

• wpu(t) is the minimum, over all event resourcess ∈ Sthat lie in preassigned events that
run during timet, and are themselves unpreassigned, of the workload per time ofs.

• wup(r ) is the minimum, over all event resourcess ∈ S that lie in unpreassigned events
and are themselves preassignedr, of the workload per time ofs.

• wpp(t,r ) is the sum, over all event resourcess ∈ Sthat lie in preassigned events that run
during timet, and are themselves preassignedr, of the workload per time ofs.

Definewuu, wpu(t), wup(r ), andwpp(r, t) to be∞ when their defining sets of event resources
are empty. Setw(r, t) to wpp(r, t) if wpp(r, t) < ∞, and to min(wuu,wpu(t),wup(r )) otherwise.

If w(r, t) = ∞, thenr cannot be busy at timet, so add an avail node containingt and limit 0,
and proceed as thought is not present ing. Also, if wpp(r, t) < ∞, thenr must be busy att,
so subtractwpp(r, t) from mand proceed as thought is not present ing.

This ends the first phase. Its result is a set of avail nodes.

The second phase uses a graph whose nodes are the first phase’s avail nodes. An edge joins
two nodes when their sets of times have a non-empty intersection. Any independent set in this
graph (any set of nodes such that no two are connected by an edge) defines a larger avail node
whose set of timesS is the union of its nodes’sets, and whose limitL is the sum of their limits.

Let the set of times of the whole cycle beC. The independent set says that of these|C|
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times,|S| times are subject to limitL. The remaining|C| − |S| times are not limited. Overall, then,
it places a maximum limit ofL′ = L + |C| − |S|on the number of times thatr can be busy.

So the second phase finds an independent set for whichL′ is as small as possible. This
problem is closely related to the problem of finding a maximum independent set, making it
NP-complete, soKheResourceMaxBusyTimes uses a simple heuristic. It sorts the avail nodes
into decreasing time set size order. Then, for each node in that order, it finds one independent
set, by starting with that node and then examining each following node in order, adding a node
whenever its times do not intersect with the times of the previously added nodes. It then chooses,
from these independent sets, one for whichL′ is minimum, and returns thatL′ as its result.

KheResourceMaxWorkload is simpler because it is affected only by limit workload
constraints. It works in the same way asKheResourceMaxBusyTimes, finding avail nodes and
building independent sets, but the avail nodes come from just one source:

9. For each time group of each limit workload constraint of non-zero weight with a maximum
limit, build one avail node containing the times of the time group and the maximum limit.

Only independent sets that cover the whole cycle can be used, since the algorithm knows nothing
about workload in the uncovered times. The result is the total limit of the chosen set.

To limit running time on large instances, such as the last few CQ14 instances, the algorithm
exits early when 20 candidate independent sets have been tried since the most recent new best.

KheResourceMaxWorkload produces an integer despite its return type beingfloat, because
the maximum limits of limit workload constraints are integers.KheResourceWorkload and
KheResourceAvailableWorkload, on the other hand, can return fractional values.

The cases covered here are not the only possibilities. Limit active intervals constraints force
resources to have some free time, for example. Pairs of nodes whose time sets have a non-empty
intersection can still be useful, if the intersection is small. But we have to stop somewhere, and
the independent sets suggest that finding the true limit is likely to be an NP-complete problem.

4.7.3. Detailed querying of resource availability

KHE offers functions for querying in detail how resource availability is calculated. The first step
is to obtain aresource availability solverby calling

KHE_AVAIL_SOLVER KheSolnAvailSolver(KHE_SOLN soln);

Each solution object has one resource availability solver, which is created the first time it is
needed (e.g. whenKheSolnAvailSolver is first called) and stored in the solution object. It uses
soln’s memory arena, so it will be deleted whensoln is deleted or made into a placeholder. It
uses memory fairly efficiently, recycling what it uses through its own free lists.

To query the availability of a particular resource fromsoln’s instance, start by calling

void KheAvailSolverSetResource(KHE_AVAIL_SOLVER as, KHE_RESOURCE r);

This runs the algorithm from the previous section onr, keeping the resulting best independent
sets, one for busy times and one for workload. It is fairly slow, so it is best if all queries aboutr

are made after one call toKheAvailSolverSetResource.
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After that, several functions become available. To begin with,

bool KheAvailSolverMaxBusyTimes(KHE_AVAIL_SOLVER as, int *res);
bool KheAvailSolverMaxWorkload(KHE_AVAIL_SOLVER as, float *res);

are the same asKheResourceMaxBusyTimes andKheResourceMaxWorkload except that they
query the avail solver about the set resource.

The solver recognises these types of avail node:

typedef enum {
KHE_AVAIL_NODE_UNASSIGNABLE_TIME,
KHE_AVAIL_NODE_UNAVAILABLE_TIME,
KHE_AVAIL_NODE_LIMIT_BUSY_ZERO,
KHE_AVAIL_NODE_CLUSTER_BUSY_ZERO,
KHE_AVAIL_NODE_LIMIT_BUSY,
KHE_AVAIL_NODE_CLUSTER_BUSY,
KHE_AVAIL_NODE_CLUSTER_BUSY_MIN,
KHE_AVAIL_NODE_WORKLOAD

} KHE_AVAIL_NODE_TYPE;

These follow the cases given in the previous section, so should be self-explanatory. Function

char *KheAvailNodeTypeShow(KHE_AVAIL_NODE_TYPE type);

returns a short string in static memory describing in general terms what a node with the given
type was derived from:"Unavailable time", and so on.

To find out how the maximum number of busy times was calculated, call

int KheAvailSolverMaxBusyTimesAvailNodeCount(KHE_AVAIL_SOLVER as);
void KheAvailSolverMaxBusyTimesAvailNode(KHE_AVAIL_SOLVER as, int i,
KHE_AVAIL_NODE_TYPE *type, int *limit, KHE_TIME_SET *ts, KHE_MONITOR *m);

KheAvailSolverMaxBusyTimesAvailNodeCount returns the number of avail nodes in the
independent set chosen to define the limit, or 0 if the solver was unable to find a non-trivial limit.
KheAvailSolverMaxBusyTimesAvailNode visits theith avail node of the chosen independent
set, returning its type, its limit, its set of times,and the monitor that gave rise to it, orNULL if none.
For typeKHE_TIME_SET, see Section 5.8.

To do the same job for workload, the calls are

int KheAvailSolverMaxWorkloadAvailNodeCount(KHE_AVAIL_SOLVER as);
void KheAvailSolverMaxWorkloadAvailNode(KHE_AVAIL_SOLVER as, int i,
KHE_AVAIL_NODE_TYPE *type, int *limit, KHE_TIME_SET *ts, KHE_MONITOR *m);

In this case*type is alwaysKHE_AVAIL_NODE_WORKLOAD and*m is neverNULL. Again, the count
is 0 if the solver could not find a non-trivial limit.

The avail solver does not report current or available load. Details of current load may be
found by using functionsKheResourceAssignedTaskCount andKheResourceAssignedTask
(Section 4.6.2) to visit the tasks assignedr, andKheTaskDuration andKheTaskWorkload to find
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their load. Available load is just maximum load minus current load.

4.8. Marks and paths

Suppose you want to make the best time assignment for a meet. You try each assignment in turn,
remembering the best so far and its solution cost, then finish off by re-doing the best one.

Now suppose the alternative operations are more complicated. For example, they might
be Kempe meet moves (Section 10.2.2), each consisting of an unpredictable number of time
assignments. The same program structure works, but undoing one alternative is much more
complicated. Marks and paths solve these kinds of problems.

A mark is like a waymark on a journey: it marks a particular point, or state, that a solution
has reached. It is created and deleted by

KHE_MARK KheMarkBegin(KHE_SOLN soln);
void KheMarkEnd(KHE_MARK mark, bool undo);

These operations must be called in matching pairs: for each call toKheMarkBegin there must be
one later call toKheMarkEnd with the same mark object. Between these two calls there may be
other calls toKheMarkBegin andKheMarkEnd, and those calls must occur in matching pairs.

KheMarkEnd deletes the mark created by the correspondingKheMarkBegin. If its undo

parameter istrue, it also undoes all operations onsoln since the correspondingKheMarkBegin,
returning the solution to its state when that call was made. Another way to undo is

void KheMarkUndo(KHE_MARK mark);

It undoes all operations onsoln since the call toKheMarkBegin which returnedmark, only
without removingmark. It can only be called when it would be legal to callKheMarkEnd with the
same value ofmark: whenmark is the mark returned most recently by a call toKheMarkBegin,
apart from marks already completed byKheMarkEnd.

When undoing by either method, the resulting value of the solution may differ from the
original in its naturally nondeterministic aspects, such as the set of unmatched demand monitors
(but not their number), and the order of elements in arrays representing sets (of meets, etc.). But
as a solution it will be the same as the original. KHE objects deleted while doing and re-created
while undoing are re-created with the same memory addresses as the originals.

At any time betweenKheMarkBegin and its correspondingKheMarkEnd, functions

KHE_SOLN KheMarkSoln(KHE_MARK mark);
KHE_COST KheMarkSolnCost(KHE_MARK mark);

may be called to obtainmark’s solution and the solution cost at the timeKheMarkBegin was
called. Exploring the result ofKheMarkSoln will reveal the solution as it is now, not as it was
whenKheMarkBegin was called.

All mark objectsshare access to one sequence,stored in the solution object,of recordsof the
operations performed on the solution since the first call toKheMarkBegin whose corresponding
KheMarkEnd has not occurred yet. When undoing, these operations are undone in reverse order
and removed from the sequence. All changes to solutions, including changes to back pointers,
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are recorded, except changes to visit numbers, since undoing them would be inappropriate. A
mark object holds a pointer to the solution object, its cost whenKheMarkBegin was called, an
index into the sequence saying where to stop undoing, and a sequence of paths, described next.

A pathis like the route between two waymarks. A path is created by calling

KHE_PATH KheMarkAddPath(KHE_MARK mark);

and represents the route from the state ofmark’s solution represented bymark to the state of
that solution at the momentKheMarkAddPath is called. Concretely, a path holds a copy of the
shared sequence of operations, taken at the momentKheMarkAddPath is called, from its mark’s
index to the end. As well as being returned,a path is stored in its mark and deleted by that mark’s
KheMarkEnd, if it has not been deleted before then. A path is meaningless after its mark ends.

In practice, this helper function may be more useful thanKheMarkAddPath:

KHE_PATH KheMarkAddBestPath(KHE_MARK mark, int k);

It is written using the more basic functions given below. Its behaviour is equivalent to calling
KheMarkAddPath(mark), then sortingmark’s paths into increasing cost order, then deleting paths
from the end as required to ensure that not more thank paths are kept. But rather than following
this description literally, it uses an optimized method that only callsKheMarkAddPath(mark)

when the resulting path would be one of those kept; it returns the new path in that case, andNULL

otherwise. For example,KheMarkAddBestPath(mark, 1) saves only the best path, and only
creates a path when it would be a new best.

Any number of paths may be stored in a mark, and they may be visited using

int KheMarkPathCount(KHE_MARK mark);
KHE_PATH KheMarkPath(KHE_MARK mark, int i);

as usual, and sorted by calling

void KheMarkPathSort(KHE_MARK mark,
int(*compar)(const void *, const void *));

wherecompar is a function suited to passing toqsort when sorting an array ofKHE_PATH objects.
One such function,KhePathIncreasingSolnCostCmp, is provided, such that after calling

KheMarkPathSort(mark, &KhePathIncreasingSolnCostCmp);

the paths will be sorted into increasing solution cost order, so that the path with the smallest
solution cost comes first. The following operations on paths are also available:

KHE_SOLN KhePathSoln(KHE_PATH path);
KHE_COST KhePathSolnCost(KHE_PATH path);
KHE_MARK KhePathMark(KHE_PATH path);
void KhePathDelete(KHE_PATH path);
void KhePathRedo(KHE_PATH path);

KhePathSoln returnspath’s solution, andKhePathSolnCost returns the solution cost at
the moment the path was created byKheMarkAddPath. KhePathMark returnspath’s mark.
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KhePathDelete deletespath, including removing it from its mark.KheMarkEnd calls
KhePathDelete for each of its paths; once a mark is deleted, its paths have no meaning.

WhenKhePathRedo(path) is called, the solution must be in the state it was in whenpath’s
mark was created. It redoespath, without deleting or otherwise disturbing its mark, so that the
state after it returns is the state at the end ofpath. This is the only way to redo a path,and because
it checks that it starts from the same state that the path started from originally, it guarantees that
the operations executed while redoing the path cannot fail. KHE objects created along the path
and deleted during the undo (which must have occurred in order to return the solution to its
original state) are re-created during the redo with the same memory addresses as the originals.

One application of marks and paths is the conversion of a sequence of operations into an
atomic sequence, one which is either carried out completely or not at all:

mark = KheMarkBegin(soln);
success = SomeSequenceOfOperations(...);
KheMarkEnd(mark, !success);

If the sequence of operations is successful, it remains in place; otherwise the unsuccessful
sequence, or whatever part if it was completed before failure occurred, is undone. Similarly,

mark = KheMarkBegin(soln);
SomeSequenceOfOperations(...);
KheMarkEnd(mark, KheSolnCost(soln) >= KheMarkSolnCost(mark));

keeps the sequence of operations if it reduces the cost of the solution, but not otherwise.

Another application is the coordination of complex searches, such as tree searches, which
try many alternatives and keep the best. Before the search begins, create a mark, and pass it
to the search function, so that whenever it finds a worthwhile state it can record it in the mark
by callingKheMarkAddPath or KheMarkAddBestPath. (If the initial state is a valid solution,
one that the rest of the search is trying to improve on, callKheMarkAddPath immediately after
KheMarkBegin.) Within the search function, create other marks as required so that subtrees can
be undone by callingKheMarkEnd(sub_mark, true). At the end,all worthwhile statesare paths
in the original mark, where they can be examined, sorted, or whatever—like this, perhaps:

if( KheMarkPathCount(mark) > 0 )
KhePathRedo(KheMarkPath(mark, 0));

KheMarkEnd(mark, false);

when only the best path is kept. If it is safe to redo that path, there can be nothing to undo.

Marks and paths have been implemented carefully, and their running time is small. Indeed,
it is usually faster to use marks and undoing to return a solution to a previous state, than to
use operations opposite to the originals. This is becauseKheMarkBegin andKheMarkEnd call
KheSolnMatchingMarkBegin andKheSolnMatchingMarkEnd (Section 7.2), and because there
is no need to check that an undo is safe, as there is when carrying out an opposite operation.
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4.9. The solution invariant

Here is the condition, called the solution invariant, that every solution always satisfies. The last
three rules relate to data types introduced in Chapter 5.

1. Themeet rule: if meet is assigned totarget_meet at offsetoffset, then:

(a) The value ofoffset is at least 0 and at most the duration oftarget_meet minus the
duration ofmeet;

(b) The time domain oftarget_meet, shifted rightoffset places, is a subset of the time
domain ofmeet;

2. The task rule: if task is assigned totarget_task, then the resource domain of
target_task is a subset of the resource domain oftask.

3. Thecycle rule: the parent links of nodes may not form a cycle.

4. Thenode rule: if meetmeet is assigned to meettarget_meet and lies in noden, thenn has
a parent node andtarget_meet lies in that parent node.

5. Thelayer rule: every node of a layer has the same parent node as the layer.

No sequence of operations can bring a solution to a state that violates this invariant.



Chapter 5. Extra Types for Solving
This chapter introduces several types of objects that help with solving. Four of them (nodes, lay-
ers,zones, andtaskings) are integral to solutions,being copied when they are copied, for example.
But they are not part of the XML model,so their use is optional. Nodes and layers together define
thelayer tree, a data structure invented by the author [7] for use in time assignment. Zones help
to make time assignments regular, and taskings are used in resource assignment.

5.1. Layer trees

The layer tree is a data structure for organizing solutions during time assignment. It supports
hierarchical timetabling, in which meets are timetabled together into small timetables called
tiles, the tiles are timetabled together, and so on until a complete timetable is produced. Layer
trees are recommended when solving general instances, since they gracefully handle awkward
cases, such as linked events whose durations differ.

Layer trees are made ofnodes, which form a tree (actually, a forest). Each node has an
optionalparent node. The nodes with a given parent are itschildren.

Within each node lie any number of meets. Thenode rule, part of the solution invariant
(Section 4.9), imposes a structure on how the meets of nodes may be assigned: ifmeet is
assigned totarget_meet and lies in noden, thenn has a parent node andtarget_meet lies in
that parent node. A layer tree usually has a single root node containing the cycle meets,called the
cycle node. If there is a cycle node, the node rule guarantees that if every non-cycle meet lying
in a node is assigned to some meet, then every such meet is assigned a time.

A meet may lie in at most one node. When using layer trees, it is conventional for every
meet to lie in a node except when it has received its final assignment. Omitting meets from nodes
hides them from time assignment algorithms, which typically access meets via nodes.

When a meet splits, it is replaced in its node (if any) by the two fragments. When two meets
merge, they must lie in the same node (or none), and they are replaced by the merged meet.

A layer is a subset of the children of some node with the property that none of the meets in
the nodes of the layer may overlap in time. This could be for any reason, but it is usually because
their meets all share a preassigned resource which possesses a required avoid clashes constraint.
The property is not enforced by KHE; it is merely a convention.

Here are some examples of layer trees. The first has four nodes,N, n1, n2, andn3. Theni
share a layer and are children ofN, so their meets must be assigned to meets ofN and should
not overlap in time:

N

n1 n2 n3

The nodes are shown as rectangles. The horizontal direction represents time. That theni share

118
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a layer is indicated by placing them alongside each other, and that they are children ofN is
indicated by placing them vertically belowN.

In the next example,N has five children, lying in two layers,{n1,n2,n3} and{m1,m2} :

N

n1 n2 n3

m1 m2

This could arise when one group of students attends theni while another group attends themi.

Finally, here is an example where a node lies in two layers (but still has only one parent):

N

n2 n3nm1

m2 m3

The two layers{nm1,n2,n3} and{nm1,m2,m3} both contain nodenm1. This case arises naturally
when an event (or a set of linked events) is attended by two groups of students, so that their
timetables coincide at that event but may differ elsewhere.

The key operation in hierarchical timetabling is the assignment of the meets of the children
of a node to the meets of the node, so that meets that share a layer do not overlap. One way to
construct a timetable is to build a layer tree containing every meet, whose root node contains the
cycle meets, and apply this operation at each node, visiting the nodes in postorder (bottom up).

5.2. Nodes

To create a layer tree node, initially with no meets, no parent, and no children, call

KHE_NODE KheNodeMake(KHE_SOLN soln);

Its back pointer may be accessed by

void KheNodeSetBack(KHE_NODE node, void *back);
void *KheNodeBack(KHE_NODE node);

and its visit number by

void KheNodeSetVisitNum(KHE_NODE n, int num);
int KheNodeVisitNum(KHE_NODE n);
bool KheNodeVisited(KHE_NODE n, int slack);
void KheNodeVisit(KHE_NODE n);
void KheNodeUnVisit(KHE_NODE n);

as usual, and its other attributes may be retrieved by calling

KHE_SOLN KheNodeSoln(KHE_NODE node);
int KheNodeSolnIndex(KHE_NODE node);
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KheNodeSolnIndex returns theindexof node: the value ofi for whichKheSolnNode(soln, i)

(Section 4.2.7) returnsnode. The index may change when nodes are deleted (what actually
happens is that the hole left by the deletion of a node, if not last, is plugged by the last node) so
care is needed if indexes are stored. To visit the nodes of a solution in increasing index order,
use functionsKheSolnNodeCount andKheSolnNode from Section 4.2.7. To delete a node, call

bool KheNodeDeleteCheck(KHE_NODE node);
bool KheNodeDelete(KHE_NODE node);

This deletes all parent-child links involvingnode, and deletes all meets fromnode (but does not
delete them). It is permitted only when no meets assigned tonode’s meets lie in a node.

To make one node the parent of another, call

bool KheNodeAddParentCheck(KHE_NODE child_node, KHE_NODE parent_node);
bool KheNodeAddParent(KHE_NODE child_node, KHE_NODE parent_node);

These abort ifchild_node already has a parent; they returnfalse and do nothing when adding
the link would cause a cycle. To delete a parent-child link, call

bool KheNodeDeleteParentCheck(KHE_NODE child_node);
bool KheNodeDeleteParent(KHE_NODE child_node);

Deletion is permitted only when none of the meets ofchild_node is assigned. The gap created
in the list of child nodes of the parent node by the deletion ofchild_node is filled by shuffling
the following nodes down one place. To retrieve the parent of a node, call

KHE_NODE KheNodeParent(KHE_NODE node);

This returnsNULLwhennode has no parent. Children are added and deleted,obviously,by adding
and deleting parents. Functions

int KheNodeChildCount(KHE_NODE node);
KHE_NODE KheNodeChild(KHE_NODE node, int i);

visit a node’s children in the usual way. There are also

bool KheNodeIsDescendant(KHE_NODE node, KHE_NODE ancestor_node);
bool KheNodeIsProperDescendant(KHE_NODE node, KHE_NODE ancestor_node);

KheNodeIsDescendant returnstrue whennode is a descendant ofancestor_node, possibly
ancestor_node itself; KheNodeIsProperDescendant returnstrue when node is a proper
descendant ofancestor_node, that is, a descendant other thanancestor_node itself. They
work in the obvious way, searching upwards fromnode for ancestor_node.

Several helper functions for rearranging nodes appear in Section 9.5. They are often more
useful thanKheNodeAddParent andKheNodeDeleteParent. Some of them call

void KheNodeSwapChildNodesAndLayers(KHE_NODE node1, KHE_NODE node2);

This function makes all the child nodes and child layers ofnode1 into child nodes and child
layers ofnode2 and vice versa. The child nodes and layers are the exact same objects as before,
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stored in the same order as before; only their parent node is changed. Any assigned meets lying
in child nodes of either node are unassigned (otherwise the node rule would be violated).

A meet may lie in at most one node, and functionKheMeetNode (Section 4.5) returns the
node containing a given meet, if any. To add a meet to a node and delete it, the operations are

bool KheNodeAddMeetCheck(KHE_NODE node, KHE_MEET meet);
bool KheNodeAddMeet(KHE_NODE node, KHE_MEET meet);
bool KheNodeDeleteMeetCheck(KHE_NODE node, KHE_MEET meet);
bool KheNodeDeleteMeet(KHE_NODE node, KHE_MEET meet);

KheNodeAddMeetCheck andKheNodeAddMeet abort if meet already lies in a node, and return
false if it is already assigned to a meet not in the parent ofnode. KheNodeDeleteMeetCheck

andKheNodeDeleteMeet abort if meet does not lie innode, and returnfalse if a meet from a
child of node is assigned tomeet. Functions

int KheNodeMeetCount(KHE_NODE node);
KHE_MEET KheNodeMeet(KHE_NODE node, int i);

visit the meets of a node in the usual way. The order that meets are stored in nodes and returned
by these functions is arbitrary, and the user can change it by calling

void KheNodeMeetSort(KHE_NODE node,
int(*compar)(const void *, const void *))

wherecompar is a comparison function suitable for passing toqsort. Two such comparison
functions are supplied. One sorts the meets into decreasing duration order:

int KheMeetDecreasingDurationCmp(const void *p1, const void *p2);

Here is the implementation:

int KheMeetDecreasingDurationCmp(const void *p1, const void *p2)
{
KHE_MEET meet1 = * (KHE_MEET *) p1;
KHE_MEET meet2 = * (KHE_MEET *) p2;
if( KheMeetDuration(meet1) != KheMeetDuration(meet2) )
return KheMeetDuration(meet2) - KheMeetDuration(meet1);

else
return KheMeetIndex(meet1) - KheMeetIndex(meet2);

}

Ties are broken by referring to the meet index. The other sorts meets by increasing value of the
index of the target meet, breaking ties by increasing value of the target offset:

int KheMeetIncreasingAsstCmp(const void *p1, const void *p2)

This brings together meets whose assignments place them adjacent in time. Unassigned meets
appear after assigned ones, but are not themselves sorted into any particular order.

Unlike cycle meets, which are different behind the scenes from other meets, cycle nodes are
just ordinary nodes whose meets happen to be cycle meets. Accordingly, function
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bool KheNodeIsCycleNode(KHE_NODE node);

merely returnstrue if node contains at least one meet, and its first meet is a cycle meet.

The total duration, assigned duration, and demand of the meets ofnode are returned by

int KheNodeDuration(KHE_NODE node);
int KheNodeAssignedDuration(KHE_NODE node);
int KheNodeDemand(KHE_NODE node);

The duration is kept up to date and stored in the node, soKheNodeDuration costs almost nothing.
The other two have to sum values stored in the meets, which is slower but still fast.

Following the pattern laid down in Section 1.3, function

bool KheNodeSimilar(KHE_NODE node1, KHE_NODE node2);

returnstrue whennode1 andnode2 are similar: when they contain similar events. The exact
rule is as follows. Ifnode1 andnode2 are the same node, they are similar. A node isadmissible
if all of its meets are derived from events, and for each event found among those meets, all of the
meets of that event lie in the node. Thus, an admissible node can be considered as a set of events.
Two distinct nodes are similar if they are admissible and each event in one can be matched up
with a similar event in the other. The definition of similarity for events is as in Section 3.6.2.

A similar property isregularity(Section 5.4). Two nodes are regular when they are the same
node or contain meets of equal durations and equal time domains. Function

bool KheNodeRegular(KHE_NODE node1, KHE_NODE node2, int *regular_count);

returnstrue whennode1 andnode2 are regular, andfalse otherwise. Either way, it reorders the
meets of both nodes so that corresponding meets have equal durations and equal time domains,
as far as possible;*regular_count is the number of such pairs. (Sotrue is returned when
*regular_count equals the number of meets in both nodes.)

Another function useful to solvers is

int KheNodeResourceDuration(KHE_NODE node, KHE_RESOURCE r);

This returns the total duration of meets innode and its descendants that contain a preassignment
of r. If a meet contains two such preassignments, its duration is only counted once.

To make a debug print ofnode onto filefp with a given verbosity and indent, call

void KheNodeDebug(KHE_NODE node, int verbosity, int indent, FILE *fp);

Verbosity 1prints just the node index number, verbosity 2 adds the duration and meets, verbosity
3 adds the node’s children, and verbosity 4 adds its segments. There is also

void KheNodePrintTimetable(KHE_NODE node, int cell_width,
int indent, FILE *fp);

which prints a timetable showing the meets ofnode across the top, and the assigned meets lying
in child nodes ofnode on subsequent lines, one line per child layer. (Sonode needs to have child
layers when it is called.) Parametercell_width is the width of each cell, in characters.
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5.3. Layers

A layer (not to be confused with the resource layer of Section 3.5.4) is a subset of the child
nodes of some node. The intention is that the meets of a layer’s nodes should not overlap in time,
although this condition is not enforced.

For a given node there are two sets of layers of interest: the node’sparent layers, which are
the layers it lies in (it may lie in several), and itschild layers, which are subsets of its child nodes.
A node is a member of all of its parent layers and none of its child layers.

To create a layer of children of a given parent node, initially with no nodes, call

KHE_LAYER KheLayerMake(KHE_NODE parent_node);

It has a back pointer and a visit number, accessed by

void KheLayerSetBack(KHE_LAYER layer, void *back);
void *KheLayerBack(KHE_LAYER layer);

void KheLayerSetVisitNum(KHE_LAYER layer, int num);
int KheLayerVisitNum(KHE_LAYER layer);
bool KheLayerVisited(KHE_LAYER layer, int slack);
void KheLayerVisit(KHE_LAYER layer);
void KheLayerUnVisit(KHE_LAYER layer);

as usual. Functions

KHE_NODE KheLayerParentNode(KHE_LAYER layer);
int KheLayerParentNodeIndex(KHE_LAYER layer);

return the parent node of layer and the value of i for which
KheNodeChildLayer(KheLayerParentNode(layer), i) returnslayer. For convenience the
solution containing it can be found by

KHE_SOLN KheLayerSoln(KHE_LAYER layer);

To delete the layer (but not its nodes), call

void KheLayerDelete(KHE_LAYER layer);

To add and delete a child node ofparent_node from a layer, call

void KheLayerAddChildNode(KHE_LAYER layer, KHE_NODE node);
void KheLayerDeleteChildNode(KHE_LAYER layer, KHE_NODE node);

KheLayerAddChildNode aborts if node’s parent node andlayer’s parent node are different,
andKheLayerDeleteChildNode aborts ifnode does not lie inlayer; otherwise, both succeed.
When a child node is deleted from a layer, all later nodes are shuffled up one place to fill the gap.
To visit the child nodes of a layer, call

int KheLayerChildNodeCount(KHE_LAYER layer);
KHE_NODE KheLayerChildNode(KHE_LAYER layer, int i);
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To sort the child nodes of a layer, call

void KheLayerChildNodesSort(KHE_LAYER layer,
int(*compar)(const void *, const void *));

wherecompar is a function suited to passing toqsort when it sorts an array of nodes.

Although much about layers is taken on trust, thelayer ruleis enforced: the parent node of
each node of a layer equals the parent node of the layer. When the parent of a node is changed,
the node is deleted from all the layers it lies in.

The usual reason why nodes are placed into a layer together is because their meets have one
or more preassigned resources in common,and the resources have hard avoid clashes constraints,
preventing the meets from overlapping in time. To document this reason when it applies, a layer
contains a set of resources. To add and delete a resource from this set, the functions are

void KheLayerAddResource(KHE_LAYER layer, KHE_RESOURCE r);
void KheLayerDeleteResource(KHE_LAYER layer, KHE_RESOURCE r);

To visit this set of resources, the functions are

int KheLayerResourceCount(KHE_LAYER layer);
KHE_RESOURCE KheLayerResource(KHE_LAYER layer, int i);

There is no check that these resources are actually preassigned to the layer’s meets.

WhenKheLayerMake(parent_node) is called, the resulting layer becomes achild layerof
parent_node. To visit the child layers of a given node, call

int KheNodeChildLayerCount(KHE_NODE parent_node);
KHE_LAYER KheNodeChildLayer(KHE_NODE parent_node, int i);

Also,

void KheNodeChildLayersSort(KHE_NODE parent_node,
int(*compar)(const void *, const void *));

sorts the child layers ofparent_node, usingcompar (a function suited to passing toqsort) as
the comparison function, and

void KheNodeChildLayersDelete(KHE_NODE parent_node);

deletes all the child layers ofparent_node, without deleting any nodes.

WhenKheLayerAddChildNode(layer, node) is called,layer becomes aparent layerof
node. To visit a node’s parent layers, call

int KheNodeParentLayerCount(KHE_NODE child_node);
KHE_LAYER KheNodeParentLayer(KHE_NODE child_node, int i);

It is important to allow multiple parent layers in this way. For example, suppose there is one
layer for the meets attended by Year 12 students and another for the meets attended by Year
11 students. If one of the Year 11 events is linked to one of the Year 12 events by a link events
constraint, then there will usually be a single node whose subtree contains the meets of both
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events, and this node will appear in both layers. Function

bool KheNodeSameParentLayers(KHE_NODE node1, KHE_NODE node2);

returnstrue whennode1 andnode2 have the same parent layers.

Functions

int KheLayerDuration(KHE_LAYER layer);
int KheLayerMeetCount(KHE_LAYER layer);

return the total duration oflayer’s child nodes and the number of meets in them. These values
are stored in the layer and kept up to date as it changes, in the expectation that they will be used
when sorting layers. Similarly,

int KheLayerAssignedDuration(KHE_LAYER layer);
int KheLayerDemand(KHE_LAYER layer);

return the total duration of the assigned meets oflayer’s child nodes, and their total demand.
These values are calculated on demand, not stored, so the functions are a bit slower. There are
also set operations, implemented efficiently using bit vectors of node indexes:

bool KheLayerEqual(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerSubset(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerDisjoint(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerContains(KHE_LAYER layer, KHE_NODE node);

These returntrue if layer1 andlayer2 contain the same nodes, if every node oflayer1 is a
node oflayer2, if layer1 andlayer2 contain no nodes in common, and ifnode lies inlayer.

Three functions offer more complex comparisons between layers:

bool KheLayerSame(KHE_LAYER layer1, KHE_LAYER layer2, int *same_count);
bool KheLayerSimilar(KHE_LAYER layer1, KHE_LAYER layer2,
int *similar_count);

bool KheLayerRegular(KHE_LAYER layer1, KHE_LAYER layer2,
int *regular_count);

These work in the same general way: they reorder the nodes in the two layers so that the first
*same_count (etc.) nodes inlayer1 are equivalent in some way to the corresponding nodes in
layer2, returningtrue if this accounts for all the nodes in both layers.KheLayerSame aligns
nodes that are the identical same node;KheLayerSimilar aligns nodes that are similar,according
to KheNodeSimilar from Section 5.2; andKheLayerRegular aligns nodes that are regular,
according toKheNodeRegular from Section 5.2. Iflayer1 andlayer2 are the same layer, all
three functions returntrue and set their count variable to the number of nodes in the layer. If
some nodes are shared between the two layers, these are always considered equivalent and they
always appear first after the layers are ordered.

These functions are implemented by calls to a more general function:

bool KheLayerAlign(KHE_LAYER layer1, KHE_LAYER layer2,
bool (*node_equiv)(KHE_NODE node1, KHE_NODE node2), int *count);
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which does the same kind of alignment, first bringing identical nodes to the front of both layers,
then ordering the other nodes, callingnode_equiv to decide whether two nodes are equivalent.

Two layers that share a common parent node may be merged:

void KheLayerMerge(KHE_LAYER layer1, KHE_LAYER layer2, KHE_LAYER *res);

The layers are deleted and replaced by layer*res, containing the nodes and resources oflayer1

andlayer2. It makes sense to merge, for example, when one layer is a subset of the other.

As an aid to debugging, KHE offers function

void KheLayerDebug(KHE_LAYER layer, int verbosity, int indent, FILE *fp);

It sends a debug print oflayer to fp in the usual way.

5.4. Zones

A regular timetable is one which has a pattern that makes it easy to understand. For example, if
a train comes every 15 minutes, then that is a regular train timetable.

In high school timetabling, two forms of regularity are important.Meet regularity is
achieved when meets which overlap in time have the same starting times and durations. It is
automatic when all meets have duration 1, but not otherwise. For example, if there are two meets
of duration 2, and one starts at the first time on Mondays while the second starts at the second
time, that is not regular. Most instances seem to have meets of durations 1and 2, with just a few
meets of higher durations, and under those circumstances meet regularity is easy to achieve.

Node regularityis achieved when the meets of two nodes which overlap in time have the
same starting times and durations. Node regularity makes a timetable easy to understand, and
simplifies resource assignment by reducing the number of pairs of events whose meets overlap
in time, by ensuring that they generally either overlap completely or not at all.

There seems to be little value in measuring regularity formally; the important thing is to
encourage it. This is what zones are for.

For any noden, consider the set of all pairs of the form(m,o), wherem is a meet lying inn,
ando is a legal offset ofm: if mhas duration 1,o may only be 0; ifmhas duration 2,o may be
0 or 1; and so on. Such a pair is called ameet-offset of n. For example, ifn contains the cycle
meets, then there is a meet-offset ofn for each time of the cycle.

A zoneof noden is a subset of the meet-offsets ofn. A zone may be created by calling

KHE_ZONE KheZoneMake(KHE_NODE node);

Initially it contains no meet-offsets. Functions

KHE_NODE KheZoneNode(KHE_ZONE zone);
int KheZoneNodeIndex(KHE_ZONE zone);

returnzone’s node, which never changes, and the value ofi for whichKheNodeZone(node, i)

returnszone. When a zone is deleted, the indexes of other zones in its node may change. (As
usual, the gap left by the deletion of the zone is plugged by moving the last zone into it, unless
the deleted zone was the last zone.) For convenience there is also
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KHE_SOLN KheZoneSoln(KHE_ZONE zone);

which returns the solution containingzone’s node.

A zone has has the usual back pointer and visit number:

void KheZoneSetBack(KHE_ZONE zone, void *back);
void *KheZoneBack(KHE_ZONE zone);

void KheZoneSetVisitNum(KHE_ZONE zone, int num);
int KheZoneVisitNum(KHE_ZONE zone);
bool KheZoneVisited(KHE_ZONE zone, int slack);
void KheZoneVisit(KHE_ZONE zone);
void KheZoneUnVisit(KHE_ZONE zone);

A zone may be deleted by calling

void KheZoneDelete(KHE_ZONE zone);

and all the zones of a node may be deleted by calling

void KheNodeDeleteZones(KHE_NODE node);

Each meet-offset may lie in at most one zone. To add a meet-offset to a zone, and to delete a
meet-offset from a zone, the operations are

void KheZoneAddMeetOffset(KHE_ZONE zone, KHE_MEET meet, int offset);
void KheZoneDeleteMeetOffset(KHE_ZONE zone, KHE_MEET meet, int offset);

To retrieve the zone of a meet-offset, call

KHE_ZONE KheMeetOffsetZone(KHE_MEET meet, int offset);

All these functions abort ifoffset is not a legal offset ofmeet. KheZoneAddMeetOffset also
aborts if the meet-offset already lies in a zone, orzone is NULL, or meet does not lie in a node,
or zone is not a zone of the node containingmeet. KheMeetOffsetZone returnsNULL if the
meet-offset does not lie in any zone, as is the case by default.

The zones of a node may be accessed from the node in the usual way:

int KheNodeZoneCount(KHE_NODE node);
KHE_ZONE KheNodeZone(KHE_NODE node, int i);

They are returned in an arbitrary order. The meet-offsets of a zone may be accessed by calling

int KheZoneMeetOffsetCount(KHE_ZONE zone);
void KheZoneMeetOffset(KHE_ZONE zone, int i, KHE_MEET *meet, int *offset);

They are returned in an arbitrary order. Function

void KheZoneDebug(KHE_ZONE zone, int verbosity, int indent, FILE *fp);

produces a debug print ofzone ontofp in the usual way.
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When a meet is deleted from a node or deleted altogether, all the meet-offsets involving that
meet are removed from their zones. When a meet is split or merged, the meet-offsets mutate in
the appropriate way, but preserve their zones. For example, when a meetmof duration 3 is split
into a meetm1 of duration 1 and a meetm2 of duration 2, the meet-offsets mutate as follows:

(m,0), (m,1), (m,2) → (m1,0), (m2,0), (m2,1)

Nothing constrains a zone to hold any particular meet-offsets,and indeed nothing requires zones
to be created at all. The basic operations of KHE are not restricted in any way by zones. By
convention only, some solvers use zones to encourage meet and node regularity. See Section 9.6
for solvers that install zones.

A useful helper function when using zones is

bool KheMeetMovePreservesZones(KHE_MEET meet1, int offset1,
KHE_MEET meet2, int offset2, int durn);

Assuming that a meet of durationdurn may be assigned tomeet1 at offset1 and tomeet2 at
offset2, this function returnstrue if that meet would be assigned to the same zones either way.
It treats theNULL value returned at times byKheMeetOffsetZone as though it was a zone.

Another useful function is

int KheNodeIrregularity(KHE_NODE node);

It returns theirregularity of node: 0 if none of its meets is assigned, else the number of distinct
zones ofn’s parent node that the assigned meets ofn are assigned to (countingNULL as a zone),
minus one. For example, whenn’s parent node has no zones, or all of the meets ofn are assigned
to the same zone,n’s irregularity is 0. One reasonable way to preserve existing regularity is
to measure the irregularity of the nodes affected by an operation beforehand, measure it again
afterwards, and undo the operation if irregularity has increased.

5.5. Taskings

A taskingis an object of typeKHE_TASKING representing a set of tasks. A task may lie in at most
one tasking at any one time. Taskings make useful parameters to resource solvers: the solver’s
job can be to assign resources to the tasks of the tasking—any subset of the tasks of a solution.
For a deeper analysis of the role of taskings, see Section 11.2.

To create a tasking, initially with no tasks, call

KHE_TASKING KheTaskingMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);

Whenrt is non-NULL, it signifies that all the tasks of the tasking have that type; but it may also
beNULL, in which case there is no restriction. To retrieve the two attributes, call

KHE_SOLN KheTaskingSoln(KHE_TASKING tasking);
KHE_RESOURCE_TYPE KheTaskingResourceType(KHE_TASKING tasking);

To visit the taskings of a solution, call functionsKheSolnTaskingCount andKheSolnTasking
from Section 4.2.7. To delete a tasking, without deleting its tasks, call
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void KheTaskingDelete(KHE_TASKING tasking);

To add a task to a tasking, and to delete it from a tasking, call

void KheTaskingAddTask(KHE_TASKING tasking, KHE_TASK task);
void KheTaskingDeleteTask(KHE_TASKING tasking, KHE_TASK task);

KheTaskingAddTask aborts iftask already lies in a tasking, or if the resource type oftasking

is non-NULL andtask does not have that resource type.KheTaskingDeleteTask aborts iftask
does not lie intasking. Functions

int KheTaskingTaskCount(KHE_TASKING tasking);
KHE_TASK KheTaskingTask(KHE_TASKING tasking, int i);

visit the tasks of a tasking in the usual way, and

void KheTaskingDebug(KHE_TASKING tasking, int verbosity,
int indent, FILE *fp);

produces a debug print oftasking.

5.6. Task sets

A task setis like a tasking in that it represents a set of tasks. It is different in that a task may lie
in any number of task sets, but it does not know which task sets it lies in.

To create a new, empty task set for holding tasks fromsoln, call

KHE_TASK_SET KheTaskSetMake(KHE_SOLN soln);

Thesoln attribute is stored in the task set and may be accessed by calling

KHE_SOLN KheTaskSetSoln(KHE_TASK_SET ts);

To delete a task set (but not its tasks), call

void KheTaskSetDelete(KHE_TASK_SET ts);

This places the task set object on a free list in its solution object, where it is available for use by
subsequent calls toKheTaskSetMake on the same solution object.

To clear a task set back to the empty set of tasks, call

void KheTaskSetClear(KHE_TASK_SET ts);

To clear a task set from the end back to a point where it containscount elements, call

void KheTaskSetClearFromEnd(KHE_TASK_SET ts, int count);

To remove the lastn tasks from a task set, call

void KheTaskSetDropFromEnd(KHE_TASK_SET ts, int n);

To add a task to a task set, call
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void KheTaskSetAddTask(KHE_TASK_SET ts, KHE_TASK task);

To add the tasks ofts2 to ts, call

void KheTaskSetAddTaskSet(KHE_TASK_SET ts, KHE_TASK_SET ts2);

To delete a task, call

void KheTaskSetDeleteTask(KHE_TASK_SET ts, KHE_TASK task);

KheTaskSetDeleteTask aborts iftask is not ints. If the tasks ofts are equivalent, the best
way to extract one task is

KHE_TASK KheTaskSetLastAndDelete(KHE_TASK_SET ts);

This deletes and returns the last task ofts; it aborts ifts is empty.

To search a task set for a given task, call

bool KheTaskSetContainsTask(KHE_TASK_SET ts, KHE_TASK task, int *pos);

If this returnstrue, it sets*pos to the index oftask in ts. To visit the tasks of a task set, call

int KheTaskSetTaskCount(KHE_TASK_SET ts);
KHE_TASK KheTaskSetTask(KHE_TASK_SET ts, int i);

as usual. There are also

KHE_TASK KheTaskSetFirst(KHE_TASK_SET ts);
KHE_TASK KheTaskSetLast(KHE_TASK_SET ts);

which return the first and last tasks. To sort the tasks, call

void KheTaskSetSort(KHE_TASK_SET ts,
int(*compar)(const void *, const void *));

void KheTaskSetSortUnique(KHE_TASK_SET ts,
int(*compar)(const void *, const void *));

KheTaskSetSortUnique callsHaArraySortUnique (Section A.1.3).

Functions

int KheTaskSetTotalDuration(KHE_TASK_SET ts);
float KheTaskSetTotalWorkload(KHE_TASK_SET ts);

return the total duration or total workload of the task set: the sum, over all taskst, of the total
duration or total workload oft.

Function

void KheTaskSetUnGroup(KHE_TASK_SET ts);

is useful whents is being used to record a set of tasks which were assigned to other tasks in order
to ensure that they would be assigned the same resource. It removes the assignments of the tasks
of ts, but then assigns the tasks directly to the resources (cycle tasks) that they were previously
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indirectly assigned to, if any, or unassigns them otherwise.

There is another possible specification forKheTaskSetUnGroup, saying that the assignment
in each task ofts is changed to the grandparent task (whatever the current assignment is
assigned to). This was rejected because it misbehaves in some cases when groupings are made
in stages, with one task assigned to another and then that task assigned to a third. The preferred
specification cuts the knot by ungrouping the tasks from all groupings.

Function

bool KheTaskSetNeedsAssignment(KHE_TASK_SET ts);

returnstrue if KheTaskNeedsAssignment returnstrue for at least one task ints.

There are functions for visiting the tasks of a task set, following the usual pattern:

void KheTaskSetSetVisitNum(KHE_TASK_SET ts, int num);
int KheTaskSetGetVisitNum(KHE_TASK_SET ts);
bool KheTaskSetAllVisited(KHE_TASK_SET ts, int slack);
bool KheTaskSetAnyVisited(KHE_TASK_SET ts, int slack);
void KheTaskSetAllVisit(KHE_TASK_SET ts);
void KheTaskSetAllUnVisit(KHE_TASK_SET ts);

These just call the corresponding task visit operation on each task ofts, except that
KheTaskSetGetVisitNum returns the visit number ofts’s first task, aborting ifts is empty.
KheTaskSetAllVisited returnstrue when all the calls on individual tasks returntrue, and
KheTaskSetAnyVisited returnstrue when any of the calls on individual tasks return true.
Which of these two truly represents the condition ‘ts has been visited’ is a matter of opinion.

There are also functions for moving, assigning, and unassigning all the tasks of a task set:

bool KheTaskSetMoveResourceCheck(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetMoveResource(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetAssignResourceCheck(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetAssignResource(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetUnAssignResourceCheck(KHE_TASK_SET ts);
bool KheTaskSetUnAssignResource(KHE_TASK_SET ts);

These are likeKheTaskMoveResourceCheck and so on, except that they apply to all the tasks
of ts: KheTaskSetMoveResourceCheck checks that all the tasks ofts can be moved tor,
KheTaskSetMoveResource checks and moves, and so on. Iffalse is returned, some tasks
may have been changed and others not. If that does not suit, check first before trying to change
anything. There are also

bool KheTaskSetPartMoveResourceCheck(KHE_TASK_SET ts,
int first_index, int last_index, KHE_RESOURCE r);

bool KheTaskSetPartMoveResource(KHE_TASK_SET ts,
int first_index, int last_index, KHE_RESOURCE r);

which are likeKheTaskSetMoveResourceCheck andKheTaskSetMoveResource, but applied
only to the tasks with indexes betweenfirst_index andlast_index (inclusive).

KHE’s policy is for operations to returnfalse when they change nothing, on the grounds
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that no solver wants to waste time on operations that do nothing. However this policy does not
seem to work very well here, because very often the task set move or assignment is just one
part of a larger operation. Certainly, we do not want to waste time on the larger operation if it
does nothing, but that does not prevent one part of it from doing nothing. Accordingly, these
operations all succeed (returntrue) whents is empty.

Finally,

void KheTaskSetDebug(KHE_TASK_SET ts, int verbosity, int indent, FILE *fp);

produces a debug print ofts ontofp with the given verbosity and indent.

5.7. Meet sets

A meet setis like a node in that it represents a set of meets. It is different in that a meet may lie
in any number of meet sets, but it does not know which. Meet sets correspond closely with task
sets, so we will be brief. To create a new, empty meet set for holding meets fromsoln, call

KHE_MEET_SET KheMeetSetMake(KHE_SOLN soln);

To delete a meet set (but not its meets), call

void KheMeetSetDelete(KHE_MEET_SET ms);

A deleted meet set goes on a free list in the solution object and becomes available for re-use.

void KheMeetSetClear(KHE_MEET_SET ms);

clearsms back to the empty set of meets, and

void KheMeetSetDropFromEnd(KHE_MEET_SET ms, int n);

removes the lastn meets fromms. To add and delete a meet, call

void KheMeetSetAddMeet(KHE_MEET_SET ms, KHE_MEET meet);
void KheMeetSetDeleteMeet(KHE_MEET_SET ms, KHE_MEET meet);

KheMeetSetDeleteMeet aborts ifmeet is not present. To search a meet set, call

bool KheMeetSetContainsMeet(KHE_MEET_SET ms, KHE_MEET meet, int *pos);

If this returnstrue, it sets*pos to the index ofmeet in ms. To visit the meets, call

int KheMeetSetMeetCount(KHE_MEET_SET ms);
KHE_MEET KheMeetSetMeet(KHE_MEET_SET ms, int i);

as usual. To sort the meets, call

void KheMeetSetSort(KHE_MEET_SET ms,
int(*compar)(const void *, const void *));

void KheMeetSetSortUnique(KHE_MEET_SET ms,
int(*compar)(const void *, const void *));
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KheMeetSetSortUnique callsHaArraySortUnique (Section A.1.3). Function

int KheMeetSetTotalDuration(KHE_MEET_SET ms);

the sum, over all meetsm in ms, of the duration ofm.

There are functions for visiting the meets of a meet set, following the usual pattern:

void KheMeetSetSetVisitNum(KHE_MEET_SET ms, int num);
int KheMeetSetGetVisitNum(KHE_MEET_SET ms);
bool KheMeetSetVisited(KHE_MEET_SET ms, int slack);
void KheMeetSetVisit(KHE_MEET_SET ms);
void KheMeetSetUnVisit(KHE_MEET_SET ms);

These just call the corresponding meet visit operation on each meet ofms, except that
KheMeetSetGetVisitNum returns the visit number ofms’s first meet, aborting ifms is empty.
KheMeetSetVisited returnstrue when all the calls on individual meets returntrue. Finally,

void KheMeetSetDebug(KHE_MEET_SET ms, int verbosity, int indent, FILE *fp);

produces a debug print ofms ontofp with the given verbosity and indent.

5.8. Time sets

A time setis like a time group in that it represents a set of times. However, it carries less baggage:
it has no name, and there is nothing equivalent toKheTimeGroupNeighbour. It is a convenient
type to use when a set of times is needed during solving. Internally, a time set holds the instance
that the times come from and a sorted array of time indexes, nothing more.

To create a new, empty time set, call

KHE_TIME_SET KheTimeSetMake(KHE_INSTANCE ins, HA_ARENA a);

Another way to make a time set is

KHE_TIME_SET KheTimeSetCopy(KHE_TIME_SET ts, HA_ARENA a);

This makes a fresh copy ofts in arenaa. There is also

void KheTimeSetCopyElements(KHE_TIME_SET dst_ts, KHE_TIME_SET src_ts);

which replaces the times of time setdst_ts, whatever they are, with the times ofsrc_ts.

To retrieve a time set’s instance, call

KHE_INSTANCE KheTimeSetInstance(KHE_TIME_SET ts);

There is no function to delete a time set; it is deleted when its arena is deleted. But a time set can
be cleared back to the empty set of times, by calling

void KheTimeSetClear(KHE_TIME_SET ts);

To add times to a time set, the following operations are available:
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void KheTimeSetAddTime(KHE_TIME_SET ts, KHE_TIME t);
void KheTimeSetAddTimeGroup(KHE_TIME_SET ts, KHE_TIME_GROUP tg);
void KheTimeSetAddTaskTimes(KHE_TIME_SET ts, KHE_TASK task);

These add a time, or the times of a time group, or the times a task is running (including tasks as-
signed, directly or indirectly, to that task). To add the times of a time set, callKheTimeSetUnion

below. Here and elsewhere, adding a time that is already present does nothing.

For deleting times there are

void KheTimeSetDeleteTime(KHE_TIME_SET ts, KHE_TIME t);
void KheTimeSetDeleteLastTime(KHE_TIME_SET ts);

KheTimeSetDeleteTime deletes t from ts, or does nothing if it is not present.
KheTimeSetDeleteLastTime deletes the last time fromts; it must be present.

To visit the times of a time set, call

int KheTimeSetTimeCount(KHE_TIME_SET ts);
KHE_TIME KheTimeSetTime(KHE_TIME_SET ts, int i);

in the usual way. There is also

int KheTimeSetTimeIndex(KHE_TIME_SET ts, int i);

which returns the index of theith time, rather than the time itself. Irrespective of the order in
which the times were added, they are stored and visited in order of increasing index.

There are also set operations on time sets:

void KheTimeSetUnion(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
void KheTimeSetIntersect(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
void KheTimeSetDifference(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

These updatets1 to hold its union, intersection, or difference withts2. Also,

int KheTimeSetUnionCount(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
int KheTimeSetIntersectCount(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
int KheTimeSetDifferenceCount(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

return the cardinality of the union, intersection, and difference without building the actual set.
KheTimeSetIntersectCount is optimized for the case of intersecting a small (and presumably
localized) set with a large one: it uses binary search to retrieve the indexes of the first and last
elements of the smaller set in the larger one, then only traverses the larger one in that range. This
idea could be applied to other operations, but so far it has not been.

Several set queries are available:

bool KheTimeSetEmpty(KHE_TIME_SET ts);
bool KheTimeSetEqual(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
bool KheTimeSetSubset(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
bool KheTimeSetDisjoint(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
bool KheTimeSetContainsTime(KHE_TIME_SET ts, KHE_TIME t);
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These returntrue whents is empty,whents1 is equal tots2, whents1 is a subset ofts2, when
ts1 is disjoint fromts2, and whents containst.

For applications in which a time set is used as the key into a hash table, there is

int KheTimeSetHash(KHE_TIME_SET ts);

At present the value returned is the sum of the indexes of the first, middle, and last times, after
shifting left 16, 8, and 0 places respectively, or 0 ifts is empty.

Four other comparison functions are available:

int KheTimeSetCmp(const void *t1, const void *t2);
int KheTimeSetTypedCmp(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

KheTimeSetCmp is suitable for passing toHaArraySort, to bring equal time sets together.
KheTimeSetTypedCmp is the typed equivalent ofKheTimeSetCmp. And

int KheTimeSetCmpReverse(const void *t1, const void *t2);
int KheTimeSetTypedCmpReverse(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

are likeKheTimeSetCmp andKheTimeSetTypedCmp, except that they sort in the reverse order.

Unlike time groups, time sets allowNULL to be a member. It is handled like any other time:
it can be added and deleted, and it participates in set operations. It has index-1, which means
that, if present, it is the result ofKheTimeSetTime(ts, 0).

Finally,

void KheTimeSetDebug(KHE_TIME_SET ts, int verbosity, int indent, FILE *fp);

produces a debug print ofts ontofp with the given verbosity and indent,as usual. Since the time
set has no name, this can only be done by printing its elements. Whenverbosity is 1orindent
is negative, only the first and last elements (at most) are printed.

5.9. Resource sets

A resource setis like a resource group in that it represents a set of resources of a particular type.
However, it carries less baggage: it has no name, for example. It is a convenient type to use when
a set of resources is needed during solving. Internally, a resource set holds the resource type that
the resources must share, and a sorted array of resource indexes in that resource type.

Resource sets are virtually clones of time sets, with some extra operations that might find
their way into time sets eventually. To create a new, empty resource set of a given type, call

KHE_RESOURCE_SET KheResourceSetMake(KHE_RESOURCE_TYPE rt, HA_ARENA a);

Another way to make a resource set is

KHE_RESOURCE_SET KheResourceSetCopy(KHE_RESOURCE_SET rs, HA_ARENA a);

It makes a fresh copy ofrs in arenaa. Either way, it will be deleted whena is deleted. Also,



136 Chapter 5. Extra Types for Solving

void KheResourceSetCopyElements(KHE_RESOURCE_SET dst_rs,
KHE_RESOURCE_SET src_rs);

replaces the resources of resource setdst_rs, whatever they are, with the resources ofsrc_rs.

To retrieve a resource set’s resource type, call

KHE_RESOURCE_TYPE KheResourceSetResourceType(KHE_RESOURCE_SET rs);

To clear a resource set back to the empty set of resources, call

void KheResourceSetClear(KHE_RESOURCE_SET rs);

To add resources to a resource set, the following operations are available:

void KheResourceSetAddResource(KHE_RESOURCE_SET rs, KHE_RESOURCE r);
void KheResourceSetAddResourceGroup(KHE_RESOURCE_SET rs,
KHE_RESOURCE_GROUP rg);

These add a resource, or the resources of a resource group. To add the resources of a resource
set, callKheResourceSetUnion below. Here and elsewhere, adding a resource that is already
present does nothing.

For deleting resources there are

void KheResourceSetDeleteResource(KHE_RESOURCE_SET rs, KHE_RESOURCE r);
void KheResourceSetDeleteLastResource(KHE_RESOURCE_SET rs);

KheResourceSetDeleteResource deletesr from rs, or does nothing if it is not present.
KheResourceSetDeleteLastResource deletes the last resource fromrs; it must be present.

To visit the resources of a resource set, call

int KheResourceSetResourceCount(KHE_RESOURCE_SET rs);
KHE_RESOURCE KheResourceSetResource(KHE_RESOURCE_SET rs, int i);

in the usual way. There is also

int KheResourceSetResourceIndex(KHE_RESOURCE_SET rs, int i);

which returns the index in the resource set’s resource type of theith resource, rather than the
resource itself. Irrespective of the order in which the resources were added, they are stored and
visited in order of increasing index.

There are also set operations on resource sets. These come in various forms, all of which
are illustrated by the operations for set union:

void KheResourceSetUnion(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
void KheResourceSetUnionGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
int KheResourceSetUnionCount(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
int KheResourceSetUnionCountGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
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KheResourceSetUnion updatesrs1 to hold the set union of itself withrs2, eliminating
duplicates.KheResourceSetUnionGroup is the same, except that the second parameter is a
resource group.KheResourceSetUnionCount andKheResourceSetUnionCountGroup return
the number of elements in the union, without actually building it. This is faster, when it suits.

A resource group does actually hold a resource set, but it would not be safe to make
that set available directly, because resource groups are supposed to be immutable after their
creation ends. A copy of it is easily made, by starting with an empty resource set and calling
KheResourceSetUnionGroup.

Corresponding operations are available for set intersection:

void KheResourceSetIntersect(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
void KheResourceSetIntersectGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
int KheResourceSetIntersectCount(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_SET rs2);
int KheResourceSetIntersectCountGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

and set difference:

void KheResourceSetDifference(KHE_RESOURCE_SET rs1,KHE_RESOURCE_SET rs2);
void KheResourceSetDifferenceGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
int KheResourceSetDifferenceCount(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_SET rs2);
int KheResourceSetDifferenceCountGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

For symmetric difference, at present only the count operations are offered:

int KheResourceSetSymmetricDifferenceCount(KHE_RESOURCE_SET rs1,
KHE_RESOURCE_SET rs2);

int KheResourceSetSymmetricDifferenceCountGroup(KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

This is because building the actual set is awkward.

For the Boolean-valued set operations,again the second parameter may be a resource group,
but there is no need for count operations. So for equality we have

bool KheResourceSetEqual(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
bool KheResourceSetEqualGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

and similarly for subset:

bool KheResourceSetSubset(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
bool KheResourceSetSubsetGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
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and testing for disjointness:

bool KheResourceSetDisjoint(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
bool KheResourceSetDisjointGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

There is also

bool KheResourceSetContainsResource(KHE_RESOURCE_SET rs, KHE_RESOURCE r);

which returnstrue whenrs containsr.

Two other comparison functions are available:

int KheResourceSetCmp(const void *t1, const void *t2);
int KheResourceSetTypedCmp(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);

KheResourceSetCmp is suitable for passing toHaArraySort, to bring equal resource
sets together. (It is not for sorting the resources of one resource set; their order is fixed.)
KheResourceSetTypedCmp is the typed equivalent ofKheResourceSetCmp.

Unlike resource groups, resource sets allowNULL to be a member. It is handled like any
other resource: it can be added and deleted, and it participates in set operations. It has index-1,
which means that, if present, it is the result ofKheResourceSetResource(rs, 0).

Finally,

void KheResourceSetDebug(KHE_RESOURCE_SET rs, int verbosity,
int indent, FILE *fp);

produces a debug print ofrs ontofp with the given verbosity and indent, as usual. Since the
resource set has no name, this can only be done by printing its elements. Whenverbosity is 1
or indent is negative, only the first and last elements (at most) are printed.

5.10. Time frames

A time frame, or justframe, is a sequence of time groups. Frames satisfy a practical need during
solving; they help to bridge the gap between the high school and nurse rostering time models.

A frame has typeKHE_FRAME, the usual pointer to a private struct, lying in heap memory and
holding the enclosing solution, the time groups, and some other things.

Frames are immutable after creation. To help enforce this, they are created indirectly via
another type,KHE_FRAME_MAKE. The operations for creating a frame are

KHE_FRAME_MAKE KheFrameMakeBegin(KHE_SOLN soln);
void KheFrameMakeAddTimeGroup(KHE_FRAME_MAKE fm, KHE_TIME_GROUP tg);
KHE_FRAME KheFrameMakeEnd(KHE_FRAME_MAKE fm, bool sort_time_groups);

KheFrameMakeBegin starts the creation of the frame by creating aKHE_FRAME_MAKE object. This
is followed by any number of calls toKheFrameMakeAddTimeGroup, which add the time groups.
The creation ends with a call toKheFrameMakeEnd, which returns the actual frame.

If the sort_time_groups parameter ofKheFrameMakeEnd is true, KheFrameMakeEnd
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sorts the time groups into increasing first time order.

To delete a frame returned byKheFrameMakeEnd, call

void KheFrameDelete(KHE_FRAME frame);

This frees the memory consumed byframe; it goes on a free list inframe’s solution object,where
it can be re-used by a later call toKheFrameMakeBegin.

The usual operations are available for retrieving the attributes of a frame. To retrieve the
enclosing solution, call

KHE_SOLN KheFrameSoln(KHE_FRAME frame);

To visit the time groups, call

int KheFrameTimeGroupCount(KHE_FRAME frame);
KHE_TIME_GROUP KheFrameTimeGroup(KHE_FRAME frame, int i);

KheFrameTimeGroup returns theith time group offrame.

A frame isdisjointwhen its time groups are pairwise disjoint,andcompletewhen every time
in the cycle lies in at least one of its time groups. Frames do not have to satisfy these conditions,
but some applications of frames require them. They are returned by functions

bool KheFrameIsDisjoint(KHE_FRAME frame, int *problem_index1,
int *problem_index2);

bool KheFrameIsComplete(KHE_FRAME frame, KHE_TIME *problem_time);

If the frame is disjoint,KheFrameIsDisjoint returns true with *problem_index1 and
*problem_index2 set to -1; otherwise it returnsfalse with *problem_index1 and
*problem_index2 set to the indexes of two overlapping time groups. If the frame is complete,
KheFrameIsComplete returnstrue with *problem_time set toNULL; otherwise it returnsfalse
with *problem_time set to a time of the instance which is not in any offrame’s time groups.

KheFrameIsDisjoint and KheFrameIsComplete are typically called at most once per
frame, afterKheFrameMakeEnd. An efficient implementation has not been thought necessary.
But this function is implemented efficiently:

int KheFrameTimeIndex(KHE_FRAME frame, KHE_TIME t);

It returns the index inframe of the time group containing timet. If there is no such time group
(implying that the frame is not complete),-1 is returned. If there is more than one such time
group (implying that the frame is not disjoint), the index of one of the time groups is returned.
The time group itself can then be retrieved usingKheFrameTimeGroup. There is also

KHE_TIME_GROUP KheFrameTimeTimeGroup(KHE_FRAME frame, KHE_TIME t);

which combines the two steps, returning the time group offrame that containst, or aborting if
there is no such time group.

Frames arise naturally in employee scheduling when each employee can work at most one
shift per day (evidenced by a hard limit busy times constraint with non-zero cost, maximum limit
1, and one time group for each day). When this is true of all resources, function
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KHE_FRAME KheFrameMakeCommon(KHE_SOLN soln);

returns a frame with one time group per day, each with positive polarity. The time groups do
not have to actually represent days, they merely need to be the same for all resources and to be
disjoint and complete. When there is no common frame,NULL is returned.

WhenKheFrameMakeCommon returnsNULL, as a fallback there is

KHE_FRAME KheFrameMakeSingletons(KHE_SOLN soln);

This returns a frame with one time group for each time, containing just that single time.

Once created, frames of this kind do not change. So it makes sense to share a single one
between solvers, by storing it in the solvers’shared options object. A convenient way do this is

KHE_FRAME KheOptionsFrame(KHE_OPTIONS options, char *key, KHE_SOLN soln);

from Section 8.2. This returns the frame stored inoptions under the givenkey. If there
is no object inoptions under that key, it first creates one, by callingKheFrameMakeCommon,
followed byKheFrameMakeSingletons if necessary, and storing the result inoptions under
key. Thus, if all solvers that need a frame call this function to obtain it, they will all share the
same frame, the one created the first time this function is called. By convention, the key to use
is "gs_common_frame", and so

frame = KheOptionsFrame(options, "gs_common_frame", soln);

is the recommended way to obtain this kind of frame.

Function

bool KheFrameIntersectsTimeGroup(KHE_FRAME frame, KHE_TIME_GROUP tg);

returnstrue whentg shares at least one time with at least one of the time groups offrame.

There is the usual debug function:

void KheFrameDebug(KHE_FRAME frame, int verbosity, int indent, FILE *fp);

This printsframe ontofp with the given verbosity and indent. Hereframe may beNULL.

Finally, here are three related miscellaneous functions:

bool KheFrameResourceHasClashes(KHE_FRAME frame, KHE_RESOURCE r);
void KheFrameResourceAssertNoClashes(KHE_FRAME frame, KHE_RESOURCE r);
void KheFrameAssertNoClashes(KHE_FRAME frame);

These help to debug solvers that preserve an invariant stating that each resource attends at most
one task during each time group offrame. KheFrameResourceHasClashes returnstrue if r

violates this condition;KheFrameResourceAssertNoClashes aborts the run if it is violated for
resourcer, after printing out information about which resource and time group is involved; and
KheFrameAssertNoClashes callsKheFrameResourceAssertNoClashes for all resources.
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As a solution changes, it is continuouslymonitoredby a hand-tuned constraint network.

6.1. Measuring cost

KHE measures the badness of a solution as a single integral value called thecost, or sometimes
the combined costbecause it includes the cost of both hard and soft constraint deviations.
Storing costs in this way is convenient,because it allows costs to be assigned using=, added using
+, and compared using< and so on in the usual way. The hard cost is shifted left by 32 bits, to
ensure that it is more significant than any reasonable total soft cost, then added to the soft cost.

The type of a combined cost isKHE_COST, a synonym for the standard C 64-bit integer type
int64_t (a fact best forgotten). To find the current combined cost of a solution, call

KHE_COST KheSolnCost(KHE_SOLN soln);

This value is stored explicitly insoln, so this function takes virtually no time to execute. Call

KHE_COST KheCost(int hard_cost, int soft_cost);

to create a combined cost. The two components of a combined cost may be accessed by

int KheHardCost(KHE_COST combined_cost);
int KheSoftCost(KHE_COST combined_cost);

There is also the constantKheCostMax, which returns the maximum value storable in a variable
of typeKHE_COST (a synonym forINT64_MAX) and the function

int KheCostCmp(KHE_COST cost1, KHE_COST cost2);

which returns anint which is less than, equal to, or greater than zero if the first argument is
respectively less than, equal to, or greater than the second, as needed when sorting items by cost.
The implementation does not make the mistake of merely subtractingcost2 from cost1; the
result then would be aKHE_COST which will usually overflow theint result.

The suggested way to display a combined cost is as a decimal number with the hard cost
before the decimal point and the soft cost after. Five decimal places are displayed, allowing for
soft costs up to 99999. Larger soft costs are displayed as 99999. To assist with this, function

double KheCostShow(KHE_COST combined_cost);

returns a value which, when printed withprintf format"%.5f", prints the cost in this format.

These functions assume that both components of the cost are non-negative. There is no
problem with negative combined costs in themselves,but when a hard and soft cost are combined
together, if either is negative they may be different if they are separated again.

141
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6.2. Monitors

A monitoris an object, of typeKHE_MONITOR, that monitors one part of a solution: typically, one
point of application of one constraint. It contains the usual back pointer and visit number:

void KheMonitorSetBack(KHE_MONITOR m, void *back);
void *KheMonitorBack(KHE_MONITOR m);
void KheMonitorSetVisitNum(KHE_MONITOR m, int num);
int KheMonitorVisitNum(KHE_MONITOR m);
bool KheMonitorVisited(KHE_MONITOR m, int slack);
void KheMonitorVisit(KHE_MONITOR m);
void KheMonitorUnVisit(KHE_MONITOR m);

Operations

KHE_SOLN KheMonitorSoln(KHE_MONITOR m);
int KheMonitorSolnIndex(KHE_MONITOR m);
KHE_COST KheMonitorCost(KHE_MONITOR m);
KHE_COST KheMonitorLowerBound(KHE_MONITOR m);

return the enclosing solution, the index ofm in that solution, the cost of whatm is monitoring (kept
up to date by KHE as the solution changes), and a constant lower bound onKheMonitorCost,
which is usually 0 but will be non-zero when KHE can prove the lower bound easily.

TypeKHE_MONITOR is the abstract supertype of many concrete subtypes, with these tags:
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typedef enum {
KHE_ASSIGN_RESOURCE_MONITOR_TAG,
KHE_ASSIGN_TIME_MONITOR_TAG,
KHE_SPLIT_EVENTS_MONITOR_TAG,
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR_TAG,
KHE_PREFER_RESOURCES_MONITOR_TAG,
KHE_PREFER_TIMES_MONITOR_TAG,
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR_TAG,
KHE_SPREAD_EVENTS_MONITOR_TAG,
KHE_LINK_EVENTS_MONITOR_TAG,
KHE_ORDER_EVENTS_MONITOR_TAG,
KHE_AVOID_CLASHES_MONITOR_TAG,
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR_TAG,
KHE_LIMIT_IDLE_TIMES_MONITOR_TAG,
KHE_CLUSTER_BUSY_TIMES_MONITOR_TAG,
KHE_LIMIT_BUSY_TIMES_MONITOR_TAG,
KHE_LIMIT_WORKLOAD_MONITOR_TAG,
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR_TAG,
KHE_LIMIT_RESOURCES_MONITOR_TAG,
KHE_EVENT_TIMETABLE_MONITOR_TAG,
KHE_RESOURCE_TIMETABLE_MONITOR_TAG,
KHE_ORDINARY_DEMAND_MONITOR_TAG,
KHE_WORKLOAD_DEMAND_MONITOR_TAG,
KHE_EVENNESS_MONITOR_TAG,
KHE_GROUP_MONITOR_TAG,
KHE_MONITOR_TAG_COUNT

} KHE_MONITOR_TAG;

Each monitor object contains a tag identifying its subtype, returned by

KHE_MONITOR_TAG KheMonitorTag(KHE_MONITOR m);

Monitors of the first eighteen types monitor one point of application of one constraint; their cost
is the total cost of deviations at that point. They are described in detail in later sections of this
chapter. Monitors of the last six types (fromKHE_EVENT_TIMETABLE_MONITOR_TAG onwards)do
not monitor constraints. Timetable monitors hold the timetablesof events and resources (Section
6.7) Ordinary and workload demand monitors monitor matchings, and evenness monitors
monitor evenness (Chapter 7). Group monitors group together other monitors (Section 6.8). The
last value is not a tag; it is a count of the number of monitor types, allowing code of the form

for( tag = 0; tag < KHE_MONITOR_TAG_COUNT; tag++ )
... do something for monitors of type tag ...

For those monitors that monitor a point of application of a constraint, functions

KHE_CONSTRAINT KheMonitorConstraint(KHE_MONITOR m);
char *KheMonitorAppliesToName(KHE_MONITOR m);

return the constraint and the name of the point of application (if this point is an event re-
source, the name of the enclosing event is returned). For other monitors they returnNULL.
KheMonitorAppliesToName is more or less obsolete; the author prefers now to call
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char *KheMonitorPointOfApplication(KHE_MONITOR m);

which returns a more precise indication of the point of application. Each constraint monitor also
has functions which return the specific constraint and point of application.

The result ofKheMonitorPointOfApplication(m) is created afresh on each call. This is
not very efficient, but if the function is called only when generating evaluation tables, as is the
intention, that will not matter.

A similar function toKheMonitorPointOfApplication is

char *KheMonitorId(KHE_MONITOR m);

It returns a string composed of two or three fields separated by/ characters. Each field is an Id
from the instance or an integer. The fieldsare supposed to uniquely identify the monitor,although
in a few cases this is doubtful. The first field is always a constraint Id, identifying the constraint
that the monitor is derived from, and the second is usually an event, event group, or resource Id,
identifying the point of application. There may be a third field, holding a second event Id (for
order events monitors) or an offset (for resource constraints with anAppliesToTimeGroup at-
tribute). When the offset is 0 the offset field and preceding/ are omitted. A non-zero offset may
be replaced by the Id of the first time of the first monitored time group.

The result ofKheMonitorId(m) is created whenKheMonitorId(m) is first called, and
stored inm so that it does not have to be created over and over. If it is used only for debugging,
as is the intention, there is virtually no cost in running time or memory when debugging is off.

The cost of a monitor is a function of itsdeviation, a non-negative integer:

int KheMonitorDeviation(KHE_MONITOR m);
char *KheMonitorDeviationDescription(KHE_MONITOR m);

These functions are intended for reporting, not solving.KheMonitorDeviation returns the
deviation, andKheMonitorDeviationDescription returns a description of it: an expression,
augmented with brief text, showing how it is calculated. The result string does not necessarily
lie in heap memory, and should not be freed.

For limit active intervalsmonitors,KheMonitorDeviation returns the sum of the deviations
of the active intervals. Exceptionally, the cost of the monitor is not a function of this deviation;
instead, it is the sum of the costs of the deviations of the active intervals taken separately.

To visit the full set of monitors monitoringsoln, call

int KheSolnMonitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMonitor(KHE_SOLN soln, int i);

Although KHE does not fully specify the order in which these monitors appear, it does guarantee
that the monitors which monitor constraints will appear together in the list in the order that their
constraints appear in the input. It is best to select these monitors by testing whether the result of
KheMonitorConstraint above is non-NULL.

There is also function

bool KheSolnRetrieveMonitor(KHE_SOLN soln, char *id, KHE_MONITOR *m);
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It searches for a monitor whose Id, as returned byKheMonitorId above, is equal toid. If it finds
one, it returnstrue with *m set to that monitor; otherwise it returnsfalse with *m set toNULL.

Although every monitor has an Id, at presentKheSolnRetrieveMonitor does not retrieve
all monitors. It retrieves resource monitors, and event monitors that monitor a single event.

KheSolnRetrieveMonitor is intended for debugging and is not very efficient. It works
by finding the entity (event, event group, or resource) identified by the second field ofid and
searching that entity’s list of monitors for one for whichKheMonitorId returnsid.

To debug a monitorm with a given verbosity and indent, call

void KheMonitorDebug(KHE_MONITOR m, int verbosity, int indent, FILE *fp);

There are also versions of this function for each of the specific monitor types. These all work
in the same way. The output starts with aG, A or D indicating whether the monitor is a group
monitor, an attached non-group monitor, or a detached non-group monitor. This is followed by
the number of paths up from the monitor to the solution (Section 6.8),usually 0 or 1. Then comes
the monitor’s tag and cost, then other information depending on the monitor type and verbosity.
There is also

char *KheMonitorTagShow(KHE_MONITOR_TAG tag);

which returns a string representation oftag. In practice a more useful function is

char *KheMonitorLabel(KHE_MONITOR m);

This returnsKheMonitorTagShow(KheMonitorTag(m)) if m is not a group monitor, andm’s
subtag label ifm is a group monitor.

6.3. Attaching, detaching, and provably zero fixed cost

For a monitor to be updated when the solution changes, there must be links from the appropriate
points within the solution to the monitor. When these links are present, the monitor is said to be
attached to the solution, or justattached. Most monitors are attached to begin with, but they can
be detached at any time, and even reattached later, by calling

void KheMonitorDetachFromSoln(KHE_MONITOR m);
void KheMonitorAttachToSoln(KHE_MONITOR m);

Even when detached, a monitor remembers which parts of the solution it is supposed to monitor,
so the attach operation does not have to tell the monitor where to attach itself. To find out whether
a monitor is currently attached or detached, call

bool KheMonitorAttachedToSoln(KHE_MONITOR m);

Another function, highly recommended for calling at the end of a solve, is

void KheSolnEnsureOfficialCost(KHE_SOLN soln);

This ensures that all constraint monitors are both attached to the solution and reporting their
cost to the solution, directly or indirectly via group monitors, that the multipliers of all cluster
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busy times monitors are 1and their minimums have their original value, and that all demand and
evenness monitors are detached from the solution. This guarantees that the solution cost is the
official cost.

While a monitor is detached, it receives no information about changes to the solution, and,
by definition, its deviation and cost are 0. Detaching a monitor may therefore change its cost. If
there is a change in cost, it is reported to the monitor’s parents (if it has any) as usual. Conversely,
attaching a monitor brings it up to date with the current state of the solution, which again may
change its cost; and again, if there is a change in cost it is reported to its parents (if it has any).

There are two main reasons for detaching a monitor. First, the user might make a deliberate
choice to ignore some constraints. For example, a solver that works in two phases, first finding
a solution that satisfies the hard constraints, and then attacking the soft ones, might detach the
monitors for the soft constraints during its first phase. An example of this kind of deliberate
choice is KHE’s matching feature (Chapter 7), which is implemented with monitors. Unlike
other monitors, matching monitors are detached initially. KHE makes this choice deliberately,
on the grounds that the cost of the matching is not officially part of the cost function.

The second reason for detaching a monitor is that it may be clear that its cost will be zero
for a long time. In that case, detaching it means that no time is spent keeping it up to date, yet it
still reports the correct cost. For example, if the meets of one point of application of a link events
constraint are assigned to each other and those assignments will not be removed, then it is safe
to save time by detaching the corresponding monitor.

This reasoning was formerly embodied in a function calledKheMonitorAttachCheck,
which assumed that certain elements of the solution were unlikely to change, and detached mon-
itors accordingly.KheMonitorAttachCheck has been withdrawn; the equivalent functionality is
now obtained, more reliably, by calling theFix andUnFix functions, as follows.

A monitor hasprovably zero fixed costif enough of the solution is currently fixed (by calls to
KheMeetAssignFix andKheTaskAssignFix) to allow KHE to prove that the monitor must have
cost 0 while those fixes remain. For each kind of monitor, either a specific definition of when it
has provably zero fixed cost is given below, or else it never has provably zero fixed cost.

When one of the fixing operations just listed is called, after doing the actual fixing KHE
ensures that all monitors which did not have provably zero fixed cost before but now do are
detached. When one of the corresponding unfix operations is called, after doing the actual
unfixing it ensures that all monitors which had provably zero fixed cost before but now do not
are attached. So there is no risk that detaching these monitors could lead to cost errors; as soon
as unfixes make a non-zero cost possible, they are attached again.

6.4. Event monitors

An event monitormonitors one or more events. The set of monitors (attached or unattached)
which monitor a given event may be found by calling

int KheSolnEventMonitorCount(KHE_SOLN soln, KHE_EVENT e);
KHE_MONITOR KheSolnEventMonitor(KHE_SOLN soln, KHE_EVENT e, int i);

These return the number of monitors that monitore in soln, and theith of these, as usual. The
timetable monitor for evente (Section 6.7) is not visited by these functions; it may be retrieved
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by callingKheEventTimetableMonitor.

The total cost of these monitors measures how welle is timetabled. Functions

KHE_COST KheSolnEventCost(KHE_SOLN soln, KHE_EVENT e);
KHE_COST KheSolnEventMonitorCost(KHE_SOLN soln, KHE_EVENT e,
KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoringe, and the total cost of all monitors monitoring
e of a specific type, defined bytag. KheSolnEventMonitorCost returns 0 whentag does not
specify one of the monitor types in the following subsections.

Each point of application of a spread events constraint or link events constraint is one event
group, and a monitor of these kinds appears on the list of monitors of each of the events in its
event group. Similarly, an order events monitor appears on the list of monitors of both of the
events it monitors. IfKheSolnEventCost(soln, e) is summed over all events, the cost of such
monitors is counted repeatedly, and the total may exceed the total cost of all event monitors.

The following subsections list the various kinds of event monitors and the details specific
to each of them. Their types (KHE_SPLIT_EVENTS_MONITOR and so on) may be obtained by
downcasting fromKHE_MONITOR after checking the type tag.

6.4.1. Split events monitors

A split events monitor has tagKHE_SPLIT_EVENTS_MONITOR_TAG and monitors an event which
is one point of application of one split events constraint. Functions

KHE_SPLIT_EVENTS_CONSTRAINT KheSplitEventsMonitorConstraint(
KHE_SPLIT_EVENTS_MONITOR m);

KHE_EVENT KheSplitEventsMonitorEvent(KHE_SPLIT_EVENTS_MONITOR m);

return the split events constraint and event being monitored, and

void KheSplitEventsMonitorLimits(KHE_SPLIT_EVENTS_MONITOR m,
int *min_duration, int *max_duration, int *min_amount, int *max_amount);

sets the four last variables to the corresponding attributes of the monitor’s constraint. Function

void KheSplitEventsMonitorDebug(KHE_SPLIT_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.4.2. Distribute split events monitors

A distribute split events monitor has tagKHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR_TAG and
monitors one point of application of a distribute split events constraint (one event). Functions
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KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KheDistributeSplitEventsMonitorConstraint(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m);

KHE_EVENT KheDistributeSplitEventsMonitorEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m);

return the constraint and event being monitored, and

void KheDistributeEventsMonitorLimits(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m,
int *duration, int *minimum, int *maximum, int *meet_count);

sets*duration, *minimum, and *maximum to the corresponding attributes of the monitor’s
constraint, and*meet_count to the number of meets derived from the monitored event whose
duration is*duration (or to the total number of meets if*duration is KHE_ANY_DURATION).
Function

void KheDistributeSplitEventsMonitorDebug(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.4.3. Assign time monitors

An assign time monitor has tagKHE_ASSIGN_TIME_MONITOR_TAG and monitors an event which
is one point of application of one assign time constraint. Functions

KHE_ASSIGN_TIME_CONSTRAINT KheAssignTimeMonitorConstraint(
KHE_ASSIGN_TIME_MONITOR m);

KHE_EVENT KheAssignTimeMonitorEvent(KHE_ASSIGN_TIME_MONITOR m);

return the assign time constraint and event being monitored. Function

void KheAssignTimeMonitorDebug(KHE_ASSIGN_TIME_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An assign time monitor does not have provably zero fixed cost whenKheMeetAssignFix

has been called for each of the meets derived from the event it monitors and the monitor has
cost 0 when attached, because the assignments may be to other meets whose assignments are not
fixed. The full assignment paths leading out of the monitored meets would need to be fixed; but
that would be awkward to implement and give no efficiency payoff, because then the monitor
would never be updated anyway. So an assign time monitor never has provably zero cost.

6.4.4. Prefer times monitors

A prefer times monitor has tagKHE_PREFER_TIMES_MONITOR_TAG and monitors an event which
is one point of application of one prefer times constraint. Functions
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KHE_PREFER_TIMES_CONSTRAINT KhePreferTimesMonitorConstraint(
KHE_PREFER_TIMES_MONITOR m);

KHE_EVENT KhePreferTimesMonitorEvent(KHE_PREFER_TIMES_MONITOR m);

return the prefer times constraint and event being monitored. Function

void KhePreferTimesMonitorDebug(KHE_PREFER_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.4.5. Spread events monitors

A spread events monitor has tagKHE_SPREAD_EVENTS_MONITOR_TAG and monitors an event
group which is one point of application of a spread events constraint. It appears in the list of
monitors of all the events in its event group. Functions

KHE_SPREAD_EVENTS_CONSTRAINT KheSpreadEventsMonitorConstraint(
KHE_SPREAD_EVENTS_MONITOR m);

KHE_EVENT_GROUP KheSpreadEventsMonitorEventGroup(
KHE_SPREAD_EVENTS_MONITOR m);

return the spread events constraint and event group being monitored. There are also

int KheSpreadEventsMonitorTimeGroupCount(KHE_SPREAD_EVENTS_MONITOR m);
void KheSpreadEventsMonitorTimeGroup(KHE_SPREAD_EVENTS_MONITOR m, int i,
KHE_TIME_GROUP *time_group, int *minimum, int *maximum, int *incidences);

The first returns the number of time groups (as in the corresponding constraint). The second
returns thei’th time group and the minimum and maximum number of meets wanted there
(again, as in the constraint), plus the current number of meets incident on that time group. If
*incidences is less than*minimum or more than*maximum, a cost is incurred. Function

void KheSpreadEventsMonitorDebug(KHE_SPREAD_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.4.6. Link events monitors

A link events monitor has tagKHE_LINK_EVENTS_MONITOR_TAG and monitors an event group
which is one point of application of a link events constraint. It appears in the list of monitors of
all the events in its event group. Functions

KHE_LINK_EVENTS_CONSTRAINT KheLinkEventsMonitorConstraint(
KHE_LINK_EVENTS_MONITOR m);

KHE_EVENT_GROUP KheLinkEventsMonitorEventGroup(
KHE_LINK_EVENTS_MONITOR m);

return the link events constraint and event group being monitored. Function
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void KheLinkEventsMonitorDebug(KHE_LINK_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A link events monitor has provably zero fixed cost when following to the end the chains of
fixed assignments out of the meets of the events it monitors produces the same result for each
event: the same offsets and durations within the same final meets.KheMeetAssignFix and
KheMeetAssignUnFix may detach and attach link events monitors.

Detaching link events monitors is the most important service provided by fixing. Keeping
these monitors up to date is slow, despite the author’s best efforts to optimize. When the times of
a set of linked events change together, an attached link events monitor receives the changes one
by one, forcing it through a tedious sequence of cost changes beginning and ending with 0.

6.4.7. Order events monitors

An order events monitor has tagKHE_ORDER_EVENTS_MONITOR_TAG and monitors two events
which together constitute one point of application of an order events constraint. It appears in
the list of monitors of both events. Functions

KHE_ORDER_EVENTS_CONSTRAINT KheOrderEventsMonitorConstraint(
KHE_ORDER_EVENTS_MONITOR m);

KHE_EVENT KheOrderEventsMonitorFirstEvent(KHE_ORDER_EVENTS_MONITOR m);
KHE_EVENT KheOrderEventsMonitorSecondEvent(KHE_ORDER_EVENTS_MONITOR m);
int KheOrderEventsMonitorMinSeparation(KHE_ORDER_EVENTS_MONITOR m);
int KheOrderEventsMonitorMaxSeparation(KHE_ORDER_EVENTS_MONITOR m);

return the constraint being monitored and the four attributes of the monitor: the two events
monitored, and the minimum and maximum separations. Function

void KheOrderEventsMonitorDebug(KHE_ORDER_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An order events monitor has provably zero fixed cost when both of its events are broken
into a single meet, following to the end the chains of fixed assignments out of those two meets
leads to the same final meet, and their separation (the offset into the final meet of the second
meet, minus the duration plus offset into the final meet of the first meet) is in the legal range.
KheMeetAssignFix andKheMeetAssignUnFix may detach and attach order events monitors.

6.5. Event resource monitors

An event resource monitormonitors one or more event resources. The monitors (attached or
unattached) which monitor a given event resource may be visited by

int KheSolnEventResourceMonitorCount(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_MONITOR KheSolnEventResourceMonitor(KHE_SOLN soln,

KHE_EVENT_RESOURCE er, int i);
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The total cost of these monitors measures how weller is timetabled. Functions

KHE_COST KheSolnEventResourceCost(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_COST KheSolnEventResourceMonitorCost(KHE_SOLN soln,
KHE_EVENT_RESOURCE er, KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoringer, and the total cost of all monitors
monitoringer of a specific type, defined bytag. KheSolnEventResourceMonitorCost returns
0 whentag does not specify one of the monitor types in the following subsections.

Each point of application of an avoid split assignments constraint is a whole set of event
resources, and a monitor of this kind is attached to each of the event resources in its set. If
KheSolnEventResourceCost(soln, er) is summed over all event resources, such a monitor
is counted repeatedly, so the total may exceed the total cost of all event resource monitors.

The following subsections list the various kinds of event resource monitors and the details
specific to each of them. Their types (KHE_ASSIGN_RESOURCE_MONITOR and so on) may be
obtained by downcasting fromKHE_MONITOR after checking the type tag.

6.5.1. Assign resource monitors

An assign resource monitor has tagKHE_ASSIGN_RESOURCE_MONITOR_TAG and monitors an
event resource which is one point of application of one assign resource constraint. Functions

KHE_ASSIGN_RESOURCE_CONSTRAINT KheAssignResourceMonitorConstraint(
KHE_ASSIGN_RESOURCE_MONITOR m);

KHE_EVENT_RESOURCE KheAssignResourceMonitorEventResource(
KHE_ASSIGN_RESOURCE_MONITOR m)

return the assign resource constraint and event resource being monitored. Like assign time mon-
itors, assign resource monitors are never considered to have provably zero fixed cost. Function

void KheAssignResourceMonitorDebug(KHE_ASSIGN_RESOURCE_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.5.2. Prefer resources monitors

A prefer resources monitor has tagKHE_PREFER_RESOURCES_MONITOR_TAG and monitors an
event resource which is one point of application of one prefer resources constraint. Functions

KHE_PREFER_RESOURCES_CONSTRAINT KhePreferResourcesMonitorConstraint(
KHE_PREFER_RESOURCES_MONITOR m);

KHE_EVENT_RESOURCE KhePreferResourcesMonitorEventResource(
KHE_PREFER_RESOURCES_MONITOR m);

return the prefer resources constraint and event resource being monitored. Function

void KhePreferResourcesMonitorDebug(KHE_PREFER_RESOURCES_MONITOR m,
int verbosity, int indent, FILE *fp);
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is like KheMonitorDebug, only specific to this type of monitor.

6.5.3. Avoid split assignments monitors

The operations for building avoid split assignments constraints accept a role and event groups,
as required when reading XML. However, they also accept a set of event resources, and these
are what are actually used. Accordingly, one avoid split assignments monitor monitors a set of
event resources, and appears in the list of monitors of each of those event resources. Functions

KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KheAvoidSplitAssignmentsMonitorConstraint(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m)

int KheAvoidSplitAssignmentsMonitorEventGroupIndex(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m)

return the constraint and the index of the set of event resources being monitored, suitable
for passing to functionsKheAvoidSplitAssignmentsConstraintEventResourceCount and
KheAvoidSplitAssignmentsConstraintEventResource (Section 3.7.7). There are also

int KheAvoidSplitAssignmentsMonitorResourceCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m);

KHE_RESOURCE KheAvoidSplitAssignmentsMonitorResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int i);

int KheAvoidSplitAssignmentsMonitorResourceMultiplicity(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int i);

The first returns the number of distinct resources currently assigned to tasks monitored bym. If
m is a defect this number will be at least 2. The second and third return theith of these distinct
resources (in an arbitrary order) and the number of tasks monitored bym to which that resource
is currently assigned. The monitor does not record which tasks those are. Function

void KheAvoidSplitAssignmentsMonitorDebug(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An avoid split assignments monitor has provably zero fixed cost when the paths of fixed
assignments leading out of the tasks it monitors have the same endpoint.KheTaskAssignFix

andKheTaskAssignUnFix may detach and attach avoid split assignments monitors. Similarly
to link events monitors, the efficiency payoff is significant.

6.5.4. Limit resources monitors

The operations for building limit resources constraints accept event groups and roles, as needed
when reading XML. However, what one limit resources monitor actually monitors is a set of
event resources, and it appears in the lists of monitors of those event resources. Functions
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KHE_LIMIT_RESOURCES_CONSTRAINT KheLimitResourcesMonitorConstraint(
KHE_LIMIT_RESOURCES_MONITOR m);

int KheLimitResourcesMonitorEventGroupIndex(
KHE_LIMIT_RESOURCES_MONITOR m);

return the constraint, and the index within it of the set of event resources being monitored,
suitable for passing to functionsKheLimitResourcesConstraintEventResourceCount and
KheLimitResourcesConstraintEventResource (Section 3.7.18). These allow the user to
visit the monitored event resources, and thence, usingKheEventResourceTaskCount and
KheEventResourceTask, the monitored tasks. There is also

void KheLimitResourcesMonitorActiveDuration(KHE_LIMIT_RESOURCES_MONITOR m,
int *minimum, int *maximum, int *active_durn);

It returnsm’s minimum limit (taken from the constraint; it will be 0 when there is no minimum
limit), its maximum limit (also from the constraint; it will beINT_MAX when there is no maxi-
mum limit), and theactive duration, which is the total duration of the tasks derived from the
event resourcesbeing monitored which are assigned resources from the constraint. The deviation
is the amount (if any) by which*active_durn exceeds*maximum or falls short of*minimum.
Function

void KheLimitResourcesMonitorDebug(KHE_LIMIT_RESOURCES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.6. Resource monitors

A resource monitormonitors a resource. The set of monitors (attached or unattached) which
monitor a given resource may be visited by calling

int KheSolnResourceMonitorCount(KHE_SOLN soln, KHE_RESOURCE r);
KHE_MONITOR KheSolnResourceMonitor(KHE_SOLN soln, KHE_RESOURCE r, int i);

The order is arbitrary and may be changed by calling

void KheSolnResourceMonitorSort(KHE_SOLN soln, KHE_RESOURCE r,
int(*compar)(const void *, const void *));

to sort the monitors into increasing order ofcompar.

The total cost of these monitors measures how wellr is timetabled. Functions

KHE_COST KheSolnResourceCost(KHE_SOLN soln, KHE_RESOURCE r);
KHE_COST KheSolnResourceMonitorCost(KHE_SOLN soln, KHE_RESOURCE r,
KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoringr, and the total cost of all monitors monitoring
r of a specific type, defined bytag. KheSolnResourceMonitorCost returns 0 whentag does
not specify one of the monitor types in the following subsections.

The following subsections list the kinds of resource monitors and their features. Their types
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(KHE_AVOID_CLASHES_MONITOR etc.) may be obtained by downcasting fromKHE_MONITOR after
checking the type tag. Monitors of typeKHE_WORKLOAD_DEMAND_MONITOR, defined in Section
7.4, are also visited byKheSolnResourceMonitorCount and KheSolnResourceMonitor.
However, the timetable monitor for a resource is not visited by these functions; as explained in
Section 6.7, it is retrieved by callingKheResourceTimetableMonitor.

6.6.1. Avoid clashes monitors

An avoid clashes monitor has tagKHE_AVOID_CLASHES_MONITOR_TAG and monitors a resource
which is one point of application of one avoid clashes constraint. Functions

KHE_AVOID_CLASHES_CONSTRAINT KheAvoidClashesMonitorConstraint(
KHE_AVOID_CLASHES_MONITOR m);

KHE_RESOURCE KheAvoidClashesMonitorResource(
KHE_AVOID_CLASHES_MONITOR m);

return the avoid clashes constraint and resource being monitored. Function

void KheAvoidClashesMonitorDebug(KHE_AVOID_CLASHES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An avoid clashes monitorm may have non-zeroKheMonitorLowerBound(m). Let t be the
total duration of the events to whichm’s resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greater thanm’s weight. Then ift
exceeds the number of times in the cycle, the excess is a lower bound on the number of defects
that m must have in any reasonable solution (one in which violations ofm are preferred to
violations of the more expensive assign time constraints). Converting this number of defects into
a cost usingm’s cost function in the usual way gives the lower bound.

6.6.2. Avoid unavailable times monitors

This monitor has tagKHE_AVOID_UNAVAILABLE_TIMES_MONITOR_TAG and monitors a resource
which is one point of application of one avoid unavailable times constraint. Functions

KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KheAvoidUnavailableTimesMonitorConstraint(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m);

KHE_RESOURCE KheAvoidUnavailableTimesMonitorResource(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m);

return the avoid unavailable times constraint and resource being monitored. Function

void KheAvoidUnavailableTimesMonitorDebug(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An avoid unavailable times monitorm may have non-zeroKheMonitorLowerBound(m).
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Supposem’s resource is subject to an avoid clashes constraint of weight greater thanm’s weight.
Let t1 be the total duration of the events to whichm’s resource is preassigned which either have
preassigned times or are subject to an assign time constraint of weight greater thanm’s weight.
Let t2 be the number of times to be avoided according tom. Then if t1 + t2 exceeds the number of
times in the cycle, the excess is a lower bound on the number of defects thatm must have in any
reasonable solution (one in which every meet is assigned a time, and violations ofm are preferred
to violations of the more expensive assign time and avoid clashes constraints). Converting this
number of defects into a cost usingm’s cost function in the usual way gives the lower bound.

6.6.3. Limit idle times monitors

A limit idle times monitor has tagKHE_LIMIT_IDLE_TIMES_MONITOR_TAG and monitors a
resource which is one point of application of one limit idle times constraint. Functions

KHE_LIMIT_IDLE_TIMES_CONSTRAINT KheLimitIdleTimesMonitorConstraint(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

KHE_RESOURCE KheLimitIdleTimesMonitorResource(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

return the limit idle times constraint and resource being monitored, and

int KheLimitIdleTimesMonitorTimeGroupCount(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

KHE_TIME_GROUP KheLimitIdleTimesMonitorTimeGroup(
KHE_LIMIT_IDLE_TIMES_MONITOR m, int i);

visit the time groups thatm monitors, that is, the time groups from the constraint. There is also

KHE_TIME_GROUP KheLimitIdleTimesMonitorTimeGroupState(
KHE_LIMIT_IDLE_TIMES_MONITOR m, int i, int *busy_count, int *idle_count,
KHE_TIME extreme_busy_times[2], int *extreme_busy_times_count);

which, in addition to returning theith time group, also reports its state, by setting*busy_count

to its number of busy times,*idle_count to its number of idle times, and placing its first and
last busy times intoextreme_busy_times[0 .. *extreme_busy_times_count - 1]. If
there are no busy times,*extreme_busy_times_count is 0; if there is one it is 1; otherwise it is
2. Function

void KheLimitIdleTimesMonitorDebug(KHE_LIMIT_IDLE_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.6.4. Cluster busy times monitors

A cluster busy times monitor (tagKHE_CLUSTER_BUSY_TIMES_MONITOR_TAG) monitors a re-
source and offset making one point of application of a cluster busy times constraint. Functions
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KHE_CLUSTER_BUSY_TIMES_CONSTRAINT KheClusterBusyTimesMonitorConstraint(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KHE_RESOURCE KheClusterBusyTimesMonitorResource(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

return the cluster busy times constraint and the resource being monitored. Functions

int KheClusterBusyTimesMonitorHistoryBefore(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

int KheClusterBusyTimesMonitorHistoryAfter(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

int KheClusterBusyTimesMonitorHistory(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

return the history before, history after, and history values fromm’s constraint, or 0 if not present.
In the high school model, these are always 0. Function

int KheClusterBusyTimesMonitorOffset(KHE_CLUSTER_BUSY_TIMES_MONITOR m);

returns the offset being monitored. In the high school model, and when the constraint hasNULL

for applies_to_tg, the offset is always 0, otherwise the offset is the difference in index between
one useful time inapplies_to_tg and the first time inapplies_to_tg. Functions

int KheClusterBusyTimesMonitorTimeGroupCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KHE_TIME_GROUP KheClusterBusyTimesMonitorTimeGroup(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i, KHE_POLARITY *po);

return the time groups thatm monitors (one for each time group in the cluster busy times con-
straint, adjusted usingKheTimeGroupNeighbour by the offset), and their associated polarities.

A rough idea of the times monitored bym is given by function

void KheClusterBusyTimesMonitorRange(KHE_CLUSTER_BUSY_TIMES_MONITOR m,
KHE_TIME *first_time, KHE_TIME *last_time);

It sets*first_time and*last_time to the first and last times monitored bym. In the unlikely
event thatm monitors no times at all, they will be set toNULL. These values are calculated the first
time that the function is called, and cached inm, so that subsequent calls take almost no time.

There are also two functions which report the current state of the monitor, as it varies during
the solve. Function

void KheClusterBusyTimesMonitorActiveTimeGroupCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int *active_group_count,

*open_group_count, int *minimum, int *maximum, bool *allow_zero);

sets*active_group_count to the number of active time groups (busy positive time groups plus
non-busy negative time groups),*open_group_count to the number of time groups not known to
be either active or inactive (becausehistory_after is non-zero, or because there is a non-trivial
cutoff index), and*minimum, *maximum, and*allow_zero to the values from the constraint. If
m has non-zero cost, then either*active_group_count + *open_group_count < *minimum
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or *active_group_count > *maximum. Function

bool KheClusterBusyTimesMonitorTimeGroupIsActive(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i, KHE_TIME_GROUP *tg,
KHE_POLARITY *po, int *busy_count);

returnstrue when the time group at indexi is currently active. It also sets*tg and*po to the
time group and polarity at indexi, and*busy_count to the number of busy times in the time
group. Its return value is the value of the condition

(*po == KHE_NEGATIVE) == (*busy_count == 0)

as the definition of the constraint specifies.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function

int KheClusterBusyTimesMonitorAtMaxLimitCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

It returns 1 if the monitor is not detecting a violation but the number of active time groups equals
the maximum limit, and 0 otherwise. It returns an integer rather than a boolean for consistency
with KheLimitActiveIntervalsMonitorAtMaxLimitCount .

For the benefit of time sweep algorithms, which may perform better if cluster busy times
monitors understand that there is no point in complaining about problems beyond the point that
the time sweep has reached, there are functions

void KheClusterBusyTimesMonitorSetCutoffIndex(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int cutoff_index);

int KheClusterBusyTimesMonitorCutoffIndex(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

These functions set and retrieve the monitor’scutoff index, an integer between 0 and
KheClusterBusyTimesMonitorTimeGroupCount inclusive, whose effect is explained be-
low. If no cutoff index has been set,KheClusterBusyTimesMonitorCutoffIndex(m) returns
KheClusterBusyTimesMonitorTimeGroupCount(m). This value cuts off nothing, and should
be passed when the aim is to remove a previously set cutoff index.

In practice it will often be easier to call this function:

void KheClusterBusyTimesMonitorSetCutoffTime(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, KHE_TIME cutoff_time);

It works out the appropriate cutoff index for ignoring all time groups that contain any time later
thancutoff_time, and callsKheClusterBusyTimesMonitorSetCutoffIndex with that cutoff
index. PassingNULL for cutoff_time removes any cutoff index.

KheClusterBusyTimesMonitorSetCutoffTime examinesm’s time groups from first
to last, stopping at the first time group that contains a time whose index exceeds the index of
cutoff_time. The index of that time group is the cutoff index; or if there is no such time group,
the cutoff index isKheClusterBusyTimesMonitorTimeGroupCount(m). The function runs
much faster than just described when the cutoff times are increasing, as they usually are.
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This procedure may seem dubious, given that there is no requirement for the time groups
of m’s constraint to be added in chronological order. However, cluster busy times monitors sort
their time groups into increasing order of the maximum time index in each group.

KheClusterBusyTimesMonitorSetCutoffIndex returnstrue when a non-zero number
of time groups is being cut off.KheClusterBusyTimesMonitorSetCutoffTime does the same.
For example, passingNULL for cutoff_time always returns valuefalse. But other cutoff times
also returnfalse, when they come after the last time in the last time group.

The general idea is that if a solve is attempting to assign times only up to a certain point
in the cycle, then a cutoff index should be set to inform the monitor that there is no point in
complaining about things at or beyond that point. This improves the value of the monitor as an
influencer of the solve actually under way.

For the record, however, we need to be specific about the effect of a cutoff index. The
monitor understands that time groups whose indexes are equal to or larger than the cutoff
index are beyond the scope of the current solve. This does not affect busy time groups, which
are considered to be active or inactive as usual (depending on their polarity), but it does affect
non-busy ones, which are considered to be in anopenstate, that is, not known to be either active
or inactive. The monitor then acts conservatively: it considers an open time group to be active
when comparing with a minimum limit, and inactive when comparing with a maximum limit.
Either way, this makes a violation less likely.

There is also

KHE_TIME KheClusterBusyTimesMonitorInitialCutoffTime(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

This returns the smallest timet such that cutting off att is not the same as cutting off at index
0, orNULL if there is no such time.

Suppose the aim is to successively cutm off at t1, t2, and so on totn, the last time. Let
ti = KheClusterBusyTimesMonitorInitialCutoffTime(m), and lettj be the first time such
that KheClusterBusyTimesMonitorSetCutoffTime(m, tj) returnsfalse. Then the only
calls to set cutoffs that actually need to be made are

KheClusterBusyTimesMonitorSetCutoffIndex(m, 0);
KheClusterBusyTimesMonitorSetCutoffTime(m, ti);
...
KheClusterBusyTimesMonitorSetCutoffTime(m, tj);

Calls betweent1 andti-1 change nothing, and calls aftertj also change nothing. If there is no
ti, then cutting off at index 0 is all that is needed.

There is a peculiar but apparently unavoidable asymmetry in the handling of time groups at
or after the cutoff index: if they are busy they have a definite state, either active or inactive, but
if they are not busy they are open. This can be mitigated by calling

void KheClusterBusyTimesMonitorSetNotBusyState(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i, bool active);

wherei is the index of one ofm’s time groups, call ittg. This informsm that whentg is at or after
the cutoff index and is not busy, it should be considered either active or inactive (depending on
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theactive parameter) rather than open. No other cases are affected. There are no restrictions
on when this function can be called, relative to setting the cutoff index or anything else. It may
change the cost ofm. Function

void KheClusterBusyTimesMonitorClearNotBusyState(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i);

returnstg to its default state. (In practice, there is no reason to call this function, because as the
cutoff index increases these effects become irrelevant anyway.)

As an experiment, each cluster busy times monitor contains amultiplier, a non-negative
integer whose default value is 1. Each monitor’s cost (including any history adjustment) is
multiplied by its multiplier. By passing a largeval, the user can artificially inflate the importance
of m’s constraint. The weight of that constraint is unaffected.

The user can set and retrieve the multiplier by calling

void KheClusterBusyTimesMonitorSetMultiplier(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int val);

int KheClusterBusyTimesMonitorMultiplier(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

The multiplier can be safely changed at any time. If the monitor has non-zero cost when the
multiplier is changed, the solution cost will change immediately.

To reset the multiplier to 1, another call toKheClusterBusyTimesMonitorSetMultiplier
can be made, orKheSolnEnsureOfficialCost (Section 6.3) can be called; it resets all
multipliers to 1. This ensures that the correct solution cost is reported in the end.

As another experiment, the user can set the minimum limit:

int KheClusterBusyTimesMonitorMaximum(KHE_CLUSTER_BUSY_TIMES_MONITOR m);
int KheClusterBusyTimesMonitorMinimum(KHE_CLUSTER_BUSY_TIMES_MONITOR m);
bool KheClusterBusyTimesMonitorSetMinimum(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int val);

void KheClusterBusyTimesMonitorResetMinimum(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KheClusterBusyTimesMonitorMaximum returnsm’s maximum limit. This is always equal to the
maximum limit of m’s constraint.KheClusterBusyTimesMonitorMinimum returns the current
value ofm’s minimum limit. Its default value is the minimum limit stored unchangeably inm’s
constraint. ButKheClusterBusyTimesMonitorSetMinimum can be called at any time to change
the monitor’s minimum limit. If the monitor is attached when this is done, the solution cost may
change immediately.KheClusterBusyTimesMonitorResetMinimum resets the minimum limit
to the value stored in the constraint. Alternatively,KheSolnEnsureOfficialCost (Section 6.3)
can be called; it resets the minimums of all monitors to their original values.

Finally, function

void KheClusterBusyTimesMonitorDebug(KHE_CLUSTER_BUSY_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);
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is like KheMonitorDebug, only specific to this type of monitor.

6.6.5. Limit busy times monitors

A limit busy times monitor (tagKHE_LIMIT_BUSY_TIMES_MONITOR_TAG) monitors a resource
and offset which make up one point of application of a limit busy times constraint. Functions

KHE_LIMIT_BUSY_TIMES_CONSTRAINT KheLimitBusyTimesMonitorConstraint(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

KHE_RESOURCE KheLimitBusyTimesMonitorResource(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

int KheLimitBusyTimesMonitorOffset(KHE_LIMIT_BUSY_TIMES_MONITOR m);

return the limit busy times constraint and the resource and offset being monitored. In the high
school model, and when the constraint hasNULL for applies_to_tg, the offset is always 0,
otherwise the offset is the difference in index between one useful time inapplies_to_tg and
the first time inapplies_to_tg.

The monitored time groups (after applying the offset) are returned by

int KheLimitBusyTimesMonitorTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

KHE_TIME_GROUP KheLimitBusyTimesMonitorTimeGroup(
KHE_LIMIT_BUSY_TIMES_MONITOR m, int i, int *busy_count);

with *busy_count set to the number of busy times in the time group. A rough idea of the times
monitored bym is given by function

void KheLimitBusyTimesMonitorRange(KHE_LIMIT_BUSY_TIMES_MONITOR m,
KHE_TIME *first_time, KHE_TIME *last_time);

It sets*first_time and*last_time to the first and last times monitored bym. In the unlikely
event thatm monitors no times at all, they will be set toNULL. These values are calculated the first
time that the function is called, and cached inm, so that subsequent calls take almost no time.

Functions

int KheLimitBusyTimesMonitorDefectiveTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

void KheLimitBusyTimesMonitorDefectiveTimeGroup(
KHE_LIMIT_BUSY_TIMES_MONITOR m, int i, KHE_TIME_GROUP *tg,
int *busy_count, int *minimum, int *maximum, bool *allow_zero);

visit the time groups monitored bym that are currently defective, in any order. For eachi, *tg is
set to one defective time group,*busy_count is set to the number of timesm’s resource is busy
during*tg, and*minimum,*maximum, and*allow_zero are set to the corresponding values from
the constraint; so either the resource is underloaded during*tg and*busy_count < *minimum,
or the resource is overloaded during*tg and*busy_count > *maximum. The time groups are
the time groups of the constraint, adjusted usingKheTimeGroupNeighbour by the offset. There
is also
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int KheLimitBusyTimesMonitorDeviation(KHE_LIMIT_BUSY_TIMES_MONITOR m);

which returns the deviation.

Limit busy times monitors contain aceiling attribute, set and retrieved by

void KheLimitBusyTimesMonitorSetCeiling(KHE_LIMIT_BUSY_TIMES_MONITOR m,
int ceiling);

int KheLimitBusyTimesMonitorCeiling(KHE_LIMIT_BUSY_TIMES_MONITOR m);

Whenbusy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 13.7.3. The default value ofceiling is INT_MAX, which
effectively turns it off. Ifm is attached whenKheLimitBusyTimesMonitorSetCeiling is called,
it will be detached and reattached by the call.

Function

void KheLimitBusyTimesMonitorDebug(KHE_LIMIT_BUSY_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A limit busy times monitorm may have non-zeroKheMonitorLowerBound(m). Supposem’s
resource is subject to an avoid clashes constraint of weight greater thanm’s weight. Lett1 be the
total duration of the events to whichm’s resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greater thanm’s weight. Lett2 be the
number of times in the cycle minus the number of times inm’s constraint’s domain. Then at least
t1 − t2 of the times of the events preassigned tom’s resource must occur in time groups limited by
m. If this exceeds the number of time groups inm’s constraint times itsMaximum, then the excess,
converted into a cost in the usual way, gives the lower bound. Monitors are only created for
offsets applicable to all times in the constraint, so this lower bound is the same for all offsets.

6.6.6. Limit workload monitors

A limit workload monitor has tagKHE_LIMIT_WORKLOAD_MONITOR and monitors a resource
which is one point of application of one limit workload constraint. Functions

KHE_LIMIT_WORKLOAD_CONSTRAINT KheLimitWorkloadMonitorConstraint(
KHE_LIMIT_WORKLOAD_MONITOR m);

KHE_RESOURCE KheLimitWorkloadMonitorResource(
KHE_LIMIT_WORKLOAD_MONITOR m);

int KheLimitWorkloadMonitorOffset(KHE_LIMIT_WORKLOAD_MONITOR m);

return the limit workload constraint and the resource and offset being monitored. In the high
school model, and when the constraint hasNULL for applies_to_tg, the offset is always 0,
otherwise the offset is the difference in index between one useful time inapplies_to_tg and
the first time inapplies_to_tg.

The monitored time groups (after applying the offset) are returned by
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int KheLimitWorkloadMonitorTimeGroupCount(
KHE_LIMIT_WORKLOAD_MONITOR m);

KHE_TIME_GROUP KheLimitWorkloadMonitorTimeGroup(
KHE_LIMIT_WORKLOAD_MONITOR m, int i, float *workload);

with *workload set to the current workload of theith time group. A rough idea of the times
monitored bym is given by function

void KheLimitWorkloadMonitorRange(KHE_LIMIT_WORKLOAD_MONITOR m,
KHE_TIME *first_time, KHE_TIME *last_time);

It sets*first_time and*last_time to the first and last times monitored bym. In the unlikely
event thatm monitors no times at all, they will be set toNULL. These values are calculated the first
time that the function is called, and cached inm, so that subsequent calls take almost no time.

Functions

int KheLimitWorkloadMonitorDefectiveTimeGroupCount(
KHE_LIMIT_WORKLOAD_MONITOR m);

void KheLimitWorkloadMonitorDefectiveTimeGroup(
KHE_LIMIT_WORKLOAD_MONITOR m, int i, KHE_TIME_GROUP *tg,
float *workload, int *minimum, int *maximum, bool *allow_zero);

visit the time groups monitored bym that are currently defective, in any order. For eachi, *tg is
set to one defective time group,*workload is set to the workload ofm’s resource during*tg, and
*minimum, *maximum, and*allow_zero are set to the corresponding values from the constraint;
so either the resource is underloaded during*tg and*workload < *minimum, or the resource is
overloaded during*tg and*workload > *maximum. The time groups are the time groups of the
constraint, adjusted usingKheTimeGroupNeighbour by the offset. There is also

int KheLimitWorkloadMonitorDeviation(KHE_LIMIT_WORKLOAD_MONITOR m);

which returns the deviation ofm.

Limit workload monitors contain aceiling attribute, set and retrieved by

void KheLimitWorkloadMonitorSetCeiling(KHE_LIMIT_WORKLOAD_MONITOR m,
int ceiling);

int KheLimitWorkloadMonitorCeiling(KHE_LIMIT_WORKLOAD_MONITOR m);

When workload > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 13.7.3. The default value ofceiling is INT_MAX, which
effectively turns it off. Ifm is attached whenKheLimitWorkloadMonitorSetCeiling is called,
it will be detached and reattached by the call.

Function

void KheLimitWorkloadMonitorDebug(KHE_LIMIT_WORKLOAD_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A limit workload monitorm may have non-zeroKheMonitorLowerBound(m). This is true
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in all cases, but at present KHE only calculates a potentially non-zero lower bound whenm

monitors the whole cycle. In that case, add up the workloads of the tasks to whichm’s resource
is preassigned. If this exceeds the maximum of the corresponding limit workload constraint,
converting the excess into a cost usingm’s cost function in the usual way gives the lower bound.

6.6.7. Limit active intervals monitors

A limit active intervals monitor has tagKHE_LIMIT_ACTIVE_INTERVALS_MONITOR_TAG and
monitors a resource and offset which together make one point of application of one limit active
intervals constraint. Limit active intervals constraints occur only in the employee scheduling
model, so limit active intervals monitors also occur only in that model. Functions

KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT
KheLimitActiveIntervalsMonitorConstraint(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

KHE_RESOURCE KheLimitActiveIntervalsMonitorResource(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

return the limit active intervals constraint and the resource being monitored. Functions

int KheLimitActiveIntervalsMonitorMinimum(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

int KheLimitActiveIntervalsMonitorMaximum(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

return the minimum and maximum limits from the constraint.

int KheLimitActiveIntervalsMonitorHistoryBefore(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

int KheLimitActiveIntervalsMonitorHistoryAfter(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

int KheLimitActiveIntervalsMonitorHistory(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

return the history before, history after, and history values fromm’s constraint, or 0 if not
present. Function

int KheLimitActiveIntervalsMonitorOffset(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

returns the offset being monitored. When the constraint hasNULL for applies_to_tg, the offset
is 0, otherwise it is the difference in index between one useful time inapplies_to_tg and the
first time inapplies_to_tg. Functions

int KheLimitActiveIntervalsMonitorTimeGroupCount(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

KHE_TIME_GROUP KheLimitActiveIntervalsMonitorTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, KHE_POLARITY *po);

return the time groups thatm monitors (one for each time group in the limit active intervals con-
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straint,adjusted usingKheTimeGroupNeighbour by the offset),and their associated polarities. A
rough idea of the times monitored bym is given by function

void KheLimitActiveIntervalsMonitorRange(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m,
KHE_TIME *first_time, KHE_TIME *last_time);

It sets*first_time and*last_time to the first and last times monitored bym. In the unlikely
event thatm monitors no times at all, they will be set toNULL. These values are calculated the first
time that the function is called, and cached inm, so that subsequent calls take almost no time.

There are also functions which report the state of the monitor during the solve. Function

bool KheLimitActiveIntervalsMonitorTimeGroupIsActive(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, KHE_TIME_GROUP *tg,
KHE_POLARITY *po, int *busy_count);

returnstrue when the time group at indexi is currently active. It sets*tg and*po to the time
group and polarity at indexi, and*busy_count to the number of busy times in the time group.
It returns the value of the condition(*po == KHE_NEGATIVE) == (*busy_count == 0), as the
definition of the constraint specifies.

For visiting defective active intervals (active intervals whose length is less than the
minimum limit or greater than the maximum limit from the constraint), functions

int KheLimitActiveIntervalsMonitorDefectiveIntervalCount(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

void KheLimitActiveIntervalsMonitorDefectiveInterval(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, int *history_before,
int *first_index, int *last_index, int *history_after, bool *too_long);

return the number of defective active intervals and attributes of theith defective active interval:

*history_before. If the interval includes the first time group, the part of its length from
before there (i.e.KheLimitActiveIntervalsMonitorHistory(m)), otherwise 0.

*first_index. The index of the first time group in the interval, not including any history
part, so always at least0.

*last_index. The index of the last time group in the interval, not including any history
part, so always at mostKheLimitActiveIntervalsMonitorTimeGroupCount(m) - 1.

*history_after. If the interval includes the last time group, the part of its length from
after the last time group. This must be 0 when the the interval violates a maximum limit.

*too_long. Since this is a defective interval, its length must either be too long or too short.
This value istrue if it is too long, andfalse if it is too short.

The value compared with the limits is

*history_before + (*last_index - *first_index + 1) + *history_after
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See Jeff Kingston’s paper on history for the rationale for this. All these definitions hold good
(although their consequences are not quite obvious) when there is a cutoff index (see below).

In rare cases,KheLimitActiveIntervalsMonitorDefectiveInterval sets*last_index
to -1. This indicates that there is a defective interval lying entirely within the history range. A
solver can do nothing about this; it must check this condition and do nothing when it occurs.

KheLimitActiveIntervalsMonitorDefectiveInterval visits the defective intervals
in increasing order of*first_index. This ensures that if, between calls to this function, the
solution is changed, then changed back again to its previous state, a partially completed traversal
of defective intervals using this function is not invalidated.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function

int KheLimitActiveIntervalsMonitorAtMaxLimitCount(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

It returns the number of active intervals which do not violate any limits, but whose length equals
the maximum limit. It has been considered most efficient to not maintain this value incremen-
tally; instead, the list of non-violating intervals is scanned when this function is called.

For the benefit of time sweep algorithms, which may perform better if active intervals
monitors understand that there is no point in complaining about problems beyond the point that
the time sweep has reached, there are functions

bool KheLimitActiveIntervalsMonitorSetCutoffIndex(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int cutoff_index);

int KheLimitActiveIntervalsMonitorCutoffIndex(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

These functions set and retrieve the monitor’scutoff index, an integer between 0 and
KheLimitActiveIntervalsMonitorTimeGroupCount(m) inclusive, whose effect is explained
below. If no cutoff index has been set,KheLimitActiveIntervalsMonitorCutoffIndex(m)

returnsKheLimitActiveIntervalsMonitorTimeGroupCount(m) . This value cuts off nothing,
and should be passed when the aim is to remove a previously set cutoff index.

In practice it will often be easier to call this function:

bool KheLimitActiveIntervalsMonitorSetCutoffTime(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, KHE_TIME cutoff_time);

It works out the appropriate cutoff index for ignoring all time groups that contain any time later
thancutoff_time, and callsKheLimitActiveIntervalsMonitorSetCutoffIndex with that
cutoff index. PassingNULL for cutoff_time removes any cutoff index.

KheLimitActiveIntervalsMonitorSetCutoffTime examinesm’s time groups from first
to last, stopping at the first time group that contains a time whose index exceeds the index of
cutoff_time. The index of that time group is the cutoff index; or if there is no such time group,
the cutoff index isKheLimitActiveIntervalsMonitorTimeGroupCount(m) . The function
runs much faster than just described when the cutoff times are increasing, as they usually are.

KheLimitActiveIntervalsMonitorSetCutoffIndex returns true when a non-zero
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number of time groups is being cut off.KheLimitActiveIntervalsMonitorSetCutoffTime
does the same. For example, passingNULL for cutoff_time always returns valuefalse. But
other cutoff times also returnfalse, when they come after the last time in the last time group.

The general idea is that if a solve is attempting to assign times only up to a certain point
in the cycle, then a cutoff index should be set to inform the monitor that there is no point in
complaining about things at or beyond that point. This improves the value of the monitor as an
influencer of the solve actually under way.

For the record, however, we need to be specific about the effect of a cutoff index. It
influences its monitor in two ways. First, and most simply, active intervals that begin at or after
the cutoff index do not attract a cost, no matter how short or long they are. Active intervals that
begin before the cutoff index and extend beyond it are not truncated, however, except where the
second effect (which we are about to explain) changes the state of some of their time groups.

Second, and more subtly, the monitor understands that time groups whose indexes are equal
to or larger than the cutoff index are beyond the scope of the current solve. This does not affect
busy time groups, which are considered to be active or inactive as usual (depending on their
polarity), but it does affect non-busy ones, which are considered to be in anopenstate, that is, not
known to be either active or inactive. The monitor then acts conservatively: it considers an open
time group to be active when comparing with a minimum limit, and inactive when comparing
with a maximum limit. Either way, this makes a violation less likely.

There is also

KHE_TIME KheLimitActiveIntervalsMonitorInitialCutoffTime(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

This returns the smallest timet such that cutting off att is not the same as cutting off at index
0, orNULL if there is no such time.

Suppose the aim is to successively cutm off at t1, t2, and so on totn, the last time. Let
ti = KheLimitActiveIntervalsMonitorInitialCutoffTime(m), and lettj be the first time
such thatKheLimitActiveIntervalsMonitorSetCutoffTime(m, tj) returnsfalse. Then
the only calls to set cutoffs that actually need to be made are

KheLimitActiveIntervalsMonitorSetCutoffIndex(m, 0);
KheLimitActiveIntervalsMonitorSetCutoffTime(m, ti);
...
KheLimitActiveIntervalsMonitorSetCutoffTime(m, tj);

Calls betweent1 andti-1 change nothing, and calls aftertj also change nothing. If there is no
ti, then cutting off at index 0 is all that is needed.

There is a peculiar but apparently unavoidable asymmetry in the handling of time groups at
or after the cutoff index: if they are busy they have a definite state, either active or inactive, but
if they are not busy they are open. This can be mitigated by calling

void KheLimitActiveIntervalsMonitorSetNotBusyState(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, bool active);

wherei is the index of one ofm’s time groups, call ittg. This informsm that whentg is at or after
the cutoff index and is not busy, it should be considered either active or inactive (depending on
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theactive parameter) rather than open. No other cases are affected. There are no restrictions
on when this function can be called, relative to setting the cutoff index or anything else. It may
change the cost ofm. Function

void KheLimitActiveIntervalsMonitorClearNotBusyState(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i);

returnstg to its default state. (In practice, there is no reason to call this function, because as the
cutoff index increases these effects become irrelevant anyway.)

For example, suppose that some resourcer has requested that a certain time grouptg

be kept free. Suppose thatr is subject to a limit active intervals monitorm, whoseith time
group is a subset oftg. Then we can expect that time group to be free, and hence active if it
is negative and inactive if it is positive. This expectation can be conveyed tom by calling
KheLimitActiveIntervalsMonitorSetNotBusyState . This can make a significant difference
to time sweep solvers whenm has a non-trivial minimum limit (2 or more), by penalizing them
for starting a new sequence of busy days just before a resource is due for some free time.

Finally, function

void KheLimitActiveIntervalsMonitorDebug(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.7. Timetable monitors

A timetableis a record of what is going on at each time. As part of monitoring cost, KHE
monitors the timetable of each event and each resource.

6.7.1. Event timetable monitors

Function

KHE_EVENT_TIMETABLE_MONITOR KheEventTimetableMonitor(KHE_SOLN soln,
KHE_EVENT e);

returns the event timetable monitor of evente. Type KHE_EVENT_TIMETABLE_MONITOR is a
subtype ofKHE_MONITOR with tagKHE_EVENT_TIMETABLE_MONITOR_TAG.

An event timetable monitor always has cost 0. When it is attached, a particular set of meets
is known to it at any moment: the set of meets derived frome that are assigned a time. The
monitor offers these operations, which report which meets are running at each time:

int KheEventTimetableMonitorTimeMeetCount(
KHE_EVENT_TIMETABLE_MONITOR etm, KHE_TIME time);

KHE_MEET KheEventTimetableMonitorTimeMeet(
KHE_EVENT_TIMETABLE_MONITOR etm, KHE_TIME time, int i);

KheEventTimetableMonitorTimeMeetCount returns the number of meets running attime, and
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KheEventTimetableMonitorTimeMeet returns theith of these meets. Closely related is

bool KheEventTimetableMonitorTimeAvailable(
KHE_EVENT_TIMETABLE_MONITOR etm, KHE_MEET meet, KHE_TIME time);

which returnstrue if moving meet within etm, or adding it toetm, so that its starting time is
time, would neither placemeet partly off the end of the timetable nor cause clashes.

An event timetable monitor offers no operations which report its set of meets directly. For
that, call functionsKheEventMeetCount andKheEventMeet from Section 4.2.7 to obtain the
meets derived from a particular event; the timetabled meets are those with an assigned time.

As usual, event timetable monitors are created byKheSolnMake and exist for as long as the
solution does. There is one for each event. Link events monitors (but not spread events monitors)
depend on event timetable monitors.

Unlike most monitors, event timetable monitors are not attached initially. The event
timetable monitor returned byKheEventTimetableMonitor may be unattached and so not up
to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some event
timetable monitor is detached, that event timetable monitor is detached. Thus, unless the user
chooses to attach an event timetable monitor explicitly, it will be attached only as needed by
other monitors. Detaching an event timetable monitor does nothing unless no attached monitors
depend on it. In practice, when using an event timetable monitoretm, it is best to call

if( !KheMonitorAttachedToSoln((KHE_MONITOR) etm) )
KheMonitorAttachToSoln((KHE_MONITOR) etm);

beforehand, and

KheMonitorDetachFromSoln((KHE_MONITOR) etm);

afterwards, unlessetm must be attached, because some monitor that depends on it is attached.

Although it would make sense to treat an event timetable monitor as a group monitor
(Section 6.8), that option is not offered. The user who wants all the problems associated with a
given event to be channelled through a single monitor must create a group monitor, separate from
the event timetable monitor, and add the appropriate monitors to it in the usual way.

Event timetable monitors may be debugged by callingKheEventTimetableMonitorDebug

(defined below) as usual. And

void KheEventTimetableMonitorPrintTimetable(
KHE_EVENT_TIMETABLE_MONITOR etm, int cell_width, int indent, FILE *fp);

prints a conventional tabular timetable, usingDays and possiblyWeeks time groups from the
instance to determine its shape. Parametercell_width is the width of each cell, in characters.

The user may create an event timetable monitor by calling

KHE_EVENT_TIMETABLE_MONITOR KheEventTimetableMonitorMake(KHE_SOLN soln,
KHE_EVENT_GROUP eg);

The result monitors the meetsofsoln derived from the events ofeg, and thus offersa way to keep
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track of which events ofeg are running at each time, something which is not otherwise available
in KHE. It can be attached and detached at will in the usual way. Initially, it is detached, so in
practice its creation would always be followed by a call toKheMonitorAttachToSoln.

To delete an event timetable monitor made in this way, call

KheEventTimetableMonitorDelete(KHE_EVENT_TIMETABLE_MONITOR etm);

This function begins by detachingetm if it is attached. Function

void KheEventTimetableMonitorDebug(KHE_EVENT_TIMETABLE_MONITOR etm,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.7.2. Resource timetable monitors

Function

KHE_RESOURCE_TIMETABLE_MONITOR KheResourceTimetableMonitor(
KHE_SOLN soln, KHE_RESOURCE r);

returns the resource timetable monitor of resourcer. TypeKHE_RESOURCE_TIMETABLE_MONITOR
is a subtype ofKHE_MONITOR with tagKHE_RESOURCE_TIMETABLE_MONITOR_TAG. Functions

KHE_SOLN KheResourceTimetableMonitorSoln(
KHE_RESOURCE_TIMETABLE_MONITOR rtm);

KHE_RESOURCE KheResourceTimetableMonitorResource(
KHE_RESOURCE_TIMETABLE_MONITOR rtm);

returnrtm’s solution and resource attributes.

A resource timetable monitor always has cost 0. When it is attached,a particular set of tasks
is known to it at any moment: those assigned the resource (either directly, or indirectly via other
tasks) whose enclosing meet is assigned a time (either directly, or indirectly via other meets).
The monitor offers these operations, which report which tasks are running at each time:

int KheResourceTimetableMonitorTimeTaskCount(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME time);

KHE_TASK KheResourceTimetableMonitorTimeTask(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME time, int i);

KheResourceTimetableMonitorTimeTaskCount returns the number of tasks running attime;
KheResourceTimetableMonitorTimeTask returns theith of these tasks.

Other functions are offered which may be more convenient in some cases. Function

bool KheResourceTimetableMonitorTimeAvailable(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_MEET meet, KHE_TIME time);

returnstrue if moving meet within rtm, or adding it tortm, so that its starting time istime,
would neither placemeet partly off the end of the timetable nor cause clashes. And
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bool KheResourceTimetableMonitorTimeGroupAvailable(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME_GROUP tg,
bool ignore_nocost, bool certain);

returnstrue when the resource monitored byrtm is free at all of the times oftg. If
ignore_nocost is true, taskst for whichKheTaskNonAssignmentHasCost(t, certain) re-
turnsfalse are ignored. Function

bool KheResourceTimetableMonitorTaskAvailableInFrame(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TASK task, KHE_FRAME frame,
KHE_TASK ignore_task);

is similar but more elaborate. For each time thattask and its descendants is running, it finds
the time group containing that time inframe. It returnstrue when all of those time groups are
available. Ifignore_task is non-NULL, it ignores any task whose proper root isignore_task.
This is useful, for example, when checking whether a swap of the assignments oftask and
ignore_task would create no cases of two tasks running in the same time group offrame.

Next come some operations concerned with finding sets of tasks that overlap things:

void KheResourceTimetableMonitorAddProperRootTasks(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME_GROUP tg,
bool include_preassigned, KHE_TASK_SET ts);

adds to existing task setts the proper root tasks of the tasks ofrtm that overlap with time group
tg. It does not add tasks that are already present. Ifinclude_preassigned istrue, preassigned
tasks are included, otherwise they aren’t. Omitting them makes sense when the tasks will be
reassigned. And

KHE_BUSY_TYPE KheResourceTimetableMonitorTaskBusyType(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TASK task,
KHE_FRAME days_frame, KHE_TASK_SET r_ts, bool ignore_nocost,
bool certain);

KHE_BUSY_TYPE KheResourceTimetableMonitorTaskSetBusyType(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TASK_SET task_set,
KHE_FRAME days_frame, KHE_TASK_SET r_ts, bool ignore_nocost,
bool certain);

add to existing task setr_ts the proper roots of the tasks ofrtm that are running on the same days
astask or the tasks oftask_set, including descendant tasks, usingdays_frame to determine
what the days are. They do not add tasks tor_ts that are already present. Both functions return
a value of type

typedef enum {
KHE_BUSY_NONE = 0,
KHE_BUSY_SOME = 1,
KHE_BUSY_ALL = 2

} KHE_BUSY_TYPE;

saying whetherrtm is busy on no day thattask or task_set is running, or one some but not
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all days, or on all days. Ifignore_nocost, the calculation of this return value considers taskst

for whichKheTaskNonAssignmentHasCost(t, certain) returnsfalse to be the same as free
time. However such tasks are still added tor_ts.

A resource timetable monitor offers no operations which report its set of tasks directly.
For that, one can useKheResourceAssignedTaskCount andKheResourceAssignedTask from
Section 4.6.1 to obtain all the tasks assigned the resource; the timetabled ones are just those
whose enclosing meet has an assigned time.

As usual, resource timetable monitors are created byKheSolnMake and exist for as long as
the solution does. There is one for each resource. All resource monitors (except possibly limit
workload monitors) depend on resource timetable monitors.

Unlike most monitors, resource timetable monitors are not attached initially. The resource
timetable monitor returned byKheResourceTimetableMonitor may be unattached and so not
up to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some resource
timetable monitor is detached, that resource timetable monitor is detached. Thus, unless the
user chooses to attach a resource timetable monitor explicitly, it will be attached only as needed
by other monitors. Detaching a resource timetable monitor does nothing unless no attached
monitors depend on it. So when using a resource timetable monitorrtm, it is best to call

if( !KheMonitorAttachedToSoln((KHE_MONITOR) rtm) )
KheMonitorAttachToSoln((KHE_MONITOR) rtm);

beforehand, and

KheMonitorDetachFromSoln((KHE_MONITOR) rtm);

afterwards, unlessrtm must be attached, because some monitor that depends on it is attached.

Although it would make sense to treat a resource timetable monitor as a group monitor
(Section 6.8), that option is not offered. The user who wants all the problems associated with a
given resource to be channelled through a single monitor must create a group monitor, separate
from the resource timetable monitor, and add the appropriate monitors to it in the usual way.

Here are two functions created to support the needs of particular solvers. First,

int KheResourceTimetableMonitorAtMaxLimitCount(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME t);

returns the sum, over all cluster busy times and limit active intervals monitors that monitorrtm’s
resource at timet, of the values returned by those monitors’AtMaxLimitCount functions. It is an
efficient way to find out, during time sweep resource assignment, whether assignments at timet

have brought any of these monitors to their maximum limits. Second,

void KheResourceTimetableMonitorAddRange(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, int first_time_index,
int last_time_index, KHE_GROUP_MONITOR gm);

adds togm all cluster and limit busy times monitors which monitorrtm, are derived from
constraints which apply to every resource of the type ofrtm’s resource, and whose range (as
given byKheClusterBusyTimesMonitorRange and KheLimitBusyTimesMonitorRange) lies
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between the times indexed byfirst_time_index andlast_time_index inclusive. A monitor
is not added ifKheGroupMonitorHasChildMonitor reports that it is already there. This function
is used by combinatorial grouping.

At present, all resource timetable monitors are created automatically when the solution is
created. The KHE user is offered nothing equivalent toKheEventTimetableMonitorMake.

Function

void KheResourceTimetableMonitorDebug(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor. There is also

void KheResourceTimetableMonitorSetDebug(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME_GROUP tg, bool val);

If val is true, this marks the times oftg for debugging. Wheneverrtm’s timetable changes at
any of these times, a one-line debug print is produced onstderr giving the resource, the time,
and a brief indication of the change. This is useful for working out why a resource is busy (or
not) during a given time group. Ifval is false this debugging is turned off at the times oftg.

Finally, there is

void KheResourceTimetableMonitorPrintTimetable(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, int cell_width, int indent, FILE *fp);

which prints a tabular timetable, usingDays and possiblyWeeks time groups from the instance
to determine its shape. Parametercell_width is the width of each cell, in characters.

6.8. Group monitors

Sometimes the cost of asinglemonitor is needed: for example, when reporting problems to the
user. And the total cost ofall monitors is always needed, since that is the cost of the solution.

Sometimes something in between these two extremes is needed: the cost of a set of related
monitors. To support this, the monitors of a solution are organized into a directed acyclic graph,
or dagfor short, of arbitrary depth. Each monitor reports its cost to its parent monitors. The dag
is often a tree, in which case the picture looks like this:
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The leaves are thenon-group monitors, the various monitors described previously which monitor
the solution directly. The internal nodes are calledgroup monitors, because they monitor a set
of monitors (their children). The cost of a group monitor is the sum of the costs of its children.

The solution object itself is a group monitor (initially, the only one). It supports all the
group monitor operations, plus the many other operations described earlier.

Group monitors have typeKHE_GROUP_MONITOR, a concrete subtype ofKHE_MONITOR, like
KHE_ASSIGN_TIME_MONITOR etc. KHE_GROUP_MONITOR is a supertype ofKHE_SOLN, so upcast

(KHE_GROUP_MONITOR) soln

is safe, although often unnecessary, since many operations on typeKHE_GROUP_MONITOR have
KHE_SOLN versions. For example,sinceKHE_GROUP_MONITOR is itself a subtype ofKHE_MONITOR,
the total cost of all monitors could be found by calling

KheMonitorCost((KHE_MONITOR) soln)

but of course the equivalentKHE_SOLN version,KheSolnCost, is easier to use.

When the solution changes at some point, the change is reported to the non-group monitors
that monitor that point. Each updates its cost and reports any change to its parents, which update
their cost and report to their parents, and so on until there are no parents. The dag usually has
a single root, the solution object itself, but it does not have to be that way, because the links that
join non-group and group monitors to their parent monitors can be added and deleted at will.

6.8.1. Basic operations on group monitors

Unlike other types of monitors, group monitors other than the solution object can be freely
created and deleted. Function

KHE_GROUP_MONITOR KheGroupMonitorMake(KHE_SOLN soln, int sub_tag,
char *sub_tag_label);

creates a new group monitor with no parents and no children. It is passed the solution as a
parameter, and it remembers it, but it is not made a child of it. Functions



174 Chapter 6. Solution Monitoring

int KheGroupMonitorSubTag(KHE_GROUP_MONITOR gm);
char *KheGroupMonitorSubTagLabel(KHE_GROUP_MONITOR gm);

return thesub_tag andsub_tag_label attributes ofgm. These are used to distinguish kinds of
group monitors. Ifsub_tag_label is non-NULL, it is printed when debugging. The values of
these attributes in solution objects are-1 and"Soln". The term ‘sub-tag’ is used because group
monitors already have a tag attribute, whose value isKHE_GROUP_MONITOR_TAG.

A group monitor other than the solution object may be deleted by calling

void KheGroupMonitorDelete(KHE_GROUP_MONITOR gm);

Its children will no longer have it as a parent, and its parents will no longer have it as a child. For
each parent ofgm, the hole in the parent’s list of child monitors is plugged by moving the last
child monitor togm’s position. For each child ofgm, the hole in the child’s list of parent monitors
is plugged by moving the last parent monitor togm’s position.

Every group monitor can have any number of child monitors, and every monitor (group or
non-group) can have any number of parent monitors. Even the solution object can have parents,
allowing monitoring of the total cost of a set of solutions. The operations for adding children to
a group monitor and removing them are

void KheGroupMonitorAddChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);
void KheGroupMonitorDeleteChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);

Herem could be a non-group monitor or a group monitor.KheGroupMonitorAddChildMonitor

makesm a child ofgm, andgm a parent ofm. It aborts if this would create a cycle in the dag (only
possible whenm is a group monitor).KheGroupMonitorDeleteChildMonitor removesm from
gm, leavingm with one less parent andgm with one less child. The resulting holes are plugged as
described above for deleting group monitors. It aborts ifm is not a child ofgm. There is also

bool KheGroupMonitorHasChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);

which returnstrue whenm is a child ofgm. It is useful whenm may already be a child ofgm:

if( !KheGroupMonitorHasChildMonitor(gm, m) )
KheGroupMonitorAddChildMonitor(gm, m);

No-one is checking that one monitor does not become the child of another twice over; and if it
does, its cost will be counted twice in the cost of its parent.

For group monitorm, KheMonitorLowerBound(m) sums the lower bounds ofm’s children.
It may increase when a descendant is added, and decrease when a descendant is removed.

Initially, all non-group monitors are made children of the solution object, and all of them
except demand monitors are attached to the solution, so thatKheSolnCost is the total cost of all
non-demand monitors, which is indeed the cost of the solution. Care is needed when grouping
not to inadvertently disconnect monitors from the solution, since then their costs will not be
counted, or to connect them via multiple paths, since then their costs will be counted multiple
times. It is usually best to make a new group monitor a child of the solution immediately:
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gm = KheGroupMonitorMake(soln, sub_tag, sub_tag_label);
KheGroupMonitorAddChildMonitor((KHE_GROUP_MONITOR) soln,
(KHE_MONITOR) gm);

And when deleting a group monitor, the best option may be helper function

void KheGroupMonitorBypassAndDelete(KHE_GROUP_MONITOR gm);

It callsKheGroupMonitorDelete, but first it makesgm’s children into children ofgm’s parents,
if any, thus keeping them linked in. There is also

void KheSolnBypassAndDeleteAllGroupMonitors(KHE_SOLN soln);

which appliesKheGroupMonitorBypassAndDelete to every group monitor ofsoln.

Functions

int KheGroupMonitorChildMonitorCount(KHE_GROUP_MONITOR gm);
KHE_MONITOR KheGroupMonitorChildMonitor(KHE_GROUP_MONITOR gm, int i);

visit the child monitors of group monitorgm in the usual way. Ifgm is the solution object, these
versions of the functions allow the user to avoid the upcast:

int KheSolnChildMonitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnChildMonitor(KHE_SOLN soln, int i);

Functions

int KheMonitorParentMonitorCount(KHE_MONITOR m);
KHE_GROUP_MONITOR KheMonitorParentMonitor(KHE_MONITOR m, int i);

visit the parent monitors ofm. There is also

bool KheMonitorDescendant(KHE_MONITOR m1, KHE_MONITOR m2);

which returnstrue if m1 is a descendant ofm2, including when the two are equal. And

void KheGroupMonitorDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A group monitor has the usual attach and detach operations,but they do nothing substantial;
in particular, they do not change its cost. They just mark the monitor as attached or detached.
They should attach and detach it from its children, but that has not yet been implemented.

6.8.2. Defects

Informally,a defect is a specific problem with a solution. In KHE, the word has a formal meaning
as well: adefectis a monitor whose cost is non-zero.

It can be helpful to target defects directly, rather than wasting time changing parts of the
solution where there are no defects. This is especially the case near the end of the solve process,
when there may be thousands of monitors but only a handful of defects. To support this, KHE
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offers fast access to those child monitors of a group monitor which are defects:

int KheGroupMonitorDefectCount(KHE_GROUP_MONITOR gm);
KHE_MONITOR KheGroupMonitorDefect(KHE_GROUP_MONITOR gm, int i);

When a monitor’s cost changes from zero to non-zero, the monitor is added to its parents’defect
lists; and when its cost changes from non-zero to zero it is removed. This takes a negligible
amount of time. When the group monitor is the solution there are convenience versions:

int KheSolnDefectCount(KHE_SOLN soln);
KHE_MONITOR KheSolnDefect(KHE_SOLN soln, int i);

There is also

void KheGroupMonitorDefectDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

which is like KheGroupMonitorDebug applied to gm, except that it prints only defective
children, and

void KheGroupMonitorDefectTypeDebug(KHE_GROUP_MONITOR gm,
KHE_MONITOR_TAG tag, int verbosity, int indent, FILE *fp);

which is likeKheGroupMonitorDefectDebug except that it prints only children of typetag.

If a solution is changed and then changed back again to its original state, its cost returns
to its original value, but there are two ways in which its defects can be different. First, they may
appear in a different order. Second, although the number of defects which are demand monitors
(Chapter 7) must return to its original value, the demand monitors that make up that number
may change. This is because there are many maximum matchings in general, and KHE does not
guarantee to find any particular one of them.

In practice, one wants to traverse a list of defects and try to repair them. Quite commonly,
an attempt to repair a defect will remove it temporarily and then reinstate it if the repair was
not successful. This will cause the defect to be shifted to the end of the defect list. A simple
traversal of the defects from first to last will visit some defects more than once, and others not at
all. To handle this problem, it is necessary to make a copy of the defects and traverse the copy.
Although every defect will have non-zero cost at the time it is copied, as the list is traversed,
after the solution changes or if the list includes demand monitors, one cannot assume that every
monitor on the copy list will have non-zero cost.

To find the total cost of all monitors of a given type in the descendants ofgm, call

KHE_COST KheGroupMonitorCostByType(KHE_GROUP_MONITOR gm,
KHE_MONITOR_TAG tag, int *defect_count);

It returns the number of defects, in*defect_count, as well as the cost. It traverses the whole
sub-dag of monitors ofgm (actually, just the defects), so it is slow: it is intended for reporting,
not for solving. It returns0 whentag is KHE_GROUP_MONITOR_TAG, because it attributes cost to
the monitors that originally generated it. Version
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KHE_COST KheSolnCostByType(KHE_SOLN soln, KHE_MONITOR_TAG tag,
int *defect_count);

may be called when the group monitor is the solution object. The values returned by these
functions are displayed in a convenient tabular form by functions

void KheGroupMonitorCostByTypeDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

void KheSolnCostByTypeDebug(KHE_SOLN soln,
int verbosity, int indent, FILE *fp);

which print one line for each kind of monitor undergm or soln for which there are defects.

6.8.3. Tracing

Sometimes a solver needs to know which monitors have experienced a change in cost recently.
Ejection chain solvers, for example, need this information, andmonitor tracingprovides it.

Tracing involves objects of typeKHE_TRACE. To create one, call

KHE_TRACE KheTraceMake(KHE_GROUP_MONITOR gm);

wheregm is the group monitor to be traced. The solution may be traced by upcasting it:

t = KheTraceMake((KHE_GROUP_MONITOR) soln);

The group monitor that a trace object is for can be found by calling

KHE_GROUP_MONITOR KheTraceGroupMonitor(KHE_TRACE t);

To delete a trace object, call

void KheTraceDelete(KHE_TRACE t);

This will call KheTraceEnd(t) below if needed. KHE keeps a free list of trace objects in the
solution object, so many trace objects can be created and deleted at virtually no cost.

Actual tracing is initiated and ended by calling

void KheTraceBegin(KHE_TRACE t);
void KheTraceEnd(KHE_TRACE t);

These must be called in matching pairs.KheTraceBegin removes any information left over
from any preceding trace, and attachest to its group monitor so that it can record what happens.
KheTraceEnd detachest from its group monitor. Different trace objects may be attached and
detached quite independently of each other, even when they have the same group monitor.

After the trace ends, the following functions may be called:

KHE_COST KheTraceInitCost(KHE_TRACE t);
int KheTraceMonitorCount(KHE_TRACE t);
KHE_MONITOR KheTraceMonitor(KHE_TRACE t, int i);
KHE_COST KheTraceMonitorInitCost(KHE_TRACE t, int i);
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KheTraceInitCost returns the initial cost oft’s group monitor (at the time the trace began);
KheTraceMonitorCount returns the number of child monitors oft’s group monitor whose
cost changed during the trace;KheTraceMonitor returns theith of these child monitors; and
KheTraceMonitorInitCost(t, i) returns the initial cost ofKheTraceMonitor(t, i). Also,

KHE_COST KheTraceMonitorCostIncrease(KHE_TRACE t, int i);

returns KheMonitorCost(KheTraceMonitor(t, i)) - KheTraceMonitorInitCost(t, i).
It will be negative when the monitor’s cost decreased.

The list of child monitors whose cost has changed never contains the same monitorm twice,
no matter how many timesm’s cost changes during the trace. This is desirable, but it means that
whenm’s cost changes, this list has to be searched to see ifm is already present. So it is best to
use tracing on group monitors that group only a small number of monitors; or if a large group
monitor like the solution object is traced, to trace it for only small sequences of operations that
are not likely to change the cost of a large number of monitors.

These functions may be called during a trace as well as after it, returning values as though
the trace had just ended. While it is not an error to callKheGroupMonitorAddChildMonitor

or KheGroupMonitorDeleteChildMonitor while tracing the group monitor concerned, it is not
recommended. A solution cannot be copied while one of its group monitors is being traced.

For the convenience of ejection chain algorithms, function

void KheTraceReduceByCostIncrease(KHE_TRACE t, int max_num);

sorts the monitors by decreasingKheTraceMonitorCostIncrease, removes all monitors whose
cost increase is zero or negative, then keeps removing monitors from the end until at most
max_num remain. These may be accessed withKheTraceMonitorCount,KheTraceMonitor, and
KheTraceMonitorInitCost as usual. The other monitors are gone and cannot be got back.

Finally, function

void KheTraceDebug(KHE_TRACE t, int verbosity, int indent, FILE *fp);

printst ontofp with the given verbosity and indent, showing monitors whose cost changed.



Chapter 7. Matchings and Evenness
Suppose a decision is made to run five Music meetssimultaneously,when the school has only two
Music teachers and two Music rooms. Clearly, when teachers and rooms are assigned later, there
will be major problems, but until then the usual cost function will not reveal any problems.

More subtly, suppose there are eight teachers, and that three of them teach English only,
three teach History only, and two teach both. Suppose a decision is make to run five English
meets and five History meets simultaneously. Then there are enough English teachers to teach
the five English meets, and there are enough History teachers to teach the five History meets, but
there are not enough English and History teachers, taken together, to teach the ten meets.

Matchings(officially, unweighted bipartite matchings) detect such problems. Although not
compulsory, they are often helpful. This chapter describes them in general, how they apply to
timetabling, and how to use them in KHE. Getting started can be as simple as calling

KheSolnMatchingBegin(soln);
KheSolnMatchingSetWeight(soln, KheCost(1, 0));
KheSolnMatchingAddAllWorkloadRequirements(soln);
KheSolnMatchingAttachAllOrdinaryDemandMonitors(soln);

after the solution is made a complete representation.

7.1. The bipartite matching problem

A bipartite graphis an undirected graph whose nodes are divided into two sets, such that every
edge connects a node of one set to a node of the other. Amatchingis a subset of the edges
such that no two edges touch the same node. Amaximum matchingis a matching containing as
many edges as possible. Thebipartite matching problemis the problem of finding a maximum
matching in a bipartite graph. For example, here is a bipartite graph (at left), and the same graph
with a maximum matching shown in bold (at right):

There is a standard polynomial-time algorithm for this problem.

In timetabling, where bipartite matching has been used for many years [2, 4, 14], it is usual
for one of the two sets of nodes to represent variables (slots, events, etc.) demanding something
to be assigned to them, while the other set represents values (times, resources, etc.) which are
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available to supply these demands. So these sets are called thedemand nodesand thesupply
nodeshere. A maximum matching assigns supply nodes to as many demand nodes as possible,
given that each demand node requires any one of the supply nodes it is connected to, and each
supply node may be assigned to at most one demand node. Although the problem is formally
symmetrical between the two kinds of nodes, in timetabling it is not symmetrical: it does not
matter if some supply nodes are not matched, but it does matter if some demand nodes are
not matched.

One does not usually want to make the assignments indicated by a maximum matching,
because there are other constraints not modelled by it, and the aim is to find, not just any
maximum matching, but one satisfying these other constraints. Instead, the matching helps to
evaluate the current state. Because it is maximum, it indicates that there must be at least a certain
number of problems, in the form of unassigned demand nodes, in any solution incorporating the
decisions already made, and that is valuable information when evaluating those decisions.

Some applications of matching to timetabling utilize the idea of atixel, the author’s term for
one resource at one time (the name recalls thepixelof computer graphics). For example, teacher
Smith during the first time on Mondays is one tixel; it may be represented by the ordered pair

(Smith,Mon1)

This is also called asupply tixel, because it can supply the demands of events for teachers. The
events are said to containdemand tixels. For example, an event of duration 2 which requests
student group8A, one English teacher, and one room, is said to contain six demand tixels. This
is shorthand for saying that it demands six supply tixels.

Underlying the high school timetabling problem is a matching that we will call theglobal
tixel matching. Its supply nodes are the supply tixels, one for each resource of the instance at
each time. Its demand nodes are the demand tixels of the events of the instance. Edges connect
demand tixels to those supply tixels that suit them. For example, a demand for student group 8A
would be connected to supply tixels whose resource is 8A; a demand for an English teacher at
timeMon1would be connected to those supply tixels whose resource is an English teacher and
whose time isMon1. Each demand tixel wants to be assigned one supply tixel, and each supply
tixel may only be assigned to one demand tixel (otherwise there would be a timetable clash). So
a matching is indeed required, and a maximum matching will have the fewest problems.

As decisions are made, in the form of assignments of times to meets or resources to tasks
(or domain reductions, for example from all qualified resources to a smaller set of preferred
resources), the demand tixels affected by these decisions become connected to fewer supply
tixels. When the maximum matching is recalculated (there is an efficient algorithm for doing this
incrementally as the graph changes) there may be more unmatched nodes than before, suggesting
that the decisions made may have been poor ones, and that alternatives should be explored.

The global tixel matching is useful for evaluating instances before solving begins. It can
reveal, for example, that the supply of computer laboratories is insufficient to cover the demand,
and other problems of that kind. It turns out to be very powerful late in the solve process, when
resources are being assigned after times have been assigned, provided it is enhanced with tixels
expressing resource unavailabilitiesand workload limits (Section 7.4). However, it is quite weak
before times are assigned, because it does not understand that the supply tixels assigned to events
must be correlated in time: it does not perceive the contradiction in assigning,say, the two supply



7.1. The bipartite matching problem 181

tixels(Smith,Mon1) and(Lab6,Wed5) to an event of duration 1.

An example given earlier, of scheduling five Music events simultaneously when there are
only two Music teachers and two Music rooms, shows that useful checks can be made when
deciding to run events simultaneously, even though their actual time is not fixed. Whatever time
is ultimately assigned to such events, each resource can supply at most one tixel to satisfy their
demands. So the demand tixels for one time of the events concerned may be matched with a set
of supply nodes, one for each resource. This will be calledlocal tixel matching. The tixels are
rather different: they share a common generic time rather than holding a variety of true times.

7.2. Setting up

By default, a solution contains no matching. To add one, and later to take it away, call

void KheSolnMatchingBegin(KHE_SOLN soln);
void KheSolnMatchingEnd(KHE_SOLN soln);

KheSolnMatchingEnd can be omitted if the matching is needed for the lifetime of the solution,
since the matching is deleted when its solution is deleted. There is also

bool KheSolnHasMatching(KHE_SOLN soln);

which returnstrue whensoln has a matching. Most of the other operations of this chapter are
undefined when no matching is present. Some may abort, others may do nothing.

KheSolnMatchingBegin adds exactly one matching to the solution. It is kept up to date
thereafter as the solution changes, untilKheSolnMatchingEnd is called or the solution is deleted.
Adding a matching includes adding its demand nodes, each of which is represented by a monitor
called ademand monitor. Removing a matching includes removing all demand monitors. A
demand monitor contributes a cost to the solution just like other monitors do. The cost is 0 when
the node is matched, and some non-negative value, set by the user, when it is unmatched.

Demand monitorsmay be attached and detached individually as usual. Detaching a demand
monitor removes its node from the matching graph. Immediately afterKheSolnMatchingBegin

returns, the demand monitors it makes are all detached, so the matching graph has no demand
nodes. Convenience functions defined below may be used to attach the demand monitors.

Rather than fiddling around callingKheSolnHasMatching, it is conventional to assume that
a matching is present when KHE is being used for solving, but not when it is being used only to
evaluate solutions. The rationale for this is that by comparison with the overall cost of a solve, it
costs virtually nothing, and helps to make the solve environment uniform, if a matching is always
present. If it isn’t actually wanted, its demand monitors can be detached. On the other hand,
when evaluating solutions, at least when just their cost is required, matchings have no use, and
if there are many solutions it is best to avoid the memory cost of the demand and supply nodes.

Behind the scenes, a lazy implementation is used: no matching is done until a query
operation (for example, a request for the current cost of a demand monitor, or a debug print)
occurs, allowing the time spent matching to be amortized over all operations carried out since
the previous query. There is no way for the user to observe the laziness. The key operation, of
bringing the matching up to date (making it maximum) runs in time roughly proportional to the
number of unmatched nodes in the graph when it is called.
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The cost of one unmatched node is set and retrieved by

void KheSolnMatchingSetWeight(KHE_SOLN soln, KHE_COST weight);
KHE_COST KheSolnMatchingWeight(KHE_SOLN soln);

For example, a call to

KheSolnMatchingSetWeight(soln, KheCost(1, 0));

gives each unmatched node a hard cost of 1. The initial weight is 0. A change of weight is
reflected immediately in the cost reported by all demand monitors.

Although it would be trivial to allow the user to set the cost of each demand monitor
individually, this has not been done, because it might suggest that the matching algorithm is
capable of finding the matching which minimizes the total cost of unmatched nodes. In reality,
there is no way to make the cost depend on which nodes are unmatched, nor on how appropriate
the matching’s assignments are. Those would be useful features, since then the cost of assign
resources and prefer resources constraints could be reflected in the matching cost, but then a
different problem,calledweighted bipartite matching, would have to be solved, whose algorithm
the author considers to be too slow for solving.

In the absence of weighted matching, choosingweight is not easy. The simple choice is
KheCost(1, 0), and it may well be the best. Another choice is one which guarantees that the
weighted cost of the matching is a lower bound on the ultimate total cost of the violations of
all relevant constraints, assuming that more assignments are added without changing the current
ones. Each unassigned tixel in the matching must ultimately correspond with either a missing
resource assignment at one time, or a resource clash at one time. So a suitable weight is the
minimum of the following quantities: for each event resource, the sum of the combined weights
of the assign resource constraints that apply to it; and for each resource, the sum of the combined
weights of the avoid clashes constraints that apply to it. (Fortunately, both of these constraints
incur a cost for each violating tixel.) Function

KHE_COST KheSolnMinMatchingWeight(KHE_SOLN soln);

works out this value. If there are no event resources and no resources, it returns 0.

The matching has atypethat may be changed at any moment:

KHE_MATCHING_TYPE KheSolnMatchingType(KHE_SOLN soln);
void KheSolnMatchingSetType(KHE_SOLN soln, KHE_MATCHING_TYPE mt);

KHE_MATCHING_TYPE is the enumerated type

typedef enum {
KHE_MATCHING_TYPE_EVAL_INITIAL,
KHE_MATCHING_TYPE_EVAL_TIMES,
KHE_MATCHING_TYPE_EVAL_RESOURCES,
KHE_MATCHING_TYPE_SOLVE

} KHE_MATCHING_TYPE;

A full explanation of these values is given in the following section. Just briefly, however,
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KHE_MATCHING_TYPE_SOLVE implements an enhanced local tixel matching and is the best choice
when solving; it is also the default value. The others are variants of global tixel matching. A
change of type is reflected immediately in the cost reported by all attached demand monitors.

For the most part,matchings work quietly behind the scenes without attention from the user.
However, there is an important optimization that only the user can invoke. Suppose that some
changes are made to the solution as an experiment, then either retained or undone. Then KHE
will run faster if that part of the program is bracketed by calls to these functions:

void KheSolnMatchingMarkBegin(KHE_SOLN soln);
void KheSolnMatchingMarkEnd(KHE_SOLN soln, bool undo);

Calls to these operations must occur in matching pairs, possibly nested. Ifundo is true, then
KheSolnMatchingMarkEnd assumes without checking that all changes tosoln since the cor-
responding call toKheSolnMatchingMarkBegin have been undone. It uses this information to
bring the matching up to date more quickly than could be done without it. To encourage their use,
both functions are well-defined even when there is no matching: in that case, they do nothing.

As an aid to debugging, function

void KheSolnMatchingDebug(KHE_SOLN soln, int verbosity,
int indent, FILE *fp);

ensures that the matching is up to date, then prints its current state ontofp. Verbosity 1prints just
the number of unmatched demand monitors, verbosity 2 prints those monitors, and verbosity 3
prints all demand monitors and the supply nodes they are matched with.

7.3. Ordinary supply and demand nodes

This section explains how most of the supply and demand nodes of the matching, the ones
associated with meets, are defined. Since they are linked together with edges that depend on the
type of the matching, this section also explainsKHE_MATCHING_TYPE in detail.

For each offset of a meetmeet (for each integer between 0 inclusive and the duration of
meet exclusive), the matching containsR ordinary supply nodes, whereR is the total number of
resources in the instance. Ifmeet has durationd, this isdRsupply nodes altogether. Each models
the supply of one resource at one offset. These supply nodes cannot be accessed by the user.

Each task ofmeet containsKheMeetDuration(meet) demand nodes, which will be called
ordinary demand nodesto distinguish them from the workload demand nodes to be defined
later. Each models the demand made by its task at one offset. Ordinary demand nodes have type
KHE_ORDINARY_DEMAND_MONITOR and may be accessed in the usual way by

int KheTaskDemandMonitorCount(KHE_TASK task);
KHE_ORDINARY_DEMAND_MONITOR KheTaskDemandMonitor(KHE_TASK task, int i);

The first function’svalue isequal to the duration of the enclosingmeet. Like most monitors, these
ones cannot be created or deleted by the user. They are created when the task is created, split and
merged when it is split and merged, and deleted when it is deleted. Unlike other monitors, they
are detached initially. This is so that, by default, KHE monitors only the official cost.
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In addition to the operations applicable to all monitors, ordinary demand monitors offer

KHE_TASK KheOrdinaryDemandMonitorTask(KHE_ORDINARY_DEMAND_MONITOR m);
int KheOrdinaryDemandMonitorOffset(KHE_ORDINARY_DEMAND_MONITOR m);

returning the task thatm monitors, and its offset within that task. Helper functions

void KheSolnMatchingAttachAllOrdinaryDemandMonitors(KHE_SOLN soln);
void KheSolnMatchingDetachAllOrdinaryDemandMonitors(KHE_SOLN soln);

ensure that all ordinary demand monitors are attached or detached; they visit every ordinary
demand monitor of every task of every meet ofsoln, check whether it is currently attached, then
attach or detach it if required. Function

void KheOrdinaryDemandMonitorDebug(KHE_ORDINARY_DEMAND_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

Although the list of monitors in a task is fixed, each may be attached or detached individual-
ly, and they may be linked by edges to supply nodes in different ways, depending on the matching
type, as will now be explained.

An ordinary demand node’sown meetis the meet its task lies in. Itsroot meetis the meet
reached by following the chain of assignments (possibly empty) out of its own meet to a meet
that contains no assignment. Itsown offsetis its offset in its own meet, and itsroot offsetis its
offset in its root meet (the sum of its own offset and the offsets along the assignment path).

When linking an ordinary demand node to ordinary supply nodes, there are at least two ways
to take time into account:

A. Link it only to ordinary supply nodes lying in cycle meets at offsets that represent the times
of the time domain of its own meet, shifted by its own offset.

B. Link it only to ordinary supply nodes lying in its root meet at its root offset.

Informally, (A) evaluates the initial state of time assignment, whereas (B) evaluates its current
state in a way that ensures that simultaneous demands compete for the same supply nodes, as in
local tixel matching. And there are at least two ways to take resources into account:

1. Link it to supply nodes representing the resources of its task’s domain.

2. Link it to supply nodes representing the resources of its task’s root task’s domain. If the
root task is a cycle task, this will link only to supply nodes representing that resource.

Informally, (1)evaluates the initial state of resource assignment,whereas (2)evaluates the current
state. The four non-empty matching types produce the four conjunctions of these conditions:

A B
1 KHE_MATCHING_TYPE_EVAL_INITIAL KHE_MATCHING_TYPE_EVAL_TIMES

2 KHE_MATCHING_TYPE_EVAL_RESOURCES KHE_MATCHING_TYPE_SOLVE
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Type (B2) is suited to solving; the others are suited to evaluation before or after solving.

7.4. Workload demand nodes

In addition to ordinary demand nodes, matchings may containworkload demand nodes, used to
take account of avoid unavailable times constraints, limit busy times constraints, and limit work-
load constraints, collectively calledworkload demand constraintshere. For example, suppose
the cycle contains 40 times, and teacherSmithhas a required workload limit of 30 times and is
unavailable at timeMon1. Then ten workload demand nodes should be created, one demanding
supply tixel(Smith,Mon1), and the other nine demandingSmithat one unrestricted time.

It is important to include workload demand nodes, since otherwise the problems reported by
the matching will be unrealistically few. They are the same for all matching types, and in most
cases it is enough to call helper function

void KheSolnMatchingAddAllWorkloadRequirements(KHE_SOLN soln);

This may be done at any time, and does what is usually wanted. However, it is partly heuristic,
so KHE offers the option of controlling the details.

For the purposes of matchings only, aworkload requirementis a requirement imposed on
a resource that it be occupied attending meets for at most a given number of the times of some
time group. There are no operations for creating workload demand nodes directly; instead, there
are operations for defining workload requirements, and the workload demand nodes are derived
from them by KHE behind the scenes, as explained below (Section 7.4.2).

Within a solution at any moment, a sequence of workload requirements is associated with
each resource. They may be visited in order by calling

int KheSolnMatchingWorkloadRequirementCount(KHE_SOLN soln,
KHE_RESOURCE r);

void KheSolnMatchingWorkloadRequirement(KHE_SOLN soln, KHE_RESOURCE r,
int i, int *num, KHE_TIME_GROUP *tg, KHE_MONITOR *m);

The first returns the number of workload requirements associated wthr in soln, and the second
returns thei’th requirement, in the form of a number of times and a time group. If the third
return parameter,*m, is non-NULL, it is theoriginating monitor: the monitor that gave rise to
this requirement. The originating monitor is stored in workload demand monitors created as a
consequence of this requirement, to assist in analysing defects; it is not otherwise used.

Each resource has no workload requirements initially. To change the requirements of
resourcer, begin with a call to

void KheSolnMatchingBeginWorkloadRequirements(KHE_SOLN soln, KHE_RESOURCE r);

continue with any number of calls to

void KheSolnMatchingAddWorkloadRequirement(KHE_SOLN soln,
KHE_RESOURCE r, int num, KHE_TIME_GROUP tg, KHE_MONITOR m);

wherem may beNULL, and end with a call to
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void KheSolnMatchingEndWorkloadRequirements(KHE_SOLN soln,
KHE_RESOURCE r);

All three functions must be called, in order. The first clearsr’s workload requirements, the
second appends a requirement thatr attend events for at mostnum of the times oftg (num may
not exceed the number of times intg), and the third replaces any existing workload demand
nodes forr with new ones derived from the workload requirements. The new monitors are
attached as they are created.KheMatchingMonitorSetAllWorkloadRequirements calls these
functions. The sections below describe the calls it makes, and how workload requirements are
converted into workload demand nodes.

To delete the workload requirements ofr, along with their workload demand nodes, call

void KheSolnMatchingDeleteWorkloadRequirements(KHE_SOLN soln,
KHE_RESOURCE r);

KheSolnMatchingBeginWorkloadRequirements does this, as doesKheSolnMatchingEnd
when deleting the whole matching.

The workload demand nodes created byKheSolnMatchingEndWorkloadRequirements

are monitors of typeKHE_WORKLOAD_DEMAND_MONITOR. Like other monitors of resources,
they appear on the list of monitors visited by functionsKheResourceMonitorCount and
KheResourceMonitor from Section 6.6.

In addition to the operations applicable to all monitors, workload demand monitors offer

KHE_RESOURCE KheWorkloadDemandMonitorResource(
KHE_WORKLOAD_DEMAND_MONITOR m);

KHE_TIME_GROUP KheWorkloadDemandMonitorTimeGroup(
KHE_WORKLOAD_DEMAND_MONITOR m);

KHE_MONITOR KheWorkloadDemandMonitorOriginatingMonitor(
KHE_WORKLOAD_DEMAND_MONITOR m);

These return the resource that the workload demand monitor is for, the time group of the
workload requirement that led tom, and the originating monitor (possiblyNULL) of the workload
requirement that led tom. Finally, function

void KheWorkloadDemandMonitorDebug(KHE_WORKLOAD_DEMAND_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

7.4.1. Constructing workload requirements

This section explains howKheSolnMatchingAddAllWorkloadRequirements works. For each
resourcer, it first callsKheSolnMatchingBeginWorkloadRequirements(soln, r), and then
visits each required workload demand monitorm of weight greater than 0 applicable tor, in order
of decreasing weight. What it does with each monitor is explained below. It then finishes its
work onr with a call toKheSolnMatchingEndWorkloadRequirements(soln, r).

If m is an avoid unavailable times monitor, or a limit busy times monitor whoseMaximum
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attribute is 0, then for each timet in m’s constraint’s domain it calls

KheSolnMatchingAddWorkloadRequirement(soln, r, 0,
KheTimeSingletonTimeGroup(t), m);

If m is a limit busy times monitor withMaximum greater than 0, then for each time grouptg in m’s
constraint it calls

KheSolnMatchingAddWorkloadRequirement(soln, r, k, tg);

wherek is theMaximum attribute. TheMinimum attribute is ignored.

A limit workload monitor is like a limit busy times monitor whose time group contains all
the times of the cycle, soKheSolnMatchingAddWorkloadRequirement is called once with this
time group. The number passed to this call requires careful calculation, involving the workloads
of all events. The remainder of this section explains this calculation.

Let k be the integer eventually passed toKheSolnMatchingAddWorkloadRequirement.
Initializek to theMaximum attribute of the limit workload constraint. For each event resourceer,
let d(er) be its duration andw(er) be its workload. The basic idea is that ifr is assigned toer,
thend(er) − w(er) should be added tok. For example, a resource with workload limit 30 that is
assigned to an event resource with duration 3 and workload 2 needs a workload requirement of
31, not 30. And ifr is assigned to an event with duration 6 but workload 12, thenk needs to be
decreased by 6.

In some cases, preassignments or domain restrictions make it certain thatr will be assigned
to some event, and in those cases the adjustment can be done safely in advance. For example,
if every staff member attends a weekly meeting with duration 1 and workload 0, then their
workload requirements can all be increased by 1 to compensate. Similarly, ifr will definitely
not be assigned to some event, then the event’s duration and workload have no effect onr.

The residual problem cases are those event resourceser whose workload and duration
differ, whichr may be assigned to but not necessarily. In these cases, an inexact model is used
which preserves the guarantee that the number of unmatched nodes is a lower bound on the final
number, but the number is weaker (that is, smaller) than the ideal.

If w(er) > d(er), then er is ignored. This case can only make the problem harder, so
ignoring it means that the number returned will be smaller than the ideal. Ifw(er) < d(er), then
d(er) − w(er) is added tok, just as thoughr was assigned toer. If r is ultimately assigned to
er, then this will be exact; if it is not, then again it will weaken the bound, by overestimatingr’s
available workload.

These tests are actually applied to clusters of events known to be running simultaneously,
because of required link events constraints or preassignmentsand other time domain restrictions.
Each resource can be assigned to at most one of the event resources of the events of a cluster, so
only one of the events, the one whose modelling is least exact, needs to be taken account of.

7.4.2. From workload requirements to workload demand nodes

KHE converts workload requirements to workload demand nodes automatically, during the call
to KheSolnMatchingEndWorkloadRequirements (defined above). The following explanation
of how this is done, adapted from [9], is included for completeness.
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When converting workload requirements into workload demand nodes, the relationships
between the requirements’ sets of times affect the outcome. In general, an exact conversion
seems to be possible only when these sets of times satisfy thesubset tree condition: each pair of
sets of times is either disjoint, or else one is a subset of the other.

For example, suppose the cycle has five days of eight times each, and resourcer is required
to be occupied for at most thirty times altogether and at most seven on any one day, and to be
unavailable at timesFri6, Fri7, andFri8. These requirements form a tree (in general, a forest):

30Times

7 Mon 7 Tue 7 Wed 7 Thu 7 Fri

0 Fri6 0 Fri7 0 Fri8

A postorder traversal of this tree may be used to deduce that workload demand nodes forr are
needed for oneMon time, oneTuetime, oneWedtime, oneThu time, oneFri6 time, oneFri7
time, oneFri8 time, and three arbitrary times. In general, each tree node contributes a number of
demand nodes equal to the size of its set of times minus its number minus the number of demand
nodes contributed by its descendants, or none if this number is negative.

The tree is built by inserting the workload requirements in order, ignoring requirements
that fail the subset tree condition. For example, a failure would occur if, in addition to the above
requirements, there were limits on the number of morning and afternoon times. The constraints
which give rise to such requirements are still monitored by other monitors, but their omission
from the matching causes it to report fewer unmatchable nodes than the ideal. Fortunately, such
overlapping requirements do not seem to occur in practice, at least, not as required constraints.

7.5. Diagnosing failure to match

KHE’s usual methods of organizing monitors, such as grouping and tracing, may be applied to
demand monitors. This section offers three other ways to visit unmatched demand monitors.

7.5.1. Visiting unmatched demand nodes

The unmatched demand nodes may be visited by functions

int KheSolnMatchingDefectCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMatchingDefect(KHE_SOLN soln, int i);

Each monitor is either an ordinary demand monitor or a workload demand monitor; a call to
KheMonitorTag followed by a downcast will produce the specific type. Then functions defined
earlier give access to the part of the solution being monitored by these monitors.

Unmatched demand nodes with higher indexes tend to have become unmatched more
recently than demand nodes with lower indexes. When the number of unmatched demand nodes
increases, it is reasonable to take the last unmatched demand node as an indication of what went
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wrong. However, it will usually be better to use grouping and tracing to localize problems.

7.5.2. Hall sets

Hall setsare the definitive method of diagnosing failure to match. They are fine for occasional
use, such as for generating a report to the user, but too slow for repeated use during solving.

Suppose there is a setD of demand nodes, whose outgoing edges all lead to nodes in some
setSof supply nodes. Then every node inD must be matched with a node inS, or not matched at
all. If |D| > |S|, then at least|D| − |S|nodes ofD will be unmatched in any maximum matching.

It turns out that every case of an unmatched node can be explained in this way, often
utilizing setsD andS that are small enough to understand in user terms: they might represent
the demand and supply of Science laboratories, for example. Such aD andS, with every edge
out of D leading toS, and|D| > |S|, is called aHall setafter the mathematician P. Hall. Given a
maximum matching, every unmatched demand node lies in a Hall set.

The following functions examine the Hall sets of a matching. They all begin by building
the Hall sets if the ones currently stored are not up to date. This means that any change to the
solution invalidates everything returned by all previous calls to these functions.

The number of Hall sets is returned by

int KheSolnMatchingHallSetCount(KHE_SOLN soln);

This is not usually the same as the number of unmatched demand nodes, since there may be
several of those in one Hall set. No node lies in two Hall sets. The number of supply and demand
nodes in thei’th Hall set may be found by calling

int KheSolnMatchingHallSetSupplyNodeCount(KHE_SOLN soln, int i);
int KheSolnMatchingHallSetDemandNodeCount(KHE_SOLN soln, int i);

By the way that Hall sets are defined,KheSolnMatchingHallSetDemandNodeCount(soln, i)

must be larger thanKheSolnMatchingHallSetSupplyNodeCount(soln, i).

Thej’th supply node of thei’th Hall set can only be an ordinary supply node, but, in case
other kinds of supply nodes are added in future, the following function is used to find the meet
it lies in, its offset within that meet, and the resource it represents:

bool KheSolnMatchingHallSetSupplyNodeIsOrdinary(KHE_SOLN soln,
int i, int j, MEET *meet, int *meet_offset, KHE_RESOURCE *r);

At present this always returnstrue. A report to the user should distinguish the cases when*meet

is and is not a cycle meet. Thej’th demand node of thei’th Hall set is returned by

KHE_MONITOR KheSolnMatchingHallSetDemandNode(KHE_SOLN soln,
int i, int j);

It will be either an ordinary demand node or a workload demand node as usual. Finally,

void KheSolnMatchingHallSetsDebug(KHE_SOLN soln,
int verbosity, int indent, FILE *fp);
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prints the Hall sets ofm’s matching ontofp with the given verbosity and indent. The verbosity
must be at least 1 but otherwise does not affect what is printed.

7.5.3. Finding competitors

Given an unmatched demand monitorm returned byKheSolnMatchingHallSetDemandNode or
KheSolnMatchingDefect, a competitorof that monitor is eitherm itself or a monitor whose
removal would allowm to match. Competitors are similar to the demand nodes of Hall sets, ex-
cept that they relate to a single unmatched demand node. They are themselves always matched.
Finding competitors amounts to redoing the search for an augmenting path for the failed node
and noting the demand nodes that are visited along the way.

Functions

void KheSolnMatchingSetCompetitors(KHE_SOLN soln, KHE_MONITOR m);
int KheSolnMatchingCompetitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMatchingCompetitor(KHE_SOLN soln, int i);

may be used together to visit the competitors of unmatched demand monitorm:

KheSolnMatchingSetCompetitors(soln, m);
for( i = 0; i < KheSolnMatchingCompetitorCount(soln); i++ )
{
competitor_m = KheSolnMatchingCompetitor(soln, i);
... visit competitor_m ...

}

The competitors are visited in breadth-first order, beginning withm (which the user may choose
to skip by initializingi in the loop above to1 rather than0). There may be any number of
competitors other thanm, including none, and they may be ordinary demand monitors and
workload demand monitors.

The solution contains one set of competitors which remains constant except when reset by
a call toKheSolnMatchingSetCompetitors. If the solution changes, this set of competitors
remains well-defined as a set of monitors, but becomes out of date as a set of competitors.

Competitors are useful because they can be found quickly, but they are not definitive in
the way that Hall sets are: in unusual cases, a given unmatched monitor may have different
competitors in different maximum matchings. For example, consider these two matchings:
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Both are maximum, since all three supply nodes are matched in each; but the competitors ofC
in the first matching areA andB, while the competitors ofC in the second areD andE.

It is important not to change the solution when traversing competitors. Even if it is changed
back again, the unmatched demand nodes may be different afterwards. In the usual case where
the aim is to move one meet that is competing for some scarce resources, the right approach is to
use the loop to find those meets, store them, and move them after it ends.

In applications such as ejection chains it is important to understand what the defect really
is. In the case of unmatched demand nodes, the true defect is the Hall set. This may be
approximated in practice by the set of competitors. Thus, a repair should operate on the set of
competitors independently of their order or which one happens to be the unmatched one.

7.6. Evenness monitoring

Suppose that a school has seven Mathematics teachers, and that at some time there are seven
Mathematics lessons running simultaneously. All seven teachers must be utilized at that time,
which, although feasible, will restrict the options for resource assignment later.

Unless the teachers are very overworked, there must be other times when few Mathematics
lessons are running. The Mathematics lessons are distributed unevenly through the cycle.

KHE offers a kind of monitor, of typeKHE_EVENNESS_MONITOR, which monitors this kind
of evenness. These work similarly to demand monitors; they are created and removed by

void KheSolnEvennessBegin(KHE_SOLN soln);
void KheSolnEvennessEnd(KHE_SOLN soln);

although the call toKheSolnEvennessEnd may be omitted when evenness monitoring is wanted
for the lifetime of the solution. Evenness monitors are created byKheSolnEvennessBegin but
not attached initially. There is one evenness monitor for each resource partition of the instance
and each time of the cycle, which keeps track of how many tasks whose domains lie within
that partition (as determined byKheResourceGroupPartition) are running at that time. The
monitor reports a deviation when this number exceeds some limit, which is usually set at one
less than the number of resources in the partition. Thus, the deviation would be zero when six
Mathematics teachers are needed, and one when seven are needed. Function
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bool KheSolnHasEvenness(KHE_SOLN soln);

returnstrue when evennness monitors are present.

Like demand monitoring, evenness monitoring depends on the resources demanded at each
time. Unlike demand monitoring,however, domains that cross partition boundaries are not taken
into account, and evenness is only monitored at the root level of the layer tree. Despite these
simplifications, evenness monitoring is potentially useful for giving early warning of demand
problems, especially when used in conjunction with domain tightening (Section 11.3).

When present, evenness monitors may be found in the list of all monitors kept in the
solution, and attached and detached in the usual way. More useful in practice are functions

void KheSolnAttachAllEvennessMonitors(KHE_SOLN soln);
void KheSolnDetachAllEvennessMonitors(KHE_SOLN soln);

which visit each evenness monitor and ensure that it is attached or detached. The usual
operations on monitors may be carried out by upcasting to typeKHE_MONITOR as usual. There
are also operations specific to evenness monitors:

KHE_RESOURCE_GROUP KheEvennessMonitorPartition(KHE_EVENNESS_MONITOR m);
KHE_TIME KheEvennessMonitorTime(KHE_EVENNESS_MONITOR m);
int KheEvennessMonitorCount(KHE_EVENNESS_MONITOR m);

These return the partition being monitored, the time being monitored, and the number of tasks
whose domains lie within that partition that are currently running at that time (or 0 ifm is
unattached). It would be useful to be able to retrieve the specific tasks that go to make up this
count, but that information is not kept. If it is needed, it is necessary to search the cycle meet
overlapping the time, and all the meets assigned to that cycle meet directly or indirectly, to find
the tasks running at the monitored time whose domains lie within the monitored partition.

Each evenness monitor also contains a limit, such that when the count goes above that limit
a deviation is reported. This limit can be retrieved and changed at any time by calling

int KheEvennessMonitorLimit(KHE_EVENNESS_MONITOR m);
void KheEvennessMonitorSetLimit(KHE_EVENNESS_MONITOR m, int limit);

Its default value is the number of resources in the partition, minus this same number divided by
six and rounded down. Thus, when there are less than six resources, the value is the number of
resources;when there are between six and eleven resources, the value is one less than the number
of resources; and so on. This seems to work reasonably well in practice. Another way to ignore
unevenness in small partitions would be to detach their monitors.

The deviation isKheEvennessMonitorCount(m) - KheEvennessMonitorLimit(m), or 0
if this number is negative. This is converted into a cost by multiplying by a weight (there is no
choice of cost function). The weight may be retrieved, and set at any time, by

KHE_COST KheEvennessMonitorWeight(KHE_EVENNESS_MONITOR m);
void KheEvennessMonitorSetWeight(KHE_EVENNESS_MONITOR m, KHE_COST weight);

The default weight is the smallest non-zero weight,KheCost(0, 1). Helper function
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void KheSolnSetAllEvennessMonitorWeights(KHE_SOLN soln, KHE_COST weight);

sets the weights of all evenness monitors at once. Finally, function

void KheEvennessMonitorDebug(KHE_EVENNESS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

Evenness is not monitored in the current version ofKheGeneralSolve (Section 8.3),
because tests run by the author showed run time increases of about 20%, for little or no gain.
Although it has some beneficial effects, evenness monitoring tends to disrupt node regularity and
reduce diversity, since it causes very similar solutions to have slightly different costs.
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A solver is an operation that makes large-scale changes to a solution. This chapter introduces
solvers, defines interfaces for them, presents a few high-level ones, and explains some general
ideas related to solving, including setting options and gathering statistics.

Solvers operate at a high level and should not be cluttered with implementation details:
their source files will includekhe_platform.h as usual, but should not include header file
khe_interns.h which gives access to KHE’s internals. Thus, the user of KHE is as well
equipped to write a solver as its author.

Many solvers are packaged with KHE. They are the subject of this part of the manual, all of
which is implemented usingkhe_platform.h but notkhe_interns.h. To gain access to these
solvers, include header filekhe_solvers.h,which lies in subdirectorysrc_solvers of the KHE
distribution. It includes header filekhe_platform.h, so you don’t need that.

8.1. Keeping track of running time

This section describes KHE’s functions for handling time (real time, that is).

For the sake of compilations that do not have the Unix system functions that report time,file
khe_solvers.h has aKHE_USE_TIMING preprocessor flag. Its default value is 1; changing it to 0
will turn off all calls to Unix timing system functions. If that is done, the functions documented
in this section will still compile and run without error, but they will return placeholder values.

First up we have

char *KheDateToday(void);

This returns the current date as a string in static memory, or"?" if KHE_USE_TIMING is 0.

KHE offerstimer objects, of typeKHE_TIMER, which keep track of running time. A timer
object stores itsstart time, the time that it was most recently created or reset. It may also store
a time limit, in which case it can report whether that much time has passed since its start time.
Storing a time limit does not magically stop the program at the time limit; it is up to solvers to
check the time limit periodically and stop themselves when it is reached.

Timers represent a time as a floating point number of seconds.KHE_NO_TIME, a synonym
for -1.0, means ‘no time’. Function

float KheTimeFromString(char *str);

converts a string into a floating point time. Ifstr is "-", it returnsKHE_NO_TIME, otherwise
it returns the number of seconds represented bystr, in the formatsecs, or mins:secs, or
hrs:mins:secs. For example,0.5 is 0.5 seconds, and5:0 is 5 minutes. Conversely,

char *KheTimeShow(float secs, char buff[20]);

195
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returnssecs in string form, usingbuff for scratch memory. It writes in a more readable format
than the input format, for example"2.5 secs" or "5.0 mins".

To make a new timer object in arenaa, call

KHE_TIMER KheTimerMake(char *tag, float limit_in_seconds, HA_ARENA a);

The tag parameter, which must be non-NULL, identifies the timer, and also appears in debug
output. Thelimit_in_seconds parameter is the time limit; it may beKHE_NO_TIME. The timer’s
start time is set to the time thatKheTimerMake is called. Also,

KHE_TIMER KheTimerCopy(KHE_TIMER timer, HA_ARENA a);

returns a copy oftimer in arenaa. Nothing is reset.

To retrieve the attributes of a timer, call

char *KheTimerTag(KHE_TIMER timer);
float KheTimerTimeLimit(KHE_TIMER timer);

KheTimerTimeLimit may returnKHE_NO_TIME. To change them, call

void KheTimerResetStartTime(KHE_TIMER timer);
void KheTimerResetTimeLimit(KHE_TIMER timer, float limit_in_seconds);

KheTimerResetStartTime resets timer’s start time to the time that it is called.
KheTimerResetTimeLimit resetstimer’s time limit to limit_in_seconds, which may be
KHE_NO_TIME as usual. Two functions give access to elapsed time:

float KheTimerElapsedTime(KHE_TIMER timer);
bool KheTimerTimeLimitReached(KHE_TIMER timer);

KheTimerElapsedTime returns the amount of time that has elapsed since the most recent call
to KheTimerMake or KheTimerResetStartTime for the timer. KheTimerTimeLimitReached
returnstrue when the elapsed time is equal to or greater than the time limit (always false when
the time limit isKHE_NO_TIME). Finally,

void KheTimerDebug(KHE_TIMER timer, int verbosity, int indent, FILE *fp);

produces a debug print oftimer ontofp with the given verbosity and indent.

Complex solvers may want to keep track of several time limits simultaneously, for example
a global limit plus a limit on the running time of one phase. For this there are objects of type
KHE_TIMER_SET, representing sets of timers. To create a new, empty timer set in arenaa, call

KHE_TIMER_SET KheTimerSetMake(HA_ARENA a);

To make a copy of a timer set, call

KHE_TIMER_SET KheTimerSetCopy(KHE_TIMER_SET timer_set, HA_ARENA a);

To add and delete timers, call
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void KheTimerSetAddTimer(KHE_TIMER_SET timer_set, KHE_TIMER timer);
void KheTimerSetDeleteTimer(KHE_TIMER_SET timer_set, KHE_TIMER timer);

KheTimerSetDeleteTimer aborts iftimer is not present intimer_set. There is also

bool KheTimerSetContainsTimer(KHE_TIMER_SET timer_set, char *tag,
KHE_TIMER *timer);

which seaches for a timer with the giventag in timer_set. If there is one, it sets*timer to one
such timer and returnstrue, otherwise it returnsfalse. Function

bool KheTimerSetTimeLimitReached(KHE_TIMER_SET timer_set);

returntrue if at least one of the timers oftimer_set has reached its time limit. This is the
logical moment to stop if several time limits are present. Finally,

void KheTimerSetDebug(KHE_TIMER_SET timer_set, int verbosity,
int indent, FILE *fp)

produces a debug print oftimer_set ontofp with the given verbosity and indent.

The usual way to keep track of running time is by calling the timer functions of options
objects (Section 8.2). These just delegate to a timer set object stored within the options object.

8.2. Options, running time, and time limits

Solvers have anoptions parameter of typeKHE_OPTIONS, holding options that influence their
behaviour. This type is similar to a Unix environment: it is a symbol table with strings for its
keys and values. The KHE main program allows options to be passed in via the command line.

To create a new options object containing the empty set of options, call

KHE_OPTIONS KheOptionsMake(HA_ARENA a);

It is created in arenaa, which it remembers and returns in

HA_ARENA KheOptionsArena(KHE_OPTIONS options);

There is no operation to delete an options object when it is no longer needed; instead, delete or
recycle its arena.

Options can be changed at any time, so when solving in parallel it is important for different
options objects to be passed to each solve. These can be created by copying using

KHE_OPTIONS KheOptionsCopy(KHE_OPTIONS options, HA_ARENA a);

The copy is stored in arenaa. KheArchiveParallelSolve andKheInstanceParallelSolve
(Section 8.4) do this.

To set an option, and to retrieve the previously set value, the calls are

void KheOptionsSet(KHE_OPTIONS options, char *key, char *value);
char *KheOptionsGet(KHE_OPTIONS options, char *key, char *dft);
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KheOptionsGet returns the value associated withkey in the most recent call toKheOptionsSet
with that key. If there is no such call, it returnsdft, reflecting the principle that solvers should
not rely on their options being set, but rather should be able to choose a suitable value when they
are absent—a value that may depend upon circumstances, not necessarily a fixed default value.

By convention, when an option represents a Boolean, its legal values are"false" and
"true". On the KHE command line, omitting the option omits it from the options object, which
usually means that its value is intended to befalse, while including it, either in the full form
"option=true" or the short form"option", gives it value"true". Functions

void KheOptionsSetBool(KHE_OPTIONS options, char *key, bool value);
bool KheOptionsGetBool(KHE_OPTIONS options, char *key, bool dft);

make it easy to handle Boolean options.KheOptionsSetBool callsKheOptionsSet, with value
"true" or "false" depending onvalue. KheOptionsGetBool callsKheOptionsGet, returning
an actual Boolean rather than a string. It aborts if the value is not"false" or "true". If there
is no value it returnsdft, which, as explained above, would usually befalse.

Another common case is when an option represents an integer. Convenience functions

void KheOptionsSetInt(KHE_OPTIONS options, char *key, int value);
int KheOptionsGetInt(KHE_OPTIONS options, char *key, int dft);

make this case easy.KheOptionsSetInt callsKheOptionsSet, with value equal tovalue in
string form. KheOptionsGetInt callsKheOptionsGet, then returns the value converted to an
integer. It aborts if the value is not an integer. If there is no value it returnsdft.

It is also possible to associate an arbitrary pointer with a key, by calling functions

void KheOptionsSetObject(KHE_OPTIONS options, char *key, void *value);
void *KheOptionsGetObject(KHE_OPTIONS options, char *key, void *dft);

These work in much the same way as the other functions.

When KheOptionsCopy is called, byKheArchiveParallelSolve for example, object
options are shared between the copies. Care is needed, since sharing mutable objects between
threads is not safe. The KHE solvers avoid problems here by not adding any object options until
after the copying has been done: only single-threaded solve functions add them.

Options can be roughly classified into two kinds. One kind is for end users, to allow them to
try out different possibilities. Options of this kind are not set by KHE’s solvers, only used. The
other kind is for KHE’s solvers, to allow them to vary the behaviour of other solvers that they
call. These are set by KHE’s solvers, so it is usually futile for the end user to set them.

Each option is described along with the solver it affects. As an aid to managing option
names, there is a convention for beginning option names with a three-character prefix:
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gs_ Options set or consulted by general solvers
ps_ Options set or consulted by parallel solvers
ss_ Options set or consulted by structural solvers
ts_ Options set or consulted by time solvers
rs_ Options set or consulted by resource solvers
es_ Options set or consulted by ejection chain solvers

Some options are set by one kind of solver and consulted by another; such options are hard to
classify. The sole option consulted by the KHE main program has no prefix. It is:

no_print

If this Boolean option appears in the first list of options on thekhe -s or khe -r command
line, then solving will proceed as usual but the result archive will not be printed.

The default values of all Boolean options consulted by KHE code are alwaysfalse; for the other
options, a default value is always given as part of the description of the option.

Options objects are passed around through solvers, and they are the natural place to keep
other things which are not options, strictly speaking. In particular, each option contains a timer
set (Section 8.1) which may be used to keep track of running time and impose time limits. The
relevant functions are

KHE_TIMER KheOptionsAddTimer(KHE_OPTIONS options, char *tag,
float limit_in_seconds);

void KheOptionsDeleteTimer(KHE_OPTIONS options, KHE_TIMER timer);
bool KheOptionsContainsTimer(KHE_OPTIONS options, char *tag,

KHE_TIMER *timer);
bool KheOptionsTimeLimitReached(KHE_OPTIONS options);
void KheOptionsTimerSetDebug(KHE_OPTIONS options, int verbosity,
int indent, FILE *fp);

KheOptionsAddTimer creates a new timer with the given attributes and adds it to the timer set
within options. KheOptionsDeleteTimer deletes the given timer from that timer set; it must
be present.KheOptionsContainsTimer searches the timer set for a timer with the giventag.
KheOptionsTimeLimitReached returnstrue if any of the timer set’s time limits have been
reached, andKheOptionsTimerSetDebug produces a debug print of the timer set ofoptions

onto fp with the given verbosity and indent. These functions are simple delegations to the
corresponding timer set functions.

Finally, there is one stray function,

KHE_FRAME KheOptionsFrame(KHE_OPTIONS options, char *key, KHE_SOLN soln);

This returns a shared common frame for use by solvers, as described in Section 5.10.

8.3. General solving

A solver is a function that finds solutions, or partial solutions, to instances. Ageneral solver
solves an instance completely, unlike, say, atime solverwhich only finds time assignments, or a
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resource solverwhich only finds resource assignments. A general solver may split meets, build
layer trees and task trees, assign times and resources, and so on without restriction.

The recommended interface for a general solver, defined inkhe.h, is

typedef KHE_SOLN (*KHE_GENERAL_SOLVER)(KHE_SOLN soln, KHE_OPTIONS options);

It will usually return the solution it is given, but it may return a different solution to the same
instance, in which case it should delete the solution it is given. Its second parameter,options,
is a set of options (Section 8.2) which may be used to vary the behaviour of the solver.

The main general solver distributed with KHE is

KHE_SOLN KheGeneralSolve2020(KHE_SOLN soln, KHE_OPTIONS options);

This single-threaded general solver works by calling functions defined elsewhere in this guide.
It returns the solution it is given. The name includes the year it was completed and will change
from time to time. In publications and solution group names it is referred to as KHE20.

KheGeneralSolve2020 assumes thatsoln is as returned byKheSolnMake, so it begins
with KheSolnSplitCycleMeet and KheSolnMakeCompleteRepresentation. Then it calls
solvers defined in this guide: it builds a layer tree and task tree, attaches demand monitors,
callsKheCycleNodeAssignTimes to assign times, and the threeKheTaskingAssignResources
functions to assign resources, ending withKheSolnEnsureOfficialCost.

For convenience,KheGeneralSolve2020 calls

KheOptionsSetRunningTime(options, elapsed_time);

(Section 8.2) just before returning, whereelapsed_time is its running time, obtained by calling
KheOptionsTimeLimitNow (Section 8.2) on a time limit with tag"general" which it creates at
its start and deletes at its end. Arguably, this is not quite right, becausesoln has to be created
beforeKheGeneralSolve2020 is called, and more work could be done onsoln afterwards.
However, callers can easily reset the running time if they wish to.

By convention, options set or consulted directly byKheGeneralSolve2020 have names
beginning withgs_. Here is the full list:

gs_diversifier

An integer option which, when set, causesKheGeneralSolve2020 to set the diversifier of
the solution it is given to the given value. When omitted, the diversifier retains the value it
has whenKheGeneralSolve2020 is called.

gs_time_limit

A string option defining a soft time limit for the solve. Enforcement is up to particular
solvers; this option merely callsKheOptionsSetTimeLimit (Section 8.2). The format is as
for functionKheTimeFromString described above (Section 8.1): either"-", meaning no
time limit (the default value), orsecs, ormins:secs, orhrs:mins:secs. For example,
10 is 10 seconds, and5:0 is 5 minutes.

gs_matching_off

A Boolean option which, when"true", instructsKheGeneralSolve2020 to refrain from
installing the global tixel matching (Chapter 7).
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gs_hard_constraints_only

A Boolean option which, when"true", instructs KheGeneralSolve2020 to detach
monitors for soft constraints,by callingKheDetachLowCostMonitors with min_weight set
to KheCost(1, 0) at the start of the solve, andKheAttachLowCostMonitors at the end.
See Section 8.5.1 for these functions.

gs_monitor_evenness

A Boolean option which,when"true", instructsKheGeneralSolve2020 to install evenness
monitors (Section 7.6).

gs_propagate_unavailable_times_off

A Boolean option which, when"true", instructsKheGeneralSolve2020 to omit its usual
call toKhePropagateUnavailableTimes (Section 8.5.3).

gs_time_assignment_only

A Boolean option which, when"true", instructsKheGeneralSolve2020 to exit early,
leaving the solution in its state after time assignment.

gs_unassignment_off

A Boolean option which, when"true", instructsKheGeneralSolve2020 to omit the calls
toKheSolnTryTaskUnAssignments (Section 12.11) andKheSolnTryMeetUnAssignments
(Section 10.4) during the cleanup phase.

gs_event_timetable_monitor

During the resource assignment phase ofKheGeneralSolve2020, this option has a value of
typeKHE_EVENT_TIMETABLE_MONITOR, and holds the result of the call

KheEventTimetableMonitorMake(soln, KheInstanceFullEventGroup(ins));

The monitor is attached. Before and after that phase, the option is either absent or has
valueNULL. The point of this is that this event timetable monitor is expensive to create and
probably too expensive to update during time assignment, but it is useful during resource
assignment. So this arrangement gives resource assignment algorithms access to a single
shared event timetable monitor, at little cost.

gs_debug_monitor_id

This option is a string identifying a monitor. It has two or more fields, separated by slashes.
The first field is a constraint Id; the others identify a point of application of the constraint.
For example,"Constraint:5/Nurse3/27" is the monitor for constraint"Constraint:5"
at point of applicationNurse3, offset27. This option is used byKheGeneralSolve2020
to define optiongs_debug_monitor, as explained next. The conversion from string to
monitor is carried out by functionKheSolnRetrieveMonitor (Section 6.2).

gs_debug_monitor

This option is set at the start ofKheGeneralSolve2020, whengs_debug_monitor_id is
present, to the monitor identified bygs_debug_monitor_id. Any solver can reference it
and use it as a hint to produce debug output relevant to that monitor. At present only ejectors
do this: they produce debug output focussed on answering the question ‘Why is the defect
represented by this monitor not removed by the ejection chain algorithm?’.
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gs_debug_rtm

This option is a string whose format isresource:timegroup. When present it caus-
es KheGeneralSolve2020 to call function KheResourceTimetableMonitorSetDebug

from Section 6.7.2 to set up debugging of the resource timetable monitor ofresource

at the times of timegroup. This will abort if macro DEBUG_CELL in source file
khe_resource_timetable_monitor.c does not have value 1.

KheGeneralSolve2020 is affected indirectly by many other options, via the solvers it calls.

Function

void KheSolveDebug(KHE_SOLN soln, KHE_OPTIONS options, char *fmt, ...);

produces a one-line debug of the current state of a solve. For conciseness it always prints onto
stderr with indent 2. The print containssoln’s instance name, diversifier, cost, and running
time (if options contains a timer called"global"; if not, the running time is omitted), and ends
with whateverfprintf(stderr, fmt, ...) would produce, followed by a newline.

8.4. Parallel solving

Function

void KheArchiveParallelSolve(KHE_ARCHIVE archive,
KHE_GENERAL_SOLVER solver, KHE_OPTIONS options,
KHE_SOLN_TYPE soln_type, HA_ARENA_SET as);

solves the instances ofarchive in parallel.

Each individual solve is carried out bysolver, which is passed a fresh solution and a copy
of options. The fresh solution is as returned byKheSolnMake except that the diversifier is set,
as explained below.

If solutions are saved (see optionsps_soln_group andps_first_soln_group below),
parametersoln_type determines whether they are left as they are or reduced to placeholders
(Section 4.2.6).KHE_SOLN_WRITABLE_PLACEHOLDER is recommended because it recycles a large
amount of memory, while still permitting the solutions to be written. Only if further processing
of the solutions is intended would they be left as they are, by passingKHE_SOLN_ORDINARY.

If as != NULL, each call toKheSolnMake is passed an arena set, as Section 4.2.2 suggests.
There is one arena set per thread,withas serving one thread and freshly created arena setsserving
the others. At the end, the idle arenas in all arena sets other thanas are moved intoas, and the
arena sets in all solutions kept by the two functions are set toas by calls toKheSolnSetArenaSet
(Section 4.2.2). If further parallel solving of these solutions is attempted, it will be necessary to
install distinct arena sets first.

There is also

KHE_SOLN KheInstanceParallelSolve(KHE_INSTANCE ins,
KHE_GENERAL_SOLVER solver, KHE_OPTIONS options,
KHE_SOLN_TYPE soln_type, HA_ARENA_SET as);

Behind the scenes it is the same, but it solves a single instance rather than an entire archive, and
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it returns any one best solution rather than storing solutions in a solution group.

All objects created by these two functions, except for solutions that are kept, are deleted
before they return. This includes all copies ofoptions, and all freshly created arena sets.

Options consulted by parallel solvers have names beginning withps_. Here is the full list:

ps_threads

The number of threads used for solving. This includes the initial thread, the one that called
KheArchiveParallelSolve or KheInstanceParallelSolve, so the value must be at least
1. If ps_threads is absent, or present but KHE has been compiled with multi-threading
off, its value is taken to be 1.

ps_make

The number of solutionsKheArchiveParallelSolve andKheInstanceParallelSolve
make per instance. Ifps_make is absent, its value is taken to be 1.

ps_no_diversify

For each instance, the solutions passed tosolver are identical except that the diversifier of
the first is 0, the diversifier of the second is 1, and so on. The solver may use these values
to create diverse solutions. Boolean optionps_no_diversify, when"true", gives the
same diversifier (namely 0) to all solutions. All solutions should then turn out the same,
except when there are time limits: they can cut off solving at slightly different moments.

ps_keep

The maximum number of solutions thatKheArchiveParallelSolve keeps (stores in
ps_soln_group below) per instance. Ifps_keep is absent, its value is taken to be 1.
The bestps_keep solutions are kept.KheInstanceParallelSolve does not consult this
option; it always keeps (in fact, returns) one solution, the best it found.

ps_soln_group

A string option, which, if present, causes a solution group to be added toarchive holding
the bestps_keep solutions to each instance. The value of the string is the name of the
solution group. If there is already a solution group inarchive with that name, the name is
extended so that it does not clash with existing solution group names.

If ps_soln_group is omitted, or its name is wrong, no solution group is made. When
solutions have been found but they are not in the result archive, this is the usual reason.

ps_first_soln_group

Like ps_soln_group except that the solution group holds one solution for each instance,
the one whose solve was started first. Thissolution will thus be added to two solution groups
if ps_soln_group andps_first_soln_group are both present and the solution is one of
theps_keep best for its instance. (Actually, in that case the solution is copied, owing to the
possible need to store different running times in the two versions, as explained just below
under optionps_time_measure). The author uses

ps_first_soln_group=KHE20 ps_soln_group=KHE20x8

to get the results of a single run and of a best of 8 run, while producing only eight (not nine)
solutions. If present,ps_first_soln_group will precede the other in the archive.
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ps_time_measure

Measuring running time is awkward for parallel solving. This option says how to do it.

If ps_time_measure is"omit", the parallel solver does not set the solutions’running times.
They have the values given to them bysolver. If solver is KheGeneralSolve2020, for
example, each holds the wall clock time from whenKheGeneralSolve2020 was called to
when it returns. This is useful when all solutions are kept, for showing how running times
vary. It is misleading whenps_threads exceeds the number of processors.

If ps_time_measure is"shared", each instance monopolizes all threads while its solutions
are being constructed. There is some idle time for some threads while they wait for others
to finish off the current instance, making the total wall clock time of the solve somewhat
larger than for"omit". Then the running times of all solutions for one instance are set to
the same value: the wall clock time from when the first solve of their instance began until
the last solve ended. This is useful when only the best, or the few best, solutions are being
kept, because it records in those solutions how long it really takes to find them, given that
all the solutions have to be found, albeit in parallel, before the few can be chosen.

If ps_time_measure is "auto" (the default value), then the behaviour is as for"omit"

whenps_keep >= ps_make, and as for"shared" whenps_keep < ps_make.

This option only affects the solutions stored inps_soln_group. The solutions stored in
ps_first_soln_group have the running times given to them bysolver.

ps_time_limit

A string option defining a soft time limit for solving each instance. The parallel solver
will stop initiating solves of an instance once the wall clock time since it initiated the first
solve of that instance exceeds this limit, even if the requestedps_make solves have not all
begun. The format is as for functionKheTimeFromString described above (Section 8.1):
either"-", meaning no time limit (which is the default value), orsecs, or mins:secs, or
hrs:mins:secs. For example,10 is 10 seconds, and5:0 is 5 minutes.

On the author’s quad-core machine, finding 8 solutions by running 8 threads is usually somewhat
faster than finding them by running 4 threads. The effect is not large. It is presumably due to the
hardware hyper-threading feature, which allows up to two threads to run on each processor in an
attempt to improve throughput. But there is also a random element concerning whether two slow
solves happen to be allocated to the same thread, so it is hard to be sure.

Parallelism is obtained via functionspthread_create andpthread_join from the Posix
threads library. KHE has been carefully designed to ensure that operations carried out in parallel
on distinct solutions cannot interfere with each other. If you do not have Posix threads, a simple
workaround documented in KHE’s makefile will allow you to compile KHE without it. The only
difference is thatKheArchiveParallelSolve andKheInstanceParallelSolve will find their
solutions sequentially rather than in parallel.

8.5. Monitor adjustments

In this section we present solvers which adjust monitors. The monitor grouping solvers from
Chapter 13 would also fit here.
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8.5.1. Detaching low-cost monitors

On difficult instances it might make sense to forget about monitors whose violation only costs
a small amount, and concentrate on monitors whose violations are more serious. This idea is
implemented by

void KheDetachLowCostMonitors(KHE_SOLN soln, KHE_COST min_weight,
KHE_GROUP_MONITOR low_cost_gm);

It detaches all monitors whose combined weight is less thanmin_weight. For example,

KheDetachLowCostMonitors(soln, KheCost(1, 0), NULL);

detaches all monitors for soft constraints.

If low_cost_gm is non-NULL, all monitors that were detached by this operation (all monitors
whose combined weight is less thanmin_weight that were not already detached) are made
children oflow_cost_gm. One can then call

void KheAttachLowCostMonitors(KHE_GROUP_MONITOR low_cost_gm);

to reattach these monitors whenever desired. They will no longer be children oflow_cost_gm

after this is done.

8.5.2. Changing the multipliers of cluster busy times monitors

Cluster busy times monitors have amultiplier, which is an integer that their true costs are
multiplied by (Section 6.6.4). To aid in the use of multipliers, there is an operation

void KheSetMonitorMultipliers(KHE_SOLN soln, char *str, int val);

which finds each cluster busy times constraintc whose name or Id containsstr, and sets the
multiplier of every monitor derived fromc to val. To return the monitors to their original state,
make the same call again, but withval set to 1.

8.5.3. Propagating unavailable times to resource monitors

A resourcer ’s unavailable times, Ur, is a set of times taken from certain monitors of non-zero
weight that apply tor: all times in avoid unavailable times monitors, all times in limit busy
times monitors with maximum limit 0, and all times in positive time groups of cluster busy
times constraints with maximum limit 0. In this section we do not care about the weight of these
monitors, provided it is non-zero. We simply combine all these times intoUr.

Suppose thatr has a cluster busy times or limit active intervals monitormwith a time group
T such thatT ⊆ Ur. Then,althoughT could be busy, it is not likely to be busy,and it is reasonable
to letmknow this, by callingKheClusterBusyTimesMonitorSetNotBusyState (Section 6.6.4)
or KheLimitActiveIntervalsMonitorSetNotBusyState (Section 6.6.7).

KHE offers a solver that implements this idea:

bool KhePropagateUnavailableTimes(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);
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For each resourcer of typert in soln’s instance (or for each resource of the instance ifrt is
NULL), it calculatesUr, and, ifUr is non-empty, it checks every time groupT in every cluster busy
times and limit active intervals monitor forr. For eachT ⊆ Ur, it calls the function appropriate
to the monitor, withactive set tofalse if T is positive, and totrue if T is negative. It returns
true if it changed anything.

There is no corresponding function to undo these settings. As cutoff indexes increase they
become irrelevant anyway.

8.5.4. Changing the minimum limits of cluster busy times monitors

Cluster busy times monitors have aKheClusterBusyTimesMonitorSetMinimum operation
(Section 6.6.4) which changes their minimum limits. This section presents a method of making
these changes which might be useful during solving.

This method calculates the demand for resources at particular times, which only really
makes sense after all times are assigned. So it could reasonably be classified as a resource
structural solver, but since it helps to adjust monitor limits it has been documented here.

Consider this example from nurse rostering. Suppose each resource has a maximum limit
on the number of weekends it can be busy. Since each resource can work at most 2 shifts per
weekend, summing up these maximum limits and multiplying by 2 gives the maximum number
of shifts that resources can work on weekends. We call this thesupplyof weekend shifts.

Now suppose we find the number of weekend shifts that the instance requires nurses for.
Call this thedemandfor weekend shifts.

If demand equals or exceeds supply, each resource needs to work its maximum number of
weekends,or else some demandswill not be covered. In that case, the resources’maximum limits
are also minimum limits. The solver described here calculates supply and demand. It leaves it
to the user to callKheClusterBusyTimesMonitorSetMinimum, or whatever.

To create a solver for doing this work, call

KHE_CLUSTER_MINIMUM_SOLVER KheClusterMinimumSolverMake(HA_ARENA a);

It uses memory taken from arenaa. There is no operation to delete the solver; it is deleted when
a is freed. To carry out one solve, call

void KheClusterMinimumSolverSolve(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_SOLN soln, KHE_OPTIONS options, KHE_RESOURCE_TYPE rt);

It usesoptions to find the common frame and event timetable monitor. It considers tasks and
resources of typert only. It can be called any number of times to solve problems with unrelated
values ofsoln, options, andrt.

The attributes of the most recent solve may be found by calling

KHE_SOLN KheClusterMinimumSolverSoln(KHE_CLUSTER_MINIMUM_SOLVER cms);
KHE_OPTIONS KheClusterMinimumSolverOptions(
KHE_CLUSTER_MINIMUM_SOLVER cms);

KHE_RESOURCE_TYPE KheClusterMinimumSolverResourceType(
KHE_CLUSTER_MINIMUM_SOLVER cms);
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These will all beNULL before the first solve. If a new solve is begun with the same attributes as
the previous solve, it will produce the same outcome if the solution has not changed.

The solve first finds the constraints suited to what it does: all cluster busy times constraints
with non-zero cost and a non-zero number of time groups which are pairwise disjoint (always
true in practice) and either all positive, in which case a non-trivial maximum limit must be
present, or all negative, in which case a non-trivial minimum limit must be present.

For each maximal non-empty subset of these constraints with the same time groups
(ignoring polarity) and the same ‘applies to’ time group, the solve makes onegroup, with its own
supply and demand, for each offset of the ‘applies to’ time group. To visit these groups, call

int KheClusterMinimumSolverGroupCount(KHE_CLUSTER_MINIMUM_SOLVER cms);
KHE_CLUSTER_MINIMUM_GROUP KheClusterMinimumSolverGroup(
KHE_CLUSTER_MINIMUM_SOLVER cms, int i);

There are several operations for querying a group. To visit its constraints, call

int KheClusterMinimumGroupConstraintCount(KHE_CLUSTER_MINIMUM_GROUP cmg);
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT KheClusterMinimumGroupConstraint(

KHE_CLUSTER_MINIMUM_GROUP cmg, int i);

To retrieve its constraint offset, call

int KheClusterMinimumGroupConstraintOffset(KHE_CLUSTER_MINIMUM_GROUP cmg);

The time groups may be retrieved from its first constraint. To find its supply, call

int KheClusterMinimumGroupSupply(KHE_CLUSTER_MINIMUM_GROUP cmg);

This is calculated as described above for weekends; here is a fully general description.

For each constraintc of cmg we calculate a supply, as follows. Suppose first that the
constraint has non-trivial maximum limitmax and that all its time groups are positive. Find, for
each time grouptg of c, the number of frame time groups thattg intersects with (taking the
offset into account). This is the maximum number of times fromtg that a resource can be busy
for. Take themax largest of these numbers and add them to get the supply ofc.

If c has a non-trivial minimum limitmin and all its time groups are negative, setmax to
the number of time groups minusmin and proceed as in the positive case. (For more on this
transformation, see the theorem at the end of Section 3.7.14.)

For each resourcer of typert we find a supply, as follows. Ifr is a point of application of
at least one constraint, its supply is the minimum of the supplies of its constraints. Otherwise,
its supply is the sum, over all time groupstg, of the number of frame time groupstg intersects
with. KheClusterMinimumGroupSupply is the sum, over all resourcesr, of the supply ofr.

To find a group’s demand, call

int KheClusterMinimumGroupDemand(KHE_CLUSTER_MINIMUM_GROUP cmg);

This is the sum, over all times in the time groups of the group’s constraints (taking the offset into
account), of the number of tasks of typert running at each time.
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Finally,

void KheClusterMinimumGroupDebug(KHE_CLUSTER_MINIMUM_GROUP cmg,
int verbosity, int indent, FILE *fp);

produces a debug print ofcmg ontofp with the given verbosity and indent.

There is also an operation for finding the group of a given monitor:

bool KheClusterMinimumSolverMonitorGroup(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_CLUSTER_BUSY_TIMES_MONITOR cbtm, KHE_CLUSTER_MINIMUM_GROUP *cmg);

If cms has a group containingcbtm’s constraint and offset (there can be at most one), this function
returnstrue and sets*cmg to that group. Otherwise it returnsfalse and sets*cmg to NULL.

It is up to the caller to take it from here. For example, after carrying out a solve, for each
cluster monitorm one could callKheClusterMinimumSolverMonitorGroup to see whether
it is subject to a group. Then if that group’s demand equals or exceeds its supply, a call to
KheClusterBusyTimesMonitorSetMinimum increasesm’sminimum limit. And soon. However,
the solver does offer some convenience functions to help with this:

void KheClusterMinimumSolverSetBegin(KHE_CLUSTER_MINIMUM_SOLVER cms);
void KheClusterMinimumSolverSet(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int val);

void KheClusterMinimumSolverSetEnd(KHE_CLUSTER_MINIMUM_SOLVER cms,
bool undo);

KheClusterMinimumSolverSetBegin begins a run of changes to monitors’ minimum limits.
KheClusterMinimumSolverSet makes a call toKheClusterBusyTimesMonitorSetMinimum,
and remembers that the call was made.KheClusterMinimumSolverSetEnd ends the run of
changes, and ifundo is true it also undoes them (in reverse order), returning the monitor limits
to their values when the run began. Use of these functions is optional.

For convenience there is also

void KheClusterMinimumSolverSetMulti(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_RESOURCE_GROUP rg);

whererg’s resource type must equalcms’s. It callsKheClusterMinimumSolverMonitorGroup
for each cluster busy timesmonitorm for each resource ofrg. If that returnstrue and the group’s
demand equals or exceeds its supply, thenm’s minimum limit is changed to its maximum limit.
Neither KheClusterMinimumSolverSetBegin nor KheClusterMinimumSolverSetEnd are
called. The user must callKheClusterMinimumSolverSetBegin first, as usual, and is free to
callKheClusterMinimumSolverSetEnd immediately withundo set tofalse, or later withundo
set totrue. It is probably not a good idea to not callKheClusterMinimumSolverSetEnd at all,
since that will leavecms unable to accept calls toKheClusterMinimumSolverSetBegin.

Finally, function

void KheClusterMinimumSolverDebug(KHE_CLUSTER_MINIMUM_SOLVER cms,
int verbosity, int indent, FILE *fp);
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produces the usual debug print ofcms ontofp with the given verbosity and indent.

Cluster minimum solvers deal only with cluster busy times constraints. Other constraints
might help to reduce supply further. For example, if a resource is unavailable for an entire day,
that will reduce supply by 1. At present these kinds of ideas are not taken into account.

8.6. Generating files of tables and graphs

KHE offers a module for generating files containing tables and graphs. Any number of files may
be generated simultaneously, even in parallel, although an individual file cannot be generated
in parallel. One file may contain any number of tables and graphs, and these can be generated
simultaneously, although not in parallel.

To begin and end a file, call

KHE_FILE KheFileBegin(char *file_name, KHE_FILE_FORMAT fmt);
void KheFileEnd(KHE_FILE kf);

This writes a file calledfile_name in sub-directorystats (which the user must have created
previously) of the current directory. The file is opened byKheFileBegin and closed by
KheFileEnd. KheFileEnd also reclaims all memory (taken from a specially created arena) used
by all tables and graphs of that file. Three file formats are supported:

typedef enum {
KHE_FILE_PLAIN,
KHE_FILE_LOUT,
KHE_FILE_LOUT_STANDALONE,
KHE_FILE_LATEX

} KHE_FILE_FORMAT;

These represent plain text, Lout, standalone Lout (i.e. ready for converstion to Encapsulated
PostScript) and LaTeX. Only the two Lout values support graphs. To generate the actual tables
and graphs, see the following subsections.

8.6.1. Tables

To generate tables, make matching pairs of calls to the following functions in between the calls
to KheFileBegin andKheFileEnd:

KHE_TABLE KheTableBegin(KHE_FILE kf, int col_width, char *corner,
bool with_average_row, bool with_total_row, bool highlight_cost_minima,
bool highlight_time_minima, bool highlight_int_minima);

void KheTableEnd(KHE_TABLE kt);

The table is begun byKheTableBegin, and finished, including being written out to filekf, by
KheTableEnd. Where the file format permits, a label will be associated with the table: the file
name for the first table, the file name followed by an underscore and 2 for the second table, and
so on. The value of the table is created in between these two calls, by calling functions to be
presented shortly. Because the entire table is saved in memory untilKheTableEnd is called, these
other calls may occur in any order. In particular it is equally acceptable to generate a table row
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by row or column by column.

Parametercol_width determines the width in characters of each column when the format
is KHE_FILE_PLAIN; it is ignored by the other formats. Parametercorner is printed in the top
left-hand corner of the table. It must be non-NULL, but it can be the empty string.

Each entry in the table has a type, which may be eitherstring, cost, time (really just an
arbitraryfloat), or int. If with_average_row is true, the table ends with an extra row. Each
entry in this row contains the average of the non-blank,non-string entries above it, if they all have
the same type; otherwise the entry is blank. Ifwith_total_row is true, the effect is the same
except that totals are printed, not averages.

If highlight_cost_minima is true, the minimum values of typecostin each row appear
in bold font, or marked by an asterisk in plain text. Parametershighlight_time_minima and
highlight_int_minima are the same except that they highlight values of typetimeor int.

A caption can be added by calling

void KheTableCaptionAdd(KHE_TABLE kt, char *fmt, ...);

at any time betweenKheTableBegin andKheTableEnd, as often as desired. This does what
printf would do with the arguments afterfile_name. The results of all calls are saved and
printed as a caption byKheTableEnd.

In any given table, each row except the first (header) row must be declared, by calling

void KheTableRowAdd(KHE_TABLE kt, char *row_label, bool rule_below);

The rows appear in the order of the calls. Parameterrow_label both identifies the row and
appears in the first (header) column of the table. Ifrule_below istrue, the row will have a rule
below it. The header row always has a rule below it, and there is always a rule below the last row
(not counting any average or total row).

In the same way, non-header columns are declared, in order, by calls to

void KheTableColAdd(KHE_TABLE kt, char *col_label, bool rule_after);

wherecol_label both identifies the column and appears in the first (header) row of the table,
and settingrule_after to true causes a rule to be printed after the column.

To add an entry to the table, call any one of these functions:

void KheTableEntryAddString(KHE_TABLE kt, char *row_label,
char *col_label, char *str);

void KheTableEntryAddCost(KHE_TABLE kt, char *row_label,
char *col_label, KHE_COST cost);

void KheTableEntryAddTime(KHE_TABLE kt, char *row_label,
char *col_label, float time);

void KheTableEntryAddInt(KHE_TABLE kt, char *row_label,
char *col_label, int val);

These add an entry tokt at row row_label and columncol_label, aborting if these are
unknown or an entry has already been added there. If no entry is ever added at some position,
the table will be blank there. The entry’s format depends on the call. For example,
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KheTableEntryAddCost(file_name, row_label, col_label, KheSolnCost(soln));

adds a solution cost to the table which will be formatted in the standard way.

Strings passed to these functions are copied where required, so mutating strings are not a
concern. There is no locking, so calls which create and add to tables should be single-threaded.

8.6.2. Graphs

To generate graphs in Lout format, make matching pairs of calls to the following functions in
between the calls toKheFileBegin andKheFileEnd:

KHE_GRAPH KheGraphBegin(KHE_FILE kf);
void KheGraphEnd(KHE_GRAPH kg);

To set options which control the overall appearance of the graph, call

void KheGraphSetWidth(KHE_GRAPH kg, float width);
void KheGraphSetHeight(KHE_GRAPH kg, float height);
void KheGraphSetXMax(KHE_GRAPH kg, float xmax);
void KheGraphSetYMax(KHE_GRAPH kg, float ymax);
void KheGraphSetAboveCaption(KHE_GRAPH kg, char *val);
void KheGraphSetBelowCaption(KHE_GRAPH kg, char *val);
void KheGraphSetLeftCaptionAndGap(KHE_GRAPH kg, char *val, char *gap);
void KheGraphSetRightCaptionAndGap(KHE_GRAPH kg, char *val, char *gap);

These determine the width and height of the graph (in centimetres), the maximum x and y values,
and the small captions above, below, to the left of, and to the right of the graph. If calls to these
functions are not made, the options remain unspecified, causing Lout’s graph package to substi-
tute default values for them in its usual way. The caption values must be valid Lout source.

KheGraphSetLeftCaptionAndGap andKheGraphSetRightCaptionAndGap have the extra
gap parameter. This controls the gap between the caption and the graph. For example,

KheGraphSetLeftCaptionAndGap(kg, "Caption", "0c");

produces the minimum gap (0 cm), but a larger value is usually needed, to avoid unsightly
overstriking. The value ofgap can also beNULL, in which case Lout’s default value is used.

There is also

void KheGraphSetKeyLabel(KHE_GRAPH kg, char *val);

which sets the ‘key label’of the graph. This is the first line of the graph’s key, described below.
Omitting to call this function is fine; it just means that this first line is omitted.

Any number ofdatasetsmay be displayed on one graph; each dataset is a sequence of
points. Often there is just one dataset. To create a dataset, call

KHE_DATASET KheDataSetAdd(KHE_GRAPH kg, KHE_DATASET_POINTS_TYPE points_type,
KHE_DATATSET_PAIRS_TYPE pairs_type, char *label);

wherepoints_type has type
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typedef enum {
KHE_DATASET_POINTS_NONE,
KHE_DATASET_POINTS_CROSS,
KHE_DATASET_POINTS_SQUARE,
KHE_DATASET_POINTS_DIAMOND,
KHE_DATASET_POINTS_CIRCLE,
KHE_DATASET_POINTS_TRIANGLE,
KHE_DATASET_POINTS_PLUS,
KHE_DATASET_POINTS_FILLED_SQUARE,
KHE_DATASET_POINTS_FILLED_DIAMOND,
KHE_DATASET_POINTS_FILLED_CIRCLE,
KHE_DATASET_POINTS_FILLED_TRIANGLE

} KHE_DATASET_POINTS_TYPE;

and says what to print at each data point (nothing, or a cross, etc.), andpairs_type has type

typedef enum {
KHE_DATATSET_PAIRS_NONE,
KHE_DATATSET_PAIRS_SOLID,
KHE_DATATSET_PAIRS_DASHED,
KHE_DATATSET_PAIRS_DOTTED,
KHE_DATATSET_PAIRS_DOT_DASHED,
KHE_DATATSET_PAIRS_DOT_DOT_DASHED,
KHE_DATATSET_PAIRS_DOT_DOT_DOT_DASHED,
KHE_DATASET_PAIRS_YHISTO,
KHE_DATASET_PAIRS_SURFACE_YHISTO,
KHE_DATASET_PAIRS_FILLED_YHISTO,
KHE_DATASET_PAIRS_XHISTO,
KHE_DATASET_PAIRS_SURFACE_XHISTO,
KHE_DATASET_PAIRS_FILLED_XHISTO

} KHE_DATASET_PAIRS_TYPE;

and says what connects each successive pair of points (nothing, a solid line, a dashed line, a
histogram, etc.). These are converted into values of thepoints andpairs options of the@Data
symbol of Lout’s Graph package. The Lout User’s Guide has examples of what is produced.

When thelabel parameter ofKheDataSetAdd is non-NULL, one line is added to thekeyof
the graph, a small area in the top left-hand corner which indicates what each data set represents.
The line shows two points and what they are separated by, followed by the label. The first line
of the key may be set separately, by callingKheGraphSetKeyLabel as described above.

Function

void KhePointAdd(KHE_DATASET kd, float x, float y);

adds a point to a dataset. The points are generated in the order received,so in practice,successive
calls toKhePointAdd on the same dataset should have increasing x values.

Several datasets can be built simultaneously. This can be useful for recording several
quantities as a solver proceeds.
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8.7. Exponential backoff

One strategy for making solvers faster is to do a lot of what is useful, and not much of what isn’t
useful. When something is always useful, it is best to simply do it. When something might be
useful but wastes a lot of time when it isn’t, it is best to try it, observe whether it is useful, and
do more or less of it accordingly. Solvers that do this are said to beadaptive.

For example, suppose there is a choice of two or more methods of doing something. In
that case, information can be kept about how successful each method has been recently, and the
choice can be weighted towards recently successful methods.

However, this section is concerned with a different situation, involving just one method.
Suppose there is a sequence ofopportunitiesto apply this method, and that as each opportunity
arrives, the solver can choose to apply the method or not. Typically, the method will be a repair
method: repair is optional. If the solveracceptsthe opportunity, the method is then run and either
succeeds(does something useful) orfails (does nothing useful). Otherwise, the solverdeclines
the opportunity. So opportunities are classified as successful, failed, or declined.

Exponential backofffrom computer network implementation is a form of adaptation suited
to this situation. It works as follows. If the solver applies the method and it is successful, then it
forgets all history and will accept the next opportunity. But if the solver applies the method and
it fails, then it remembers the total number of failed opportunitiesF (including this one) since
the last successful opportunity, and does not accept another opportunity until after it has declined

F−12 opportunities. Declined opportunities do not count as failures.

Here are some examples. Each character isone opportunity;S isa successful opportunity (or
the start of the sequence),F is a failed one, and. is a declined one. Each successful opportunity
makes a fresh start, so the examples all begin withS and contain onlyF and. thereafter:

S
SF.
SF.F..
SF.F..F....
SF.F..F....F........

and so on. Every complete trace of exponential backoff can be broken at eachS into sub-traces
like these. Methods that always succeed are tried at every opportunity. Methods that always fail
are tried only about log2n times, wheren is the total number of opportunities.

Other rules for which opportunities to accept could be used, rather than waiting untilF−12
opportunities have been declined. For example, every opportunity could be accepted, which
amounts to having no backoff at all. The principles are the same, only the rule changes.

KHE offers three operations which together implement exponential backoff:

KHE_BACKOFF KheBackoffBegin(KHE_BACKOFF_TYPE backoff_type, HA_ARENA a);
bool KheBackoffAcceptOpportunity(KHE_BACKOFF bk);
void KheBackoffResult(KHE_BACKOFF bk, bool success);

KheBackoffBegin creates a new backoff object in arenaa, passing abackoff_type value
of type
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typedef enum {
KHE_BACKOFF_NONE,
KHE_BACKOFF_EXPONENTIAL

} KHE_BACKOFF_TYPE;

which determines which rule is used: none or exponential.KheBackoffAcceptOpportunity is
called when an opportunity arises, and returnstrue if that opportunity should be accepted. In
that case, the next call must be toKheBackoffResult, reporting whether or not the method was
successful. As usual, the backoff object’s memory is reclaimed when the arena is deleted.

Suppose that the program pattern without exponential backoff is

while( ... )
{
...
if( opportunity_has_arisen )
success = try_repair_method(soln);

...
}

Then the modified pattern for including exponential backoff is

bk = KheBackoffBegin(KHE_BACKOFF_EXPONENTIAL);
while( ... )
{
...
if( opportunity_has_arisen && KheBackoffAcceptOpportunity(bk) )
{
success = try_repair_method(soln);
KheBackoffResult(bk, success);

}
...

}

Each successfulKheBackoffAcceptOpportunity is followed by a call toKheBackoffResult.

All backoff objects hold a few statistics, kept only for printing byKheBackoffDebug
below, and a boolean flag which istrue if the next call must be toKheBackoffResult. When
exponential backoff is requested, a backoff object also maintains two integers,C andM. C is
the number of declines since the last accept (or since the backoff object was created).M is the
maximum number of opprtunities that may be declined, defined by

M =




0     if F = 0
F−12     if F ≥ 1

whereF is the number of failures since the last success (or since the backoff object was
created). The next call toKheBackoffAcceptOpportunity will return true if C ≥ M. The
implementation will not increaseM if that would cause an overflow. Overflow is very unlikely,
since an enormous number of opportunities would have to occur first.

Function



8.7. Exponential backoff 215

char *KheBackoffShowNextDecision(KHE_BACKOFF bk);

returns"ACCEPT" when the next call toKheBackoffAcceptOpportunity will return true, and
"DECLINE" when it will returnfalse. There is also

void KheBackoffDebug(KHE_BACKOFF bk, int verbosity, int indent, FILE *fp);

Verbosity 1 prints the current state, including a ‘!’ when the flag is set, on one line. Verbosity 2
prints some statistics: the number of opportunities so far, and how many are successful, failed,
and declined, in a multi-line format.

8.8. Thread-safe random numbers

Incredibly,C has no standard thread-safe way to generate random numbers. There isrand_r, but
that is obsolete; there israndom_r, but that is a nonstandard glibc extension;and there isdrand48,
but that is not thread-safe. This is according to the manual entries on the author’s machine.

So KHE offers theKHE_RANDOM_GENERATOR type, representing a random number generator.
It does not use heap memory. To declare a random number generator, do this:

KHE_RANDOM_GENERATOR rgen;

If this is local to some function, then each call on that function (including calls in different
threads) will have its own independent generator. To initialize it, passing a seed, call

void KheRandomGeneratorInit(KHE_RANDOM_GENERATOR *rgen, uint32_t seed);

It would make sense to pass a solution’s diversifier as the seed:

KheRandomGeneratorInit(&rgen, KheSolnDiversifier(soln));

so that different solutions get different random numbers. To obtain one random number, call

uint32_t KheRandomGeneratorNext(KHE_RANDOM_GENERATOR *rgen);

It returns a fairly random unsigned 32-bit integer, good enough for solvers, but not cryptography.
It may be more convenient to call

int KheRandomGeneratorNextRange(KHE_RANDOM_GENERATOR *rgen,
int first, int last);

This uses the result of a call toKheRandomGeneratorNext to find a random integer between
first andlast inclusive. Finally,

void KheRandomGeneratorTest(uint32_t seed, int count,
int first, int last, int indent, FILE *fp);

initializes a random number generator usingseed, then prints outcount random numbers in the
rangefirst to last inclusive, onto filefp, indentedindent spaces.
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This chapter documents the solvers packaged with KHE that modify the time structure of a
solution: split and merge its meets, add nodes and layers, and so on. These solvers may alter
time and resource assignments, but they only do so occasionally and incidentally to their
structural work.

9.1. Layer tree construction

KHE offers a solver for building a layer tree holding the meets of a given solution:

KHE_NODE KheLayerTreeMake(KHE_SOLN soln);

The root node of the tree,holding the cycle meets, is returned. The function has no special access
to data behind the scenes. Instead, it works by calling basic operations and helper functions:

• It callsKheMeetSplit to satisfy split events constraints and other influences on the number
and duration of meets, as far as possible. It is usual to callKheLayerTreeMake when each
event is represented insoln by a single meet of the full duration (that is, afterKheSolnMake

andKheSolnMakeCompleteRepresentation), but some meets may be already split. In any
case,KheLayerTreeMake does not create, delete, or merge meets.

• It callsKheMeetBoundMake with aNULL meet bound group to set the time domains of meets
to satisfy preassigned times, prefer times constraints, and other influences on time domains,
as far as possible. For each meet, one call toKheMeetBoundMake is made for each possible
duration. It is usual to callKheLayerTreeMake at a moment when the time domains of
the meets are not restricted by meet bounds, but some meets may already have bounds. In
any case,KheLayerTreeMake only adds bounds, never removes them, so it either leaves a
domain unchanged, or reduces it to a subset of its initial value.

• It callsKheMeetAssign in trivial cases where there is no doubt that the assignments will be
final. Precisely, if there are two events of equal duration linked by a link events constraint
and split into meets of equal durations, and the algorithm places one in a parent node and
the other in a child of that parent, then, provided the child node itself has no children (which
would render the case non-trivial), the meets of the child node will be assigned to meets of
the parent node, and the child node will be deleted in accordance with the convention given
in Chapter 10, that meets whose assignments will never change should not lie in nodes.

• It calls KheMeetAssignFix to fix all the assignments it makes (as defined immediately
above). These can be unfixed afterwards if desired.

216
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• It callsKheNodeMake andKheNodeAddMeet to ensure that for each event there is one node
holding the meets of that event, unless these meets receive the trivial assignments just de-
scribed. There is also a node (the root node returned byKheLayerTreeMake, also accessible
asKheSolnNode(soln, 0)) holding the cycle meets. Any other meets (usually none) are
not placed into nodes.KheLayerTreeMake requiressoln to contain no nodes initially.

• It calls KheNodeAddParent to reflect link events constraints (even between events whose
durations differ), as far as possible, and the need to ultimately assign every meet to a cycle
meet. WhenKheLayerTreeMake returns, every node is a descendant of the root node.

• Some instances contain events which have already been split, with the fragments presented
as distinct events. It is best if the nodes holding the meets derived from these fragments are
merged. So for each pair of distinct events which appear to be part of one course because
they share a spread events constraint or avoid split assignments constraint, if certain other
conditions (Section 9.1.5) are satisfied, the nodes holding the meets of those two events are
merged by a call toKheNodeMerge.

These elements interact in ways that make most of them impossible to separate. For example,
the splitting of an event into meets needs to be influenced not just by the event’s own split events
constraints and distribute split events constraints, but also by the constraints of the events that it
is linked to by link events constraints.

Logically, order events constraints should also affect the construction of layer trees. In the
version of KHE documented here they are not consulted, but this will change.

AlthoughKheLayerTreeMake does not callKheLayerMake, resource layers (sets of events
that share a common preassigned resource which has a hard avoid clashes constraint) strongly
influence its behaviour. It ensures that the events of each layer are split into meets which can be
packed into the cycle meets without overlapping in time, except in the unlikely case where the
total duration of the events of the layer exceeds the total number of times in the cycle.

For eachmeet with a pre-existing assignment to sometarget_meet, KheLayerTreeMake
tries to placemeet into a child node oftarget_meet’s node. In exceptional circumstances, this
may not be possible, and then the pre-existing assignment is removed byKheLayerTreeMake.
Suppose there is an event with two meets, both assigned to other meets. If those two other meets
are both derived from the same event, or if they are both cycle meets, then all is well; but if not,
one of the original meets will be unassigned. This is done becauseKheLayerTreeMake tracks
relations between events, not meets, and cannot cope with the idea of one event being assigned
partly to one event and partly to another. A meet will also be unassigned when there is a cycle
of assignments, but that should never occur in practice.

The above attempts to be a complete specification ofKheLayerTreeMake, sufficient for
using it. For the record, the following subsections explain how it works in detail.

9.1.1. Overview

KheLayerTreeMake uses a constructive heuristic which runs quickly. It works by examining the
relevant constraintsand taking actions to satisfy them,giving priority to those with higher weight.
It does not search through a large space of possible solutions to find the best. This is appropriate,
because in practice good solutions are easy to find. The problem is more about giving due weight
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to the many influences on the solution than about real solving.

KheLayerTreeMake begins by unassigning meets to remove cases where two meets derived
from a single event are assigned to meets not both derived from the same event or both cycle
meets, and splitting meets whose duration exceeds the number of times in the instance into meets
of duration within that bound. This allows the remainder of the algorithm to assume that each
event is preassigned to at most one other event, and that there are no oversize meets.

In practice, it is likely that the constraints of an instance will cooperate harmoniously, but
for completeness it is necessary to handle cases where they do not. For example, there is nothing
to prevent a link events constraint from linking two events, one of which is required by a split
events constraint to split into three meets, while the other is required to split into one.

There is a data structure,described in the following sections,which embodiesall the require-
ments that the final layer tree must satisfy, including how events are to be split into meets, and
how meets are to be grouped into nodes. It is an invariant that at least one layer tree must satisfy
all these requirements. Initially, the data structure embodies no requirements at all. A long series
of jobs is then applied to it, each inspired by some constraint or other feature of the instance to
request that the data structure add some new requirements to the ones it currently embodies. If
no layer trees would satisfy both the old and new requirements, the job isrejected(it is ignored);
otherwise, it isaccepted(its requirements are added). There are also cases in which some of the
requirements of a job are accepted but others have to be rejected. The jobs are sorted by decreas-
ing priority, which is usually the combined weight of the constraint that inspired the job. In this
way, contradictory requests are resolved by giving preference to requests of higher priority.

Here is the full list of job types, with brief descriptions. How each job modifies the data
structure will be explained later. The jobs not derived from constraints have high priority.

Pre-existing splits.Each already split evente generates a job requiring the meets thate is
ultimately split into to be packable into (created by further splitting of) the pre-existing meets.

Preassigned times.XHSTT specifies that a meet derived from an event with a preassigned
time must be assigned that time. Several simultaneous meets derived from one event are unlikely
to be wanted, so this job requests that a preassigned event be not split further than its pre-existing
splits, and that the meets’ time domains be set to singleton domains.

Pre-existing assignments and link events constraints.These are interpreted as requests to
create parent-child links between nodes.

Avoid clashes constraints.Each resource subject to a required avoid clashes constraint
gives rise to a job which requests that the layer tree recognize that the events to which the
resource is preassigned cannot overlap in time.

Split events constraints and distribute split events constraints.These request restrictionson
the number of meets that an event may be split into, and their durations.

Spread events constraints.If the events of an event group of a spread events constraint
are split into too many or too few meets, then a non-zero number of deviations of the constraint
becomes inevitable. The job tries to tighten the requirements on the number of meets of the
events concerned, to the point where this problem cannot arise.

Prefer times constraints.This kind of job requests that the time domain of the meets of an
event which have a certain duration be reduced to satisfy a prefer times constraint. This may lead
to an empty domain for meets of that duration; if so, then there can be no meets of that duration
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at all, which may prevent the job from being accepted.

After all jobs have been applied, the data structure is traversed and a layer tree is built.
Finally,KheLayerTreeMake examines each pair of events connected by a spread events or avoid
split assignments constraint, and if those events’ nodes satisfy the conditions given in Section
9.1.5, it merges them by callingKheNodeMerge.

9.1.2. Linking

The data structure used byKheLayerTreeMake must be close enough to the layer tree to make
it straightforward to derive an actual layer tree at the end. In fact, it needs to represent the set of
layer trees that satisfy the requirements of all the jobs accepted so far. This section explains how
this is done for linking, and later sections explain the parts that handle splitting and layering.

If meets1can be assigned to meets2 at offseto1, ands2 can be assigned tos3 at offseto2, then
it is always possible to assigns1 directly tos3 at offseto1 + o2. Thus, the relation of assignability
between meets is transitive. Although it is not safe to assign a meet to itself, it does no harm to
pretend here that assignability is reflexive as well.

In some cases, two meets are assignable to each other. They must have equal durations
and time domains, but that is not unusual. By a well-known fact about reflexive and transitive
relations, two-way assignability is an equivalence relation between meets.

Similar relations can be defined between events. LetA(e1,e2) hold when the meets ofe1can
be assigned to the meets ofe2 at non-overlapping offsets. Define

S(e1,e2) = A(e1,e2) ∧ A(e2,e1)

Again,A is reflexive and transitive, andS is an equivalence relation.

The data structure used for linking events includes a representation of relationsA andS.
The equivalence classes defined bySare represented by nodes of a graph, containing the events
of the class and connected to other equivalence classes by directed edges representingA. Acould
be an arbitrary directed acyclic graph, but in fact it is limited to a tree: each equivalence class is
recorded as assignable to at most one other equivalence class. Relational nodes will always be
called classes, to avoid confusion with layer tree nodes.

The child classes of each equivalence class are organized into layers. That additional
structure is not needed for linking, however, so its description will be deferred to Section 9.1.4.

Initially, each event lies in its own class, plus there is one class with no events, representing
the cycle meets. Every event class is a child of the cycle meets class. Thus, initially relationSis
empty, and relationA records only the basic fact that every event is assignable to the cycle meets
to begin with. This is quite true, since, at this initial stage, before any jobs are accepted, the data
structure believes that each event’s domain is the entire cycle, that each event is free to split into
meets of duration 1, and that there are no layers.

Basing the data structure on events, rather than on meets, seems to be right, but it does cause
differences between the meets of one event to be overlooked. For example, the data structure
believes that all meets derived from the same event have the same time domain.

Jobs that link events together do so by proposing elements ofA andS to the data structure,
which accepts them when it can. AnS proposal is a request to merge the equivalence classes
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containing its two events into one (if they are not already the same); anAproposal is a request to
replace one parent link by another (which must still imply the first by transitivity). A proposal
could be rejected for various reasons: it might lead to a directed acyclic graph which is not a
tree, or cause events from the same layer to overlap in time, or lead to unacceptable restrictions
on how events are to be split (as in the example at the start of this chapter), and so on.

Pre-existing assignments are proposed first as elements ofS, and if that fails as elements of
A. The second proposal at least cannot fail to be accepted, because these jobs have maximum
priority and do not contradict each other. A link events constraint job first proposes all pairs
of linked events of equal duration as elements ofS, and then all pairs regardless of duration as
elements ofA. In general, anA proposal could require that the whole set of classes lying on a
cycle of A links be evaluated for merging, but this particular way of making proposals ensures
that, in fact, only pairwise merges need to be evaluated.

Each equivalence class has aclass leader, one of its own events. When an equivalence class
is created, its leader is the sole event it initially contains, and when two classes are merged, one
of the two leaders is chosen to be the leader of the merged class. For convenience, we pretend
that the cycle meets are derived from a singlecycle eventwhich is the leader of their class.

If classC contains an evente which is assigned to an event outsideC, then the evente is
assigned to lies in the parent class ofC. There may not be two such events inC unless they are
assigned to the same event at the same offset. The leader must be one of these events. The data
structure only becomes aware of assignments when the jobs representing them are accepted.

If C does not contain an event which is assigned to another event outside the class, then
it must contain at least one event which is not assigned at all, since otherwise there would be a
cycle of assignments within the class. Any such unassigned event may be the leader.

These conditions are trivially satisfied when a class is created, by making its sole event the
leader. When two classes are merged, there are various possibilities, including failure to merge
when the two leaders are assigned to distinct events outside both classes.

When constructing the final layer tree, all the unassigned events of each class except
the leader are placed in layer tree nodes which are made children of the node containing the
leader. Similarly, the nodes containing the leaders of child classes become children of the node
containing the leader of the parent class. In reality, of course, it is the meets derived from these
events by the splitting algorithm to be described next that are placed into these nodes.

9.1.3. Splitting

Given an eventeof durationd, any mathematical partition ofd is a possible outcome of splitting
e. For example, ifehas duration 6, the possible outcomes are the eleven partitions

6
5 1

4 2
4 1 1

3 3
3 2 1

3 1 1 1
2 2 2

2 2 1 1
2 1 1 1 1

1 1 1 1 1 1

One element of a partition is called apart, and is the duration of one meet.

Any condition that limits how an event is split defines a subset of this set of partitions. For
example, if a split events constraint states that an event of duration 6 should be split into exactly
four meets, that is equivalent to requiring the partition to be either 3 1 1 1 or 2 2 1 1.

Each equivalence class holds a set of events of equal duration that are assignable to each
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other. These will eventually be partitioned into meets in the same way. In addition to the events,
the class holds the requirements that the final partition must satisfy. These define a subset of the
set of all partitions of the duration, but it is not possible to store the subset directly, because for
large durations it may be very large. One partitionisstored,however: the lexically minimum one
satisfying the requirements. (A lexically minimum partition has minimum largest part, and so
on recursively. For example, 1 1 1 1 1 1is the lexically minimum partition of 6.) It is an invariant
that the set of partitions satisfying the requirements may not be empty.

In the special case of the equivalence class that represents the cycle meets, the requirements
are fixed to allow exactly one partition: the one representing the durations of the cycle meets.

The requirements on partitions are of two kinds. First, there are thelocal requirements.
These are mainly lower and upper bounds on the total number of parts, and on the number of
parts of each possible duration, modelled on the corresponding fields of the split events and
distribute split events constraints. Another kind of local requirement arises when a pre-existing
split job is accepted: if an event of duration 6 is already split into meets of duration 4 and 2,
say, when the algorithm begins, then, to be acceptable, a partition must be packable into partition
4 2. One partition ispackableinto another if splitting some parts of the second partition and
discarding others can produce the first. For example, 2 1 1 is packable into 2 2 2, but neither of
3 1 1 1 and 2 2 1 1 is packable into the other.

Second, there are thestructural requirements. Each parent class has an arbitrary number
of child classes, whose events will eventually be assigned to the parent class’s events. So the
lexically minimum partition of each child class must be packable into the parent class. In
these calculations the constraint always flows upwards: the child’s lexically minimum partition
is taken as given, and the parent’s minimum partition is adjusted (if possible) to ensure that
the child’s is packable into it. When a child class’s minimum partition changes, the parent’s
requirements must be re-tested. In this way, a change to a partition propagates upwards through
the structure until it either dies out or causes some class to have no legal partitions. In the second
case, the job which originated the changes must be rejected.

Some of the child classes may be organized into layers. In that case, each layer’s classes,
taken together, must be packable into the parent class. Each layer is represented by a split layer
object, as explained in detail in the next section. That object contains a minimum partition which
must be packable into the parent class, just like the minimum partitions of child classes.

Deciding whether any partitions satisfy even the local requirements is non-trivial: is it
safe to place two events into one class, when one is already split into partition 4 2 and the other
is already split into partition 3 2 1? Some simple checks are made, then a full generate-and-test
enumeration is begun and interrupted at the first success. The enumeration produces the lexically
minimum acceptable partition first, which is then stored and propagated upwards. Fortunately,
packability can be tested very quickly in practice, despite being an NP-complete bin packing
problem, because event durations are usually small.

At the end, after the last job is processed, each event of each class is split into meets whose
durations form the lexically minimum partition of that class.

9.1.4. Layering

The relation between meets and layers (sets of events that share a common preassigned resource
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with a required avoid clashes constraint) is a many-to-many relation: a layer may contain any
number of meets, and a meet may lie in any number of layers.

Suppose that meets1 lies in layerl and is assigned to meets2. KHE enforces the rule that
any assignment ofs2 may not be such as to causes1 to overlap in time with any other meet ofl.
In a sense,s2 (actually, that part of it assigneds1) becomes a member ofl while s1 is assigned to
it. We say thats1 liesdirectly in l, ands2 lies indirectly in l.

An event lies directly in a layer if any of its meets lie directly in the layer. An equivalence
class lies directly in a layer if any of its events lie directly in the layer, and it lies indirectly in the
layer if any of its child classes lie in the layer, either directly or indirectly. This is because the
events of child classes will eventually be assigned to the events of the class.

The layering aspect ofKheLayerTreeMake is based on an object called asplit layer, which
represents one element of the many-to-many relation between equivalence classes and layers. In
other words, there is one split layer object for each case of an equivalence class lying in a layer,
directly or indirectly. Its attributes are the class, the resource defining the layer, the set of all child
classes of the class that lie in the layer, and a partition, whose value will be defined shortly.

When an equivalence class lies directly in a layer (when it contains an event that lies directly
in the layer), none of its child classes can lie in the layer, since that would mean that two events
of the same layer overlap in time. So in that case the set of child classes must be empty. To keep
it that way, the partition contains as many 1’s as the duration of the class. This makes it clear that
there is no room for any child classes in the layer, without constraining the division of the class’s
events into sub-events in any way.

When an equivalence class lies indirectly in a layer, some of its child classes lie in the layer.
Their total duration must not exceed the duration of the class, and their meets, taken together,
must be packable into the class, since they are disjoint in time. So in this case the set of child
classes may be (in fact, must be) non-empty, and the partition holds the multiset union of the
lexically minimum partitions of the child classes.

The job which adds a layer to the data structure adds its events one by one. In the unlikely
event that the duration of the layer exceeds the number of times in the cycle, or bin packing
problems prevent an event being added, the job rejects the event, which amounts to ignoring the
presence of the preassigned resource in that event.

Adding an event to a layer means that the event’s class and all its ancestors must get split
layer objects for the layer. For all these classes, moving upwards until either there are no more
ancestors or a class already has a split layer object for the layer,either add a new split layer object
holding just the current child class, or add the child class to an existing split layer object.

While the upward propagation adds new split layer objects, there is no possibility of failure,
since a layer containing a single event is no more constraining than the event alone (the event is
already present, only its membership of a layer is changing). But if an existing split layer object
is reached, the class must be added to it, and so its partition grows, possibly leading to an empty
set of acceptable partitions in the parent, causing rejection of the request.

9.1.5. Merging

As mentioned earlier, when instances contain events which have already been split, it is best to
merge the nodes containing those events. The advantages include ensuring that how the instance
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is presented does not affect the way it is solved, exposing symmetries which could be expensive
if left hidden, and taking a step towards regularity.

Node merging is carried out after the main part of the layer tree construction algorithm
is complete and a layer tree is present. For each pair of events that share a spread events or
avoid split assignments constraint, the first meet of each event is found and the chain of fixed
assignments is followed to the first unfixed meet and from there to the node. The two nodes thus
found are candidates for merging. If they both exist, and they are distinct, and the first meet in
each contains the same preassigned resources (counting resources in meets assigned to the meet,
directly or indirectly, as well as resources in the meet itself), then the nodes are merged.

Only nodes which share at least one preassigned resource are merged. This ensures that it is
right to assign non-overlapping times to the meets of a node, which is what solvers usually do.

Requiring the same preassigned resources turns out to be important,because of the way that
layers are built from nodes, not from meets. If some of the meets of a node contain a resource
but others do not, then when the nodes containing that resource are formed into a layer later, the
layer’s duration may be longer than the cycle length, making it awkward to timetable.

9.2. Time-equivalence

Two sets of meets aretime-equivalentif it can be shown, by following fixed meet assignments,
that each set of meets must occupy the same set of times as the other while fixed assignments
remain in place. This may be true even when none of the meets is assigned a time.

Two events are time-equivalent if their sets of meets are time-equivalent. Usually, this
is because they are joined by a link events constraint which is being handled structurally, for
example byKheLayerTreeMake (Section 9.1).

Two resources are time-equivalent if they have the same resource type (call itrt),
KheResourceTypeDemandIsAllPreassigned(rt) (Section 3.5.1) istrue, and the sets of meets
containing their preassigned tasks are time-equivalent. Time-equivalent resources are busy at the
same times. They are usually students who choose the same courses.

It is clear that time-equivalence between sets of meets is an equivalence relation, as is
time-equivalence between events and between resources. So the events and resources of an
instance can be partitioned into time-equivalence classes. These classes are calculated by a
time-equivalence solver, which can be created and deleted by calling

KHE_TIME_EQUIV KheTimeEquivMake(void);
void KheTimeEquivDelete(KHE_TIME_EQUIV te);

To perform the calculation for a particularsoln, call

void KheTimeEquivSolve(KHE_TIME_EQUIV te, KHE_SOLN soln);

However, the usual way to obtain a time-equivalence object is by calling

KHE_TIME_EQUIV KheTimeEquivOption(KHE_OPTIONS options,
char *key, KHE_SOLN soln);

with key "ss_time_equiv". This returns a solved time equivalence object stored inoptions
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underkey; if it is not present, it creates one, solves it, and adds it tooptions before returning it.

The equivalence classes of events are event groups which can be visited by

int KheTimeEquivEventGroupCount(KHE_TIME_EQUIV te);
KHE_EVENT_GROUP KheTimeEquivEventGroup(KHE_TIME_EQUIV te, int i);

in the usual way. The equivalence class for a given event is returned efficiently by

KHE_EVENT_GROUP KheTimeEquivEventEventGroup(KHE_TIME_EQUIV te,
KHE_EVENT e);

If e is not time-equivalent to any other event, a singleton event group containinge is returned.
There is also

int KheTimeEquivEventEventGroupIndex(KHE_TIME_EQUIV te, KHE_EVENT e);

which returns the valuei such thatKheTimeEquivEventGroup(te, i) containse.

Similarly, the equivalence classes of resources are resource groups which can be visited by

int KheTimeEquivResourceGroupCount(KHE_TIME_EQUIV te);
KHE_RESOURCE_GROUP KheTimeEquivResourceGroup(KHE_TIME_EQUIV te, int i);

in the usual way. The equivalence class for a given resource is returned efficiently by

KHE_RESOURCE_GROUP KheTimeEquivResourceResourceGroup(KHE_TIME_EQUIV te,
KHE_RESOURCE r);

If r is not time-equivalent to any other resource, including the case when its resource type is not
all preassigned, a singleton group containingr is returned. Again,

int KheTimeEquivResourceResourceGroupIndex(KHE_TIME_EQUIV te,
KHE_RESOURCE r);

returns the valuei such thatKheTimeEquivResourceGroup(te, i) containsr.

All of these results reflect the state of the solution at the time of the most recent call to
KheTimeEquivSolve(te); they are not updated as the solution changes.

9.3. Layers

Layers were introduced in Section 5.3, but no easy way to build a set of layers was provided.
This section remedies that deficiency and adds some useful aids to solving with layers.

9.3.1. Layer construction

The usual rationale for the existence of a layer is that its nodes’ meets must not overlap in time
because they contain preassignments of a common resource. Function

KHE_LAYER KheLayerMakeFromResource(KHE_NODE parent_node,
KHE_RESOURCE r);
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builds a layer of this kind. It callsKheLayerMake to make a new child layer ofparent_node,
andKheLayerAddResource to addr to this layer. Then, each child node ofparent_node which
contains a meet preassignedr (either directly within the node, indirectly within descendant
nodes, or in meets assigned, directly or indirectly, to those meets) is added to the layer.

The layering of nodeparent_node is a particular set of layers which is useful when
assigning times to the child nodes ofparent_node, created by calling function

void KheNodeChildLayersMake(KHE_NODE parent_node);

This will delete any existing child layers ofparent_node and add the layers of the layering.

The layering is built as follows. First, for each resource of the instance that possesses a
required avoid clashes constraint, one layer is built by callingKheLayerMakeFromResource

above. If it turns out to be empty, it is immediately deleted again. Each pair of these layers such
that one’s node set is a subset of the other’s is merged withKheLayerMerge. Finally, each child
of parent_node not in any layer goes into a layer (with no resources) by itself.

The layers emerge fromKheNodeChildLayersMake in whatever order they happen to be.
The user will probably need to sort them, by callingKheNodeChildLayersSort (Section 5.3),
passing it a user-defined comparison function. Section 10.8.2 has an example of a comparison
function that seems to work well in practice.

After sorting, there may be value in calling

void KheNodeChildLayersReduce(KHE_NODE parent_node);

This merges some layers of marginal utility into others, as follows. Suppose there is a layerL
whose nodes all appear in earlier layers. Then if the meets of the nodes are assigned layer by
layer,L’s nodes will all be assigned before time assignment reachesL. Arguably,L could be
deleted without harm. However, it does contain one piece of useful information: it knows that
the meets to which its resources are preassigned will all be assigned times afterL is assigned. If
this information is to be preserved,L’s resources need to be moved forwards to the first earlier
layer that is true of. For each nodeN of L, find the minimum over all layers containingN of
the index of the layer. This is the index of the layer during whose time assignmentN will be
assigned. Then find the maximum, over all nodesN of L, of these minima. This is index of the
layer whose assignment will complete the assignment of all the nodes ofL. If this is smaller than
L’s index,KheNodeChildLayersReduce deletesL and moves its resources to this earlier layer.

Two important facts about layers and layerings must be borne in mind. First, they reflect
the state of the layer tree at a particular moment. If, after they are built, the tree is restructured (if
nodes are moved, etc.) they become out of date and useless. Second, building a layering is slow
and should not be done within the inner loops of a solver.

Altogether, it seems best to regard layers as temporary structures, created when required by
KheChildLayersMake and destroyed byKheChildLayersDelete. In between these two calls,
nodes may be merged and split, but it is best not to move them. A useful convention, supported
by several of KHE’s solvers that use layers, is to assume that if child layers are present, then they
are up to date. Such solvers begin by callingKheChildLayersMake if there are no layers, and
end by callingKheChildLayersDelete, but only if they calledKheChildLayersMake.
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9.3.2. Layer coordination

High schools usually containformsor years, which are sets of students of the same age who
follow the same curriculum, at least approximately. These students may be grouped into classes,
each represented by one student group resource. At some times, the student group resources of
one form might attend the same events, or linked events. For example, they might all attend a
common Sport event, or they might all attend Mathematics at the same times so that they can be
regrouped by ability at Mathematics. At other times, they might attend quite different events,
but over the course of the cycle they all attend the same amount of each different kind of event:
so many times of English, so many of Science, so many of a shared elective, and so on.

As an aid to producing a regular timetable, it might be helpful tocoordinatethe timetables
of student groups from the same form: run all the form’s English classes simultaneously, all
its Mathematics classes simultaneously, and so on. Where resources are insufficient to support
this, changes can be made later. In this way, a regular timetable is produced to begin with, and
irregularities are introduced only where necessary.

The XML format does not explicitly identify forms, or even say which resource type
contains the student group resources. This is in fact an advantage, because it forces us to look
for structure that aids regularity. We then coordinate the timetabling of resources that possess the
useful structure, without knowing or caring whether they are in fact student group resources.

Coordination will only work when the chosen resources attend similar events. This was
the rule when inferring resource partitions (Section 3.5.6), so we take the resource partition as
the structural equivalent of the form. The events should occupy all or most of the times of the
cycle, otherwise coordination eliminates too many options for spreading them in time. ‘Forms’
of teachers and rooms are rarely useful, just because they do not satisfy these conditions.

After KheLayerTreeMake returns, it is the nodes lying directly below the root node that need
to be coordinated, not events or meets. Two child nodes may be coordinated by moving one of
them so that it is a child node of the other. KHE offers solver function

void KheCoordinateLayers(KHE_NODE parent_node, bool with_domination);

which carries out such moves on some of the children ofparent_node, as follows.

KheCoordinateLayers is only interested in resources whose layers have duration at
least 90% of the duration ofparent_node. For each pair of such resources lying in the same
resource partition, it checks whether their two layers are similar by building the layers with
KheLayerMakeFromResource and calling KheLayerSimilar (Section 9.3). If so, it uses
KheNodeMove (Section 9.5.3) to make each node of the second layer a child of the corresponding
node of the first, unless the two nodes are the same, forcing these nodes to be simultaneous. It
does not assign meets, or remove them from nodes. Finally, it removes the two layers it made.

If with_domination isfalse, the behaviour is as described. Ifwith_domination istrue,
a slight generalization is used. Suppose that one of the two layers has duration equal to the
duration ofparent_node, and all but one of its nodes is similar to some node in the other layer.
Then the dissimilar nodes of the other layer (possibly none) might as well be made children of
the one dissimilar node of that layer, since if the other nodes are coordinated they must run
simultaneously with it anyway. (The durations of their meets may be incompatible; that is not
checked at present, although it should be.) So that is done.
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In unusual cases the duration of a layer can be larger after coordinating than before. At the
end, if any layers have duration larger than the parent node’s duration,KheCoordinateLayers

tries to reduce the duration of those layers to the parent node’s duration, by finding cases where
one node of a layer can be safely moved to below another.

9.4. Runarounds

Layer coordination can lead to problems assigning resources. For example, suppose that the five
student groups of the Year 7 form each attend one Music event, and that the school has two Music
teachers and two Music rooms. Each event is easily accommodated individually, but when the
Year 7 layers are coordinated, they run simultaneously and exceed resource limits.

These problems do not arise in large faculties with sufficient resources to accommodate an
entire form at once. Thus they do not invalidate the basic idea of node layer coordination. What
is needed is a local fix for these problems. This is whatrunaroundsprovide: a way to spread the
events concerned through the times they need, without abandoning coordination altogether.

9.4.1. Minimum runaround duration

Consider the case above where there are not enough Music resources to run the Year 7 Music
events simultaneously. If these events lie in nodes that are children of a common parent (one may
lie in the parent itself), it is easy to detect this problem: carry out a time assignment at the parent,
and see whether the cost of the solution increases. This is assuming that the matching monitors,
which detect unsatisfiable resource demands, are attached.

More generally, we can ask how large the duration of the parent node has to be in order to
ensure that there is no cost increase. This quantity is called theminimum runaround duration
of the node. It will be equal to the duration when there is no problem, and larger when there is a
problem. It can be calculated as follows. While a time assignment of the child nodes produces
a state of higher cost than the unassigned state, add new meets to the parent node. The duration
of the parent node when this process ends is its minimum runaround duration. Function

bool KheMinimumRunaroundDuration(KHE_NODE parent_node,
KHE_TIME_SOLVER time_solver, KHE_TIME_OPTIONS options,
int *duration);

sets*duration to the minimum runaround duration ofparent_node and returnstrue, except
in an unlikely case, documented below, when it returnsfalse with *duration undefined.

KheMinimumRunaroundDuration first unassigns all the child meets and saves the unas-
signed cost. It then carries out the time assignment trials just described. For each trial after the
first it adds one fresh meet toparent_node for each of its original meets,utilizing their durations
and time domains, but with no event resources. So the result’s duration must be a multiple of the
duration ofparent_node. Before returning, it unassignsall the children and removes the meets it
added, leaving the tree in its initial state, unless some child meets were assigned to begin with.

Parametertime_solver is a time assignment solver which is called to carry out each trial.
A simple solver, such asKheSimpleAssignTimes from Section 10.4, should be sufficient here.

Increasing the duration at each trial by the full duration of the node may seem excessive,and
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there are cases where fewer additional meets would be enough. However, those cases require the
child nodes’ assignments to overlap in ways that do not work out well in practice, because they
may lead to split assignments in the tasks affected.

How many trials are needed? In reasonable instances, each child node’s duration should
be no greater than the parent node’s duration. Thus, after as many trials as there are child nodes
plus one, there should be enough room in the parent node to assign every child meet at an offset
which does not overlap with any other, or with the original parent meets. This is the number of
trials thatKheMinimumRunaroundDuration carries out. It stops early if one succeeds with cost
no greater than the unassigned cost. It returnsfalse only when each trial either did not assign
all the child meets (that is, the call ontime_solver returnedfalse) or did assign them all, but
at a higher cost than the unassigned cost.

9.4.2. Building runarounds

Nodes may be classified into three types. Afixed nodehas no child nodes. There is no possibility
of spreading the events of a fixed node and its descendants through more times than the node’s
duration. Aproblem nodehas minimum runaround duration larger than its duration, like the
node of Music events used as an example above. It must have child nodes, and timetabling them
simultaneously is known to be inferior to spreading them out further. The remaining nodes are
free nodes: they have child nodes which may run simultaneously, or not, as convenient.

UsingKheNodeMerge to merge problem nodes with other problem nodes and free nodes can
eliminate problem nodes without greatly disrupting regularity. For example, merging a Music
problem node of duration 2 and minimum runaround duration 6 with a free node of duration 4
produces a merged node of duration 6 which can usually be timetabled without problems.

If a merged node can be timetabled without the cost of the solution increasing, it may be
kept, and is then called arunaround node. (The termrunaroundis used by manual timetablers
known to the author to describe this kind of timetable, where events like the Music events are
‘run around’ with other events.) Otherwise it must be split up again and some other merging
tried instead. It only remains, then, to decide which sets of nodes to try to merge.

Regularity is easier to attain when nodes have the same duration,so if there are already many
nodes of a certain duration, it is helpful if a merged node also has that duration. Nevertheless,
a node should not be added to a merge merely to make up some duration: merging limits the
choices open to later phases of the solve, so it should be done only when necessary.

A minimum runaround duration could be very large, close to the duration of the whole
cycle. For example, suppose there is a single teacher, the school chaplain, who gives each of
the five Year 7 student groups 6 times of religious instruction per week. Those events have a
minimum runaround duration of 30. When the minimum runaround duration of a node is larger
than a certain value, the algorithm given below ignores the node: its events will be awkward to
timetable, but runarounds as defined here are not the answer.

To build runaround nodes from the child nodes ofparent_node, call

void KheBuildRunarounds(KHE_NODE parent_node,
KHE_NODE_TIME_SOLVER mrd_solver, KHE_TIME_OPTIONS mrd_options,
KHE_NODE_TIME_SOLVER runaround_solver,
KHE_TIME_OPTIONS runaround_options);
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where mrd_solver and mrd_options are passed toKheMinimumRunaroundDuration
when minimum runaround durations need to be calculated, andrunaround_solver and
runaround_options are used to timetable merged nodes.KheSimpleAssignTimes is sufficient
for mrd_solver, andKheRunaroundNodeAssignTimes works well asrunaround_solver. All
nodes are unassigned afterwards.

It would not do to merge (for example) a node that includes both Year 7 and Year 8 events
with a node that includes only Year 7 ones. SoKheBuildRunarounds first works out which
resources are preassigned to events in or below which nodes (taking account only of preassigned
resources which have required avoid clashes constraints, and whose events occupy at least 90%
of the duration ofparent_node), and partitions the child nodes ofparent_node into disjoint
subsets, such the nodes in each subset have the same preassigned resources.

For each disjoint subset independently,KheBuildRunarounds tries to build a merged node
around each of the subset’s problem nodes in turn, largest minimum runaround duration first.
When doing this, it prefers to build a node of a particular durationu, and it prefers to use other
problem nodes (again, largest minimum runaround duration first), but it will also use free nodes
(minimum duration first). It is heuristic, but it usually works well. It is not limited to sequences
of pairwise mergings, as clustering algorithms often are. Here is the algorithm in detail:

1. The input is a set of nodesN (one disjoint subset as above), plusu, a desirable duration for a
merged node, andv, a maximum duration for a merged node. The output isM, the final set
of nodes. Writed(n) for the duration of noden, r (n) for its minimum runaround duration,
andd(X) for the total duration of the set of nodesX.

2. InitializeM to empty. SortN to put free nodes first, in decreasing duration order, problem
nodes next, in increasing minimum runaround duration order, and fixed nodes last.

3. If N is empty, stop. Otherwise delete the last element ofN and call itn.

4. If n is fixed, problem withr (n) ≥ v, or free, move it toM and return to Step 3.

5. Heren must be a problem node satisfyingr (n) < v. Within each of the following cases,
some non-empty subsetsX of N are defined. In each case,r (n) ≤ d(n) + d(X), so a merged
node consisting ofn merged withX is likely to work well. For each case in turn, and for
each setX defined within each case in turn, removeX from N, mergenandX, and timetable
the resulting merged node. If that is successful (all events timetabled with no increase in
solution cost), add the merged node toM and return to Step 3. If it fails, split the merged
node up again, return the nodes ofX to their former places inN, and try the next setX; or
if there are no more sets, addn to M and return to Step 3.

Case 1. For eachx ∈ N from last to first such thatr (n) ≤ d(n) + d(x) = u ≤ v, let X = {x} .

Case 2. For eachi from 1to |N|such thatXi, the lasti elements ofN, satisfies the condition
r (n) ≤ d(n) + d(Xi) ≤ v, let X = Xi.

KheBuildRunarounds calls KheMinimumRunaroundDuration to find minimum runaround
durations, passingmrd_solver to it. It callsKheNodeMerge to merge nodes,runaround_solver
to timetable merged nodes, andKheNodeSplit to undo failed merges. It uses one-fifth of the
duration ofparent_node for v. Foru, it builds a frequency table of the durations of child nodes
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of parent_node. It then chooses the duration for which the frequency times the duration is
maximum. This weights the choice away from small durations, which are not very useful.

9.5. Rearranging nodes

Earlier sections of this chapter contain the major solvers which work with nodes. This section
contains a miscellany of smaller helper funtions which rearrange nodes.

9.5.1. Node merging

Two nodes may be merged by calling

bool KheNodeMergeCheck(KHE_NODE node1, KHE_NODE node2);
bool KheNodeMerge(KHE_NODE node1, KHE_NODE node2, KHE_NODE *res);

The nodes may be merged if they have the same parent node, possiblyNULL.

The meets of the result,*res, are the meets ofnode1 followed by the meets ofnode2, and
the child nodes of*res are the child nodes ofnode1 followed by the child nodes ofnode2.
The two nodes must either lie in the same layers and have the same parent, or have no parent,
otherwiseKheNodeMerge aborts. This implies that node merging cannot violate the cycle rule,
or any rule. As usual with merging,node1 andnode2 are undefined afterwards (actually,node1

is recycled as*res andnode2 is freed), but one may write, for example,

KheNodeMerge(node1, node2, &node1);

to re-use variablenode1 to hold the result.

Merging permits the meets of the child nodes of the two nodes to be assigned to the meets
of either node, rather than to just one as before. For example, suppose the layer tree rooted at
node1 contains the Science events of several groups of Year 7 students, and the layer tree rooted
atnode2 contains the Music events of the same groups of students. Then originally the Science
events must be simultaneous and the Music events must be simultaneous, but afterwards the two
kinds of events may intermingle. This may be useful if there are few Music teachers and Music
rooms, so that the Music events must be spread out in time. This kind of arrangement is well
known to manual timetablers; it has various names, includingrunaround.

There is no operation to split a node into two nodes. However,KheNodeMerge may be
undone using marks and paths as usual.

9.5.2. Node meet splitting and merging

Node meet splitting and merging (not to be confused with node merging above) split the meets
of a node as much as possible, and merge them together as much as possible:

void KheNodeMeetSplit(KHE_NODE node, bool recursive);
void KheNodeMeetMerge(KHE_NODE node, bool recursive);

Both operations always succeed, although they may do nothing.

For every offset of every meet ofnode, KheNodeMeetSplit callsKheMeetSplit, passing
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it therecursive parameter. In this way, the meets become as split up as possible.

KheNodeMeetMerge sorts the meets so that meets assigned to the same target meets are
adjacent, with their target offsets in increasing order, usingKheMeetIncreasingAsstCmp from
Section 5.2. Unassigned meets go at the end. It then tries to merge each pair of adjacent meets.
Any calls toKheMeetMerge it makes are passed therecursive parameter.

9.5.3. Node moving

A node may be made the child ofparent_node, instead of its current parent, by calling

bool KheNodeMoveCheck(KHE_NODE child_node, KHE_NODE parent_node);
bool KheNodeMove(KHE_NODE child_node, KHE_NODE parent_node);

This does the same as the sequence

KheNodeDeleteParent(child_node);
KheNodeAddParent(child_node, parent_node);

except that this sequence will fail if any ofchild_node’s meets are assigned initially, whereas
KheNodeMove deals with such assignments and can fail only the cycle rule.

In most cases,KheNodeMove begins by deassigning those meets ofchild_node that are
assigned. However, there is one interesting exception. Suppose thatchild_node’s new parent
node is an ancestor ofchild_node’s current parent node:

child_node

child_node

parent_node

parent_node
→

parent_node

parent_node

child_node

child_node

In each case where a complete chain of assignments reaches from a meetmeet of child_node
to a meet ofparent_node, meet will be assigned afterwards, to the meet at the end of the chain,
with offset equal to the sum of the offsets along the chain. This is valid (it does not change the
timetable). Where there is no complete chain,meet will be unassigned afterwards.

For example, suppose nodep has accumulated children to make the timetable regular, but
now the children’s original freedom to be assigned elsewhere needs to be restored:

while( KheNodeChildCount(p) > 0 )
KheNodeMove(KheNodeChild(p, 0), KheNodeParent(p));

KheNodeMove preserves the current timetable during these relinkings.

9.5.4. Vizier nodes

A vizier (Arabic wazir) is a senior official, the one who actually runs the country while the
nominal ruler gets the adulation. In a similar way, avizier nodesits below another node and does
what that other node nominally does: act as the common parent of the subordinate nodes, and
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hold the meets that those nodes’meets assign themselves to.

Any node can have a vizier, but only the cycle node really has a use for one. By connecting
everything to the cycle node indirectly via a vizier, it becomes trivial to try time repairs in
which the meets of the vizier node change their assignments, effecting global alterations such as
swapping everything on Tuesday morning with everything on Wednesday morning. Function

KHE_NODE KheNodeVizierMake(KHE_NODE parent_node);

inserts a new vizier node directly belowparent_node. Afterwards,parent_node has exactly
one child node, the vizier; it may be accessed usingKheNodeChild(parent_node, 0) as usual,
and it is also the return value. For every meetpm of the parent node, the vizier has one meet
vm with the same duration aspm and assigned topm at offset 0. The domain ofvm is NULL; its
assignment is not fixed. Each child node ofparent_node becomes a child of the vizier; each
child layer ofparent_node becomes a child layer of the vizier; each meet assigned to a meet of
the parent node becomes assigned to the corresponding meet of the vizier. Ifparent_node has
zones, the vizier is given new corresponding zones, and the parent node’s zones are removed.

All this leaves the timetable unchanged, including constraints imposed by domains and
zones. The vizier takes over without affecting anyone’s existing rights and privileges. A vizier
node is not different from any other node; only its role is special.

KheNodeSwapChildNodesAndLayers (Section 5.2) is used to move the child nodes and
layers to the vizier node, so they are the exact same objects after the call as before. But although
the zones added to the vizier correspond exactly with the original zones, they are new objects.

To remove a vizier node, call

void KheNodeVizierDelete(KHE_NODE parent_node);

Hereparent_node must have no child layers, no zones, and exactly one child node, assumed
to be the vizier. It callsKheNodeSwapChildNodesAndLayers again, to make the child nodes of
the vizier into child nodes ofparent_node, and the child layers of the vizier into child layers of
parent_node. Any assignments to meets in the child nodes of the vizier must be to meets in the
vizier, and they are converted into assignments to meets inparent_node where possible (when
the target meet in the vizier is itself assigned). New zones are created inparent_node based on
the zones and meet assignments in the vizier. Finally the vizier and its meets are deleted.

Zones are not preserved across calls toKheNodeVizierMake andKheNodeVizierDelete
in the exact way that child nodes and child layers are. The zones added to the vizier node by
KheNodeVizierMake are new objects, although they do correspond exactly with the zones in
parent_node. The zones added toparent_node by KheNodeVizierDelete are also new, and
there will be a zone in a given parent meet at a given offset only if there was a meet in the vizier
which was assigned that parent meet and was running (with a zone) at that offset. If vizier meets
overlap in time (not actually prohibited), that will further confuse the reassignment of zones. It
may be best to followKheNodeVizierDelete by a call to some function which ensures that every
offset of every parent meet has a zone, for exampleKheNodeExtendZones (Section 9.6).

FunctionKheNodeMeetSplit (Section 9.5.2) is useful with vizier nodes. Splitting a vizier’s
meets non-recursively opens the way to fine-grained swaps, between half-mornings instead of
full mornings, and so on. A wild idea, that the author has not tried, is to have an unsplit vizier
with its own split vizier. Then the larger swaps and the smaller ones are available together.
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9.5.5. Flattening

Although layer coordination and runaround building are useful for promoting regularity, there
may come a point where these kinds of voluntary restrictions prevent assignments which satisfy
more important constraints, and so they must be removed.

What is needed is to flatten the layer tree. Two functions are provided for this. The first is

void KheNodeBypass(KHE_NODE node);

This requiresnode to have a parent, and it moves the children ofnode so that they are children
of that parent. The second is

void KheNodeFlatten(KHE_NODE parent_node);

It moves nodes as required to ensure that all the proper descendants ofparent_node initially are
children ofparent_node on return.

Both functions useKheNodeMove to move nodes. They cannot fail, becauseKheNodeMove

fails only when there is a problem with the cycle rule, which cannot occur here. Both functions
are ‘interesting exceptions’ (Section 9.5.3) where assignments are preserved. By convention
(Chapter 10), meets with fixed, final assignments should not lie in nodes. If that convention is
followed, these functions do not affect such meets.

9.6. Adding zones

Suppose a layer of child nodes of noden has its meets assigned to the meets ofn at various
offsets. Define one zone for each child nodec of the layer, whose meet-offsets are the ones at
whichc’s meets are running. Helper function

void KheLayerInstallZonesInParent(KHE_LAYER layer);

installs these zones, first deleting any existing zones of the parent node oflayer, then installing
one zone for each child node oflayer containing at least one assigned meet. Such zones form
an image of how one child layer (the first to be assigned, usually) is assigned. An algorithm can
use them as a template when assigning the other child layers, or when repairing the assignments
of any child layers, including the first layer.

KheLayerInstallZonesInParent installs zones representing the assignments of one layer
into the layer’s parent node. If the duration of the parent node exceeds the duration of the layer,
some offsets in some parent node meets will not be assigned any zone. This seems likely to be a
problem, or at least a lost opportunity. What to do about it is not clear.

Arguably, zones should be derived from all layers, not just one, in a way that gives every
offset a zone. But that is not easy to do,even heuristically. Anyway, there are advantages in using
zones derived from a good assignment of some layer, since the assignment proves that those
zones work well. This suggests taking the zones installed byKheLayerInstallZonesInParent

and extending them until every offset has a zone. Accordingly, function

void KheNodeExtendZones(KHE_NODE node);

ensures that every offset of every meet ofnode has a zone, by assigning one ofnode’s existing
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zones to each offset in each meet ofnode that does not have a zone—unlessnode has no zones
to begin with, in which case it does nothing.

For each (zone, meet) pair where the meet has at least one offset without a zone, the
algorithm finds one option for adding some of the zone to the meet (how much to add, and
where),and assigns a priority to the option. Then it selectsan option of minimum priority,carries
it out, and repeats. It runs out of options only when every offset in every meet has a zone.

An option for adding some of a given zone to a given meet is found as follows. If the zone is
already present in the meet, it is best to add it at offsets adjacent to the offsets it already occupies,
if possible. If the zone is not already present, it is best to add it adjacent to existing offsets or the
ends of the meet, in a continuous run, to avoid fragmentation of the offsets it occupies as well as
the offsets it doesn’t occupy. Constraints on zone durations arise either way. Within the limits
imposed by them, it is best to aim for an ideal zone duration, which in a completely unoccupied
meet is the meet duration divided by the total number of zones, but which is adjusted to take
account of existing zone durations, with higher being a better option than lower. As the option
is decided on, it is assigned a priority based on whether it utilizes an underutilized zone, avoids
fragmentation, and approximates to the ideal zone duration.

9.7. Meet splitting and merging

This section presents features which modify the meet splits made by layer tree construction.

9.7.1. Analysing split defects

Given a defect (a monitor of non-zero cost), it is usually easy to see what needs to be done to
repair it: if there is a clash, move one of the clashing meets away; if there is a split assignment,
try to find a resource to assign to all the tasks; and so on.

Split defects, that is, split events and distribute split events monitors of non-zero cost, are
awkward to analyse in this way, partly because split events monitors monitor both the number
of meets and their durations, and partly because several split events and distribute split events
monitors may cooperate in constraining how a given event is split into meets.

KHE offers asplit analyserwhich analyses the split events and distribute split events
monitors of a given event, and comes up with a sequence of suggestions as to how any defects
among those monitors could be repaired using splits or merges (or both: for example, if there are
too few meets of a given duration, that could be corrected by splitting larger meets or by merging
smaller ones). To create and subsequently delete a split analyser object, call

KHE_SPLIT_ANALYSER KheSplitAnalyserMake(KHE_SOLN soln);
void KheSplitAnalyserDelete(KHE_SPLIT_ANALYSER sa);

In practice, it is better to obtain a split analyser object from the"ss_split_analyser" option,
which can be done by a call to

KHE_SPLIT_ANALYSER KheSplitAnalyserOption(KHE_OPTIONS options,
char *key, KHE_SOLN soln);

with key "ss_split_analyser". This creates a split analyser and stores it inoptions if it is
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not already present. The option name is conventional; any name could have been chosen.

To carry out the analysis for a particular event, call

void KheSplitAnalyserAnalyse(KHE_SPLIT_ANALYSER sa, KHE_EVENT e);

After doing this, the sequence of suggestions fore which are splits may be retrieved by calling

int KheSplitAnalyserSplitSuggestionCount(KHE_SPLIT_ANALYSER sa);
void KheSplitAnalyserSplitSuggestion(KHE_SPLIT_ANALYSER sa, int i,
int *merged_durn, int *split1_durn);

for i between0 andKheSplitAnalyserSplitSuggestionCount(sa) - 1 as usual. Each split
suggestion suggests splitting any meet of duration*merged_durn into two fragments, one with
duration*split1_durn. Similarly, the sequence of merge suggestions may be retrieved by

int KheSplitAnalyserMergeSuggestionCount(KHE_SPLIT_ANALYSER sa);
void KheSplitAnalyserMergeSuggestion(KHE_SPLIT_ANALYSER sa, int i,
int *split1_durn, int *split2_durn);

Each suggests merging any two meets with durations*split1_durn and*split2_durn.

Each suggestion is distinct from the others. No notice is taken of constraint weights,
except that constraints of weight zero are ignored. The suggestions are updated only by calls to
KheSplitAnalyserAnalyse; they are unaffected by later changes to the solution. So they go out
of date after a split or merge, but become up to date again if that split or merge is undone.

Function

void KheSplitAnalyserDebug(KHE_SPLIT_ANALYSER sa, int verbosity,
int indent, FILE *fp);

places a debug print ofsa ontofp with the given verbosity and indent, including suggestions.

9.7.2. Merging adjacent meets

It sometimes happens that at the end of a solve, two meets derived from the same event are
adjacent in time and not separated by a break. If the same resources are assigned to both, they
can be merged, which may remove a spread defect and thus reduce the overall cost. Function

void KheMergeMeets(KHE_SOLN soln);

unfixes meet splits in all meets derived from events and carries out all merges that reduce solution
cost. For each evente, it takes the meets derived frome that have assigned times and sorts them
chronologically. Then, for each pair of adjacent meets in the sorted order, it triesKheMeetMerge,
keeping the merge if it succeeds and reduces cost.

KheMergeMeets can be called at any time. The best time to call it is probably at the very
end of solving, or possibly after time assignment.
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9.8. Monitor attachment and grouping

Sometimes, how monitors are grouped and attached is important: when using ejection chains
(Chapter 13), for example,or Kempe and ejecting meet moves (Section 10.2.2). This section lays
out some general concepts and conventions for monitor attachment and grouping.

Solutions often contain structural constraints: nodes, restricted domains,fixed assignments,
and so on. A solver isexpected to respect such constraints,unless itsspecification explicitlystates
otherwise. They are part of the solution, and every solver should be able to deal with them. In
the same way, a solver may find that some monitors have been deliberately detached before it
starts running. For example, all monitors of soft constraints may have been detached, because
the caller wants the solver to concentrate on hard constraints. A solver should not change the
attachmentsof monitors to the solution,unless itsspecification explicitly statesotherwise. Itsaim
is to minimizeKheSolnCost(soln), however that is defined bysoln’s monitor attachments.

There are two ways to exclude a monitor from contributing to the solution cost: by detaching
it usingKheMonitorDetachFromSoln, and by ensuring that there is no path from it to the solution
group monitor. The first way should always be used, because it is the efficient way.

Some solvers need specific groupings. The Kempe meet move operation (Section 10.2.2)
is an example: its precondition specifies that a particular group monitor must be present. This is
permissible, and as with all preconditions it imposes a requirement on the caller of the operation
to ensure that the precondition is satisfied when the operation is called. But such requirements
should not prohibit the presence of other group monitors. For example, the implementation
of the Kempe meet move operation begins with a tiny search for the group monitor it requires.
If other group monitors are present nearby, that is not a problem. If this example is followed,
multiple requirements for group monitors will not conflict.

There is a danger that group monitors will multiply, slowing down the solve and confusing
its logic. It is best if each function that creates a group monitor takes responsibility for deleting
it later, even if this means creating the same group monitors over and over again. Timing tests
conducted by the author show that adding and deleting the group monitors used by the various
solvers in this guide takes an insignificant amount of time.

Two monitors (or defects) arecorrelatedwhen they monitor the same thing, not formally
usually, but in reality. For example, if two events are joined by a link events constraint, and one
is fixed to the other, then two spread events monitors, one for each event, will be correlated.

Correlated defects are bad for ejection chains. The cost of each defect separately might not
be large enough to end the chain if removed, causing the chain to terminate in failure, whereas
if it was clear that there was really only one problem, the chain might be able to repair it and
continue. So correlated monitors should be grouped, whenever possible. These groups are
the equivalence classes of the correlation relation, which is clearly an equivalence relation. A
grouping of correlated monitors is called aprimary grouping.

A function which creates a primary grouping works as follows. Monitors not relevant to
the grouping remain as they were. Relevant monitors are deleted from any parents they have, and
partitioned into groups of correlated monitors. For each group containing two or more monitors,
a group monitor called aprimary group monitoris made, the monitors are made children of it,
and it is made a child of the solution object. For each group containing one monitor, that monitor
is made a child of the solution, and no group monitor is made. Any group monitors other than
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the solution object which lose all their children because of these changes are deleted, possibly
causing further deletions of childless group monitors.

A function which deletes a primary grouping visits all monitors relevant to the grouping and
deletes those parents of those monitors whosesub_tag indicates that they are part of the primary
grouping. The deleting is done by calls toKheGroupMonitorBypassAndDelete.

FunctionKheEjectionChainPrepareMonitors (Section 13.7.4)createsprimarygroupings
of some correlated monitors, and detaches others, in preparation for ejection chain repair.

Secondary groupingsare useful groupings that are not primary groupings (that do not
group monitors which monitor the same thing). Instead, they group diverse sets of monitors for
particular purposes, such as efficient access to defects.

Secondary groupings are often built on primary groupings: if a monitor that a secondary
grouping handles is a descendant of a primary group monitor, the primary group monitor goes
into the secondary grouping, replacing the individual monitors which are its children.

A secondary grouping makes one group monitor, called asecondary group monitor, not
many. The secondary group monitor is not made a child of the solution object,nor are its children
unlinked from any other parents that they may have. So it does not disturb existing calculations in
any way; rather, it adds a separate calculation on the side. A secondary grouping can be removed
by passing the secondary group monitor toKheGroupMonitorDelete.

Functions for creating secondary groupings appear elsewhere in this guide. They include
KheKempeDemandGroupMonitorMake, needed by Kempe and ejecting meet moves (Section
10.2.2), and several functions used by ejection chain repair algorithms (Section 13.7.5).

When building secondary groupings, these public functions are often helpful:

bool KheMonitorHasParent(KHE_MONITOR m, int sub_tag,
KHE_GROUP_MONITOR *res_gm);

void KheMonitorAddSelfOrParent(KHE_MONITOR m, int sub_tag,
KHE_GROUP_MONITOR gm);

void KheMonitorDeleteAllParentsRecursive(KHE_MONITOR m);

Consult the documentation in the source code to find out what they do.

It is convenient to have standard values for the sub-tags and sub-tag labels of the group
monitors created by grouping functions, both primary and secondary. So KHE defines type
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typedef enum {
KHE_SUBTAG_SPLIT_EVENTS, /* "SplitEventsGroupMonitor" */
KHE_SUBTAG_DISTRIBUTE_SPLIT_EVENTS, /* "DistributeSplitEventsGroupMonitor" */
KHE_SUBTAG_ASSIGN_TIME, /* "AssignTimeGroupMonitor" */
KHE_SUBTAG_PREFER_TIMES, /* "PreferTimesGroupMonitor" */
KHE_SUBTAG_SPREAD_EVENTS, /* "SpreadEventsGroupMonitor" */
KHE_SUBTAG_LINK_EVENTS, /* "LinkEventsGroupMonitor" */
KHE_SUBTAG_ORDER_EVENTS, /* "OrderEventsGroupMonitor" */
KHE_SUBTAG_ASSIGN_RESOURCE, /* "AssignResourceGroupMonitor" */
KHE_SUBTAG_PREFER_RESOURCES, /* "PreferResourcesGroupMonitor" */
KHE_SUBTAG_AVOID_SPLIT_ASSIGNMENTS, /* "AvoidSplitAssignmentsGroupMonitor" */
KHE_SUBTAG_AVOID_CLASHES, /* "AvoidClashesGroupMonitor" */
KHE_SUBTAG_AVOID_UNAVAILABLE_TIMES, /* "AvoidUnavailableTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_IDLE_TIMES, /* "LimitIdleTimesGroupMonitor" */
KHE_SUBTAG_CLUSTER_BUSY_TIMES, /* "ClusterBusyTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_BUSY_TIMES, /* "LimitBusyTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_WORKLOAD, /* "LimitWorkloadGroupMonitor" */
KHE_SUBTAG_LIMIT_ACTIVE_INTERVALS, /* "LimitActiveIntervalsGroupMonitor" */
KHE_SUBTAG_LIMIT_RESOURCES, /* "LimitResourcesGroupMonitor" */
KHE_SUBTAG_ORDINARY_DEMAND, /* "OrdinaryDemandGroupMonitor" */
KHE_SUBTAG_WORKLOAD_DEMAND, /* "WorkloadDemandGroupMonitor" */
KHE_SUBTAG_KEMPE_DEMAND, /* "KempeDemandGroupMonitor" */
KHE_SUBTAG_NODE_TIME_REPAIR, /* "NodeTimeRepairGroupMonitor" */
KHE_SUBTAG_LAYER_TIME_REPAIR, /* "LayerTimeRepairGroupMonitor" */
KHE_SUBTAG_TASKING, /* "TaskingGroupMonitor" */
KHE_SUBTAG_ALL_DEMAND /* "AllDemandGroupMonitor" */

} KHE_SUBTAG_STANDARD_TYPE;

for the sub-tags, and the strings in comments, obtainable by calling

char *KheSubTagLabel(KHE_SUBTAG_STANDARD_TYPE sub_tag);

for the corresponding sub-tag labels. There is also

KHE_SUBTAG_STANDARD_TYPE KheSubTagFromTag(KHE_MONITOR_TAG tag);

which returns the appropriate sub-tag for a group monitor whose children have the giventag.
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A time solverassigns times to meets, or changes their assignments. This chapter presents a
specification of time solvers, and describes the time solvers packaged with KHE.

10.1. Specification

If time solvers share a specification, where possible, it is easy to replace one by another, pass one
as a parameter to another, and so on. This section recommends such a specification.

In hierarchical timetabling, ‘time assignment’ means the assignment of the meets of child
nodes to the meets of a parent node, so the recommended interface is

typedef bool (*KHE_NODE_TIME_SOLVER)(KHE_NODE parent_node,
KHE_OPTIONS options);

This typedef appears inkhe_solvers.h. The intended meaning is that such anode time solver
should assign or reassign some or all of the meets of the proper descendants ofparent_node:
it might assign the unassigned meets of the child nodes ofparent_node, or reassign the
meets of proper descendants ofparent_node, and so on. It is free to reorganize the tree below
parent_node, provided that every descendant ofparent_node remains a descendant. It must
not change anything in or aboveparent_node. In the tree belowparent_node it may add,
delete,split,and merge meets. Some solvers (e.g.ejection chains)do actually do this,so the caller
must take care to avoid the error (very easily made, as the author can testify) of assuming that the
set of meets after a time solver is called is the same as before. Theoptions parameter is as in
Section 8.2; by convention, options consulted by time solvers have names beginning withts_.

A solver should returntrue when it has changed the solution (usually for the better, but not
necessarily), and when it is not sure whether it did or not. It should returnfalse when it did not
change the solution. The caller may use this information to evaluate the helpfulness of the solver,
or to decide whether to follow it with a repair step, and so on.

A second time solver type is defined inkhe_solvers.h:

typedef bool (*KHE_LAYER_TIME_SOLVER)(KHE_LAYER layer,
KHE_OPTIONS options);

Instead of assigning or reassigning meets in the proper descendants of some parent node, alayer
time solverassigns or reassigns meets in the nodes oflayer and their descendants, like a node
time solver for the parent node oflayer, but limited tolayer. The solver is free to reorganize
the layer tree below the nodes oflayer (but not to alter the nodes oflayer), provided every
descendant of each node oflayer remains a descendant of that node.

If all time solvers follow these rules, then meets that do not lie in nodes will never be visited
by them. The recommended convention is that meets should not lie in nodes if and only if they
already have assignments that should never be changed.

239
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Time assignment solvers (and solvers generally) are free to use the back pointers of the
solution entities they target. However, since there is potential for conflict here when one solver
calls another, the following conventions are recommended.

If solverS does not use back pointers (if it never sets any), then this should be documented,
and solvers that callS may assume that back pointers will be unaffected by it. IfS uses back
pointers (if it sets at least one), then this should be documented, and solvers that callS must
assume that back pointers in the solution objects targeted byS will not be preserved. As a safety
measure, solvers should set the back pointers that they have used toNULL before returning.

10.2. Helper functions

The functions presented in this section assign and unassign meets, but are not complete time
solvers in themselves. Instead, they are helper functions that time solvers might find useful.

10.2.1. Node assignment functions

This section presents several functions which affect the assignments of the meets of one node.

These functions swap the assignments of the meets of two nodes:

bool KheNodeMeetSwapCheck(KHE_NODE node1, KHE_NODE node2);
bool KheNodeMeetSwap(KHE_NODE node1, KHE_NODE node2);

Both node1 andnode2 must be non-NULL. Both functions returntrue if the nodes have the
same number of meets, and a sequence ofKheMeetSwap operations applied to corresponding
meets would succeed.KheNodeMeetSwapCheck just makes the check, whileKheNodeMeetSwap
performs the meet swaps as well. Ifnode1 andnode2 are the identical same node,false is
returned. As usual when swapping, the code fragment

if( KheNodeMeetSwap(node1, node2) )
KheNodeMeetSwap(node1, node2);

is guaranteed to change nothing, whether the first swap succeeds or not.

To maximize the chances of success it is naturally best to sort the meets before calling these
functions, probably like this:

KheNodeMeetSort(node1, &KheMeetDecreasingDurationCmp);
KheNodeMeetSort(node2, &KheMeetDecreasingDurationCmp);

This sorting has been omitted fromKheNodeMeetSwapCheck and KheNodeMeetSwap for
efficiency, since each node’s meets need to be sorted only once, yet the node may be swapped
many times. The user is expected to sort the meets of every relevant node, perhaps like this:

for( i = 0; i < KheSolnNodeCount(soln); i++ )
KheNodeMeetSort(KheSolnNode(soln, i), &KheMeetDecreasingDurationCmp);

before any swapping begins. Some other functions, for exampleKheNodeRegular (Section 5.2),
also sort meets, so care is needed.
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These functions propagate one node’s assignments to another:

bool KheNodeMeetRegularAssignCheck(KHE_NODE node, KHE_NODE sibling_node);
bool KheNodeMeetRegularAssign(KHE_NODE node, KHE_NODE sibling_node);

KheNodeMeetRegularAssignCheck callsKheNodeMeetRegular (Section 5.2) to check that the
two nodes are regular, and if they are, it goes on to check that each meet insibling_node is
assigned, and that each meet ofnode is either already assigned to the same meet and offset that
the corresponding meet ofsibling_node is assigned to, or else may be assigned to that meet
and offset.KheNodeMeetRegularAssign makes all these checks too, and then carries out the
assignments if the checks all pass.

To unassign all the meets ofnode, call

void KheNodeMeetUnAssign(KHE_NODE node);

Even preassigned meets are unassigned, so some care is needed here.

10.2.2. Kempe and ejecting meet moves

TheKempe meet moveis a well-known generalization of moves and swaps. It originates as a
move of one meet, say from timet1 to timet2 (in reality, from one meet and offset to another meet
and offset). If this initial move creates clashes with other meets, then they are moved fromt2 to t1.
If that in turn creates clashes with other meets, then they are moved fromt1 to t2, and so on until
all clashes are removed. The result is usually a move or swap, but it can be more complex.

The Kempe meet move is not unlike an ejection chain algorithm. Instead of removing a
single defect at each step, it removes an arbitrary number, but it tries only one repair: moving to
t2 on odd-numbered steps and tot1 on even-numbered steps.

Suppose the original meetm1 has durationd1. Usually, the Kempe meet move only moves
meets of durationd1, and only fromt1 to t2 (on odd-numbered steps) and fromt2 to t1 (on even-
numbered steps). However, whenm1 is being moved to a different offset in the same target meet,
the Kempe meet move does not commit itself to this until it has examined the first meet, call itm2,
which has to be moved on the second step. Ifm2 was immediately adjacent tom1 in time before
m1was moved on the first step, it is acceptable form2 to have a durationd2 which is different from
d1. In that case, all meets moved on odd-numbered steps must have durationd1, and all meets
moved on even-numbered steps must have durationd2, and each meet is moved to the opposite
end of the block of adjacent times thatm1 andm2 were together assigned to originally.

Kempe meet moves need to know what clashes they have caused. Clashes occur between
preassigned tasks. So the first step is to search the meet being moved, and if necessary the meets
assigned to that meet (and so on recursively) for the firstpreassigned task: a task derived from
a preassigned event resource. If there are no preassigned tasks, there can be no clashes. In that
case, the Kempe meet move operation does exactly what an ordinary meet move would do.

If there is a first preassigned task, then clashes are possible and must be detected. This
is done via the matching, partly because it is the fastest way, and partly because it works at any
level of the layer tree, unlike avoid clashes monitors, which work only at the root. Accordingly,
the matching must be present, as witnessed by the presence of a first demand monitor in the first
preassigned task of the meet to be moved. If this demand monitor is not present, a Kempe move
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is not possible, and the operation returnsfalse.

Furthermore, preassigned demand monitors must be attached, and grouped (directly or
indirectly) under a group monitor with sub-tagKHE_SUBTAG_KEMPE_DEMAND, by calling

KHE_GROUP_MONITOR KheKempeDemandGroupMonitorMake(KHE_SOLN soln);

before making any Kempe meet moves. This is a secondary grouping, as defined in Section 9.8.
The group monitor’s children are the ordinary demand monitors of the preassigned tasks ofsoln.
No primary groupings are relevant here so primary group monitors never replace the ordinary
demand monitors. The operation will abort if it cannot find a group monitor with this sub-tag
among the parents of the first demand monitor of the first preassigned task.

Use of the matching raises the question of whether Kempe meet moves should try to remove
demand defects other thansimple clashes: clashes involving a resource which possesses a hard
avoid clashes constraint which is preassigned to two meets which are running at the same time.
The author’s view is that it should not. When there is a simple clash caused by one meet moving
to a time, the only possible resolution is for the other to move away. With demand defects in
general, there may be multi-way clashes which can be resolved by moving one of several meets
away, and that is not what the Kempe meet move is about.

Assuming that the grouping is done correctly, then, a call to

bool KheKempeMeetMove(KHE_MEET meet, KHE_MEET target_meet,
int offset, bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

will make a Kempe meet move. It is similar toKheMeetMove in moving the current assignment
of meet to target_meet atoffset, but it requiresmeet to be already assigned so that it knows
where to move clashing meets back to. It does not use back pointers or visit numbers. It sets
*demand to the total demand of the meets it moves, to give the caller some idea of the disruption
it caused, and it sets*basic totrue if it did not find any meets that needed to be moved back the
other way, so that what it did was just a basic meet move. Thekempe_stats parameter is used
for collecting statistics about Kempe meet moves, as described below; it may beNULL if statistics
are not wanted. There is also

bool KheKempeMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

which movesmeet to the cycle meet and offset representing timet.

If preserve_regularity is false, these functions ignore zones. One way to take zones
into account is to callKheMeetMovePreservesZones (Section 5.4) first. In theory this is inade-
quate when meets of different durations are moved, but the inadequacy will virtually never arise
in practice. The other way is to setpreserve_regularity to true, and then the functions will
useKheNodeIrregularity (Section 5.4) to measure the irregularityof the nodes affected,before
and after; the operation will fail if the total irregularity of the nodes affected has increased.

KheKempeMeetMove succeeds, returningtrue, if it movesmeet totarget_meet atoffset,
possibly moving other meets as well, to ensure that the final state has no new simple clashes and
no new cases of a preassigned resource attending a meet at a time when it is unavailable. It fails,
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returningfalse, in these cases:

• The matching is not present.

• Some call toKheMeetMove,which is used to make the individual moves, returnsfalse. This
includes the case wheremeet is already assigned totarget_meet atoffset, which, as pre-
viously documented, is defined to fail for the practical reason that the move accomplishes
nothing and pursuing it can only waste time.

• Moving some meet makes some preassigned resource busy when it is unavailable.

• A meet which needs to be moved is not currently assigned to the expected target meet
(either meet’s original target meet ortarget_meet, depending on whether the current
step is odd or even), or has the wrong duration or offset. This prevents the changes from
spreading beyond the expected area of the solution.

• preserve_regularity is true but the operation increases irregularity (discussed above).

• Some meet needs to be moved, but it has already moved during this operation, indicating
that the classical graph colouring reason for failure has occurred.

If KheKempeMeetMove fails, it leaves the solution in the state it was in at the failure point. In prac-
tice, it must be enclosed inKheMarkBegin andKheMarkEnd (Section 4.8), so that undoing can
be used to clean up the mess. This could easily have been incorporated intoKheKempeMeetMove,
producing a version that left the solution unchanged if it failed. However, the caller will probably
want to enclose the operation inKheMarkBegin andKheMarkEnd anyway, since it may need to
be undone for other reasons, so cleanup is left to the caller.

The kempe_stats parameter is an object (the usual pointer to a private record) used to
record statistics about Kempe meet moves. If statistics are wanted, then to create and delete a
Kempe stats object, call

KHE_KEMPE_STATS KheKempeStatsMake(HA_ARENA a);
void KheKempeStatsDelete(KHE_KEMPE_STATS kempe_stats);

Actually the usual way to obtain aKHE_KEMPE_STATS object is from thets_kempe_stats option,
via a call to

KHE_KEMPE_STATS KheKempeStatsOption(KHE_OPTIONS options, char *key);

with key"ts_kempe_stats". This returns the Kempe stats object stored underkey, first creating
it with KheKempeStatsMake and adding it to the options object if it is not present.

Each time a Kempe stats object is passed to a successful call toKheKempeMeetMove or
KheKempeMeetMoveTime, its statistics are updated. They can be retrieved at any time using the
following functions.

A stepof a Kempe meet move is a move of one meet. The statistics include a histogram
of the number of successful Kempe meet moves withstep_count steps, for eachstep_count,
retrievable by calling
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int KheKempeStatsStepHistoMax(KHE_KEMPE_STATS kempe_stats);
int KheKempeStatsStepHistoFrequency(KHE_KEMPE_STATS kempe_stats,
int step_count);

int KheKempeStatsStepHistoTotal(KHE_KEMPE_STATS kempe_stats);
float KheKempeStatsStepHistoAverage(KHE_KEMPE_STATS kempe_stats);

These return the maximumstep_count for which there is at least one Kempe meet move, or0

if none; the number of Kempe meet moves withstep_count steps; the total number of steps
over all Kempe meet moves; and the average number of steps. This last is only safe to call if
KheKempeStatsStepHistoTotal > 0.

A phaseof a Kempe meet move is a move of one or more meets in one direction. For
example, a Kempe move that turns out to be an ordinary move has one phase; one that turns out
to move one meet in one direction, then two in the other, has two phases; and so on. The statistics
include a histogram of the number of successful Kempe meet moves withphase_count phases,
for eachphase_count, retrievable by calling

int KheKempeStatsPhaseHistoMax(KHE_KEMPE_STATS kempe_stats);
int KheKempeStatsPhaseHistoFrequency(KHE_KEMPE_STATS kempe_stats,
int phase_count);

int KheKempeStatsPhaseHistoTotal(KHE_KEMPE_STATS kempe_stats);
float KheKempeStatsPhaseHistoAverage(KHE_KEMPE_STATS kempe_stats);

These return the maximumphase_count for which there is at least one Kempe meet move, or0

if none; the number of Kempe meet moves withphase_count phases; the total number of phases
over all Kempe meet moves; and the average number of phases. This last is only safe to call if
KheKempeStatsPhaseHistoTotal > 0.

Functions

bool KheEjectingMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset,
bool allow_eject, bool preserve_regularity, int *demand, bool *basic);

bool KheEjectingMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool allow_eject, bool preserve_regularity, int *demand, bool *basic);

offer a variant of the Kempe meet move called theejecting meet move. This begins by moving
meet to target_meet atoffset, and then finds the meets that need to be moved back the other
way exactly as for Kempe meet moves (using the same group monitor), but instead of moving
them, it unassigns them and stops. This is whenallow_eject is true; whenallow_eject

is false, if any meets need to be ejected, instead of doing that the function returnsfalse.
KheEjectingMeetMove does not requiremeet to be assigned initially (the move may be an as-
signment), not does it carry out any checking of the durations and offsets of the meets it unas-
signs. All other details are as for Kempe meet moves. Similarly,

bool KheBasicMeetMove(KHE_MEET meet, KHE_MEET target_meet,
int offset, bool preserve_regularity, int *demand);

bool KheBasicMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool preserve_regularity, int *demand);

are variants in which even the unassignments are omitted. They are the same asKheMeetMove
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and KheMeetMoveTime as far as changing the solution goes, differing from them only in
optionally preserving regularity, and in reporting demand. No group monitor is needed.

Finally, functions

bool KheTypedMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset,
KHE_MOVE_TYPE mt, bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

bool KheTypedMeetMoveTime(KHE_MEET meet, KHE_TIME t,
KHE_MOVE_TYPE mt, bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

allow the type of move (unchecked, checked, ejecting, or Kempe) to be selected on the fly, using
parametermt, which has type

typedef enum {
KHE_MOVE_UNCHECKED,
KHE_MOVE_CHECKED,
KHE_MOVE_EJECTING,
KHE_MOVE_KEMPE,

} KHE_MOVE_TYPE;

Unchecked means basic, checked means ejecting withfalse for allow_eject, ejecting means
ejecting withtrue for allow_eject, and Kempe means Kempe. These functions switch onmt

and call the appropriate variant. Thekempe_stats parameter is only passed to Kempe moves.

The rest of this section describesKheKempeMeetMove’s implementation. It is an important
operation, so its implementation must be robust, and must squeeze every drop of utility out of
the basic idea.KheEjectingMeetMove is just a cut-down version ofKheKempeMeetMove.

A frame (nothing to do with typeKHE_FRAME) is a set of adjacent positions in a target
meet, defined by the target meet, a start offset into the target meet, and a stop offset, which may
equal the duration of the target meet, but be no larger. The set of positions runs from the start
offset inclusive to the stop offset exclusive. A meetlies in a frame when it is assigned to that
frame’s target meet, and the set of positions it occupies in that target meet is a subset of the set
of positions defined by the frame.

The Kempe meet move operation defines four frames. On odd-numbered steps, including
the move of the original meet, every move is of a meet lying in a frame called theodd-from frame
to a frame called theodd-to frame. Similarly, every meet move on even-numbered steps is from
theeven-from frameto theeven-to frame.

The odd-from frame and the odd-to frame have the same duration, and the even-from frame
and the even-to frame have the same duration. When a meet is moved, its new target meet is the
target meet of the to frame of its step, and its offset in that target meet is defined by requiring
its offset in its to frame to equal its former offset in its from frame. This completely determines
where the meet is moved to, and ensures that the timetable of moved meets is replicated in the to
frame exactly as it was in the from frame.

The implementation will now be described, assuming that the four frames are given. How
they are defined will be described later.
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First, if there are no preassigned tasks withinmeet or within meetsassigned tomeet, directly
or indirectly, thenKheKempeMeetMove callsKheMeetMove and returns its result. Otherwise, it
finds the group monitor it needs as described above and begins to trace it. It then carries out a
sequence of steps. As each step begins, there is a given set of meets to move, and the step tries
to move them. An empty set signals success.

On odd-numbered steps,KheKempeMeetMove moves the given set of meets from their
offsets in the odd-from frame to the same offsets in the odd-to frame. This will fail if any of
the meets do not lie entirely within the odd-from frame, and if any call toKheMeetMove returns
false. Even-numbered steps are the same, using the even-from frame and even-to frame.

The set of meets to move on the first step contains justmeet. At the end of each step, the set
of meets for the next step is found, as follows. The monitor trace is used to find the preassigned
demand monitors whose cost increased during the current step. For each of these monitors,
KheMonitorFirstCompetitor and KheMonitorNextCompetitor (Section 7.5.3) are used to
find the demand monitors competing with them for supply. These can be of four kinds:

1. A workload demand monitor derived from an avoid unavailable times monitor signals that
a preassigned resource has moved to an unavailable time, so fail.

2. Any other workload demand monitor signals a workload overload other than an unavailable
time, so ignore it. At a higher level, this defect might cause failure, but, as explained above,
the Kempe meet move itself only takes notice of simple clashes and unavailabilities.

3. A demand monitor derived from an unpreassigned task does not signal a simple clash, so
ignore it, on the same reasoning as the previous item.

4. A demand monitor derived from a preassigned task signals a simple clash. The appropriate
enclosing meet of the task (the one on the chain of assignments leading out of the task’s
meet just before the expected target meet) is found. If there is no such meet,or it was moved
on a previous step, fail. If it was moved on the current step, or is already scheduled to move
on the next step, ignore it. Otherwise schedule it to be moved on the next step.

A task is taken to be preassigned when a call toKheTaskIsPreassigned (Section 4.6.3), with
as_in_event_resource set tofalse, returnstrue.

It remains to explain how the four frames are defined.

Given the callKheKempeMeetMove(meet, target_meet, offset, ...), the target meet
of the odd-from frame and the even-to frame isKheMeetAsst(meet), and the target meet of the
even-from frame and the odd-to frame istarget_meet. These may be equal, or not.

The odd frames have the same duration, and the even frames have the same duration.
Usually, all frames have the same duration, the odd-from frame and the even-to frame are equal,
and the even-from frame and the odd-to frame are equal. This is theseparate case:

odd-from frame odd-to frame

even-to frame even-from frame
odd-number

odd-numbered steps

e

even-numbered steps

But there is another possibility, thecombined case. Suppose the odd-from frame and the
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even-from frame are adjacent in time (suppose they have the same target meet, and the start
offset of either equals the stop offset of the other). Call the union of their two sets of offsets the
combined block. In that case, the durations of the odd-from frame and the even-from frame may
differ. The odd-to frame occupies the opposite end of the combined block from the odd-from
frame, and the even-to frame occupies the opposite end from the even-from frame:

odd-from frame even-from frame

even-to frame odd-to frame

combined combined block

Four diagrams could be drawn here, showing cases where the odd-from frame has shorter and
longer duration than the even-from frame, and where it appears to the left and right of the
even-from frame. But in all these cases, meets move between the frames in the same way.

To find these frames, first make the initial move ofmeet totarget_meet atoffset. This is
an odd-numbered move, so it moves a meet from the odd-from frame to the odd-to frame. But it
is defined by the caller, so no frames are needed. If it fails, then fail. Otherwise,find the resulting
clashing meets. This may cause failure in various cases, as explained above; if successful, all
the clashing meets will currently be assigned totarget_meet at various offsets. If there are no
clashing meets, the initial move suffices, so return success. Otherwise, let theinitial clash frame
be the smallest frame enclosing the clashing meets. The even-from frame will be a superset of
this frame, to allow all the clashing meets to move legally on the second step.

Next, see whether the separate case applies, as follows. The initial meet must lie inside
the odd-to frame after it moves. Since the even-from frame must equal the odd-to frame in the
separate case, let the even-from frame be the initial clash frame, enlarged as little as possible to
include the initial meet after it moves. Then the odd-from frame is defined completely by the
requirements that its duration must equal the duration of the even-from frame, and that the offset
of the initial meet in the odd-from frame before it moves must equal its offset in the odd-to frame,
and so in the even-from frame, after it moves. Once the odd-from frame is defined in this way,
check that it does not protrude out either end of its target meet, nor overlap with the even-from
frame. If it passes this check, set the odd-to frame equal to the even-from frame, and set the
even-to frame equal to the odd-from frame. The separate case applies.

Otherwise, see whether the combined case applies, as follows. If the initial meet’s original
target meet is nottarget_meet, or its original position overlaps the initial clash frame, then the
combined case does not apply, and so the entire operation fails. Otherwise, set the even-from
frame to the initial clash frame, and set the odd-from frame to the smallest frame which both
includes the initial meet’s original position and also abuts the even-from frame. This frame
must exist; no further checks are needed. Set the odd-to frame to occupy the opposite end of the
combined block from the the odd-from frame, and set the even-to frame to occupy the opposite
end of the combined block from the even-from frame. The combined case applies.
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10.3. Meet bound groups and domain reduction

The functions described in this section do not assign meets. Instead, they reduce meet domains.

10.3.1. Meet bound groups

Meet domains are reduced by adding meet bound objects to meets (Section 4.5.4). Frequently,
meet bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of meet bounds—but it is convenient to have a
standard for it, so KHE defines a typeKHE_MEET_BOUND_GROUP with suitable operations.

To create a meet bound group, call

KHE_MEET_BOUND_GROUP KheMeetBoundGroupMake(KHE_SOLN soln);

To add a meet bound to a meet bound group, call

void KheMeetBoundGroupAddMeetBound(KHE_MEET_BOUND_GROUP mbg,
KHE_MEET_BOUND mb);

To visit the meet bounds of a meet bound group, call

int KheMeetBoundGroupMeetBoundCount(KHE_MEET_BOUND_GROUP mbg);
KHE_MEET_BOUND KheMeetBoundGroupMeetBound(KHE_MEET_BOUND_GROUP mbg, int i);

To delete a meet bound group, including deleting all the meet bounds in it, call

bool KheMeetBoundGroupDelete(KHE_MEET_BOUND_GROUP mbg);

This function returnstrue when every call it makes toKheMeetBoundDelete returnstrue.

10.3.2. Exposing resource unavailability

If a meet contains a preassigned resource with some unavailable times, run times will be reduced
if those times are removed from the meet’s domain, since then futile time assignments will be
ruled out quickly. This idea is implemented by

void KheMeetAddUnavailableBound(KHE_MEET meet, KHE_COST min_weight,
KHE_MEET_BOUND_GROUP mbg);

This makes a meet bound based on the available times of the resources preassigned tomeet and
to meets with fixed assignments tomeet, directly or indirectly. It adds this bound tomeet, and to
mbg if mbg is non-NULL.

The meet bound is an occupancy bound whose default time group is the full cycle minus
KheAvoidUnavailableTimesConstraintUnavailableTimes(c) for each avoid unavailable
times constraintc for the relevant resources whose combined weight is at leastmin_weight. For
example, settingmin_weight to 0 includes all constraints; setting it toKheCost(1, 0) includes
hard constraints only. Each time group is adjusted for the offset inmeet of the meet containing
the preassigned resource. If the resulting time group is the entire cycle, as it will be, for example,
whenmeet’s preassigned resources are always available, then no meet bound is made.
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There is also

void KheSolnAddUnavailableBounds(KHE_SOLN soln, KHE_COST min_weight,
KHE_MEET_BOUND_GROUP mbg);

which callsKheMeetAddUnavailableBound for each non-cycle meet insoln whose assignment
is not fixed, taking care to visit the meets in a safe order (parents before children).

10.3.3. Preventing cluster busy times and limit idle times defects

This section presents a function which reduces the cost of cluster busy times and limit idle times
monitors,by reducing heuristically the domains of the meets to which the monitors’resources are
preassigned, before time assignment begins. For example, suppose teacher Jones is limited by a
cluster busy times constraint to attend for at most three of the five days of the week. Choose any
three days and reduce the time domains of the meets that Jones is preassigned to to those three
days. Then those meets cannot cause a cluster busy times defect for Jones.

But first, we need to consider the alternatives. One is to do nothing special during the
initial time assignment, and repair any defects later. But there are likely to be many defects then,
casting doubt on the value of the initial assignment, since repairing cluster busy times defects is
time-consuming and difficult. Repairing limit idle times defects is easier, but it still takes time.

A second alternative is to take these monitors into account as part of the usual method of
constructing an initial assignment of times to meets. The usual method is to group the meets into
layers (sets of meets which must be disjoint in time, because they share preassigned resources)
and assign the layers in turn. Some monitors are handled during layer assignment, including
demand and spread events monitors. Cluster busy times monitors can be too, as follows.

Suppose there is a cluster busy times monitor for resourcer requiring thatr be busy on at
most four of the five days of the cycle. Create a meet with duration equal to the number of times
in one day, whose domain is the set of first times on all days. Add a task preassignedr to this
meet. Then, in the course of assigningr ’s layer, this meet will be assigned a time, and if there
are no clashes, the other meets preassignedr will be limited to at most four days as required. At
the author’s university, this method is used to give most students two half-days off.

There are a few detailed problems: a whole-day meet may not be assignable to any cycle
meet, and the author’s best method of assigning the meets of one layer (Section 10.6) works best
when there are several meets of each duration, whereas here there may be only one whole-day
meet. These problems can be surmounted by reducing the domains of the other meets instead
of adding a new meet. But there are other problems—problems that may be called fundamental,
because they arise from handling clustering one layer at a time.

A resource islightly loadedwhen it is preassigned to meets whose total duration is much
less than the cycle’s duration. Cluster busy times monitors naturally apply to lightly loaded
resources, because heavily loaded ones don’t have the free time that makes clustering desirable.
In university problems,each layer is a set of meetspreassigned just one resource: a lightly loaded
student. The layers are fairly independent, being mutually constrained only by the capacities of
class sections. Under these conditions, handling clustering one layer at a time works well.

But now consider the situation, common in high schools, where each meet contains two
preassigned resources,one student group resource and one teacher resource. Suppose the student
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group resources are heavily loaded, and the teacher resources are lightly loaded and subject
to cluster busy times constraints. It is best to timetable the meets one student group layer at a
time, because the student group resources are heavily loaded, but this leaves no place to handle
the teachers’ cluster busy times monitors. Even if the meets were assigned in teacher layers,
those layers are often not independent: electives, for example, have several simultaneous meets,
requiring several teachers to have common available times.

This brings us to the third alternative, the subject of this section. Before time assignment
begins, reduce the domains of meets subject to cluster busy times and limit idle times monitors
to guarantee that the monitors have low (or zero) cost, whatever times are assigned later. Use the
global tixel matching to avoid mistakes which would make meets unassignable. Function

void KheSolnClusterAndLimitMeetDomains(KHE_SOLN soln,
KHE_COST min_cluster_weight, KHE_COST min_idle_weight,
float slack, KHE_MEET_BOUND_GROUP mbg, KHE_OPTIONS options);

does this. It adds meet bounds to meets, and tombg if mbg is non-NULL, based on cluster busy
times monitors with combined weight at leastmin_cluster_weight, and on limit idle times
monitors with combined weight at leastmin_idle_weight. Minimum limits are ignored. See
below for precisely which monitors are included. IfKheOptionsDiversify(options) istrue,
the result is diversified by varying the order in which domain reductions for limit idle times
monitors are tried.

Carrying out all possible domain reductions is almost certainly too extreme; it gives other
solvers no room to move. Parameterslack is offered to avoid this problem. For each resource
r, functionKheSolnClusterAndLimitMeetDomains keeps track ofp(r ), the total duration of
the events preassignedr, anda(r ), the total duration of the times available to these events, given
the reductions made so far. Clearly, it is important for the function to ensurea(r ) ≥ p(r ), since
otherwise these events will not have room to be assigned. But, lettings be the value ofslack,
the function actually ensuresa(r ) ≥ s ⋅ p(r ), or rather, it does not apply any reduction that makes
this conditionfalse. The minimum acceptable value ofslack is1.0, which is almost certainly
too small. A value around1.5 seems more reasonable.

The remainder of this section describes the issues involved in reducing domains, and how
KheSolnClusterAndLimitMeetDomains works in detail.

A set of resources may betime-equivalent: sure to be busy at the same times. There
would be no change in cost if all the cluster busy times and limit idle times monitors of a set of
time-equivalent resources applied to just one of them: their costs depend only on when their
resource is busy. So although for simplicity the following discussion speaks of individual
resources, in factKheSolnClusterAndLimitMeetDomains deals with sets of time-equivalent
resources, taken from thetime_equiv option of itsoptions parameter. It obtains this by calling
KheTimeEquivOption (Section 9.2), which creates the option if it is not already present.

A cluster busy times monitor for a resourcer is included when its combined weight is at
leastmin_cluster_weight, its Maximum limit is less than its number of time groups, and each
time group is either disjoint from or equal to each time group of each previously included monitor
for r. A limit idle timesmonitor for a resourcer of typert is included when its combined weight
is at leastmin_idle_weight, rt satisfiesKheResourceTypeDemandIsAllPreassigned(rt),
its time groups are disjoint from each other, and each time group is either disjoint from or equal
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to each time group of each previously included monitor for that resource. The time groups are
usually days, so the disjoint-or-equal requirement is usually no impediment.

An exclusion operation, or just exclusion, is the addition of an occupancy meet bound
(Section 4.5.4) to each meet preassigned a given resource, ensuring that those meets do not
overlap a given set of times. An exclusion issuccessfulif its calls toKheMeetAddMeetBound
succeed and do not increase the number of unmatched demand tixels in the global tixel matching.
KheSolnClusterAndLimitMeetDomains keeps only successful exclusions; unsuccessful ones
are tried, then undone. It repeatedly tries exclusions until for each monitor, either a guarantee
of sufficiently low cost is obtained, or no further successful exclusions are available. Exclusions
based on cluster busy times monitors are tried first, since they are most important. After they
have all been tried, the algorithm switches to exclusions based on limit idle times monitors.

Build a graph with one vertex for each resource. For each resource, the aim is to exclude
some of its cluster busy times monitors’ time groups from its meets, enough to satisfy those
monitors’Maximum limits. Thinking of each time group as a colour, the aim is to assign a given
number of distinct colours from a given set to each vertex.

If some meet (or set of linked meets) has several preassigned resources, those resources
should exclude some of the same time groups, to leave others available. Linked meets with
preassigned teachersa, b, c, d, andemust not be excluded from Mondays bya, from Tuesdays
by b, and so on. The global tixel matching test prevents this extreme example, but we also need
to avoid even approaching it. So when two resources share meets, this evidence that they should
have similar exclusions is recorded by connecting their vertices by apositive edgewhose cost is
the total duration of the meets they share.

Even when two resources share no meets, they may still influence each other’s exclusions,
when there is an intermediate resource which shares meets with both of them. Two teachers who
teach the same student group are an example of this. If some time group is excluded by one of
the teachers, it would be better if it was not excluded by the other, since that again limits choice.
In this case the two resources’ vertices are joined by anegative edgewhose cost is the total
duration of the meets they share with the intermediate resource. If there are several intermediate
resources, the maximum of their costs is used.

Negative edges produce a soft graph colouring problem: a good result gives overlapping
sets of colours to vertices connected by positive edges, and disjoint sets of colours to vertices
connected by negative edges. This connection with graph colouring rules out finding an
optimum solution quickly, but it also suggests a simple heuristic which is likely to work well,
since it is based on the successful saturation degree heuristic for graph colouring.

A vertex isopenwhena(v) > s ⋅ p(v) (as explained above), and it has at least one untried ex-
clusion with at least one cluster busy times monitor which would benefit from that exclusion. If
there are no open vertices, the procedure ends. Otherwise an open vertex is chosen for colouring
whose total cost of edges (positive and negative) going to partly or completely coloured vertices
is maximum, with ties broken in favour of vertices of larger degree.

Once an open vertex is chosen, the cost of each of its untried colours is found, and the
untried colours are tried in order of increasing cost until one of them succeeds or all have been
tried. The cost of a colourc is the total cost of outgoing negative edges to vertices containingc,
minus the total cost of outgoing positive edges to vertices containingc.

The numbers used by the heuristic are adjusted to take account of the idea that one vertex
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requiring several colours is similar to several vertices, each requiring one colour, and connected
in a clique by strongly negative edges. In particular, being partly coloured increases a vertex’s
chance of being chosen for colouring, as does requiring more than one more colour.

Saturation degree heuristics are often initialized by finding and colouring a large clique, but
nothing of that kind is attempted here. A time group which is a subset of the unavailable times
of its resource should always be excluded. This is done, wherever applicable, at the start, after
which there may be several partly coloured vertices.

When handling limit idle times monitors, individual times are excluded instead of entire
time groups. The time groups of limit idle times monitors are compact, and the excluded times
lie at the start or end of one of these time groups. Exclusions which remove a last unexcluded
time are tried first, followed by exclusions which remove a first unexcluded time.

Whether an idle exclusion is needed depends on the following calculation. As above, let
thepreassigned duration p(v) of a vertexv be the total duration of the meets thatv’s resource is
preassigned to. Let theavailability a(v) of vertexvbe the number of times that these same meets
may occupy. Initially this is the number of times in the cycle, but as time groups are excluded
during the cluster busy times phase it shrinks, and then as individual times are excluded during
the limit idle times monitor phase it shrinks further.

As explained above, when an exclusion would causea(v) ≥ s ⋅ p(v) to becomefalse, it is
prevented. Assuming this obstacle is not present, consider limit idle times monitorm within v.
A worst-case estimate of its number of deviationsd(m) can be found as follows.

Let a(m), theavailabilityof m, be the total number of unexcluded times inm’s time groups.
Since time groups are disjoint,a(m) ≤ a(v). The worst case form occurs when as many meets
as possible are assigned times outside its time groups, leaving many unassigned and potentially
idle times inside. The maximum duration of meets that can be assigned outsidem’s time groups
is a(v) − a(m), leaving a minimum duration of

MD(m) = max(0,p(v) − (a(v) − a(m)))

to be assigned withinm’s time groups. This assignment leavesa(m) − MD(m) of m’s available
places unfilled. A little algebra shows that this difference is non-negative, givena(v) ≥ p(v).

Let M(m) bem’s Maximum attribute. The worst-case deviationd(m) is the amount by which
the number of unfilled places exceedsM(m), that is,

d(m) = max(0,a(m) − MD(m) − M(m))

If d(m) is positive, an exclusion which reducesa(m) further may be tried, and multiplyingd(m)
by w(m), the combined weight ofm’s constraint, gives a priority for trying such an exclusion.

Limit idle times monitors are tried in decreasingd(m)w(m) order, updated dynamically,and
modified by propagating exclusions across positive edges. Negative edges are not used.

10.4. Some basic time solvers

This section presents some basic time solvers. The simplest are
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bool KheNodeSimpleAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);
bool KheLayerSimpleAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

They assign those meets of the child nodes ofparent_node (or of the nodes oflayer) that are
not already assigned. For each such meet, in decreasing duration order, they try all offsets in all
meets of the parent node. IfKheMeetAssignCheck permits at least one of these, the best is made,
measuring badness by callingKheSolnCost; otherwise the meet remains unassigned, and the
result returned will befalse. These functions do not use options or back pointers.

There is one wrinkle. When assigning a meet which is derived from an evente, these
functions will not assign the meet to a meet which is already the target of an assignment of some
other meet derived frome. This is because if two meets from the same event are assigned to the
same meet, they are locked into being adjacent, or almost adjacent, in time, undermining the only
possible motive for splitting them apart.

These functions are not intended for serious timetabling. They are useful for simple
tasks: assigning nodes whose children are known to be trivially assignable, finding minimum
runaround durations (Section 9.4.1), and so on.

The logical order to assign times to the nodes of a layer tree is postorder (from the bottom
up), since until a node’s children are assigned to it, its resource demands are not clear. Function

bool KheNodeRecursiveAssignTimes(KHE_NODE parent_node,
KHE_NODE_TIME_SOLVER solver, KHE_OPTIONS options);

appliessolver to all the nodes in the subtree rooted atparent_node, in postorder. It returns
true when every call it makes onsolver returnstrue. It uses options and back pointers if and
only if solver uses them. For example,

KheNodeRecursiveAssignTimes(parent_node, &KheNodeSimpleAssignTimes, NULL);

carries out a simple assignment at each node, and

KheNodeRecursiveAssignTimes(parent_node, &KheNodeUnAssignTimes, NULL);

unassigns all meets in all proper descendants ofparent_node.

Functions

bool KheNodeUnAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);
bool KheLayerUnAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

unassign any assigned meets ofparent_node’s child nodes (or oflayer’s nodes). They do not
use options or back pointers. Also,

bool KheNodeAllChildMeetsAssigned(KHE_NODE parent_node);
bool KheLayerAllChildMeetsAssigned(KHE_LAYER layer);

returntrue when the meets of the child nodes ofparent_node (or of layer) are all assigned.

Preassigned meets could be assigned separately first, then left out of nodes so that they
are not visited by time assignment algorithms. The problem with this is that a few times may be
preassigned to obtain various effects, such as Mathematics first in the day, and this should not
affect the way that forms are coordinated. Accordingly, the author favours handling preassigned
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meets along with other meets, as far as possible.

However, when coordination is complete and real time assignment begins, it seems best
to assign preassigned meets first, for two reasons. First, preassignments are special because
they have effectively infinite weight. There is no point in searching for alternatives. Second,
preassignments cannot be handled by algorithms that are guided by total cost, because they have
no assign time constraints, so there is no reduction in cost when they are assigned. Functions

bool KheNodePreassignedAssignTimes(KHE_NODE root_node,
KHE_OPTIONS options);

bool KheLayerPreassignedAssignTimes(KHE_LAYER layer,
KHE_OPTIONS options);

search the child nodes ofroot_node, which must be the overall root node, or the nodes oflayer,
whose parent must be the overall root node, for unassigned meets whose time domains contain
exactly one element.KheMeetAssignTime is called on each such meet to attempt to assign that
one time to the meet, and the result istrue when all of these calls returntrue. These functions
do not use options or back pointers.

KHE’s solvers assume that it is always a good thing to assign a time to a meet. However,
occasionally there are cases where cost can be reduced by unassigning a meet, because the cost
of the resulting assign time defect is less than the total cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSolnTryMeetUnAssignments(KHE_SOLN soln);

for use at the end. It tries unassigning each meet ofsoln in turn. If any unassignment reduces
the cost ofsoln, it is not reassigned. The result istrue if any unassignments were kept.

10.5. A time solver for runarounds

Time solver

bool KheRunaroundNodeAssignTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

assigns times to the unassigned meets of the child nodes ofparent_node, using an algorithm
specialized for runarounds. It tries to spread similar nodes out throughparent_node as much
as possible. By definition, some resources are scarce in runaround nodes, so it is good to spread
demands for similar resources as widely as possible. It works well on symmetrical runarounds,
but it can fail in more complex cases. If that happens, it undoes its work and makes a call to
KheNodeLayeredAssignTimes(parent_node, false) from Section 10.8.2. This is not a very
appropriate alternative, but any assignment is better than none.

KheRunaroundNodeAssignTimes begins by finding the child layers ofparent_node using
KheNodeChildLayersMake (Section 9.3.1), and placing similar nodes at corresponding indexes
in the layers, usingKheLayerSimilar (Section 5.3). It then assigns the unassigned meets of
these nodes. Its first priority is to not increase solution cost; its second is to avoid assigning two
child meets to the same parent meet (this would prevent them from spreading out in time); and
its third is to prevent corresponding meets in different layers from overlapping in time.



10.5. A time solver for runarounds 255

The algorithm is based on a procedure (let’s call itSolve) which accepts a set of child
layers, each accompanied by a set of triples of the form

(parent_meet, offset, duration)

meaning thatparent_meet is open to assignment by a child meet of the layer, at the given offset
and duration. The task ofSolve is to assign all the unassigned meets of the nodes of its layers.

The initial call toSolve is passed all the child layers. Each layer’s triples usually contain
one triple for each parent meet, with offset 0 and the duration of the parent meet for duration,
indicating that the parent meets are completely open for assignment. If any meets are assigned
already, the triples are modified accordingly to record the smaller amount of open space.

Solve begins by finding the maximum duration,md, of an unassigned meet in any of its
layers. It assigns all meets with this duration in all layers itself, and then makes recursive calls to
assign the meets of smaller duration. For each layer, it takes the meets of durationmd in the order
they appear in the layer and its nodes. It assigns these meets to consecutive suitable positions
through the layer, shifting the starting point of the search for suitable positions by one place in
the parent layer as it begins each layer. It never makes an assignment which increases the cost
of the solution, and it makes an assignment which causes two child meets to be assigned to the
same parent meet only as a last resort. If some meet fails to assign, the whole algorithm fails and
the problem is passed on toKheNodeChildLayersAssignTimes as described above.

As meets are assigned, the offsets and durations of the triples change to reflect the fact that
the parent meets are more occupied. After all assignments of meets of durationmd are complete,
the layers are sorted to bring layers with equal triples together. Each set of layers with equal
triples is then passed to a recursive call toSolve, which assigns its meets of smaller duration.

The purpose of handling sets of layers with equal triples together in this way can be seen in
an example. Suppose the parent node has two doubles and each child node has one double. Then
there are two ways to assign the child’s double; half the child layers will get one of these ways,
the other half will get the other way. The layers in each half have identical assignments so far,
undesirably but inevitably. By bringing them together we maximize the chance that the recursive
call which assigns the singles will find a way to vary the remaining assignments.

10.6. Extended layer matching with Elm

A good way to assign times to meets is to group the meets into nodes, group the nodes into layers,
and assign times to the meets layer by layer. The advantage of doing it this way is that the meets
of one layer strongly constrain each other, because they share preassigned resources so must be
disjoint in time. Assigning times to the meets of one layer, then, is a key step.

Any initial assignment of times to the meets of one layer will probably require repair. But
repair is time-consuming, and it will help if the initial assignment has few defects—as a first
priority, few demand defects, but also few defects of other kinds. The method presented in this
section, calledextended layer matching, or Elm for short, is the author’s best method of finding
an initial assignment of times to the meets of one layer.

If all meets have duration 1 and minimizing ordinary demand defects is the sole aim, the
problem can be solved efficiently using weighted bipartite matching. Make each meet a node
and each time a node, and connect each meet to each time it may be assigned, by an edge whose
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cost is the number of demand defects that assignment causes. Among all matchings with the
maximum number of edges, choose one of minimum cost and make the indicated assignments.

Elm is based on this kind of weighted bipartite matching, calledlayer matchingby the
author, making it good at minimizing demand defects. It isextendedwith ideas that heuristically
reduce other defects. Layer matching was calledmeta-matchingin the author’s early work,
because it operates above another matching, the global tixel matching.

Elm can be used without understanding it in detail, by calling

bool KheElmLayerAssign(KHE_LAYER layer,
KHE_SPREAD_EVENTS_CONSTRAINT sec, KHE_OPTIONS options);

KheElmLayerAssign finds an initial assignment of the meets of the child nodes oflayer to the
meets of the parent node oflayer, leaving any existing assignments unchanged, and returning
true if every meet oflayer is assigned afterwards. It works well with the reduced meet domains
installed by solvers such asKheSolnClusterAndLimitMeetDomains (Section 10.3.3) for
minimizing cluster busy times and limit idle times defects. It tries to minimize demand defects,
and if layer’s parent node has zones, it also tries to make its assignments meet and node regular
with those zones, which should help to minimize spread events defects. If thediversify option
of options (Section 8.2) istrue, it consults the solution’s diversifier, and its results may vary
with the diversifier. It does not repair its assignment, leaving that to other functions.

Parametersec is optional (may beNULL); a simple choice for it would be any spread events
constraint whose number of points of application is maximal. Ifsec is present, the algorithm
tries to assign the same number of meets to each ofsec’s time groups. To see why, consider an
example of the opposite. Suppose the events are to spread through the days, and the Wednesday
times are assigned eight singles, while the Friday times are assigned four doubles. It’s likely
that some events will end up meeting twice on Wednesdays and not at all on Fridays. Thesec

parameter acts only with low priority. It is mainly useful on the first layer, when there are no
zones and the segmentation is more or less arbitrary.

10.6.1. Introducing layer matching

This section introduces layer matching. Later sections describe the implementation. Suppose
some layer has three meets of duration 2 and two meets of duration 1, like this:

Thesechild meetshave to be assigned to non-overlapping offsets in the meets of the parent node
(theparent meets). Suppose there are three parent meets of duration 2 and three of duration 1:

and suppose (for the moment) that assignments are only possible between meets of the same
duration. Then a bipartite graph can represent all the possibilities:
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The child meets (the bottom row)are the demand nodes,and the parent meets (the top row)are the
supply nodes. Each edge representsone potential assignment of one child meet. Not all edgesare
present: some are missing because of unequal durations, others because of preassignments and
other domain restrictions. For example, the last child meet above appears to be preassigned.

When one of the potential assignments is made, there is a change in solution cost. Each
edge may be labelled by this change in cost. Suppose that a matching of maximum size (number
of edges) is found whose cost (total cost of selected edges) is minimum. There is a reasonably
efficient algorithm for doing this. This matching is thelayer matching; it defines a legal assign-
ment for some (usually all) child meets, and its cost is a lower bound on the change in solution
cost when these meets are assigned to parent meets without any overlapping, as is required since
the child meets share a layer and thus presumably share preassigned resources.

The lower bound is only exact if each assignment changes the solution cost independently
of the others. This is true for many kinds of monitors, but not all, and it is one reason why the
lower bound produced by the matching is not exact. In fact, costs contributed by limit idle
times, cluster busy times, and limit busy times monitors only confuse layer matching. So for
each resource of the layer, any attached monitors of these kinds are detached at the beginning of
KheElmLayerAssign and re-attached at the end.

Parent meets usually have larger durations than child meets, allowing choices in packing
the children into the parents. The parent node typically represents the week, so it might have,
say, 10 meets each of duration 4 (representing 5 mornings and 5 afternoons), whereas the child
meets typically represent individual lessons, so they might have durations 1and 2. Asegmentof
parent meettarget_meet is a triple

(target_meet, offset, durn)

such that it is legal to assign a child meet of durationdurn to target_meet at offset. A
segmentationof the parent meets is a set of non-overlapping segments that covers all offsets of
all parent meets. It is the segments of a segmentation, not the parent meets themselves, that are
used as supply nodes. There may be many segmentations, but the layer matching uses only one.
This is the other reason why the lower bound is not exact.

A layer matching graphis a bipartite graph with one demand node for each meet of a
given layer, and one supply node for each segment of some segmentation of the meets of the
layer’s parent node. For each unassigned child meetmeet, there is one edge to each parent
segment whose duration equals the duration ofmeet and to whichmeet is assignable according
to KheMeetAssignCheck. The cost of the edge is the cost of the solution when the assignment
is made, found by making the assignment, callingKheSolnCost, then unassigning again. (Using
the solution cost rather than the change in cost ensures that edge costs are always non-negative,
as required behind the scenes.) For each assigned child meetmeet, a parent segment withmeet’s
target meet, offset, and duration is the only possible supply node that the meet can be connected
to; if present, the edge cost is 0.
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A layer matchingis a set of edges from the graph such that no node is an endpoint of two
or more of the selected edges. Abest matchingis a layer matching of minimumcost(sum of
edge costs) among all matchings of maximumsize(number of edges).

The layer giving rise to the demand nodes consists of nodes, each of which typically
contains a set of meets for one course. This set of meets will typically want to be spread through
the cycle, not bunched together. Each meet generates a demand node, and a set of demand nodes
whose meets are related in this way is called ademand node group.

There is also a natural grouping of supply nodes, with eachsupply node groupconsisting of
those supply nodes which originated from the same parent meet. Thus, the supply nodes of one
group are adjacent in time.

It would be good to enforce the following rule: two demand nodes from the same demand
node group may not match with two supply nodes from the same supply node group (because
if they did, all chance of spreading out the demand nodes in time would be lost). There is no
hope of guaranteeing this rule, because there are cases where it must be violated, and because
minimizing cost while guaranteeing it appears to be an NP-complete problem. However, Elm
encourages it. When finding a minimum-cost matching, it adds an artificial increment to the cost
of each augmenting path that would violate it, thus making those paths relatively uncompetitive
and unlikely to be applied. The approach is purely heuristic, but it usually works well.

The overall structure of the layer matching graph is now clear. There are demand nodes,
each representing one meet of the layer, grouped into demand node groups representing courses.
There are supply nodes, each representing one segment of one meet of the parent node, grouped
into supply node groups representing the meets of the parent node. Edges between supply
nodes and demand nodes are not defined explicitly; they are determined by the durations and
assignability of the meets and segments.

10.6.2. The core module

This section describes thecore module, which implements the layer matching graph, including
maintaininga best matching. Elm alsohashelper modules,described in followingsections. They
have no behind-the-scenes access to the graph; they use only the operations described here.

The core module follows the previous description closely, except that it uses ‘demand’ for
‘demand node’, ‘demand group’ for ‘demand node group’, and so on—for brevity, and so that
‘node’always means an object of typeKHE_NODE. This Guide will do this too from now on.

Elm’s types and functions (apart fromKheElmLayerAssign) are declared in a header file of
their own, calledkhe_elm.h. So to access the functions described from here on,

#include "khe_solvers.h"
#include "khe_elm.h"

must be placed at the start of the source file.

We begin with the operations on typeKHE_ELM, representing one elm. An elm for a given
layer is created by

KHE_ELM KheElmMake(KHE_LAYER layer, KHE_OPTIONS options, HA_ARENA a);

and deleted by deleting or recyclinga. If the diversify option of options is true, then the



10.6. Extended layer matching with Elm 259

layer’s solution’s diversifier is used to diversify the elm. In addition to the elm itself,KheElmMake

creates one demand group for each child node oflayer, containing one demand for each meet
of the child node. It also creates one supply group for each meet of the layer’s parent node,
containing one supply representing the entire meet. The sets of meets in the parent and child
nodes should not change during the elm’s lifetime,although the state of one meet (its assignment,
domain, etc.) may change.

The layer and options may be accessed by

KHE_LAYER KheElmLayer(KHE_ELM elm);
KHE_OPTIONS KheElmOptions(KHE_ELM elm);

To access the demand groups, call

int KheElmDemandGroupCount(KHE_ELM elm);
KHE_ELM_DEMAND_GROUP KheElmDemandGroup(KHE_ELM elm, int i);

in the usual way. To access the supply groups, call

int KheElmSupplyGroupCount(KHE_ELM elm);
KHE_ELM_SUPPLY_GROUP KheElmSupplyGroup(KHE_ELM elm, int i);

An elm also holds a best matching as defined above. The functions related to it are

int KheElmBestUnmatched(KHE_ELM elm);
KHE_COST KheElmBestCost(KHE_ELM elm);
bool KheElmBestAssignMeets(KHE_ELM elm);

KheElmBestUnmatched returns the number of unmatched demands in the best matching.
KheElmBestCost returns its cost—not a solution cost, but a sum of edge costs, each of which is
a solution cost.KheElmDemandBestSupply, defined below, reportswhich supply a given demand
is matched with. To assign the unassigned meets ofelm’s layer according to the best matching,
callKheElmBestAssignMeets; it returnstrue if every meet is assigned afterwards. Elm updates
the best matching only when one of these four functions is called, for efficiency.

Elm has a ‘special node’which is begun and ended by calling

void KheElmSpecialModeBegin(KHE_ELM elm);
void KheElmSpecialModeEnd(KHE_ELM elm);

While the special mode is in effect,Elm assumes that edges can change their presence in the layer
matching graph but not their cost. So when updating edges in special mode, Elm only needs to
find whether each edge is present or not, which is much faster than finding costs as well.

To support splitting supplies so that their numbers in each time group of a spread events
constraint are approximately equal, these functions are offered:

void KheElmUnevennessTimeGroupAdd(KHE_ELM elm, KHE_TIME_GROUP tg);
int KheElmUnevenness(KHE_ELM elm);

KheElmUnevennessTimeGroupAdd instructselm to keep track of the number of supplies whose
starting times lie withintg. KheElmUnevenness returns the sum over all these time groups of
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a quantity related to the square of this number. For a given set of supplies, this will be smaller
when they are distributed evenly among the time groups than when they are not.

Function

void KheElmDebug(KHE_ELM elm, int verbosity, int indent, FILE *fp);

produces a debug print ofelm onto fp with the given verbosity and indent. Demands are
represented by their meets, and supplies are represented by their meets, offsets, and durations. If
verbosity >= 2, the print includes the best matching. Function

void KheElmDebugSegmentation(KHE_ELM elm, int verbosity,
int indent, FILE *fp);

is similar except that it concentrates onelm’s segmentation.

Demand groups have typeKHE_ELM_DEMAND_GROUP. To access their attributes, call

KHE_ELM KheElmDemandGroupElm(KHE_ELM_DEMAND_GROUP dg);
KHE_NODE KheElmDemandGroupNode(KHE_ELM_DEMAND_GROUP dg);
int KheElmDemandGroupDemandCount(KHE_ELM_DEMAND_GROUP dg);
KHE_ELM_DEMAND KheElmDemandGroupDemand(KHE_ELM_DEMAND_GROUP dg, int i);

These returndg’s enclosing elm, the child node of the original layer that gave rise todg, dg’s
number of demands, and itsith demand.

Elm maintains edges between demands and supplies automatically. But if a demand’s meet
changes in some way (for example, if its domain changes), Elm has no way of knowing that this
has occurred. When the meets of the demands of a demand group change, the user must call

void KheElmDemandGroupHasChanged(KHE_ELM_DEMAND_GROUP dg);

to inform Elm that the edges touching the demands ofdg must be remade before being used.

A demand group may contain any number of zones. If there are none, then zones have
no effect. If there is at least one zone, then the demand group’s demands may match only with
supplies that begin in one of its zones. The valueNULL counts as a zone. Functions

void KheElmDemandGroupAddZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);
void KheElmDemandGroupDeleteZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);

add and delete a zone fromdg, including callingKheElmDemandGroupHasChanged. The value
of zone may beNULL. To check whetherdg contains a given zone, call

bool KheElmDemandGroupContainsZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);

To visit the zones of a demand group, call

int KheElmDemandGroupZoneCount(KHE_ELM_DEMAND_GROUP dg);
KHE_ZONE KheElmDemandGroupZone(KHE_ELM_DEMAND_GROUP dg, int i);

Function
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void KheElmDemandGroupDebug(KHE_ELM_DEMAND_GROUP dg,
int verbosity, int indent, FILE *fp);

sends a debug print ofdg with the given verbosity and indent tofp.

Demands have typeKHE_ELM_DEMAND. To access their attributes, call

KHE_ELM_DEMAND_GROUP KheElmDemandDemandGroup(KHE_ELM_DEMAND d);
KHE_MEET KheElmDemandMeet(KHE_ELM_DEMAND d);

These return the enclosing demand group, and the meet that gave rise to the demand.

As explained above, when a demand’s meet changes in some way that affects the demand’s
edges, Elm must be informed. For a single demand, this is done by calling

void KheElmDemandHasChanged(KHE_ELM_DEMAND d);

This is called byKheElmDemandGroupHasChanged for each demand in its demand group. To find
out which supplyd is matched with in the best matching, call

bool KheElmDemandBestSupply(KHE_ELM_DEMAND d,
KHE_ELM_SUPPLY *s, KHE_COST *cost);

If d is matched with a supply in the best matching,KheElmDemandBestSupply sets*s to that
supply and*cost to the cost of the edge, and returnstrue; otherwise it returnsfalse. And

void KheElmDemandDebug(KHE_ELM_DEMAND d, int verbosity,
int indent, FILE *fp);

sends a debug print ofd with the given verbosity and indent tofp.

Supply groups have typeKHE_ELM_SUPPLY_GROUP. To access their attributes, call

KHE_ELM KheElmSupplyGroupElm(KHE_ELM_SUPPLY_GROUP sg);
KHE_MEET KheElmSupplyGroupMeet(KHE_ELM_SUPPLY_GROUP sg);
int KheElmSupplyGroupSupplyCount(KHE_ELM_SUPPLY_GROUP sg);
KHE_ELM_SUPPLY KheElmSupplyGroupSupply(KHE_ELM_SUPPLY_GROUP sg, int i);

These returnsg’s enclosing elm, the meet of the layer’s parent node that gave rise to it, its number
of supplies (segments), and itsith supply. And

void KheElmSupplyGroupDebug(KHE_ELM_SUPPLY_GROUP sg,
int verbosity, int indent, FILE *fp);

sends a debug print ofsg with the given verbosity and indent tofp.

Supplies have typeKHE_ELM_SUPPLY. To access their attributes, call

KHE_ELM_SUPPLY_GROUP KheElmSupplySupplyGroup(KHE_ELM_SUPPLY s);
KHE_MEET KheElmSupplyMeet(KHE_ELM_SUPPLY s);
int KheElmSupplyOffset(KHE_ELM_SUPPLY s);
int KheElmSupplyDuration(KHE_ELM_SUPPLY s);

KheElmSupplySupplyGroup is the enclosing supply group,KheElmSupplyMeet is the enclosing
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supply group’s meet, andKheElmSupplyOffset andKheElmSupplyDuration return an offset
and duration within that meet, defining one segment.

To facilitate calculations with zones, each supply maintains the set of distinct zones that its
offsets lie in. These may be accessed by calling

int KheElmSupplyZoneCount(KHE_ELM_SUPPLY s);
KHE_ZONE KheElmSupplyZone(KHE_ELM_SUPPLY s, int i);

A NULL zone counts as a zone, soKheElmSupplyZoneCount is always at least 1.

To facilitate the handling of preassigned and previously assigned demands, Elm offers

void KheElmSupplySetFixedDemand(KHE_ELM_SUPPLY s, KHE_ELM_DEMAND d);
KHE_ELM_DEMAND KheElmSupplyFixedDemand(KHE_ELM_SUPPLY s);

KheElmSupplySetFixedDemand informselm that d is the only demand suitable for matching
with s, or if d is NULL (the default), that there is no restriction of that kind. Ifd != NULL, d’s
duration must equal the duration ofs. A call to KheElmDemandHasChanged(d) is included.
KheElmSupplyFixedDemand returnss’s current fixed demand, possiblyNULL.

To facilitate the handling of irregular monitors, a supply can be temporarily removed from
the graph (so that it does not match any demand) and subsequently restored:

void KheElmSupplyRemove(KHE_ELM_SUPPLY s);
void KheElmSupplyUnRemove(KHE_ELM_SUPPLY s);

KheElmSupplyRemove aborts if s has a fixed demand. A removed supply merely becomes
unmatchabled, it does not get deleted from node lists and so on. Function

bool KheElmSupplyIsRemoved(KHE_ELM_SUPPLY s);

reports whethers is currently removed.

WhenKheElmMake returns, there is one demand group for each child node, one demand for
each child meet, one supply group for each parent meet, and one supply for each supply group,
with offset 0 and duration equal to the duration of the meet. All this is fixed except that supplies
may be split and merged by calling

bool KheElmSupplySplitCheck(KHE_ELM_SUPPLY s, int offset, int durn,
int *count);

bool KheElmSupplySplit(KHE_ELM_SUPPLY s, int offset, int durn,
int *count, KHE_ELM_SUPPLY *ls, KHE_ELM_SUPPLY *rs);

void KheElmSupplyMerge(KHE_ELM_SUPPLY ls, KHE_ELM_SUPPLY s,
KHE_ELM_SUPPLY rs);

KheElmSupplySplitCheck returnstrue whens may be split so that one of the fragments has
the given offset and duration. If so, it sets*count to the total number of fragments that would
be produced, either 1, 2, or 3.KheElmSupplySplit is the same except that it actually performs
the split when possible, leavings with the given offset and duration. Splitting is possible when
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KheElmSupplyFixedDemand(s) == NULL &&
KheElmSupplyOffset(s) <= offset &&
offset + durn <= KheElmSupplyOffset(s) + KheElmSupplyDuration(s)

This says thats is not fixed to some demand, and thatoffset anddurn define a set of offsets
lying within the set of offsets currently covered bys. Otherwise it returnsfalse.

If KheElmSupplyOffset(s) < offset, then a supply*ls is split off s at left, holding
the offsets fromKheElmSupplyOffset(s) inclusive tooffset exclusive; otherwise*ls is
set toNULL. If offset + durn < KheElmSupplyOffset(s) + KheElmSupplyDuration(s),
then a supply*rs is split off s at right, holding the offsets fromoffset + durn inclusive to
KheElmSupplyOffset(s) + KheElmSupplyDuration(s) exclusive; otherwise*rs is set to
NULL. The originals is left with offsets fromoffset inclusive tooffset + durn exclusive.

KheElmSupplyMerge undoes the correspondingKheElmSupplySplit. Either or both ofls
andrs may beNULL. No meet splitting or merging is carried out by these operations.

Finally,

void KheElmSupplyDebug(KHE_ELM_SUPPLY s, int verbosity,
int indent, FILE *fp);

sends a debug print ofs with the given verbosity and indent tofp.

10.6.3. Splitting supplies

The elm returned byKheElmMake has only a trivial segmentation, with one segment per parent
meet. Few or no demands will match with these supplies, because only demands and supplies of
equal duration match. So the initial supplies have to be split usingKheElmSupplySplit.

Elm has a helper module which splits supplies heuristically. It offers just one function:

void KheElmSplitSupplies(KHE_ELM elm, KHE_SPREAD_EVENTS_CONSTRAINT sec);

If the diversify option of elm’s options attribute istrue, its result varies depending on the
layer’s solution’s diversifier. Thesec parameter ofKheElmSplitSupplies may beNULL. If
non-NULL, KheElmSplitSupplies tries to find a segmentation in which each time group ofsec

covers the same number of segments, as explained forKheElmLayerAssign above.

KheElmSplitSupplies works as follows. Begin by handling demands whose meets are
preassigned or already assigned. For each such demand, split a supply to ensure that exactly
the right segment is present, and useKheElmSupplySetFixedDemand to fix the supply to the
demand. If the required split cannot be made, the demand remains permanently unmatched.

Sort the remaining demands by increasing size of their meets’domains (in practice this also
sorts by decreasing duration), breaking ties by decreasing demand. UseKheMeetAssignFix to
ensure that these meets cannot be assigned. This removes them from the matching to begin with
(strictly speaking, it prevents them from having any outgoing edges in the matching graph).

For each demand in turn, unfix its meet and observe the effect of this on the best matching.
If the size of the best matching increases by one, proceed to the next demand. Otherwise, the
demand has failed to match, and this must be corrected (if possible) by splitting segments of
larger duration into smaller segments that it can match with. For each supply whose duration
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is larger than the duration of the demand, try splitting the supply in all possible ways into two
or three smaller segments such that at least one of the fragments has the same duration as the
demand. If there was at least one successful split, redo the best of them.

The best split is determined by an evaluation with five components:

1. The split must besuccessful: it must increase the size of the best matching by one. Only
successful splits are eligible for use; if there are none, the demand remains unmatched.

2. It is better to split a segment into two fragments than into three. For example,when splitting
a double from a meet of duration 4, it is better to take the first two times or the last two,
rather than the middle two, since the latter leaves fewer choices for future splits.

3. If the parent node has zones, it is desirable to use a segment overlapping only one zone, to
produce meet regularity (Section 5.4) with the layer used to create the zones.

4. The split should produce a best matching whose cost is as small as possible.

5. If sec != NULL, the split should encourage the evenness thatsec’s presence requests.

These are combined lexicographically: later criteria only apply when earlier ones are equal.
Meet regularity has higher priority than cost because cost can often be improved later, whereas
meet regularity once lost is lost forever.

After all demands are processed, if any supplies have duration larger than the duration of
all demands, split them into smaller pieces, preferably supplies regular with the zones, if any.
This adds more edges, and so may reduce the cost of the best matching, at no risk to its size. It is
important when timetabling layers of small duration, such as layers containing staff meetings.

10.6.4. Improving node regularity

When the parent node has zones,KheElmSplitSupplies produces good meet regularity but does
nothing to promote node regularity. This can be done by following it with a call to

void KheElmImproveNodeRegularity(KHE_ELM elm);

implemented by another Elm helper module. It does nothing when there are no zones. When
there are, it removes edges from the matching graph to improve the node regularity of the edges
with respect to the zones. If requested by thediversify option of elm’s options attribute, it
consults the solution’s diversifier, and the edges it removes vary with the diversifier.

The problem of removing edges from a layer matching graph to maximize node regularity
with zones while keeping the matching cost low may seem obscure, but it is one of the keys to
effective time assignment in high school timetabling. Bin packing is reducible to this problem,
so it is NP-complete. Even the small instances (up to ten nodes in each layer, say) that occur
in practice seem hard to solve to optimality. The author tried a tree search which would have
produced an optimal result, but could not make it efficient, even with several pruning rules. So
KheElmImproveNodeRegularity is heuristic.

Although many kinds of defects contribute to the edge costs that make up the matching
cost, in practice the cost is dominated by demand cost (including the cost of avoid clashes and
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avoid unavailable times defects). Every unit of demand cost incurred when assigning a time
represents an unassignable resource at that time, implying that either the final solution will have
a significant defect, or else that the time assignment will have to be changed later.

However, not all demand costs are equally important. When the cost is incurred by a child
node with no children,all of the meets of that node at that time will have to be moved later,which
is very disruptive. An assignment scarcely deserves to be called node-regular if that is going to
happen. But when the cost is incurred by a child node with children, after flattening it is often
possible to remove the defect by moving just one meet, disrupting node regularity only slightly.
So it is important to give priority to nodes with no children.

This is done in two ways. First, the cost of edges leading out of meets whose nodes have
no children is multiplied by 10. Second, when evaluating alternatives while improving node
regularity, the cost of the best matching is divided into two parts: the total cost of edges leading
out of meets in nodes with no children (thewithout-children cost) and the total cost of the
remaining edges (thewith-children cost), and without-children cost takes priority.

The heuristic sorts the child nodes by decreasing duration. Nodes with equal duration are
sorted by increasing number of children. Although it is important to minimize without-children
cost, even at the expense of with-children cost, it would be wrong to maximize without-children
node regularity at the expense of with-children node regularity. Node regularity is generally
harder to achieve for nodes of longer duration, so they are handled first.

For each child node in sorted order, the heuristic generates a sequence of sets of zones. For
each set of zones, it reduces the matching edges leading out of the meets of the child node so that
they go only to segments whose times overlap with the times of the zones. A best set of zones is
chosen, the limitation of the child node’s meets to those nodes is fixed, and the heuristic proceeds
to the next child node.

The best set is the first one with a lexicographically minimum value of the triple

(without_children_cost, zones_cost, with_children_cost)

The without_children_cost and with_children_cost components are as defined above.
Thezones_cost component measures the badness of the set of zones. It is the number of zones
in the set (we are trying to minimize this number, after all), adjusted to favour zones of smaller
duration and zones already present in sets fixed on previously, to encourage the algorithm to use
up zones completely wherever possible.

The algorithm for generating sets of zones generates all sets of cardinality 1, then all sets of
cardinality 2, then one set containing every zone that the current best matching touches. This last
set is included to ensure that at least one set leading to a reasonable matching cost is tried. A few
optimizations are implemented, including skipping sets of insufficient duration, and skipping
zones known to be fully utilized already.

10.6.5. Handling irregular monitors

Each edge of the layer matching graph is assigned a cost by making one meet assignment and
measuring the solution cost afterwards. This amounts to assuming that the cost of each edge is
independent of which other edges are present in the best matching. Costs come from monitors,
and the truth of this assumption varies with the monitor type, as follows.
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Assign time and prefer times costs. Independent when the cost function isLinear, which
it always is in practice for these kinds of monitors.

Split events and distribute split events costs. Not changed by meet assignments.

Spread events costs. Non-independent. Previous sections have addressed this problem, by
varying path costs to discourage two demands from one demand group from matching with
two supplies from one supply group, and by improving node regularity.

Link events costs. Not changed by meet assignments when handled structurally,which they
always are in practice.

Order events costs. Non-independent when both events lie in the current layer.

Assign resource, prefer resources, and avoid split assignments costs. Not changed by
meet assignments.

Avoid clashes costs. Independent, because clashes are never introduced within one layer.

Avoid unavailable times costs. Independent when the cost function isLinear.

Limit idle times, cluster busy times, and limit busy times costs. Non-independent when
present (when resources subject to them are preassigned in the layer’s meets).

Limit workload costs. Not changed by meet assignments.

Demand costs. Independent when they monitor clashes and unavailable times. More subtle
interactions can be non-independent, but most layer matchings are built when the timetable
is incomplete and subtle demand overloads are unlikely.

Order events, limit idle times, cluster busy times, and limit busy times monitors stand out as
needing attention. These will be calledirregular monitors.

At present, the author has no experience with order events monitors, so Elm does nothing
with them. The irregular monitors handled by Elm are those limit idle times, cluster busy times,
and limit busy times monitorsof the resourcesof the layer match’s layer which are attached at the
time the elm is created. The Elm core module stores these monitors in an array, accessible via

int KheElmIrregularMonitorCount(KHE_ELM elm);
KHE_MONITOR KheElmIrregularMonitor(KHE_ELM elm, int i);
void KheElmSortIrregularMonitors(KHE_ELM elm,
int(*compar)(const void *, const void *));

KheElmIrregularMonitorCount andKheElmIrregularMonitor visit them in the usual way.
KheElmSortIrregularMonitors sorts them;compar is a function suited to passing toqsort
when sorting an array of monitors. Core function

bool KheElmIrregularMonitorsAttached(KHE_ELM elm);

returnstrue if all irregular monitors are currently attached. By definition, this is true initially.

As a first step in handling the irregular monitors of its layer, Elm offers functions

void KheElmDetachIrregularMonitors(KHE_ELM elm);
void KheElmAttachIrregularMonitors(KHE_ELM elm);
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to detach any irregular monitors that are not already detached, and attach any that are not already
attached.KheElmLayerAssign uses them to detach irregular monitors at the start and reattach
them at the end. This ensures that the best matching never takes them into account. It would
only cause confusion if it did.

For improving its performance when irregular monitors are present, Elm offers

void KheElmReduceIrregularMonitors(KHE_ELM elm);

If irregular monitors are attached, it detaches them. It installs the best matching’s assignments,
attaches irregular monitors, and remembers the solution cost. Then for each supplys, it detaches
irregular monitors, removess from the graph, installs the best matching’s assignments, attaches
irregular monitors, remembers the solution cost, and restoress to the graph. If none of the
removals improves cost, it returns irregular monitors to their original state of attachment and
terminates. Otherwise, it permanently removes the supply that produced the best cost and repeats
from the start.

Some optimizations avoid futile work. If removings would reduce the total duration of
supply nodes to below the total duration of demand nodes, or reduce the number of supplies of
s’s duration to below the number of demands ofs’s duration, the removal ofs is not tried. And
the function returns immediately if the layer has no irregular monitors.

KheElmReduceIrregularMonitors is a plausible way to attack limit idle times and limit
busy times defects, but it is not radical enough for cluster busy times defects. These are better
handled by other means, such asKheSolnClusterAndLimitMeetDomains (Section 10.3.3).

10.7. Time repair

This section presents the time solvers packaged with KHE that take an existing time assignment
and repair it (that is,attempt to improve it). However carefullyan initial time assignment is made,
it must proceed in steps, and it can never incorporate enough forward-looking information to
ensure that each step does not create problems for later steps. So a repair phase after the initial
assignment is complete seems to be a practical necessity.

10.7.1. Node-regular time repair using layer node matching

Suppose we have a time assignment with good node regularity, but with some spread and
demand defects. Repairs that move meets arbitrarily might fix some defects, but the resulting
loss of node regularity might have serious consequences later, during resource assignment. This
section offers one idea for repairing time assignments without sacrificing node regularity.

One useful idea is to make repairs which arenode swaps: swaps of the assignments of (the
meets of) entire nodes. The available swaps are quite limited, because the nodes concerned must
lie in the same layers and have the same number of meets with the same durations.

For any parent node, take any set of child nodes lying in the same layers whose meets are
all assigned. Build a bipartite graph in which each of these child nodes is one demand node, and
the set of assignments of its meets is one supply node. An assignment is a triple of the form

(target_meet, offset, durn)
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as for layer matchings (Section 10.6), but here a supply node is a set of triples, not one triple.

For each case where a child node can be assigned to a set of triples, because the number
of triples and their durations match the node’s number of meets and durations, add an edge to
the graph labelled by the change in solution cost when the corresponding set of assignments is
made. Find a maximum matching of minimum cost in this graph and reassign the child nodes
in accordance with it. The existing assignment is one maximum matching, so this will either
reproduce that or find something which has a good chance of being better. Function

bool KheLayerNodeMatchingNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

applies these ideas to the child nodes ofparent_node, returningtrue if it considers its work to
have been useful, as is usual for time repair solvers. First, ifparent_node has no child layers
it callsKheNodeChildLayersMake to build them. Then it partitions the child nodes so that the
nodes of each partition lie in the same set of layers. Then, for each partition in turn, it builds
the weighted bipartite graph and carries out the corresponding reassignments. If the solution
cost does not decrease, the reassignments are undone. It continues cycling around the partitions
until n reassignments have occurred without a cost decrease, wheren is the number of partitions.
Finally, if it made layers to begin with it removes them. A related function is

bool KheLayerNodeMatchingLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

It starts with the child nodes oflayer rather than all the child nodes of its parent.

On a real instance,KheLayerNodeMatchingNodeRepairTimes found no improvements at
all after all layers were assigned. Applied after each layer after the first was assigned, it found
one improvement,which reduced the number of unassignable tixels by 1or 2. This improvement
was carried through to the final solution: the median number of unassigned tixels when solving
16 instances was reduced from about 9 to about 7, and there were modest reductions in spread
defects and split assignment defects as well. The extra run time was about 0.6 seconds.

10.7.2. Ejection chain time repair

Time solvers

bool KheEjectionChainNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

bool KheEjectionChainLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

use ejection chains (Chapter 13) to repair the assignments of the meets of the descendants of
the child nodes ofparent_node, or the assignments of the meets of the descendants of the child
nodes oflayer. For full details of these functions, consult Section 13.7.

10.7.3. Tree search layer time repair

Very large-scale neighbourhood (VLSN) search [1, 12] deassigns a relatively large chunk of the
solution, then reassigns it in a hopefully better way. If the chunk is chosen carefully, it may be
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possible to find an optimal reassignment in a moderate amount of time.

One well-known VLSN neighbourhood is the set of meetsof one layer (a set of meetswhich
must be disjoint in time, usually because they have a resource in common). For example, finding
a timetable for one university student is a kind of layer reassignment, with the choices of times
for the meets determined by when sections of the student’s courses are running. Function

bool KheTreeSearchLayerRepairTimes(KHE_SOLN soln, KHE_RESOURCE r);

reassigns the meets ofsoln currently assigned resourcer, using a tree search. Once the number
of nodes explored reaches a fixed limit, it switches to a simple heuristic, giving up the guarantee
of optimality to ensure that running time remains moderate. Function

bool KheTreeSearchRepairTimes(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
bool with_defects);

callsKheTreeSearchLayerRepairTimes for each resource insoln’s instance (or each of type
rt, if rt is non-NULL). If with_defects is true, these calls are only made for resources with
at least one resource defect, otherwise they are made for all resources. The rest of this section
describesKheTreeSearchLayerRepairTimes in detail.

If a tree search is given a high standard to reach, it will run quickly because many paths will
fail the standard and get pruned, and so it is quite likely to run to completion and reach that high
standard if it is reachable at all. If it is given a low standard, it will run more slowly and quite
possibly not run to completion. Either approach is legitimate, but a choice has to be made.

Because VLSN search is relatively slow, it seems best to use it near the end of a solve, when
there are few defects left to target.KheTreeSearchLayerRepairTimes is intended to be used
as a last resort in this way, when there is likely to be just one or two defects related to the layer
being targeted. Accordingly, it aims high, for an assignment with no defectsat all. It prunespaths
whenever it can see that there is a defect that cannot be corrected by further assignments.

The meets are first sorted into decreasing duration order and unassigned. Each is given a
current domain, which is initially its usual domain minus any starting times that would cause the
meet to overlap a time when any of its resources are unavailable. Then a traditional tree search
is carried out, which at each node of leveli assigns a time from its current domain to theith meet
in the sorted list. The best leaf is remembered and replaces the original set of assignments if its
solution cost is smaller. Three rules are used for pruning the tree.

First, any assignment which returnsfalse or causes the number of unmatched demand
tixels to exceed its value in the initial solution is rejected.

Second, after a fixed number of nodes is reached, new nodes are still explored, but only the
first assignment that does not increase the number of unmatched demand tixels is tried therein.

Third, a form of forward checking is used. Letm1 andm2 be meets of the layer, and lett1
andt2 be times. At the start, a set ofexclusionsis built, each of the form

(m1, t1) ⇒ ¬( m2, t2)

This means that ifm1 is assigned starting timet1, thenm2 may not be assigned starting timet2.
While the search is running, whenm1 is assignedt1 this exclusion is applied, removingt2 from the
domain ofm2. Whenm1 is unassigned later, the exclusion is removed (m2 must come later in the
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list of meets to be assigned thanm1, so that at the momentm1 is assigned,m2 is not assigned).

Following is a list of true statements about various situations:

• Since the meets all share a resource, no two of the meets may overlap in time.

• Two meets linked by a spread events constraint cannot be assigned within the same time
group of that constraint, when that time group has aMaximum attribute of 1.

• Two meets linked by an order events constraint must be assigned in a certain chronological
order, possibly with a given separation.

• Given two meets with the same duration and the same resources,and monitored by the same
event monitors, it is safe (and useful for avoiding symmetrical searches) to arbitrarily insist
that the first one in the assignment list should appear earlier in the cycle than the second.

Each statement gives rise to exclusions, and all these exclusions are added, except that at present
a couple of shortcutsare being used: order eventsconstraintsare not currently taken into account,
and the symmetry breaking idea of the last point is being applied to a different set of pairs of
meets, namely those which are linked by a spread events constraint and have the same duration.

Exclusions are used in two ways. First, when a meet’s turn comes to be assigned, only
times in its current domain (its initial domain minus any exclusions) are tried. Second, each meet
keeps a count of the number of times in its current domain. If this number ever drops to 0, the
assignment that caused that to happen is rejected immediately.

On instance IT-I4-96, with limit 10000, this method improved the timetables of four
resources, reducing final cost from 0.00397 to 0.00390, and adding about 2 seconds to total run
time. There was wide variation in the completeness of the search: for some resources, every
possible timetable was tried; for others, there was only time to try timetables that assigned the
first meet to the first time. It did not reduce the 0.00067 cost of the best of 8 solutions, nor find
any improvementswhen solving instance AU-BG-98. A run with limit 1000000 improved a fifth
resource in IT-I4-96, and showed that many searches do reach even this quite large limit.

10.7.4. Meet set time repair and the fuzzy meet move

Another VLSN idea is to use a tree search to repair the assignments of an arbitrary (but small)
set of meets. Given a set of meets, build the set of all target meets they are assigned to, and for
each target meet, the set of offsets within it that they are running. The aim is to reassign the meets
optimally within these same target meets and offsets. The only pruning rule is that the number
of unmatched demand tixels may not exceed its initial value.

The functions that implement this idea are

KHE_MEET_SET_SOLVER KheMeetSetSolveBegin(KHE_SOLN soln, int max_meets);
void KheMeetSetSolveAddMeet(KHE_MEET_SET_SOLVER mss, KHE_MEET meet);
bool KheMeetSetSolveEnd(KHE_MEET_SET_SOLVER mss);

KheMeetSetSolveBegin makes a meet-set solver object which coordinates the operation.
KheMeetSetSolveAddMeet adds one meet to the solver, and may be called any number of times,
building up a set of meets. If the number of meets added reaches themax_meets parameter of
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KheMeetSetSolveBegin, further calls toKheMeetSetSolveAddMeet are allowed but ignored.
Finally,KheMeetSetSolveEnd uses a tree search to find an optimal reassignment of the meets to
(collectively) their original target meets and offsets, returningtrue if it reduced the cost of the
solution, and frees the memory used by the solver object. If the number of nodes in the search
tree exceeds a given fixed limit, the search switches to a simple linear heuristic at each remaining
tree node, losing the guarantee of optimality but ensuring that run times remain moderate.

As a first application of these functions, KHE offers

bool KheFuzzyMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset,
int width, int depth, int max_meets);

This may movemeet to target_meet at offset, but not necessarily. Instead, it selects a set
of meets likely to be affected by that move, includingmeet, and passes them all to the meet set
solver above for (hopefully) optimal reassignment. It returnstrue if and only if it changed the
solution, which will be if and only if it reduced the cost of the solution.

The point ofKheFuzzyMeetMove is that if the caller has identified this move as likely to be
useful, but with some uncertainty about its consequences, it allows the move to be tried, but with
adjustments in the neighbourhood to get the most out of it. These adjustments are not unlike
those made by Kempe meet moves, only more general and more costly in run time.

Two sets of meets are selected. To be in the first set, a meet has to be assigned to the same
target meet asmeet, at an offset lying betweenmeet’s current offset minuswidth, andmeet’s
current offset pluswidth. Furthermore, ifdepth is 1 (the smallest reasonable value), a selected
meet has to share a resource (assigned or preassigned) withmeet. If depth is 2, a selected meet
has to share a resource with a meet that would be selected when the depth is 1, and so on: the
depth signifies the maximum length of a chain of shared resources that must connect a selected
meet tomeet. The second set of meets is the same as the first, only defined usingtarget_meet

andoffset instead ofmeet’s current target meet and offset.

As for meet set time repair, at mostmax_meets meets will be selected. Ifwidth anddepth
are small, it is reasonable formax_meets to beINT_MAX.

10.8. Layered time assignment

The heart of time assignment when layer trees are used is to assign the meets of the child nodes
of a given parent node to the meets of the parent node. Alayered time assignmentis one which
groups the child nodes into layers and assigns them layer by layer. This is a good way to do it,
since the nodes of each layer strongly constrain each other (they must be disjoint in time).

KheElmLayerAssign (Section 10.6) is KHE’s main solver for assigning the meets of the
child nodes of one layer. But there is work to be done to prepare the way for calling this function,
beyond the structural work of building the layer tree. This section presents KHE’s functions for
carrying out this preparatory work and callingKheElmLayerAssign.

10.8.1. Layer assignments

When assigning layers it is useful to be able to record an assignment of the meets of a layer, for
undoing and redoing later. Marks and paths could do this, but they record every step. A layer
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assignment algorithm could be very long and wandering, so it is better to record just its result.

Accordingly, KHE offers thelayer assignmentobject, with typeKHE_LAYER_ASST:

KHE_LAYER_ASST KheLayerAsstMake(KHE_SOLN soln);
void KheLayerAsstDelete(KHE_LAYER_ASST layer_asst);
void KheLayerAsstBegin(KHE_LAYER_ASST layer_asst, KHE_LAYER layer);
void KheLayerAsstEnd(KHE_LAYER_ASST layer_asst);
void KheLayerAsstUndo(KHE_LAYER_ASST layer_asst);
void KheLayerAsstRedo(KHE_LAYER_ASST layer_asst);
void KheLayerAsstDebug(KHE_LAYER_ASST layer_asst, int verbosity,
int indent, FILE *fp);

KheLayerAsstMake andKheLayerAsstDelete make and delete one.KheLayerAsstBegin is
called before some algorithm for assigninglayer is run. It records which oflayer’s meets are
unassigned then.KheLayerAsstEnd is called after the algorithm ends. For each meet recorded
byKheLayerAsstBegin, it records the assignment of that meet.KheLayerAsstUndo undoes the
recorded assignments, andKheLayerAsstRedo redoes them.KheLayerAsstDebug produces a
debug print oflayer_asst ontofp.

10.8.2. A solver for layered time assignment

Time solver

bool KheNodeLayeredAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);

assigns the meets of the child nodes ofparent_node to the meets ofparent_node, calling
KheElmLayerAssign (Section 10.6) to assign them layer by layer. Existing assignments of the
meets affected may change. The implementation is described at the end of this section.

If parent_node is the cycle node,KheNodePreassignedAssignTimes should be called
first, to give priority to demands made by preassigned meets.

KheNodeLayeredAssignTimes is influenced by three options:

ts_no_node_regularity

A Boolean option which, whentrue, instructsKheNodeLayeredAssignTimes , as well as
KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes (Sec-
tion 13.7), to not try to make the assignments node-regular (Section 5.4). Node regularity
will usually be appropriate for the cycle node, but not for other nodes, since in practice they
are runaround nodes, and irregularity is wanted in them rather than regularity.

ts_layer_swap
KheNodeLayeredAssignTimes usually assigns each layer in turn, in a heuristically
chosen order. But if the Booleants_layer_swap option istrue, it does something more
interesting. For each layeri other than the first and last, it (a) tries assigning and repairing
layer i followed by layeri + 1, then (b) tries assigning and repairing layeri + 1followed by
layer i. If the solution cost after (a) is less than after (b), it leaves (a)’s assignment of layer
i in place and proceeds to the next layer; otherwise it leaves (b)’s assignment of layeri + 1
in place and proceeds to the next layer. So one layer is assigned on each iteration, as usual,
but it could be either the usual one or the next one.
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ts_layer_repair

An option which instructsKheNodeLayeredAssignTimes which of its layers to repair after
assignment. It has three values,"none" meaning repair no layers,"all" meaning repair all
layers, and"exp" meaning use exponential backoff to decide which layers to repair. When
the option is absent its value is taken to be"all".

ts_layer_time_limit

A string option defining a soft time limit for assigning a layer. The format is that accepted
byKheTimeFromString (Section 8.1):secs, ormins:secs, orhrs:mins:secs. There
is also the special value-, meaning ‘set no limit’, and this is the default value.

The rest of this section describes the implementation ofKheNodeLayeredAssignTimes.

If parent_node has no layers,KheNodeLayeredAssignTimes first makes them, by calling
KheNodeChildLayersMake (Section 9.3.1). It then sorts the layers,assignsand optionally repairs
them, and ends withKheNodeChildLayersDelete if it called KheNodeChildLayersMake.

When sorting the layers, the first priority is to ensure that already assigned layers come
first. These are marked by assigning visit number 1to them. Among unvisited layers, a heuristic
rule is used: decreasing value of the sum of the duration and the duration of meets that have
already been assigned, minus the number of meets. The reasoning here is that layers with
larger durations are harder to assign, and they become even harder when many of their meets’
assignments are already decided on (since the algorithm does not change them); but, on the other
hand, the more meets there are, the smaller their durations must be for a given overall duration,
making assignment easier. Here is the layer comparison function; it may be called separately:

int KheNodeLayeredLayerCmp(const void *t1, const void *t2)
{
KHE_LAYER layer1 = * (KHE_LAYER *) t1;
KHE_LAYER layer2 = * (KHE_LAYER *) t2;
int value1, value2, demand1, demand2;
if( KheLayerVisitNum(layer1) != KheLayerVisitNum(layer2) )
return KheLayerVisitNum(layer2) - KheLayerVisitNum(layer1);

value1 = KheLayerDuration(layer1) - KheLayerMeetCount(layer1) +
KheLayerAssignedDuration(layer1);

value2 = KheLayerDuration(layer2) - KheLayerMeetCount(layer2) +
KheLayerAssignedDuration(layer2);

if( value1 != value2 )
return value2 - value1;

demand1 = KheLayerDemand(layer1);
demand2 = KheLayerDemand(layer2);
if( demand1 != demand2 )
return demand2 - demand1;

return KheLayerParentNodeIndex(layer1) -
KheLayerParentNodeIndex(layer2);

}

As a last resort it compares total demand, then layer indexes, to give a non-zero result in all cases:
qsort’s specification is non-deterministic, which is best avoided, if the result is zero.
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KheNodeLayeredAssignTimes sets thetime_vizier_node option tofalse before making
the call that repairs the first layer, and resets it to its original value afterwards. It’s a small point,
but a vizier node would be redundant when repairing the first layer.

Let thewhole-timetable monitorsbe the limit idle times, cluster busy times, and limit busy
times monitors. These depend on the whole timetable of their resource, or large parts of it. The
other resource monitors either depend on local parts of the timetable (avoid clashes and avoid
unavailable times monitors) or are independent of the timetable (limit workload monitors).

In practice, evaluating a whole-timetable monitor before its resource’s layer is assigned is
problematical, since it depends on the whole timetable, which does not exist then. For example,
a partial timetable may have idle times which could well be filled later when its resource’s other
meets are assigned times. Accordingly,KheNodeLayeredAssignTimes begins by detaching all
whole-timetable monitors of all resources in all its layers. Just before assigning each layer, it
attaches the whole-timetable monitors of the resources of the layer.

This detachment of whole-timetable monitors is similar to the detachment of irregular
monitors during the assignment of one layer by Elm (Section 10.6.5). Both detachments are
done because the monitors in question would not produce useful cost information if attached.
However, in the case of Elm that is because of the particular algorithm employed, whereas here
it is because of something more fundamental: the fact that only a partial timetable is present.

The remainder of this section describes the three extra things that are done when the
time_node_regularity option ofoptions is true.

First, when a meet from another layer is already assigned (because it is preassigned,
usually), it is good to make that same assignment to a meet of the same duration in the first layer,
for regularity between the two meets. Such an assignment to a meet of the first layer is called
a parallel assignment. If there is a node from another layer containing two or more assigned
meets, then it is good to make the corresponding parallel assignments within one node of the first
layer, for regularity between the nodes; and if two nodes from one layer contain assigned meets,
it is good to make the corresponding parallel assignments to distinct nodes of the first layer. The
layer solver that makes these parallel assignments to the meets of the first layer is called only
whentime_node_regularity is true, but it is also available separately:

bool KheLayerParallelAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

It makes parallel assignments tolayer heuristically, returningtrue if every assigned meet in
every sibling layer oflayer has a parallel assignment afterwards. It uses no options.

Second,KheElmLayerAssign takes a spread events constraint as an optional parameter.
Whentime_node_regularity is true, KheNodeLayeredAssignTimes searches the instance
for a spread events constraint with as many points of application as possible, and passes this
constraint (if any) toKheElmLayerAssign.

Third, and most important, whentime_node_regularity is true, after the first layer has
been assigned and optionally repaired,KheNodeLayeredAssignTimes uses the first layer’s
assignments to define zones in the parent node, by callingKheLayerInstallZonesInParent

(Section 5.4) andKheNodeExtendZones (Section 9.6). These zones encourage the following
calls toKheElmLayerAssign andKheEjectionChainLayerRepairTimes to find and preserve
zone-regular assignments.
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10.8.3. A complete time solver

Time solver

bool KheCycleNodeAssignTimes(KHE_NODE cycle_node, KHE_OPTIONS options);

combines the ideas of this chapter into one solver that assigns the meets in the proper descendants
of cycle_node, assumed to be the cycle node.

KheCycleNodeAssignTimes first assigns preassigned meets. If all events have preassigned
times, according toKheInstanceAllEventsHavePreassignedTimes, it does nothing else.
Otherwise it assigns times layer by layer usingKheNodeLayeredAssignTimes (Section 10.8.2).
Then it removes any regularity features (zones and interior nodes) installed earlier and returns.

If not all events have preassigned times, this function is influenced by three options:

ts_cluster_meet_domains

A Boolean option which, whentrue, instructsKheCycleNodeAssignTimes to cluster meet
domains usingKheSolnClusterAndLimitMeetDomains (Section 10.3.3) before assigning
times, and to uncluster them afterwards.

ts_tighten_domains_off

A Boolean option which, whentrue, instructsKheCycleNodeAssignTimes to not tighten
resource domains (Section 11.9).

ts_node_repair_off

A Boolean option which, whentrue, instructsKheCycleNodeAssignTimes to not call
KheEjectionChainNodeRepairTimes (Section 10.7.2). If it does call it, it calls it twice,
before and after removing regularity-enhancing features.

ts_node_repair_time_limit

A string option, a soft time limit for each call onKheEjectionChainNodeRepairTimes.
The format is that accepted byKheTimeFromString (Section 8.1):secs, or mins:secs,
or hrs:mins:secs. The special value- (the default) means ‘set no limit’.

Other options influence it indirectly, via its calls toKheNodeLayeredAssignTimes.
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This chapter documents the solvers packaged with KHE that modify the resource structure of
a solution: group and ungroup tasks, and so on. These solvers may alter resource assignments,
but they only do so occasionally and incidentally to their structural work.

11.1. Task bound groups

Task domains are reduced by adding task bound objects to tasks (Section 4.6.3). Frequently,
task bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of task bounds—but it is convenient to have a
standard for it, so KHE defines a typeKHE_TASK_BOUND_GROUP with suitable operations.

To create a task bound group, call

KHE_TASK_BOUND_GROUP KheTaskBoundGroupMake(KHE_SOLN soln);

To add a task bound to a task bound group, call

void KheTaskBoundGroupAddTaskBound(KHE_TASK_BOUND_GROUP tbg,
KHE_TASK_BOUND tb);

To visit the task bounds of a task bound group, call

int KheTaskBoundGroupTaskBoundCount(KHE_TASK_BOUND_GROUP tbg);
KHE_TASK_BOUND KheTaskBoundGroupTaskBound(KHE_TASK_BOUND_GROUP tbg, int i);

To delete a task bound group, including deleting all the task bounds in it, call

bool KheTaskBoundGroupDelete(KHE_TASK_BOUND_GROUP tbg);

This function returnstrue when every call it makes toKheTaskBoundDelete returnstrue.

11.2. Task trees

What meets do for time, tasks do for resources. A meet has a time domain and assignment; a
task has a resource domain and assignment. Link events constraints cause meets to be assigned
to other meets; avoid split assignments constraints cause tasks to be assigned to other tasks.

There are differences. Tasks lie in meets, but meets do not lie in tasks. Task assignments do
not have offsets, because there is no ordering of resources like chronological order for times.

Since the layer tree is successful in structuring meets for time assignment, let us see what
an analogous tree for structuring tasks for resource assignment would look like. A layer tree is a
tree, whose nodes each contain a set of meets. The root node contains the cycle meets. A meet’s
assignment, if present, lies in the parent of its node. By convention, meets lying outside nodes
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have fixed assignments to meets lying inside nodes, and those assignments do not change.

A task tree, then, is a tree whose nodes each contain a set of tasks. The root node contains
the cycle tasks (or there might be several root nodes, one for each resource type). A task’s
assignment, if present, lies in the parent of its node. By convention, tasks lying outside nodes
have fixed assignments to tasks lying inside nodes, and those assignments do not change.

TypeKHE_TASKING is KHE’s nearest equivalent to a task tree node. It holds an arbitrary set
of tasks, but there is no support for organizing taskings into a tree structure, since that does not
seem to be needed. It is useful, however, to look at how tasks are structured in practice, and to
relate this to task trees, even though they are not explicitly supported by KHE.

A task is assigned to a non-cycle task and fixed, to implement an avoid split assignments
constraint. Such tasks would therefore lie outside nodes (if there were any). When a solver as-
signs a task to a cycle task, the task would have to lie in a child node of a node containing the
cycle tasks (again, if there were any). So there are three levels: a first level of nodes containing
the cycle tasks;a second level of nodescontainingunfixed taskswanting to be assigned resources;
and a third level of fixed, assigned tasks that do not lie in nodes.

This shows that the three-way classification of tasks presented in Section 4.6.1, into cycle
tasks, unfixed tasks, and fixed tasks, is a proxy for the missing task tree structure. Cycle tasks
are first-level tasks, unfixed tasks are second-level tasks, and fixed tasks are third-level tasks.
KHE_TASKING is only needed for representing second-level nodes, since tasks at the other levels
do not require assignment. By convention, then, taskings will contain only unfixed tasks.

11.3. Task tree construction

KHE offers a solver for building a task tree holding the tasks of a given solution:

bool KheTaskTreeMake(KHE_SOLN soln, KHE_OPTIONS options);

As usual, this solver returnstrue if it changes the solution. Like any good solver, this function
has no special access to data behind the scenes. Instead, it works by calling basic operations and
helper functions:

• It calls KheTaskingMake to make one tasking for each resource type ofsoln’s instance,
and it callsKheTaskingAddTask to add the unfixed tasks of each type to the tasking it
made for that type. These taskings may be accessed by callingKheSolnTaskingCount and
KheSolnTasking as usual, and they are returned in an order suited to resource assignment,
as follows. Taskings for whichKheResourceTypeDemandIsAllPreassigned(rt) istrue
come first. Their tasks will be assigned already ifKheSolnAssignPreassignedResources

has been called, as it usually has been. The remaining taskings are sorted by decreasing
order of KheResourceTypeAvoidSplitAssignmentsCount(rt) . These functions are
described in Section 3.5.1. Of course, the user is not obliged to follow this ordering. It is a
precondition ofKheTaskTreeMake thatsoln must have no taskings when it is called.

• It callsKheTaskAssign to convert resource preassignments into resource assignments, and
to satisfy avoid split assignments constraints, as far as possible. Existing assignments are
preserved (no calls toKheTaskUnAssign are made).
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• It callsKheTaskAssignFix to fix the assignments it makes to satisfy avoid split assignments
constraints. These may be removed later. At present it does not callKheTaskAssignFix to
fix assignments derived from preassignments, although it probably should.

• It calls KheTaskSetDomain to set the domains of tasks to satisfy preassigned resources,
prefer resources constraints, and other influences on task domains, as far as possible.
KheTaskTreeMake never adds a resource to any domain, however; it either leaves a domain
unchanged, or reduces it to a subset of its initial value.

These elements interact in ways that make them impossible to separate. For example, a prefer
resources constraint that applies to one task effectively applies to all the tasks that are linked to
it, directly or indirectly, by avoid split assignments constraints.

KheTaskTreeMake does not refer directly to any options. However, it calls function
KheTaskingMakeTaskTree, described below, and so it is indirectly influenced by its options.

The implementation ofKheTaskTreeMake has two stages. The first creates one tasking for
each resource type ofsoln’s instance, in the order described, and adds to each the unfixed tasks
of its type. This stage can be carried out separately by repeated calls to

KHE_TASKING KheTaskingMakeFromResourceType(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt);

which makes a tasking containing the unfixed tasks ofsoln of typert, or of all types ifrt is
NULL. It aborts if any of these unfixed tasks already lies in a tasking.

The second stage is more complex. It applies public function

bool KheTaskingMakeTaskTree(KHE_TASKING tasking,
KHE_TASK_BOUND_GROUP tbg, KHE_OPTIONS options);

to each tasking made by the first stage. WhenKheTaskingMakeTaskTree is called from within
KheTaskTreeMake, itsoptions parameter is inherited fromKheTaskTreeMake.

As described forKheTaskTreeMake, KheTaskingMakeTaskTree assigns tasks and tightens
domains; it does not unassign tasks or loosen domains. Only tasks intasking are affected.
If tbg is non-NULL, any task bounds created while tightening domains are added totbg. Tasks
assigned to non-cycle tasks have their assignments fixed, so are deleted fromtasking.

The implementation ofKheTaskingMakeTaskTree imitates the layer tree construction
algorithm: it appliesjobs in decreasing priority order. There are fewer kinds of jobs, but the
situation is more complex in another way: sometimes, some kinds of jobs are wanted but not
others. The three kinds of jobs of highest priority install existing domains and task assignments,
and assign resources to unassigned tasks derived from preassigned event resources. These jobs
are always included; the first two always succeed, and so does the third unless the user has made
peculiar task or domain assignments earlier. The other kinds of jobs are optional, and whether
they are included or not depends on the options (other thanrs_invariant) described next.

KheTaskTreeMake consults the following options.

rs_invariant

A Boolean option which, whentrue, causesKheTaskTreeMake to omit assignments and
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domain tightenings which violate the resource assignment invariant (Section 12.2).

rs_task_tree_prefer_hard_off

A Boolean option which, whenfalse, causesKheTaskTreeMake to make a job for each
point of application of each hard prefer resources constraint of non-zero weight. The
priority of the job is the combined weight of its constraint, and it attempts to reduce the
domains of the tasks oftasking monitored by the constraint’s monitors so that they are
subsets of the constraint’s domain.

rs_task_tree_prefer_soft

Like rs_task_tree_prefer_hard_off except that it applies to soft prefer resources
constraints instead of hard ones, and its sense is reversed so that the default value (false

as usual) omits these jobs. The author has encountered cases where reducing domains to
enforce soft prefer resources constraints is harmful.

rs_task_tree_split_hard_off

A Boolean option which, whenfalse, causesKheTaskTreeMake to make a job for each
point of application of each hard avoid split assignments constraint of non-zero weight.
Its priority is the combined weight of its constraint, and it attempts to assign the tasks of
tasking to each other so that all the tasks of the job’s point of application of the constraint
are assigned, directly or indirectly, to the same root task.

rs_task_tree_split_soft_off

Like rs_task_tree_split_hard_off except that it applies to soft avoid split
assignments constraints rather than hard ones.

rs_task_tree_limit_busy_hard_off

A Boolean option which, whenfalse, causesKheTaskTreeMake to make a job for each
point of application of each limit busy times constraint with non-zero weight and maximum
limit 0. Its priority is the combined weight of its constraint,and it attempts to reduce the do-
mains of those tasks oftasking which lie in events preassigned the times of the constraint,
to eliminate its resources, since assigning them to these tasks must violate this constraint.
However, the resulting domain must have at least two elements; if not, the reduction is un-
done, reasoning that it is too severe and it is better to allow the constraint to be violated.

This flag also applies to cluster busy times constraints with maximum limit 0, or rather to
their positive time groups. These are essentially the same as the time groups of limit busy
times constraints when the maximum limit is 0.

rs_task_tree_limit_busy_soft_off

Like rs_task_tree_limit_busy_hard_off except that it applies to soft limit busy
times constraints rather than hard ones.

By default, all of these jobs exceptrs_task_tree_prefer_soft are run.

11.4. Resource supply and demand

This section covers several topics which are not closely related,except that, in a general way, they
are all concerned with the supply of and demand for resources.
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11.4.1. Classifying resources by available workload

Resources with high workload limits, as indicated by functionsKheResourceMaxBusyTimes and
KheResourceMaxWorkload (Section 4.7), may be harder to exploit than resources with lower
workload limits, so it may make sense to timetable them first. Function

bool KheClassifyResourcesByWorkload(KHE_SOLN soln,
KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP *rg1,
KHE_RESOURCE_GROUP *rg2);

helps with that. It partitionsrg into two resource groups,rg1 andrg2, such that the highest
workload resources are inrg1, and the rest are inrg2. It returnstrue if it succeeds with this,
andfalse if not, which will be because the resources ofrg have equal maximum workloads.

If KheClassifyResourcesByWorkload returnstrue, every resource inrg1 has a maximal
value ofKheResourceMaxBusyTimes and a maximal value ofKheResourceMaxWorkload, and
every element ofrg2 has a non-maximal value ofKheResourceMaxBusyTimes or a non-maximal
value ofKheResourceMaxWorkload. If it returnsfalse, thenrg1 andrg2 areNULL.

11.4.2. Limits on consecutive days

Nurse rostering instances typically place minimum and maximum limits on the number of
consecutive days that a resource can be free,busy,or busy working a particular shift. These limits
are scattered through constraints and may be hard to find. This section makes that easy.

An object called aconsec solveris used for this. To create one, call

KHE_CONSEC_SOLVER KheConsecSolverMake(KHE_SOLN soln, KHE_FRAME frame);

It uses memory from an arena taken fromsoln. Its three attributes may be retrieved by calling

KHE_SOLN KheConsecSolverSoln(KHE_CONSEC_SOLVER cs);
KHE_FRAME KheConsecSolverFrame(KHE_CONSEC_SOLVER cs);

The frame must contain at least one time group, otherwiseKheConsecSolverMake will abort.

To delete a solver when it is no longer needed, call

void KheConsecSolverDelete(KHE_CONSEC_SOLVER cs);

This works by returning the arena to the solution.

To find the limits for a particular resource, call

void KheConsecSolverFreeDaysLimits(KHE_CONSEC_SOLVER cs, KHE_RESOURCE r,
int *history, int *min_limit, int *max_limit);

void KheConsecSolverBusyDaysLimits(KHE_CONSEC_SOLVER cs, KHE_RESOURCE r,
int *history, int *min_limit, int *max_limit);

void KheConsecSolverBusyTimesLimits(KHE_CONSEC_SOLVER cs, KHE_RESOURCE r,
int offset, int *history, int *min_limit, int *max_limit);

For any resourcer, these return the history (see below), the minimum limit, and the maximum
limit on the number of consecutive free days, the number of consecutive busy days, and the
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number of consecutive busy times which appearoffset places into each time group offrame.
Settingoffset to 0 might return the history and limits on the number of consecutive early shifts,
setting it to 1 might return the limits on the number of consecutive day shifts, and so on. The
largest offset acceptable toKheConsecSolverBusyTimesLimits is returned by

int KheConsecSolverMaxOffset(KHE_CONSEC_SOLVER cs);

An offset larger than this, or negative, produces an abort.

The*history values return history: the number of consecutive free days, consecutive busy
days, and consecutive busy times with the givenoffset in the timetable ofr directly before
the timetable proper begins. They are taken from the history values of the same constraints that
determine the*min_limit and*max_limit values.

All these results are based on the frame passed toKheConsecSolverFrame, which would
always be the common frame. They are calculated by finding all limit active intervals constraints
with non-zero weight, comparing their time groups with the frame time groups, and checking
their polarities. In effect this reverse engineers what programs like NRConv do when they
convert specialized nurse rostering formats to XESTT.

If no constraint applies,*history and*min_limit are set to 0, and*max_limit is set to
KheFrameTimeGroupCount(frame). In the unlikely event that more than one constraint applies,
*history and*min_limit are set to the largest of the values from the separate constraints, and
*max_limit is set to the smallest of the values from the separate constraints. Finally,

void KheConsecSolverDebug(KHE_CONSEC_SOLVER cs, int verbosity,
int indent, FILE *fp);

produces the usual debug print ofcs onto fp with the given verbosity and indent. When
verbosity >= 2, this prints all results for all resources, using formathistory|min-max. For
efficiency, these are calculated all at once byKheConsecSolverMake.

11.4.3. Tighten to partition

Suppose we are dealing with teachers, and that they have partitions (Section 3.5.1) which are
their faculties (English, Mathematics, Science, and so on). Some partitions may be heavily
loaded (that is, required to supply teachers for tasks whose total workload approaches the total
available workload of their resources) while others are lightly loaded.

Some tasks may be taught by teachers from more than one partition. Thesemulti-partition
tasksshould be assigned to teachers from lightly loaded partitions, and so should not overlap
in time with other tasks from these partitions.Tighten to partitiontightens the domain of each
multi-partition task in a given tasking to one partition, returningtrue if it changes anything:

bool KheTaskingTightenToPartition(KHE_TASKING tasking,
KHE_TASK_BOUND_GROUP tbg, KHE_OPTIONS options);

The choice of partition is explained below. All changes are additions of task bounds to tasks,and
if tbg is non-NULL, all these task bounds are also added totbg.

It is best to callKheTaskingTightenToPartition after preassigned meets are assigned,
but before general time assignment. The tightened domains encourage time assignment to avoid
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the undesirable overlaps. After time assignment, the changesshould be removed,since otherwise
they constrain resource assignment unnecessarily. This is what the task bound group is for:

tighten_tbg = KheTaskBoundGroupMake(soln);
for( i = 0; i < KheSolnTaskingCount(soln); i++ )
KheTaskingTightenToPartition(KheSolnTasking(soln, i),
tighten_tbg, options);

... assign times ...
KheTaskBoundGroupDelete(tighten_tbg);

The rest of this section explains howKheTaskingTightenToPartition works in detail.

KheTaskingTightenToPartition does nothing when the tasking has no resource type, or
KheResourceTypeDemandIsAllPreassigned (Section 3.5.1) says that the resource type’s tasks
are all preassigned, or the resource type has no partitions, or its number of partitions is less than
four or more than one-third of its number of resources. No good can be done in these cases.

Tasks whose domains lie entirely within one partition are not touched. The remaining
multi-partition tasks are sorted by decreasing combined weight then duration, except that tasks
with adominant partitioncome first. A task with an assigned resource has a dominant partition,
namely the partition that its assigned resource lies in. An unassigned task has a dominant
partition when at least three-quarters of the resources of its domain come from that partition.

For each task in turn, an attempt is made to tighten its domain so that it is a subset of one
partition. If the task hasa dominant partition,only that partition is tried. Otherwise, the partitions
that the task’s domain intersects with are tried one by one, stopping at the first success, after
sorting them by decreasing average available workload (defined next).

Define theworkload supplyof a partition to be the sum, over the resourcesr of the partition,
of the number of times in the cycle minus the number of workload demand monitors forr in
the matching. Define theworkload demandof a partition to be the sum, over all taskst whose
domain is a subset of the partition,of the workload oft. Then theaverage available workloadof
a partition is its workload supply minus its workload demand,divided by its number of resources.
Evidently, if this is large, the partition is lightly loaded.

Each successful tightening increases the workload demand of its partition. This ensures that
equally lightly loaded partitions share multi-partition tasks equally.

In a task with an assigned resource, the dominant partition is the only one compatible
with the assignment. In a task without an assigned resource, preference is given to a dominant
partition, if there is one, for the following reason. Schools often have a fewgeneralist teachers
who are capable of teaching junior subjects from several faculties. These teachers are useful for
fixing occasional problems, smoothing out workload imbalances, and so on. But the workload
that they can give to faculties other than their own is limited and should not be relied on. For
example, suppose there are five Science teachers plus one generalist teacher who can teach junior
Science. That should not be taken by time assignment as a licence to routinely schedule six
Science meets simultaneously. Domain tightening to a dominant partition avoids this trap.

Tightening by partition works best when thers_invariant option ofoptions istrue. For
example, in a case like Sport where there are many simultaneous multi-partition tasks, it will
then not tighten more of them to a lightly loaded partition than there are teachers in that partition.
Assigning preassigned meets beforehand improves the effectiveness of this check.



11.4. Resource supply and demand 283

11.4.4. Balancing supply and demand

This section presents a solver for investigating the balance between supply of and demand for
resources of a given type. Its main aim is to answer this question: if some resource is not used
up to its full capacity, what cost will that have in terms of tasks not assigned?

To create a balance solver, call

KHE_BALANCE_SOLVER KheBalanceSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, HA_ARENA a);

It makes a solver for the supply of and demand for resources of typert in soln, using memory
from arenaa. There is no deletion operation; the solver is deleted whena is freed.

To find the total supply of resources of typert, call

int KheBalanceSolverTotalSupply(KHE_BALANCE_SOLVER bs);

This callsKheResourceAvailableBusyTimes(soln, r, &res) for each resourcer of typert,
and returns the sum of theres values. As documented in Section 4.7,res is an upper limit on
r’s number of busy times (as imposed by constraints) minus its current number of busy times.

To find the total demand for resources of typert, call

int KheBalanceSolverTotalDemand(KHE_BALANCE_SOLVER bs);

This is the sum, over all unassigned taskst of typert, of the total duration oft, as returned by
KheTaskTotalDuration(t) (Section 4.6.1).

The balance solver analyses this demand by cost reduction. For each taskt that contributes
toKheBalanceSolverTotalDemand(bs), it callsKheTaskAssignmentCostReduction (Section
4.6.1) ont, and groups tasks with equal cost reductions. To access these groups, call

int KheBalanceSolverDemandGroupCount(KHE_BALANCE_SOLVER bs);
void KheBalanceSolverDemandGroup(KHE_BALANCE_SOLVER bs, int i,
KHE_COST *cost_reduction, int *total_durn);

KheBalanceSolverDemandGroup returns the information kept about theith group: the cost
reduction of each of its tasks, and their total duration.KheBalanceSolverTotalDemand returns
the sum of these total durations. The groups are visited in order of decreasing cost reduction.

Using this information it is easy to work out the marginal cost of not utilising a resourcer

to its full capacity. Suppose that tasks are assigned in order of decreasing cost reduction, until all
resources are used to capacity. The cost reduction of the last task assigned is the marginal cost
of not fully utilizing r. This value is returned by

KHE_COST KheBalanceSolverMarginalCost(KHE_BALANCE_SOLVER bs);

If supply exceeds demand, there is no marginal cost, and so the value returned is 0. Finally,

void KheBalanceSolverDebug(KHE_BALANCE_SOLVER bs, int verbosity,
int indent, FILE *fp);

produces the usual debug print ofbs ontofp with the given verbosity and indent.
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11.5. Grouping by resource constraints

Grouping by resource constraintsis KHE’s term for a method of grouping tasks together, forcing
the tasks in each group to be assigned the same resource, when all other ways of assigning
resources to those tasks can be shown to have non-zero cost.KheTaskTreeMake also does this,
but its groups are based on avoid split assignments constraints, whereas grouping by resource
constraints makes groups based on resource constraints. The function is

bool KheGroupByResourceConstraints(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options, KHE_TASK_SET ts);

There is notasking parameter because this kind of grouping cannot be applied to an arbitrary set
of tasks, as it turns out. Instead, it applies to all tasks ofsoln whose resource type isrt, which
lie in a meet which is assigned a time, and for which non-assignment may have a cost (discussed
later). If rt is NULL, it applies itself to each of the resource types ofsoln’s instance in turn. It
tries to group these tasks, returningtrue if it groups any.

For each resource type,KheGroupByResourceConstraints finds whatever groups it can.
It makes each suchtask groupby choosing one of its tasks as theleader taskand assigning the
others to it. It makes assignments only to non-cycle tasks that are not already assigned to other
non-cycle tasks, so it does not disturb existing groups. However it does take existing groups into
account, and it will use tasks to which other tasks are asssigned in its own groups.

Tasks which are initially assigned a resource (cycle task) participate in grouping. Such
a task may have its assignment changed to some other task, but in that case the other task will
be assigned the resource. In other words, if one task is assigned a resource initially, and it gets
grouped, then its whole group will be assigned that resource afterwards. Two tasks initially
assigned different resources will never be grouped together.

If ts is non-NULL, every task thatKheGroupByResourceConstraints assigns is added to
ts. This makes it easy to remove the groups when they are no longer wanted, by running through
ts and unassigning each of its tasks.KheTaskSetUnGroup (Section 5.6) does this.

KheGroupByResourceConstraints consults optionrs_invariant, and also

rs_group_by_rc_off

A Boolean option which, whentrue, turns grouping by resource constraints off.

rs_group_by_rc_max_days

An integer option which determines the maximum number of consecutive days (in fact,
time groups of the common frame) examined by combinatorial grouping (Section 11.5.4).
Values 0 or 1 turn combinatorial grouping off. The default value is 3.

rs_group_by_rc_combinatorial_off

A Boolean option which, whentrue, turns combinatorial grouping off.

rs_group_by_rc_profile_off

A Boolean option which, whentrue, turns profile grouping off.

It also callsKheFrameOption (Section 5.10) to obtain the common frame, and retrieves the event
timetable monitor from optiongs_event_timetable_monitor (Section 8.3).
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KheGroupByResourceConstraints groups tasks whenever it can show that not assigning
the same resource to all of them must incur a cost. That does not mean that they will always be
assigned the same resource in good solutions, any more than, say, a constraint requiring nurses to
work complete weekends is always satisfied in good solutions. However, in practice they usually
are, so it makes sense to require them to be, and decide later whether to break up a few groups.

The following subsections describe howKheGroupByResourceConstraints works in
detail. It has several parts, which are available separately, as we will see. For each resource type,
it starts by building a tasker and adding the time groups of the common frame to it as overlap time
groups (Section 11.5.1). Then, using this tasker, it performs combinatorial grouping by calling
KheCombGrouping (Section 11.5.5), and profile grouping by callingKheProfileGrouping
(Section 11.5.6), first withnon_strict set tofalse, then again withnon_strict set totrue.

11.5.1. Taskers

A taskeris an object of typeKHE_TASKER that facilitates grouping by resource constraints. We’ll
see how to create one shortly; but first, we introduce two other types that taskers use.

Taskers deal directly only with proper root tasks (tasks which are either unassigned, or
assigned directly to a cycle task, that is, to a resource). Taskers consider two proper root tasks
to be equivalent when they have equal domains and assigned resources (possiblyNULL), and
they cover the same set of times. (A taskcoversa time when it, or some task assigned directly
or indirectly to it, is running at that time.) Equivalent tasks are interchangeable with respect
to resource assignment: they may be assigned the same resources, and their effect on resource
constraints is the same. Identifying equivalent tasks is vital in grouping; without it, virtually no
group could be shown to be the only zero-cost option.

A classis an object of typeKHE_TASKER_CLASS, representing an equivalence class of tasks
(a set of equivalent tasks). Each task known to a tasker lies in exactly one class. The user cannot
create these classes; they are created and kept up to date by the tasker.

The tasks of an equivalence class may be visited by

int KheTaskerClassTaskCount(KHE_TASKER_CLASS c);
KHE_TASK KheTaskerClassTask(KHE_TASKER_CLASS c, int i);

There must be at least one task, because if a class becomes empty, it is deleted by the tasker.

The three attributes that equivalent tasks share may be retrieved by

KHE_RESOURCE_GROUP KheTaskerClassDomain(KHE_TASKER_CLASS c);
KHE_RESOURCE KheTaskerClassAsstResource(KHE_TASKER_CLASS c);
KHE_TIME_SET KheTaskerClassTimeSet(KHE_TASKER_CLASS c);

These return the domain (fromKheTaskDomain) that the tasks ofc share, their assigned resource
(from KheTaskAsstResource), and the set of times they each cover. The user must not modify
the value returned byKheTaskerClassTimeSet. Function

void KheTaskerClassDebug(KHE_TASKER_CLASS c, int verbosity,
int indent, FILE *fp);

produces a debug print ofc ontofp with the given verbosity and indent.
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The other type that taskers use represents one time. The type isKHE_TASKER_TIME. Again,
the tasker creates objects of these types, and keeps them up to date. Function

KHE_TIME KheTaskerTimeTime(KHE_TASKER_TIME t);

returns the time thatt represents.

The tasks of an equivalence class all run at the same times,and so for each time,either every
task of an equivalence class is running at that time, or none of them are. Accordingly, to visit
the tasks running at a particular time, we actually visit classes:

int KheTaskerTimeClassCount(KHE_TASKER_TIME t);
KHE_TASKER_CLASS KheTaskerTimeClass(KHE_TASKER_TIME t, int i);

Each equivalence class appears in one time object for each time that its tasks are running, giving
a many-to-many relationship between time objects and class objects. Function

void KheTaskerTimeDebug(KHE_TASKER_TIME t, int verbosity,
int indent, FILE *fp);

produces a debug print oft ontofp with the given verbosity and indent.

We turn now to taskers themselves. To create a tasker, call

KHE_TASKER KheTaskerMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_TASK_SET task_set, HA_ARENA a);

The tasker’s attributes may be accessed by

KHE_SOLN KheTaskerSoln(KHE_TASKER tr);
KHE_RESOURCE_TYPE KheTaskerResourceType(KHE_TASKER tr);
KHE_TASK_SET KheTaskerTaskSet(KHE_TASKER tr);
HA_ARENA KheTaskerArena(KHE_TASKER tr);

A tasker object remains in existence until its arena,a, is deleted or recycled.

KheTaskerMake gathers into the tasker object all proper root tasks (tasks which are either
unassigned, or assigned directly to a cycle task representing a resource) ofsoln whose resource
type isrt, for which non-assignment may have a cost (see below), and which lie in meets that
have an assigned time. The meets’ time assignments are assumed to be fixed for the lifetime of
the tasker; if they change, errors will occur. From here on, ‘task’means one of these tasks, unless
stated otherwise.

It seems wrong to group a task for which non-assignment has a cost with a task for which
non-assignment has no cost. But what to do about this issue is a puzzle. Simply refusing to group
such tasks would not address all the relevant issues, e.g. whether to include both types in profiles.
At present, if the instance contains at least one assign resource constraint, then only tasks derived
from event resources for whichKheEventResourceNeedsAssignment (Section 3.6.3) returns
KHE_YES are considered for grouping. If the instance contains no assign resource constraints,
then only tasks derived from event resources for whichKheEventResourceNeedsAssignment

returnsKHE_MAYBE are considered for grouping. This is basically a stopgap.

Tasks are grouped by calls toKheTaskMove, each of which assigns one follower task to a
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leader task. This removes the follower task from the set of tasks of interest to the tasker, and it
usually enlarges the set of times covered by the leader task, placing it into a different equivalence
class. The main purpose of the tasker object is to keep track of these changes.

If task_set is non-NULL, each follower task assigned during grouping is added to it. This
makes it easy to remove the groups later, when they are no longer wanted, by running through
task_set and unassigning each of its tasks.KheTaskSetUnGroup (Section 5.6) does this.

KheTaskerMake places its tasks into classes indexed by time. To visit each time, call

int KheTaskerTimeCount(KHE_TASKER tr);
KHE_TASKER_TIME KheTaskerTime(KHE_TASKER tr, int i);

Here KheTaskerTimeTime(KheTaskerTime(tr, KheTimeIndex(t))) == t for all times t.
KheTaskerTimeCount(tr) returns the same value asKheInstanceTimeCount(ins), where
ins is tr’s solution’s instance. From eachKHE_TASKER_TIME object one can access the classes
running at that time, and the tasks of those classes, using functions introduced above.

Finally,

void KheTaskerDebug(KHE_TASKER tr, int verbosity, int indent, FILE *fp);

produces a debug print oftr ontofp with the given verbosity and indent.

11.5.2. Tasker support for grouping

Taskers keep their classes up to date as tasks are grouped. However, they can’t know by magic
that tasks are being grouped. So it’s wrong to call platform operations likeKheTaskAssign

andKheTaskMove directly while using a tasker.KheTaskAddTaskBound is also out of bounds.
Instead, proceed as follows.

A groupingis a set of classes used for grouping tasks. A group is made by taking any one
task out of each class in the grouping, choosing one to be the leader task, assigning the others
(called the followers) to it, and inserting the leader task into some other class appropriate to it,
where it is available to participate in other groupings.

When a task is taken out of a class, the class may become empty, in which case the tasker
deletes that class. When the follower tasks are assigned to the leader tasks, the set of times
covered by it usually changes, and the tasker may need to create a new class object to hold it. So
class objects may be both created and destroyed by the tasker when tasks are grouped.

A tasker may handle any number of groupings over its lifetime, but at any moment there is
at most one grouping. The operations for building thiscurrent groupingare:

void KheTaskerGroupingClear(KHE_TASKER tr);
bool KheTaskerGroupingAddClass(KHE_TASKER tr, KHE_TASKER_CLASS c);
bool KheTaskerGroupingDeleteClass(KHE_TASKER tr, KHE_TASKER_CLASS c);
int KheTaskerGroupingBuild(KHE_TASKER tr, int max_num, char *debug_str);

These call the platform operations, as well as keeping the tasker up to date.

KheTaskerGroupingClear starts off a grouping, clearing out any previous grouping.

KheTaskerGroupingAddClass, which may be called any number of times, addsc to the
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current grouping. If there is a problem with this, it returnsfalse and changes nothing. These
potential problems (there are two kinds) are explained below.

KheTaskerGroupingDeleteClass undoes a call toKheTaskerGroupingAddClass with
the samec that returnedtrue. Deletingc might not be possible,since it might leave the grouping
with no viable leader class (for which see below).KheTaskerGroupingDeleteClass returns
false in that case, and changes nothing. This cannot happen if classes are deleted in stack order
(last in first out), because each deletion then returns the grouping to a viable previous state.

KheTaskerGroupingBuild ends the grouping. It makes some groups and returns the
number it made. Each group is either made completely,or not at all. The number of groups made
is the minimum ofmax_num and theKheTaskerClassTaskCount values for the classes. It then
removes all classes from the grouping, likeKheTaskerGroupingClear does, understanding that
some may have already been destroyed by being emptied out byKheTaskerGroupingBuild.

It is acceptable to add just one class, in which case the ‘groups’are just tasks from that class,
no assignments are made, and nothing actually changes in the tasker’s data structure. If this is
not wanted, then the caller should ensure thatKheTaskerGroupingClassCount (see below) is at
least 2 before callingKheTaskerGroupingBuild.

Parameterdebug_str is used only by debugging code, to say why a group was made. For
example, its value might be"combinatorial grouping" or "profile grouping".

At any time, the classes of the current grouping may be accessed by calling

int KheTaskerGroupingClassCount(KHE_TASKER tr);
KHE_TASKER_CLASS KheTaskerGroupingClass(KHE_TASKER tr, int i);

in the usual way. They will not usually be returned in the order they were added, however; in
particular, the class that the tasker currently intends to use as the leader class has index 0.

We now describe the two problems that makeKheTaskerGroupingAddClass returnfalse.
The first problem concerns leader tasks. Tasks are grouped by choosing one task as the leader
and assigning the others to it. So one of the classes added byKheTaskerGroupingAddClass has
to be chosen as the one that leader tasks will be taken from (theleader class). The tasker does
this automatically in a way that usually works well. (It chooses any class whose tasks are already
assigned a resource, or if there are none of those, a class whose domain has minimal cardinality,
and checks that the first task of each of the other classes can be assigned to the first task of that
class without changing any existing resource assignment.) But in rare cases, the domains of two
classes may be such that neither is a subset of the other, or two classes may be initially assigned
different resources.KheTaskerGroupingAddClass returnsfalse in such cases.

The second problem concerns the times covered by the classes. It would not do to group
together two tasks which cover the same time, because then, when a resource is assigned to the
grouped task, the resource would have a clash. More generally, if a resource cannot be assigned
to two tasks on the same day (for example), then it would not do to group two tasks which cover
two times from the same day. To help with this, the tasker has functions

void KheTaskerAddOverlapFrame(KHE_TASKER tr, KHE_FRAME frame);
void KheTaskerDeleteOverlapFrame(KHE_TASKER tr);

KheTaskerAddOverlapFrame informs the tasker that a resource should not be assigned
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two tasks that cover the same time group offrame. If this condition would be violated by
some call toKheTaskerGroupingAddClass, then that call returnsfalse and adds nothing.
KheTaskerDeleteOverlapFrame, which is never needed in practice, removes this requirement.

If overlaps are prevented in this way, the same class cannot be added to a grouping twice.
So there is no need to prohibit that explicitly.

WhenKheTaskerGroupingAddClass returnsfalse, the caller has two options. One is
to abandon this grouping altogether, which is done by not callingKheTaskerGroupingBuild.
The next call toKheTaskerGroupingClear will clear everything out for a fresh start. The other
option is to continue with the grouping, finding other classes to add. This is done by making zero
or more other calls toKheTaskerGroupingAddClass, followed byKheTaskerGroupingBuild.

After one grouping is completed, the user may start another. The tasker will have been
updated by the previousKheTaskerGroupingBuild to no longer contain the ungrouped tasks
but instead to contain the grouped ones. They can become elements of new groups.

KHE_TASKER_CLASS objects may be created byKheTaskerGroupingBuild, to hold the
newly created groups, and also destroyed, because empty classes are deleted. So variables of
typeKHE_TASKER_CLASS may become undefined whenKheTaskerGroupingBuild is called.

AlthoughKheTaskerGroupingAdd can be used to check whether a class can be added, it
may be convenient to check for overlap in advance. For this there are functions

bool KheTaskerTimeOverlapsGrouping(KHE_TASKER_TIME t);
bool KheTaskerClassOverlapsGrouping(KHE_TASKER_CLASS c);

KheTaskerTimeOverlapsGrouping returnstrue if t lies in an overlap time group which is
currently covered by a class of the current grouping.KheTaskerClassOverlapsGrouping

returnstrue if any of the times covered byc is already so covered.

11.5.3. Tasker support for profile grouping

Taskers also have functions which support profile grouping (Section 11.5.6). To set and retrieve
theprofile maximum length, the calls are

void KheTaskerSetProfileMaxLen(KHE_TASKER tr, int profile_max_len);
int KheTaskerProfileMaxLen(KHE_TASKER tr);

The profile maximum length can only be set when there are no profile time groups.

To visit the sequence ofprofile time groupsmaintained by the tasker, the calls are

int KheTaskerProfileTimeGroupCount(KHE_TASKER tr);
KHE_PROFILE_TIME_GROUP KheTaskerProfileTimeGroup(KHE_TASKER tr, int i);

To make one profile time group and add it to the end of the tasker’s sequence, and to delete a
profile time group, the calls are

KHE_PROFILE_TIME_GROUP KheProfileTimeGroupMake(KHE_TASKER tr,
KHE_TIME_GROUP tg);

void KheProfileTimeGroupDelete(KHE_PROFILE_TIME_GROUP ptg);
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The last profile time group is moved to the position of the deleted one, which only makes sense
in practice when all the profile time groups are being deleted. So a better function to call is

void KheTaskerDeleteProfileTimeGroups(KHE_TASKER tr);

which deletes all oftr’s profile time groups. They go into a free list in the tasker.

Functions

KHE_TASKER KheProfileTimeGroupTasker(KHE_PROFILE_TIME_GROUP ptg);
KHE_TIME_GROUP KheProfileTimeGroupTimeGroup(KHE_PROFILE_TIME_GROUP ptg);

retrieve a profile time group’s tasker and time group.

A profile time group’scoveris the number ofcover tasks: tasks that cover the time group,
ignoring tasks that cover more thanprofile_max_len profile time groups. This is returned by

int KheProfileTimeGroupCover(KHE_PROFILE_TIME_GROUP ptg);

The profile time group also keeps track of thedomain cover: the number of cover tasks with a
given domain. Two domains are considered to be equal ifKheResourceGroupEqual says that
they are. To visit the (distinct) domains of a profile time group, in increasing domain size order,
the calls are

int KheProfileTimeGroupDomainCount(KHE_PROFILE_TIME_GROUP ptg);
KHE_RESOURCE_GROUP KheProfileTimeGroupDomain(KHE_PROFILE_TIME_GROUP ptg,
int i, int *cover);

KheProfileTimeGroupDomain returns the domain cover as well as the domain itself. The sum
of the domain covers is the cover. There is also

bool KheProfileTimeGroupContainsDomain(KHE_PROFILE_TIME_GROUP ptg,
KHE_RESOURCE_GROUP domain, int *cover);

which searchesptg’s list of domains fordomain, returningtrue and setting*cover to the
domain cover if it is found.

KheProfileTimeGroupDomain andKheProfileTimeGroupContainsDomain may return 0
for *cover, when tasks with a given domain enter the profile and later leave it.

Profile grouping algorithms will group tasks while these functions are being called. The
sequence of profile time groups is unaffected by grouping, but covers and domain covers will
change if the grouped tasks cover more thanprofile_max_len profile time groups. The
domains of a profile time group may also change during grouping, when tasks with unequal
domains are grouped. Altogether it is safest to discontinue a partially completed traversal of the
domains of a profile time group when a grouping occurs.

There are also a few functions on tasker classes that relate to profile time groups. First,

bool KheTaskerClassCoversProfileTimeGroup(KHE_TASKER_CLASS c,
KHE_PROFILE_TIME_GROUP ptg);

returnstrue if c coversptg. Each class keeps track of the times from profile time groups that
it covers. Functions
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int KheTaskerClassProfileTimeCount(KHE_TASKER_CLASS c);
KHE_TASKER_TIME KheTaskerClassProfileTime(KHE_TASKER_CLASS c, int i);

visit these times in an unspecified order.

Function

void KheTaskerProfileDebug(KHE_TASKER tr, int verbosity, int indent,
FILE *fp);

prints the profile groups oftr onto fp, with the classes that cover not more than
profile_max_len of them.

11.5.4. Combinatorial grouping

Suppose that there are two kinds of shifts (tasks), day and night; that a resource must be busy on
both days of the weekend or neither; and that a resource cannot work a day shift on the day after
a night shift. Then resources assigned to the Saturday night shift must work on Sunday, and so
must work the Sunday night shift. So it makes sense to group one Saturday night shift with one
Sunday night shift, and to do so repeatedly until night shifts run out on one of those days.

Suppose that the groups just made consume all the Sunday night shifts. Then those working
the Saturday day shifts cannot work the Sunday night shifts, because the Sunday night shifts are
grouped with Saturday night shifts now, which clash with the Saturday day shifts. So now it is
safe to group one Saturday day shift with one Sunday day shift, and to do so repeatedly until day
shifts run out on one of those days.

Groups made in this way can be a big help to solvers. In instanceCOI-GPost.xml, for
example, each Friday night task can be grouped with tasks for the next two nights. Good
solutions always assign these three tasks to the same resource, owing to constraints specifying
that the weekend following a Friday night shift must be busy, that each weekend must be either
free on both days or busy on both, and that a night shift must not be followed by a day shift. A
time sweep task assignment algorithm (say) cannot look ahead and see such cases coming.

Combinatorial groupingimplements these ideas. It searches through a space whose
elements are sets of classes. For each set of classesSin the search space, it calculates a costc(S),
defined below, and selects a setS′ such thatc(S′) is zero, or minimal. It then makes one group
by selecting one task from each class and grouping those tasks, and then repeating that until as
many tasks as possible or desired have been grouped.

As formulated here, one application of combinatorial grouping groups one set of classesS′.
In the example above, grouping the Saturday and Sunday night shifts would be one application,
then grouping the Saturday and Sunday day shifts would be another.

Combinatorial grouping is carried out by acombinatorial grouping solver, made like this:

KHE_COMB_SOLVER KheCombSolverMake(KHE_TASKER tr, KHE_FRAME days_frame);

It deals withtr’s tasks, using memory fromtr’s arena. Any groups it makes are made using
tr’s grouping operations, and so are reflected intr’s classes, and in its task set. Parameter
days_frame would always be the common frame. It is used when selecting a suitable resource
to tentatively assign to a group of tasks, to find out what times the resource should be free.
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Functions

KHE_TASKER KheCombSolverTasker(KHE_COMB_SOLVER cs);
KHE_FRAME KheCombSolverFrame(KHE_COMB_SOLVER cs);

returncs’s tasker and frame.

A KHE_COMB_SOLVER object can solve any number of combinatorial grouping problems,
one after another. The user loads the solver with one problem’srequirements(these determine
the search spaceS), then requests a solve, then loads another problem and solves, and so on.

It is usually best to start the process of loading requirements into the solver by calling

void KheCombSolverClearRequirements(KHE_COMB_SOLVER cs);

This clears away any old requirements.

A key requirement for most solves is that the groups it makes should cover a given time
group. Any number of such requirements can be added and removed by calling

void KheCombSolverAddTimeGroupRequirement(KHE_COMB_SOLVER cs,
KHE_TIME_GROUP tg, KHE_COMB_SOLVER_COVER_TYPE cover);

void KheCombSolverDeleteTimeGroupRequirement(KHE_COMB_SOLVER cs,
KHE_TIME_GROUP tg);

any number of times.KheCombSolverAddTimeGroup specifies that the groups must covertg in
a manner given by thecover parameter, whose type is

typedef enum {
KHE_COMB_SOLVER_COVER_YES,
KHE_COMB_SOLVER_COVER_NO,
KHE_COMB_SOLVER_COVER_PREV,
KHE_COMB_SOLVER_COVER_FREE,

} KHE_COMB_SOLVER_COVER_TYPE;

We’ll explain this in detail later.KheCombSolverDeleteTimeGroup removes the effect of a
previous call toKheCombSolverAddTimeGroup with the same time group. There must have been
such a call, otherwiseKheCombSolverDeleteTimeGroup aborts.

Any number of requirements that the groups should cover a given class may be added:

void KheCombSolverAddClassRequirement(KHE_COMB_SOLVER cs,
KHE_TASKER_CLASS c, KHE_COMB_SOLVER_COVER_TYPE cover);

void KheCombSolverDeleteClassRequirement(KHE_COMB_SOLVER cs,
KHE_TASKER_CLASS c);

These work in the same way as for time groups, except that care is needed becausec may be
rendered undefined by a solve, if it makes groups which emptyc out. The safest option after a
solve whose requirements include a class is to callKheCombSolverClearRequirements.

Three other requirements of quite different kinds may be added:
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void KheCombSolverAddProfileGroupRequirement(KHE_COMB_SOLVER cs,
KHE_PROFILE_TIME_GROUP ptg, KHE_RESOURCE_GROUP domain);

void KheCombSolverDeleteProfileGroupRequirement(KHE_COMB_SOLVER cs,
KHE_PROFILE_TIME_GROUP ptg);

and

void KheCombSolverAddProfileMaxLenRequirement(KHE_COMB_SOLVER cs);
void KheCombSolverDeleteProfileMaxLenRequirement(KHE_COMB_SOLVER cs);

and

void KheCombSolverAddNoSinglesRequirement(KHE_COMB_SOLVER cs);
void KheCombSolverDeleteNoSinglesRequirement(KHE_COMB_SOLVER cs);

Again, we’ll explain the precise effect later. These last three requirements can only be added
once: a second call replaces the first, it does not add to it.

There is no need to reload requirements between solves. The requirements stay in effect
until they are either deleted individually or cleared out byKheCombSolverClearRequirements.
The only caveat concerns classes that become undefined during grouping, as discussed above.

The search space of combinatorial solving is defined by all these requirements. First, we
need some definitions. A taskcoversa time if it, or a task assigned to it directly or indirectly,
runs at that time. A task covers a time group if it covers any of the time group’s times. A class
covers a time or time group if its tasks do. A class covers a class if it is that class. A set of classes
covers a time, time group, or class if any of its classes covers that time, time group, or class.

Now a setSof classes lies in the search space for a run of combinatorial grouping if:

1. Each class inScovers at least one of the time groups and classes passed to the solver by the
calls toKheCombSolverAddTimeGroup andKheCombSolverAddClass.

2. For each time grouptg or classc passed to the solver byKheCombSolverAddTimeGroup or
KheCombSolverAddClass, if the accompanyingcover is KHE_COMB_SOLVER_COVER_YES,
thenS coverstg or c; or if cover is KHE_COMB_SOLVER_COVER_NO, thenS does not cov-
er tg or c; or if cover is KHE_COMB_SOLVER_COVER_PREV, thenS coverstg or c if and
only if it covers the time group or class immediately precedingtg or c; or if cover is
KHE_COMB_SOLVER_COVER_FREE, thenS is free to covertg or c, or not.

If the first time group or class has coverKHE_COMB_SOLVER_COVER_PREV, this is treated like
KHE_COMB_SOLVER_COVER_FREE.

Time groups and classes not mentioned may be covered,or not. The difference between this
and passing a time group or class with coverKHE_GROUP_SOLVER_COVER_FREE is that the
classes that cover a free time group or class are included in the search space.

3. The classes ofSmay be added to the tasker to form a grouping. There are rare cases where
adding the classes in one order will succeed,while adding them in another order will fail. In
those cases,whetherSis included in the search space or not will depend on the (unspecified)
order in which the solver chooses to addS’s classes to the tasker.
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4. If KheCombSolverAddProfileRequirement(cs, ptg, domain) is in effect, then S
contains at least one class that coversptg’s time group, and ifdomain != NULL, that class
has that domain.

5. If KheCombSolverAddProfileMaxLenRequirement(cs) is in effect, thenScontains only
classes that cover at mostprofile_max_len times from profile time groups.

6. If KheCombSolverAddNoSinglesRequirement(cs) is in effect, thenScontains at least two
classes. OtherwiseScontains at least one class.

That fixes the search space. We now define the costc(S) of each set of classesS in that space.

The first step is to identify a suitable resourcer. Take the first class of the tasker grouping
made fromS; this is the class that leader tasks will come from. If it already has an assigned
resource (as returned byKheTaskerClassAsstResource), use that resource forr. Otherwise
search the class’s domain (as returned byKheTaskerClassDomain) for a resource which is free
at all of the time groups of the current frame which overlap with the time groups added by calls
to KheCombSolverAddTimeGroupRequirement. If no such resource can be found, ignoreS.

The second step is to assignr to one task from each class ofS, except in classes wherer
is already assigned to a task. This is done without informing the tasker, but after the cost is
determined these assignments are undone, so the tasker’s integrity is not compromised in the
end. The costc(S) of a set of classesS is determined while the assignments are in place. It
is the total cost of all cluster busy times and limit busy times monitors which monitorr
and have times lying entirely within the times covered by the time groups added by calls to
KheCombSolverAddTimeGroupRequirement. This second condition is included because we
don’t wantr ’s global workload, for example, to influence the outcome.

After all the requirements are added, an actual solve is carried out by calling

int KheCombSolverSolve(KHE_COMB_SOLVER cs, int max_num,
KHE_COMB_SOLVER_COST_TYPE ct, char *debug_str);

KheCombSolverSolve searches the space of all sets of classesS that satisfy the six conditions,
and selects one setS′ of minimal costc(S′). UsingS′, it makes as many groups as it can, up to
max_num, and returns the number it actually made,between0 andmax_num. If S′ containsa single
class, no groups are made and the value returned is 0.

Parameterct has type

typedef enum {
KHE_COMB_SOLVER_COST_MIN,
KHE_COMB_SOLVER_COST_ZERO,
KHE_COMB_SOLVER_COST_SOLE_ZERO

} KHE_COMB_SOLVER_COST_TYPE;

If ct is KHE_COMB_SOLVER_COST_MIN, thenc(S′) must be minimal among allc(S). If ct is
KHE_COMB_SOLVER_COST_ZERO or KHE_COMB_SOLVER_COST_SOLE_ZERO, thenc(S′) must also be
0, and in the second case there must be no otherSin the search space such thatc(S) is 0. If these
conditions are not met, no groups are made.

Parameter debug_str is passed on toKheTaskerGroupingBuild. It might be
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"combinatorial grouping", for example.

An awkward question raised by combinatorial grouping is what to do aboutsingles: classes
whose tasks already satisfy the requirements, without any grouping. The answer seems to vary
depending on why combinatorial grouping is being called, so the combinatorial solver does not
have a single way of dealing with singles. Instead it offers three features that help with them.

First, as we have seen, if the set of classesS′ with minimum or zero cost contains only one
class,KheCombSolverSolve accepts that it is the best but makes no groups from it, returning 0
for the number of groups made.

Second, as we have also seen,KheCombSolverAddNoSinglesRequirement allows the user
to declare that a setSwhose classes consist of a single class which satisfies all the requirements
(a single)should be excluded from the search space. But adding this requirement is not a magical
solution to the problem of singles. For one thing,when we need a unique zero-cost set of classes,
we may well want to include singles in the search space, to show that grouping is better than
doing nothing. For another, there may still be anScontaining one single and another class which
covers a time group or class with cover typeKHE_COMB_SOLVER_COVER_FREE.

Third, after setting up a problem ready to callKheCombSolverSolve, one can call

int KheCombSolverSingleTasks(KHE_COMB_SOLVER cs);

This searches the same space asKheCombSolverSolve does, but it does no grouping. Instead, it
returns the total number of tasks in sets of classesS in that space such that|S| = 1. It returns 0 if
KheCombSolverAddNoSinglesRequirement is in effect when it is called, quite correctly.

Finally,

void KheCombSolverDebug(KHE_COMB_SOLVER cs, int verbosity,
int indent, FILE *fp);

produces the usual debug print ofcs ontofp with the given verbosity and indent.

11.5.5. Applying combinatorial grouping

This section describes one way in which the general idea of combinatorial grouping, as just
presented, may be applied in practice. This way is implemented by function

int KheCombGrouping(KHE_COMB_SOLVER cs, KHE_OPTIONS options);

KheCombGrouping does what this section describes, and returns the number of groups it made.
Before it is called, the common frame should be loaded intocs’s tasker as overlap time groups.

Let mbe the value of thers_group_by_rc_max_days option ofoptions. Iterate over
all pairs(f ,c), wheref is a subset of the common frame containingk adjacent time groups, for
all k such that2 ≤ k ≤ m, andc is a class that coversf ’s first or last time group.

For each pair, set up and run combinatorial grouping with one ‘yes’ class, namelyc, and
one ‘free’ time group for each of thek time groups off . Setmax_num to INT_MAX, and setct to
KHE_COMB_SOLVER_COST_SOLE_ZERO. If there is a unique zero-cost way to group a task ofcwith
tasks on the followingk − 1days, this call will find it and carry out as many groupings as it can.

If f hask time groups, each withn classes, say, there are up to(n + k−11) combinations for



296 Chapter 11. Resource-Structural Solvers

each run, sors_group_by_rc_max_days must be small, say 3, or 4 at most. In any case, unique
zero-cost groupings typically concern weekends, so larger values are unlikely to yield anything.

If one (f ,c) pair produces some grouping, thenKheCombGrouping returns to the first pair
containingf . This handles cases like the one described earlier,where a grouping of Saturday and
Sunday night shifts opens the way to a grouping of Saturday and Sunday day shifts.

The remainder of this section describescombination elimination. This is a refinement that
KheCombGrouping uses to make unique zero-cost combinations more likely in some cases.

Some combinations examined by combinatorial grouping may have zero cost as far as the
monitors used to evaluate it are concerned, but have non-zero cost when evaluated in a different
way, involving the overall supply of and demand for resources. Such combinations can be ruled
out, leaving fewer zero-cost combinations, and potentially more task grouping.

For example, suppose there is a maximum limit on the number of weekends each resource
can work. If this limit is tight enough, it will force every resource to work complete weekends,
even without an explicit constraint, if that is the only way that the available supply of resources
can cover the demand for weekend shifts. This example fits the pattern to be given now, setting
C to the constraint that limits the number of busy weekends,T to the times of all weekends,Ti
to the times of theith weekend, andfi to the number of days in theith weekend.

Take any any set of timesT. Let S(T), thesupply during T, be the sum over all resourcesr
of the maximum number of times thatr can be busy duringT without incurring a cost. LetD(T),
thedemand during T, be the sum over all tasksx for which non-assignment would incur a cost,
of the number of timesx is running duringT. ThenS(T) ≥ D(T) or else a cost is unavoidable.

In particular, take any cluster busy times constraintC which applies to all resources, has
time groups which are all positive, and has a non-trivial maximum limitM. (The analysis also
applies when the time groups are all negative and there is a non-trivial minimum limit, settingM
to the number of time groups minus the minimum limit.) Suppose there aren time groupsTi, for
1 ≤ i ≤ n, and let their union beT.

Let fi be the number of time groups from the common frame with a non-empty intersection
with Ti. This is the maximum number of times fromTi during which any one resource can be
busy without incurring a cost, since a resource can be busy for at most one time in each time
group of the common frame.

Let F be the sum of the largestM fi values. This is the maximum number of times fromT
that any one resource can be busy without incurring a cost: if it is busy for more times than this,
it must either be busy for more thanfi times in someTi, or else it must be busy for more thanM
time groups, violating the constraint’s maximum limit.

If there areR resources altogether, then the supply duringT is bounded by

S(T) ≤ RF

sinceC is assumed to apply to every resource.

As explained above, to avoid cost the demand must not exceed the supply, so

D(T) ≤ S(T) ≤ RF

Furthermore, ifD(T) ≥ RF, then any failure to maximize the use of workload will incur a cost.
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That is, every resource which is busy duringTi must be busy for the fullfi times inTi.

So the effect on grouping is this: ifD(T) ≥ RF, a resource that is busy in one time group
of the common frame that overlapsTi should be busy in every time group of the common frame
that overlapsTi. KheCombGrouping searches for constraintsC that have this effect, and informs
its combinatorial grouping solver about what it found by changing the cover types of some time
groups from ‘free’ to ‘prev’. When searching for groups, the option of covering some of these
time groups but not others is removed. With fewer options, there is more chance that some
combination might be the only one with zero cost, allowing more task grouping.

InstanceCQ14-05 has two constraints that limit busy weekends. One applies to 10 resources
and has maximum limit 2; the other applies to the remaining 6 resources and has maximum
limit 3. So combination elimination actually takes sets of constraints with the same time groups
that together cover every resource once. Instead ofRF (above), it uses the sum over the set’s
constraintscj of RjFj, whereRj is the number of resources thatcj applies to,andFj is the sum of the
largestMj of thefi values, whereMj is the maximum limit ofcj. Thefi are the same for allcj.

11.5.6. Profile grouping

Suppose 6 nurses are required on the Monday, Tuesday, Wednesday, Thursday, and Friday night
shifts, but only 4 are required on the Saturday and Sunday night shifts. Consider any division
of the night shifts into sequences of one or more shifts on consecutive days. However these
sequences are made, at least two must begin on Monday, and at least two must end on Friday.

Now suppose that the intention is to assign the same resource to each shift of any one
sequence, and that a limit active intervals constraint, applicable to all resources, specifies that
night shifts on consecutive days must occur in sequences of at least 2 and at most 3. Then the
two sequences of night shifts that must begin on Monday must contain a Monday night and a
Tuesday night shift at least, and the two that end on Friday must contain a Thursday night and
a Friday night shift at least. So here are two groupings, of Monday and Tuesday nights and of
Thursday and Friday nights, for each of which we can build two task groups.

Suppose that we already have a task group which contains a sequence of 3 night shifts on
consecutive days. This group cannot be grouped with any night shifts on days adjacent to the
days it currently covers. So for present purposes the tasks of this group can be ignored. This can
change the number of night shifts running on each day, and so change the amount of grouping.
For example, in instanceCOI-GPost.xml, all the Friday, Saturday, and Sunday night shifts get
grouped into sequences of 3, and 3 is the maximum, so those night shifts can be ignored here,
and so every Monday night shift begins a sequence, and every Thursday night shift ends one.

We now generalize this example, ignoring for the moment a few issues of detail. LetC
be any limit active intervals constraint which applies to all resources, and whose time groups
T1,… ,Tk are all positive. LetC’s limits beCmaxandCmin, and supposeCmin is at least 2 (if not,
there can be no grouping based onC). What follows is relative toC, and is repeated for each such
constraint. Constraints with the same time groups are notionally merged, allowing the minimum
limit to come from one constraint and the maximum limit from another.

A maximal taskis a task which covers at leastCmaxadjacent time groups fromC. Maximal
tasks can have no influence on grouping to satisfyC’s minimum limit, so they may be ignored,
that is, profile grouping may run as though they are not there. This applies both to tasks which
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are present at the start, and tasks which are constructed along the way.

Let ni be the number of tasks that coverTi, not including maximal tasks. Theni together
make up theprofile of C. The tasker operations from Section 11.5.1 which support profile
grouping make it easy to find the profile.

For eachi such thatni−1 < ni, ni − ni−1 groups of length at leastCmin must start atTi (more
precisely, they must coverTi but not Ti−1). They may be constructed by combinatorial grouping,
passing in time groupsTi,… ,Ti+Cmin−1with cover type ‘yes’, andTi−1andTi+Cmax

with cover type
‘no’, asking form = ni − ni−1− ci tasks, whereci is the number of existing tasks (not including
maximal ones) that satisfy these conditions already (as returned byKheCombSolverSingles).
The new groups must group at least 2 tasks each. Some of the time groups may not exist; in that
case, omit the non-existent ones but still do the grouping, provided there are at least 2 ‘yes’ time
groups. The case for sequences ending atj is symmetrical.

If C has no history, we may setn0 andnk+1to 0, allowing groups to begin atT1and end atTk.
If C has history, we do not know how many tasks are running outsideC, so we setn0 andnk+1 to
infinity, preventing groups from beginning atT1 and ending atTk.

Groups made by one round of profile grouping may participate in later rounds. Suppose
Cmin = 2, Cmax = 3, n1 = n5 = 0, andn2 = n3 = n4 = 4. Profile grouping builds 4 groups of length
2 begining atT2, then 4 groups of length 3 ending atT4, incorporating the length 2 groups.

We turn now to four issues of detail.

History. If history is present, the first step is to handle it. For each resourceri with a history
valuexi such thatxi < Cmin, use combinatorial grouping with one ‘yes’ time group for each of the
first Cmin − xi time groups ofC (when these all exist), build one group, and assignri to it. (This
idea is not yet implemented; none of the instances available at the time of writing need it.)

Singles. We need to consider how singles affect profile grouping. Singles of lengthCmax
or more are ignored, but there may be singles of lengthCmin whenCmin < Cmax.

Theni − ni−1groups that must start atTi include singles. Singles are already present, which
is similar to saying that they must be made first. So before callingKheCombSolverSolve we call
CombSolverSingleTasks to determineci, the number of singles that satisfy the requirements,
and then we passni − ni−1− ci to KheCombSolverSolve, not ni − ni−1, and exclude singles from
its search space.

Varying task domains. Suppose that one senior nurse is wanted each night, four ordinary
nurses are wanted each week night, and two ordinary nurses are wanted each weekend night.
Then the two groups starting on Monday nights should group demands for ordinary nurses, not
senior nurses. Nevertheless, tasks with different domains are not totally unrelated. A senior
nurse could very well act as an ordinary nurse on some shifts.

We still aim to buildM = ni − ni−1− ci groups as before. However, we do this by making
several calls on combinatorial grouping. For each resource groupgappearing as a domain in any
class running at timeTi, findngi, the number of tasks (not including maximal ones) with domaing
running atTi, andng(i−1), the number atTi−1. For eachg such thatngi > ng(i−1), call combinatorial
grouping, insisting (by callingKheCombSolverAddProfileRequirement) thatTi be covered by
a class whose domain isg, passingm = min(M,ngi − ng(i−1)), then subtract fromM the number of
groups actually made. Stop whenM = 0or the list of domains is exhausted.

Non-uniqueness of zero-cost groupings.The main problem with profile grouping is that



11.5. Grouping by resource constraints 299

there may be several zero-cost groupings in a given situation. For example, a profile might show
that a group covering Monday, Tuesday, and Wednesday may be made, but give no guidance on
which shifts on those days to group.

One reasonable way of dealing with this problem is the following. First, do not insist
on unique zero-cost groupings; instead, accept any zero-cost grouping. This ensures that a
reasonable amount of profile grouping will happen. Second, to reduce the chance of making
poor choices of zero-cost groupings, limit profile grouping to two cases.

The first case is when each time groupTi contains a single time,as at the start of this section,
where eachTi contained the time of a night shift. Although we do not insist on unique zero-cost
groupings, we are likely to get them in this case, so we call thisstrict profile grouping.

The second case is whenCmin = Cmax. It is very constraining to insist,as this does, that every
sequence of consecutive busy days (say) away from the start and end of the cycle must have a
particular length. Indeed, it changes the problem into a combinatorial one of packing these rigid
sequences into the profile. Local repairs cannot do this well, because to increase or decrease the
length of one sequence, we must decrease or increase the length of a neighbouring sequence,
and so on all the way back to the start or forward to the end of the cycle (unless there are shifts
nearby which can be assigned or not without cost). So we turn to profile grouping to find suitable
groups before assigning any resources. Some of these groups may be less than ideal, but still the
overall effect should be better than no grouping at all. We call thisnon-strict profile grouping.

WhenCmin = Cmax, all singles are off-profile. This is easy to see: by definition, a single
coversCmin time groups, so it coversCmax time groups, butprofile_max_len is Cmax− 1.

These ideas are implemented by function

int KheProfileGrouping(KHE_COMB_SOLVER cs, bool non_strict);

It carries out some profile grouping, as follows, and returns the number of groups it makes.

Find all limit active intervals constraintsC whose time groups are all positive and which
apply to all resources. Notionally merge pairs of these constraints that share the same time
groups when one has a minimum limit and the other has a maximum limit. LetC be one of these
(possibly merged) constraints such thatCmin ≥ 2. Furthermore, ifnon_strict isfalse, thenC’s
time groups must all be singletons, while ifnon_strict is true, thenCmin = Cmaxmust hold.

A constraint may qualify for both strict and non-strict processing. This is true, for example,
of a constraint that imposes equal lower and upper limits on the number of consecutive night
shifts. Such a constraint will be selected in both the strict and non-strict cases, which is fine.

For each of these constraints, proceed as follows. Set the profile time groups in the tasker
toT1,… ,Tk, the time groups ofC, and set theprofile_max_len attribute toCmax− 1. The tasker
will then report the valuesni needed forC.

Traverse the profile repeatedly, looking for cases whereni > ni−1andnj < nj+1, and use com-
binatorial grouping (aiming to find zero-cost groups,not unique zero-cost groups) to build groups
which coverCmin time groups starting atTi (or ending atTj). This involves loadingTi,… ,Ti+Cmin−1
as ‘yes’ time groups, andTi−1andTi+Cmax

as ‘no’ time groups, as explained above.

The profile is traversed repeatedly until no points which allow grouping can be found. In the
strict grouping case, it is then time to stop, but in the non-strict case it is better to keep grouping,
as follows. From among all time groupsTi whereni > 0, choose one which has been the starting



300 Chapter 11. Resource-Structural Solvers

point for a minimal number of groups (to spread out the starting points as much as possible) and
make a group there if combinatorial grouping allows it. Then return to traversing the profile
repeatedly: there should now beni > ni−1cases just before the latest group andnj < nj+1cases just
after it. Repeat until there is noTi whereni > 0and combinatorial grouping can build a group.

11.6. Grouping by resource

Grouping by resourceis another kind of task grouping, obtained by calling

bool KheTaskingGroupByResource(KHE_TASKING tasking,
KHE_OPTIONS options, KHE_TASK_SET ts);

Like grouping by resource constraints, it groups tasks whose resource types are covered by
tasking which lie in adjacent time groups of the common frame, and adds each task which it
makes an assignment to tots (if ts is non-NULL). However, the tasks are chosen in quite a differ-
ent way: each group consists of a maximal sequence of tasks which lie in adjacent time groups
of the frame and are currently assigned to the same resource. The thinking is that if the solution is
already of good quality, it may be advantageous to keep these runs of tasks together while trying
(by means of any repair algorithm whatsoever) to assign them to different resources.

When a grouping made byKheTaskingGroupByResource and recorded in a task set is no
longer needed, functionKheTaskSetUnGroup (Section 5.6) may be used to remove it.

11.7. The task grouper

A task groupersupports a more elaborate form of grouping, one which allows the grouping to
be done, undone, and redone at will.

The first step is to create a task grouper object, by calling

KHE_TASK_GROUPER KheTaskGrouperMake(KHE_RESOURCE_TYPE rt, HA_ARENA a);

This makes a task grouper object for tasks of typert. It is deleted whena is deleted. Also,

void KheTaskGrouperClear(KHE_TASK_GROUPER tg);

clearstg back to its state immediately afterKheTaskGrouperMake, without changingrt or a.

To add tasks to a task grouper, make any number of calls to

bool KheTaskGrouperAddTask(KHE_TASK_GROUPER tg, KHE_TASK t);

Each task passed totg in this way must be assigned directly to the cycle task for some resource
r of typert. The tasks passed totg by KheTaskGrouperAddTask which are assignedr at the
time they are passed are placed in one group. No assignments are made.

If true is returned byKheTaskGrouperAddTask, t is theleader taskfor its group: it is the
first task assignedr which has been passed totg. If false is returned,t is not the leader task.

Adding the same task twice is legal but is the same as adding it once. If the task is the leader
task, it is reported to be so only the first time it is passed.
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Importantly, although the grouping is determined by which resources the tasks are assigned
to, it is only the grouping that the grouper cares about, not the resources. Once the groups are
made, the resources that determined the grouping become irrelevant to the grouper.

At any time one may call

void KheTaskGrouperGroup(KHE_TASK_GROUPER tg);
void KheTaskGrouperUnGroup(KHE_TASK_GROUPER tg);

KheTaskGrouperGroup ensures that, in each group, the tasks other than the leader task are
assigned directly to the leader task. It does not change the assignment of the leader task.
KheTaskGrouperUnGroup ensures that, for each group, the tasks other than the leader task are
assigned directly to whatever the leader task is assigned to (possibly nothing). As mentioned
above, the resources which defined the groups originally are irrelevant to these operations.

If KheTaskGrouperGroup cannot assign some task to its leader task, it adds the task’s task
bounds to the leader task and tries again. If it cannot add these bounds, or the assignment still
does not succeed, it aborts. In addition to ungrouping,KheTaskGrouperUnGroup removes any
task bounds added byKheTaskGrouperGroup. In detail,KheTaskGrouperGroup records the
number of task bounds present when it is first called, andKheTaskGrouperUnGroup removes
task bounds from the end of the leader task until this number is reached.

A task grouper’s tasks may be grouped and ungrouped at will. This is more general than
usingKheTaskSetUnGroup, since after ungrouping that way there isno way to regroup. The extra
power comes from the fact that a task grouper contains, in effect, a task set for each group.

The author has encountered one case whereKheTaskGrouperUnGroup fails to remove
the task bounds added byKheTaskGrouperGroup. The immediate problem has probably been
fixed, although it is hard to be sure that it will not recur. So instead of aborting in that case,
KheTaskGrouperUnGroup prints a debug message and stops removing bounds for that task.

11.8. Task finding

Task findingis KHE’s name for some operations, based ontask finderobjects, that find sets of
tasks which are to be moved all together from one resource to another. They are used by several
of the solvers of Chapter 12, mainly for nurse rostering.

Task finding is concerned with which days tasks are running. Aday is a time group of the
common frame. The days that a taskt is running are the days containing the times thatt itself
is running, plus the days containing the times that the tasks assigned tot, directly or indirectly,
are running. The days that a task set is running are the days that its tasks are running.

Task finding represents the days that a task or task set is running by abounding interval,
a pair of integers:first_index, the index in the common frame of the first day that the task or
task set is running, andlast_index, the index of the last day that the task or task set is running.
So task finding is unaware of cases where a task runs twice on the same day, or has agap(a day
within the bounding interval when it is not running). Neither is likely in practice. Task finding
considers the duration of a task or task set to be the length of its bounding interval.

Task finding operations typically find a set of tasks, often stored in a task set object (Section
5.6). In some cases these tasks form atask run, that is, they satisfy these conditions:
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1. The set is non-empty. An empty run would be useless.

2. Every task is a proper root task. The tasks are being found in order to be moved from one
resource to another, and this ensures that the move will not break up any groups.

3. No two tasks run on the same day. This is more or less automatic when the tasks are all
assigned the same resource initially, but it holds whether the tasks are assigned or not. If it
didn’t, then when the tasks are moved to a common resource there would be clashes.

4. The days that the tasks are running are consecutive. In other words, between the first day
and the last there are nogaps: days when none of the tasks is running.

The task finder does not reject tasks which run twice on the same day or which have gaps. As
explained above, it is unaware of these cases. So the last two conditions should really say that
the task finder does not introduce anynewclashes or gaps when it groups tasks into runs.

Some runs areunpreassigned runs, meaning that all of their tasks are unpreassigned. Only
unpreassigned runs can be moved from one resource to another. And some runs aremaximal
runs: they cannot be extended, either to left or right. We mainly deal with maximal runs, but just
what we mean by ‘maximal’depends on circumstances. For example, we may want to exclude
preassigned tasks from our runs. So our definition doesnot take the arguably reasonable extra
step of requiring all runs to be maximal.

Some task finding operations find all tasks assigned a particular resource in a particular
interval. In these cases, only conditions 2 and 3 must hold; the result need not be a task run.

Task finding treatsnon-assignment like the assignment of a special resource (represented by
NULL). This means that task finding is equally at home finding assigned and unassigned tasks.

A taskt needs assignmentif KheTaskNeedsAssignment(t) (Section 4.6.1) returnstrue,
meaning that non-assignment of a resource tot would incur a cost, because of an assign resource
constraint, or a limit resources constraint which is currently at or below its minimum limit, that
applies tot. Task finding never includes tasks that do not need assignment when it searches for
unassigned tasks, because assigning resources to such tasks is not a high priority. It does include
them when searching for assigned tasks.

A resource iseffectively freeduring some set of days if it isNULL, or it is notNULL and the
tasks it is assigned to on those days do not need assignment. The point is that it is always safe to
move some tasks to a resource on days when it is effectively free: if the resource isNULL, they are
simply unassigned,and if it is non-NULL, any tasks running on those days do not need assignment,
and can be unassigned, at no cost, before the move is made. Task finding utilizes the effectively
free concept and offers move operations that work in this way.

11.8.1. Task finder objects

To create a task finder object, call

KHE_TASK_FINDER KheTaskFinderMake(KHE_SOLN soln, KHE_OPTIONS options,
HA_ARENA a);

This returns a pointer to a private struct in arenaa. Optionsgs_common_frame (Section 5.10)
andgs_event_timetable_monitor (Section 8.3) are taken fromoptions. If either isNULL,
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KheTaskFinderMake returnsNULL, since it cannot do its work without them.

Ejection chain repair code can obtain a task finder from the ejector object, by calling

KHE_TASK_FINDER KheEjectorTaskFinder(KHE_EJECTOR ej);

This saves time and memory compared with creating new task finders over and over. Once again
the return value isNULL if the two options are not both present.

The days tasks are running (the time groups of the common frame) are represented in task
finding by their indexes, as explained above. The first legal index is 0; the last is returned by

int KheTaskFinderLastIndex(KHE_TASK_FINDER tf);

This is justKheTimeGroupTimeCount(frame) - 1, whereframe is the common frame. Also,

KHE_FRAME KheTaskFinderFrame(KHE_TASK_FINDER tf);

may be called to retrieve the frame itself.

As defined earlier, the bounding interval of a task or task set is the smallest interval
containing all the days that the task or task set is running. It is returned by these functions:

void KheTaskFinderTaskInterval(KHE_TASK_FINDER tf,
KHE_TASK task, int *first_index, int *last_index);

void KheTaskFinderTaskSetInterval(KHE_TASK_FINDER tf,
KHE_TASK_SET ts, int *first_index, int *last_index);

These set*first_index and*last_index to the indexes of the first and last day thattask or
ts is running. Ifts is empty,*first_index > *last_index. There is also

void KheTaskFinderTimeGroupInterval(KHE_TASK_FINDER tf,
KHE_TIME_GROUP tg, int *first_index, int *last_index);

which sets*first_index and *last_index to the indexes of the first and last day thattg

overlaps with. Iftg is empty,*first_index > *last_index.

These three operations find task sets and runs:

void KheFindTasksInInterval(KHE_TASK_FINDER tf, int first_index,
int last_index, KHE_RESOURCE_TYPE rt, KHE_RESOURCE from_r,
bool ignore_preassigned, bool ignore_partial,
KHE_TASK_SET res_ts, int *res_first_index, int *res_last_index);

bool KheFindFirstRunInInterval(KHE_TASK_FINDER tf, int first_index,
int last_index, KHE_RESOURCE_TYPE rt, KHE_RESOURCE from_r,
bool ignore_preassigned, bool ignore_partial, bool sep_need_asst,
KHE_TASK_SET res_ts, int *res_first_index, int *res_last_index);

bool KheFindLastRunInInterval(KHE_TASK_FINDER tf, int first_index,
int last_index, KHE_RESOURCE_TYPE rt, KHE_RESOURCE from_r,
bool ignore_preassigned, bool ignore_partial, bool sep_need_asst,
KHE_TASK_SET res_ts, int *res_first_index, int *res_last_index);

All three functions clearres_ts, which must have been created previously, then add to
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it some tasks which are assignedfrom_r (or are unassigned iffrom_r is NULL). They set
*res_first_index and*res_last_index to the bounding interval of the tasks ofres_ts.

Let the target intervalbe the interval fromfirst_index to last_index inclusive. Say
that a taskoverlapsthe target interval when at least one of the days on which the task is running
lies in this interval. Subject to the following conditions,KheFindTasksInInterval finds all
tasks that overlap the target interval;KheFindFirstRunInInterval finds the first (leftmost) run
containing a task that overlaps the target interval, or returnsfalse if there is no such run; and
KheFindLastRunInInterval finds the last (rightmost) run containing a task that overlaps the
target interval, or returnsfalse if there is no such run.

Whenfrom_r isNULL, only unassigned tasks that need assignment (as discussed above) are
added. The first could be any unassigned task of typert (it is this thatrt is needed for), but the
others must be compatible with the first, in the sense defined below for widened task sets. The
point is that we expect these tasks to be assigned some single resource, and it would not do for
them to have widely different domains.

Some tasks areignored, which means that the operation behaves as though they are simply
not there. Subject to this ignoring feature, the runs found are maximal. A task is ignored in this
way when it is running on any of the days that the tasks that have already been added tores_ts

are running. Preassigned tasks are ignored whenignore_preassigned is true. Tasks that
are running partly or wholly outside the target interval are ignored whenignore_partial is
true. Whenignore_partial isfalse, a run can extend an arbitrary distance beyond the target
interval, and contain some tasks that do not overlap the target interval at all.

If sep_need_asst is true, all taskst in the run found byKheFindFirstRunInInterval
or KheFindLastRunInInterval have the same value ofKheTaskNeedsAssignment(t). This
value could betrue or false, but it is the same for all tasks in the run. Ifsep_need_asst is
false, there is no requirement of this kind.

11.8.2. Daily schedules

Sometimes more detailed information is needed about when a task is running than just the
bounding interval. In those cases, task finding offersdaily schedules, which calculate both the
bounding interval and what is going on on each day:

KHE_DAILY_SCHEDULE KheTaskFinderTaskDailySchedule(
KHE_TASK_FINDER tf, KHE_TASK task);

KHE_DAILY_SCHEDULE KheTaskFinderTaskSetDailySchedule(
KHE_TASK_FINDER tf, KHE_TASK_SET ts);

KHE_DAILY_SCHEDULE KheTaskFinderTimeGroupDailySchedule(
KHE_TASK_FINDER tf, KHE_TIME_GROUP tg);

These return adaily schedule: a representation of whattask, ts, or tg is doing on each day,
including tasks assigned directly or indirectly totask or ts. Also,

KHE_DAILY_SCHEDULE KheTaskFinderNullDailySchedule(
KHE_TASK_FINDER tf, int first_day_index, int last_day_index);

returns a daily schedule representing doing nothing from the day with indexfirst_day_index
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to the day with indexlast_day_index inclusive.

A KHE_DAILY_SCHEDULE is an object which uses memory taken from its task finder’s arena.
It can be deleted (which actually means being added to a free list in its task finder) by calling

void KheDailyScheduleDelete(KHE_DAILY_SCHEDULE ds);

It has these attributes:

KHE_TASK_FINDER KheDailyScheduleTaskFinder(KHE_DAILY_SCHEDULE ds);
bool KheDailyScheduleNoOverlap(KHE_DAILY_SCHEDULE ds);
int KheDailyScheduleFirstDayIndex(KHE_DAILY_SCHEDULE ds);
int KheDailyScheduleLastDayIndex(KHE_DAILY_SCHEDULE ds);

KheDailyScheduleTaskFinder returnsds’s task finder;KheDailyScheduleNoOverlap returns
true when no two of the schedule’s times occur on the same day, andfalse otherwise; and
KheDailyScheduleFirstDayIndex andKheDailyScheduleLastDayIndex return the index of
the schedule’s first and last days. For each day between the first and last inclusive,

KHE_TASK KheDailyScheduleTask(KHE_DAILY_SCHEDULE ds, int day_index);

returns the task running inds on dayday_index. It may be a task assigned directly or indirectly
to task or ts, not necessarilytask or a task fromts. NULL is returned if no task is running on
that day. This is certain for schedules created byKheTaskFinderTimeGroupDailySchedule

and KheTaskFinderNullDailySchedule, but it is also possible for schedules created by
KheTaskFinderTaskDailySchedule andKheTaskFinderTaskSetDailySchedule. If there are
two or more tasks running on that day, an arbitrary one of them is returned; this cannot happen
whenKheDailyScheduleNoOverlap returnstrue. Similarly,

KHE_TIME KheDailyScheduleTime(KHE_DAILY_SCHEDULE ds, int day_index);

returns the time inds that is busy on dayday_index. This will be NULL if there is no time in
the schedule on that day, which is always the case when the schedule was created by a call to
KheTaskFinderNullDailySchedule.

11.8.3. Widened task sets

The task finder offers awidened task settype, representing a set of tasks assigned a common
resourcefrom_r, and divided into three parts: thecore, a task run passed to the widened task set
initially; the left wing, a task run lying just before the core in time; and theright wing, a task run
lying just after the core in time. Widened task sets support moving and swapping the core tasks,
plus a variable number of wing tasks, fromfrom_r to another resource.

To create a widened task set with a given core, call

bool KheWidenedTaskSetMake(KHE_TASK_FINDER tf, KHE_RESOURCE from_r,
KHE_TASK_SET from_r_ts, int max_left_wing_count,
int max_right_wing_count, KHE_WIDENED_TASK_SET *wts);

The tasks offrom_r_ts must be assignedfrom_r, which may beNULL, meaning unassigned as
usual. Whenfrom_r_ts satisfies the basic conditions given above,true is returned and*wts
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is set to a widened task set with a copy offrom_r_ts as its core (from_r_ts itself is not stored,
and the user is free to change it, or delete it, at any time), plus left and right wings containing
max_left_wing_count andmax_right_wing_count tasks compatible with the core, or fewer
if KheWidenedTaskSetMake cannot find suitable tasks.

Whenfrom_r is notNULL, a task is compatible with the core if it is assignedfrom_r. When
from_r is NULL, a task is compatible with the core if it needs assignment, is unassigned, and its
domain is similar to those of the tasks of the core, in a sense that we will not define. (When we
move the core to some resource, we want the wings to be able to move to that resource too.)

Nothing prevents the user from creating a widened task set withmax_left_wing_count

andmax_right_wing_count set to 0. Each wing is represented by one array inside the widened
task set object. Empty arrays generate no memory allocation calls, so basically all that is wasted
is the time spent on rediscovering, once per function call, that the wing is empty.

An alternative way to create a widened task set is

bool KheWidenedTaskSetMakeFlexible(KHE_TASK_FINDER tf,
KHE_RESOURCE from_r, KHE_TASK_SET from_r_ts,
int max_wing_count, KHE_WIDENED_TASK_SET *wts);

This builds a widened task set whose left and right wings together containmax_wing_count

tasks, or fewer if suitable tasks cannot be found. It tries to have half the tasks in each wing, but if
that is not possible it makes one of the wings longer. For example, iffrom_r_ts is immediately
preceded by a preassigned task, or lies at the left end of the common frame, then the left wing
will be empty and the right wing will contain up tomax_wing_count tasks.

When a widened task set is no longer needed, it should be deleted, by calling

void KheWidenedTaskSetDelete(KHE_WIDENED_TASK_SET wts);

This recycleswts through a free list in its task finder.

Finally, a few helper functions. Function

void KheWidenedTaskSetInterval(KHE_WIDENED_TASK_SET wts,
int left_count, int right_count, int *first_index, int *last_index);

sets*first_index and*last_index to the endpoints of the bounding interval ofwts’s core
plus the firstleft_count elements of its left wing and the firstright_count elements of its right
wing—the interval affected by a move or swap. Function

void KheWidenedTaskSetFullInterval(KHE_WIDENED_TASK_SET wts,
int *first_index, int *last_index);

does the same only for the entire left and right wings.

There are also functions which search for widened task sets:
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bool KheFindMovableWidenedTaskSetRight(KHE_TASK_FINDER tf,
KHE_RESOURCE from_r, KHE_RESOURCE to_r, int days_first_index,
KHE_WIDENED_TASK_SET *res_wts);

bool KheFindMovableWidenedTaskSetLeft(KHE_TASK_FINDER tf,
KHE_RESOURCE from_r, KHE_RESOURCE to_r, int days_last_index,
KHE_WIDENED_TASK_SET *res_wts);

They search right starting atdays_first_index, and left starting atdays_last_index, for the
first task run whose tasks are assignedfrom_r (or are unassigned with the type ofto_r when
from_r is NULL) and are moveable toto_r as defined byKheWidenedTaskSetMoveCheck just
below. If such a run is found, they return it as a widened task set with empty wings. When
from_r isNULL, the first task of the run may be an arbitrary unassigned task, but subsequent tasks
must be compatible with it, as defined above. The task run is maximal subject to these conditions,
given that days beforedays_first_index or afterdays_last_index are out of bounds. The
search ends at the first or last day; it does not wrap around.

As an aid to debugging, function

void KheWidenedTaskSetDebug(KHE_WIDENED_TASK_SET wts, int left_count,
int right_count, int verbosity, int indent, FILE *fp);

prints wts onto fp with the given verbosity and indent. Only the firstleft_count and
right_count left and right wing tasks are printed. The tasks are printed in chronological order,
with the core enclosed in brackets ifleft_count or right_count is non-zero.

11.8.4. Widened task set moves

A widened task set move operation is offered. To find out whether a move is possible, call

bool KheWidenedTaskSetMoveCheck(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, bool force, int *max_left_count,
int *max_right_count);

If this returnstrue, the core may be moved fromfrom_r to to_r, along with any num-
ber of initial left and right wing tasks up to*max_left_count and *max_right_count. It
calls KheTaskMoveCheck to verify that the tasks will move, except that ifto_r is NULL, this
is an unassignment and no checks of tasks initially assignedto_r are needed. Ifwts came
from KheFindMovableWidenedTaskSetRight or KheFindMovableWidenedTaskSetLeft, then
there is no need to callKheWidenedTaskSetMoveCheck, since the result must betrue, with
*max_left_count and*max_right_count equal to 0.

If force isfalse,KheWidenedTaskSetMoveCheck also requiresto_r to be effectively free
during the bounding interval of the tasks it moves. Ifforce is true, this is not required: tasks
that need assignment may be unassigned by the move.

To actually carry out a move, call

bool KheWidenedTaskSetMove(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int left_count, int right_count,
int *from_r_durn_change, int *to_r_durn_change);
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This moveswts’s core tasks, plus its firstleft_count andright_count left and right wing
tasks, toto_r, unassigningto_r’s tasks as required. It does not check anything again, it just
does the moves. IfKheWidenedTaskSetMoveCheck has returnedtrue, then this must succeed
for anyleft_count andright_count such that0 <= left_count <= *max_left_count and
0 <= right_count <= *max_right_count. It can be undone using marks and paths.

If the move succeeds,*from_r_durn_change and *to_r_durn_change are set to the
change in total duration of the tasks assignedfrom_r andto_r. Tasks are neither created nor
destroyed, sofrom_r_durn_change andto_r_durn_change will be equal in absolute value and
opposite in sign—that is, unless some ofto_r’s tasks were unassigned, since that causes the total
duration of the tasks assignedfrom_r andto_r to decrease.

The move can be debugged by calling

void KheWidenedTaskSetMoveDebug(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int left_count, int right_count,
int verbosity, int indent, FILE *fp);

This prints the widened task set to be moved, andto_r, in a self-explanatory format.

A second move operation is offered:

bool KheWidenedTaskSetMovePartial(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int first_index, int last_index);

This is likeKheWidenedTaskSetMove except that it moves only some tasks: the core tasks with
index numbersfirst_index to last_index inclusive, and no wing tasks. The implementation
is deficient in two respects: duration changes are not calculated, and all ofto_r’s core tasks that
do not need assignment are unassigned, not just those running at the times of the part of the core
that is moved.

Again, this move can be debugged:

void KheWidenedTaskSetMovePartialDebug(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int first_index, int last_index,
int verbosity, int indent, FILE *fp);

These functions may provide suitable values forfirst_index andlast_index:

bool KheWidenedTaskSetFindInitial(KHE_WIDENED_TASK_SET wts,
int wanted_durn, int *first_index, int *last_index);

bool KheWidenedTaskSetFindFinal(KHE_WIDENED_TASK_SET wts,
int wanted_durn, int *first_index, int *last_index);

KheWidenedTaskSetFindInitial searches for an initial sequence ofwts’s core tasks whose
total duration iswanted_durn. It sets*first_index and*last_index to the index of the first
and last task in this sequence (*first_index is always 0), and it returnstrue when the duration
of the sequence is equal towanted_durn. KheWidenedTaskSetFindFinal is the same except
that it searches for a final sequence (*last_index is always the index of the last task).
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11.8.5. Widened task set swaps

A widened task set swapmoves the tasks of a widened task set from its own resourcefrom_r to
some other resourceto_r (possiblyNULL), and moves any tasks initially assignedto_r on those
days back tofrom_r.

To check that a swap is possible, call

bool KheWidenedTaskSetSwapCheck(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, bool exact, KHE_TIME_GROUP blocking_tg,
KHE_MONITOR blocking_m, int *max_left_count, int *max_right_count);

This checks whether a swap is possible between the core andto_r’s tasks running on the same
days as the core. If so it returnstrue and sets*max_left_count and*max_right_count to the
number of initial positions in the wings where the swap is also possible.

In the core, the following checks are made, and if any of them fail,false is returned. First,
from_r’s tasks must be movable toto_r, andto_r’s tasks must be movable tofrom_r. Then, if
exact istrue,to_r’s tasks must be running on exactly the same days asfrom_r’s. Furthermore,
if blocking_tg != NULL, none ofto_r’s tasks may be running duringblocking_tg, and if
blocking_m != NULL, none ofto_r’s tasks may be monitored byblocking_m. And finally,
if to_r has at least one task, the first offrom_r’s tasks must not be equivalent to the first of
to_r’s tasks. The reasoning here is that if these tasks are equivalent, the swap is about swapping
equivalent tasks, which would achieve nothing.

In each element of each wing, the following checks are made, and the first element at which
they fail determines*max_left_count and*max_right_count. First,from_r’s tasks must be
movable toto_r, andto_r’s tasks must be movable tofrom_r. Then, ifexact is true, to_r’s
tasks must be running on exactly the same days asfrom_r’s.

To actually carry out a swap, call

bool KheWidenedTaskSetSwap(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int left_count, int right_count,
int *from_r_durn_change, int *to_r_durn_change);

This moves the core tasks plus the firstleft_count andright_count left and right wing tasks
to to_r, like moving does, but it also movesto_r’s tasks running on the same days fromto_r
to from_r. If to_r is NULL there will be no such tasks. It does not check anything again, it just
does the swap. If successful it sets*from_r_durn_change and*to_r_durn_change in the same
way as move does. IfKheWidenedTaskSetSwapCheck has returnedtrue, then this must succeed
for anyleft_count andright_count such that0 <= left_count <= *max_left_count and
0 <= right_count <= *max_right_count.

The return values ofKheWidenedTaskSetMoveCheck andKheWidenedTaskSetSwapCheck
may differ, and when they are bothtrue,*max_left_count and*max_right_count may differ.
This is because tasks assignedto_r that need assignment may prevent the move,but not the swap
unlessKheTaskMoveCheck reports that they cannot move tofrom_r.

If to_r is effectively free during the core days, both the move and the swap may succeed,
and are the same except for how they treat tasks that do not need assignment (the move unassigns
them, the swap moves them tofrom_r). Also, whenfrom_r == NULL, the code searches for
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unassigned tasks, whereas whento_r == NULL, it doesn’t. Altogether it seems best to try the
move first, and to only try the swap ifKheWidenedTaskSetMoveCheck returnsfalse.

Is swapping only reasonable when both resources are non-NULL? No. Whento_r is NULL,
swapping equals moving except for tasks that do not need assignment. But whenfrom_r isNULL,
to_r must be non-NULL, and swapping replaces some ofto_r’s tasks with different tasks that
were previously unassigned. While this is not striking, it is different, and cases exist where it
would do good.

A widened task set is not kept up to date as the solution changes. If it gets out of date the
only option is to delete it and make a fresh one. The four move and swap functionsshare the work
of finding the tasks assignedto_r that are running on the same days aswts’s core and wings: if
a call on one of these functions for a givenwts has the same value forto_r as the previous call,
this shared work is not redone. Care is needed here when the solution is changing.

Finally, as usual there is a function

void KheWidenedTaskSetSwapDebug(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int left_count, int right_count,
int verbosity, int indent, FILE *fp);

which can be used to debug the swap in a readable format.

11.8.6. Widened task set optimal moves

Widened task set moves and swaps basically move the core tasks fromfrom_r to to_r. Other
moves are included only to improve the result. This suggests the idea of moving the core tasks
from from_r to to_r, and making whatever other changes work best. This is theoptimal move.

To check whether an optimal move is possible, call

bool KheWidenedTaskSetOptimalMoveCheck(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, KHE_TIME_GROUP blocking_tg, KHE_MONITOR blocking_m);

The parameters are as for swapping, withexact fixed tofalse. To carry out the move, call

bool KheWidenedTaskSetOptimalMove(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int *from_r_durn_change, int *to_r_durn_change);

The search space that the operation explores is this:

• For the core tasks, only one possibility is tried, although there are two cases. Ifto_r is
effectively free, move the core tasks fromfrom_r to to_r while unassigningto_r’s tasks
on core days, like a move does. Ifto_r is not effectively free, move the core tasks from
from_r to to_r while movingto_r’s tasks on core days tofrom_r, like a swap does. This
second possibility is only tried ifblocking_tg andblocking_m permit it. More precisely,
KheWidenedTaskSetOptimalMoveCheck only returnstrue if they permit it.

• For each wing task, two possibilities are tried: do nothing, and move the wing task from
from_r to to_r while movingto_r’s corresponding tasks tofrom_r, like a swap does.

There are w2 combinations of possibilities, wherew is the number of wing tasks that can be
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swapped, and all of them are tried (there are no tree pruning rules); so the wings must be small.

The result will betrue whenever at least one of the combinations of possibilities could be
carried out. In that case, the solution will be changed to the result of applying the combination of
possibilities which produced the smallest solution cost. This solution must be different from the
initial solution because it includes movingfrom_r’s core tasks toto_r. If several combinations
produce minimum cost, one of them that produces the fewest defects is returned.

The result will befalse when none of the combinations could be carried out. This will
usually be because one or more ofto_r’s core tasks is preassigned, and so can neither be moved
nor unassigned.KheWidenedTaskSetOptimalMoveCheck leaves the solution unchanged in that
case, butKheWidenedTaskSetOptimalMove may change it. A mark may be used to return it to
the initial state, in the usual way.

KheWidenedTaskSetOptimalMove may be called repeatedly on the same widened task set.
If two or more consecutive calls have the same value forto_r, they are assumed to be identical
calls, starting from the same solution state. So instead of searching for the optimal result, the
second and later calls reinstall the result found previously, without any searching. Finally,

void KheWidenedTaskSetOptimalMoveDebug(KHE_WIDENED_TASK_SET wts,
KHE_RESOURCE to_r, int verbosity, int indent, FILE *fp);

can be called to debug the operation, as usual.

11.9. Other resource-structural solvers

This section documents some miscellaneous functions that reorganize task trees, represented by
taskings. They assume that only unfixed tasks lie in taskings, and they preserve this condition.

A good way to minimize split assignments is to prohibit them at first but allow them later.
To change a tasking from the first state to the second, call

bool KheTaskingAllowSplitAssignments(KHE_TASKING tasking,
bool unassigned_only);

It unfixes and unassigns all tasks assigned to the tasks oftasking and adds them totasking,
returningtrue if it changed anything. If one of the original unfixed tasks is assigned (to a cycle
task), the tasks assigned to it are assigned to that task, so that existing resource assignments are
not forgotten. Ifunassigned_only is true, only the unassigned tasks oftasking are affected.
(This option is included for completeness, but it is not recommended, since it leaves few choices
open.)KheTaskingAllowSplitAssignments preserves the resource assignment invariant.

If any room or any teacher is better than none, then it will be worth assigning any resource
to tasks that remain unassigned at the end of resource assignment. Function

void KheTaskingEnlargeDomains(KHE_TASKING tasking, bool unassigned_only);

permits this by enlarging the domains of the tasks oftasking and any tasks assigned to them
(and so on recursively) to the full set of resources of their resource types. Ifunassigned_only is
true, only the unassigned tasks oftasking are affected. The tasks are visited in postorder—that
is, a task’s domain is enlarged only after the domains of the tasks assigned to it have been
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enlarged—ensuring that the operation cannot fail. Preassigned tasks are not enlarged.

This operation works, naturally, by deleting all task bounds from the tasks it changes. Any
task bounds that become applicable to no tasks as a result of this are deleted.

11.10. Task groups

There are cases where two tasks are interchangeable as far as resource assignment is concerned,
because they demand the same kinds of resources at the same times. Thetask groupembodies
KHE’s approach to taking advantage of interchangeable tasks.

Thefull task setof an unfixed task is the task itself and all the tasks assigned to it, directly
or indirectly (all its followers), omitting tasks that do not lie in a meet. An unfixed task istime-
completeif each task of its full task set lies in a meet that has been assigned a time. Two time-
complete tasks aretime-equalif their full task sets have equal cardinality, and the two sets can
be sorted so that corresponding tasks have equal starting times, durations, and workloads. Two
unfixed tasks areinterchangeableif they are time-complete and time-equal, and their domains
are equal. When two resources are assigned to two interchangeable tasks, either resource can be
assigned to either task and it does not matter which is assigned to which. (Exception: if a limit
resources constraint contains one of the tasks but not the other, it does matter.)

A task groupis a set of pairwise interchangeable tasks. Task groups occur naturally when
there are linked events, or when time assignments are regular. Virtually any resource assignment
algorithm can benefit from task groups. Assigning to a task group rather than to a task eliminates
symmetries that can slow down searching. A given resource can only be assigned to one task of
a task group, since its tasks overlap in time, so task groups help with estimating realistically how
many resources are available, and how much workload is open to a resource.

Objects of typeKHE_TASK_GROUP hold one set of interchangeable tasks, and objects of type
KHE_TASK_GROUPS hold a set of task groups. Such a set can be created by calling

KHE_TASK_GROUPS KheTaskGroupsMakeFromTasking(KHE_TASKING tasking);

It places every task oftasking into one task group. The task groups are maximal.

To remove a set of task groups (but not their tasks), call

void KheTaskGroupsDelete(KHE_TASK_GROUPS task_groups);

To access the task groups, call

int KheTaskGroupsTaskGroupCount(KHE_TASK_GROUPS task_groups);
KHE_TASK_GROUP KheTaskGroupsTaskGroup(KHE_TASK_GROUPS task_groups, int i);

To access the tasks of a task group, call

int KheTaskGroupTaskCount(KHE_TASK_GROUP task_group);
TASK KheTaskGroupTask(KHE_TASK_GROUP task, int i);

There must be at least one task in a task group, otherwise the task group would not have been
made. Task groups are not kept up to date as the solution changes, so if time assignments are
being altered the affected tasks cannot be relied upon to remain interchangeable.
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The tasks of a task group have the same total duration, total workload, and domain, and
these common values are returned by

int KheTaskGroupTotalDuration(KHE_TASK_GROUP task_group);
float KheTaskGroupTotalWorkload(KHE_TASK_GROUP task_group);
KHE_RESOURCE_GROUP KheTaskGroupDomain(KHE_TASK_GROUP task_group);

KheTaskGroupTotalDuration is the value ofKheTaskTotalDuration shared by the tasks, not
the sum of their durations; and similarly forKheTaskGroupTotalWorkload.

For the convenience of algorithms that use task groups, function

int KheTaskGroupDecreasingDurationCmp(KHE_TASK_GROUP tg1,
KHE_TASK_GROUP tg2);

is a comparison function that may be used to sort task groups by decreasing duration.

Because the tasks of a task group are interchangeable, it does not matter which of them is
assigned when assigning resources to them. This makes the following functions possible:

int KheTaskGroupUnassignedTaskCount(KHE_TASK_GROUP task_group);
bool KheTaskGroupAssignCheck(KHE_TASK_GROUP task_group, KHE_RESOURCE r);
bool KheTaskGroupAssign(KHE_TASK_GROUP task_group, KHE_RESOURCE r);
void KheTaskGroupUnAssign(KHE_TASK_GROUP task_group, KHE_RESOURCE r);

KheTaskGroupUnassignedTaskCount returns the number of unassigned tasks intask_group;
KheTaskGroupAssignCheck checks whetherr can be assigned to a task oftask_group (by
finding the first unassigned task and checking there);KheTaskGroupAssign is the same, only
it actually makes the assignment, usingKheTaskAssign, if it can; andKheTaskGroupUnAssign
finds a task oftask_group currently assignedr, and unassigns that task.

The tasks of a task group may have different constraints, in which case assigning one may
change the solution cost differently from assigning another. This is handled heuristically as
follows. The first timeKheTaskGroupAssign returnstrue, it tries assigningr to each task of
the task group, notes the solution cost after each, and sorts the tasks into increasing order of this
cost. Then it and all later calls assign the first unassigned task in this order.

The usual debug functions are available:

void KheTaskGroupDebug(KHE_TASK_GROUP task_group, int verbosity,
int indent, FILE *fp);

void KheTaskGroupsDebug(KHE_TASK_GROUPS task_groups, int verbosity,
int indent, FILE *fp);

print task_group andtask_groups ontofp with the given verbosity and indent.

11.11. Task classes

We have already made two attempts to group equivalent tasks together to exploit symmetries
(Sections 11.5.1 and 11.10). Here is a third attempt. It supersedes Section 11.10, but its
relationship to Section 11.5.1 remains to be worked out.
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Given a solutionSand a resource typeR from S’s instance, we want to group together the
tasks ofSof typeRwhose meets have been assigned times, to make it easy for solvers to exploit
symmetries. This time around, our strategy is as follows.

We define an equivalence relation ofsimilarity between tasks, and partition the tasks ofS
into equivalence classes. Then we sort each class so that its tasks appear in increasing assignment
cost order. This way,one least-cost way to assignk resources (in any order) to the tasks of a given
class is to assign them to the firstk tasks of the class. If there aren tasks in the class, we have
reduced the number of ways to assign the resources fromn(n − 1)…(n − k + 1) to 1.

It may help to view this method negatively: if treating some tasks in this way risks missing
the best solution, then those tasks should not be placed into the same class. At worst, every task
has its own class and this method finds no symmetriesand makes no errors. So this method can be
(and will be)exact: it will allow solvers to exploit many symmetries, but with no risk of missing
the best solution. (Exactness is the key difference between this section and Section 11.10.)

Although the method is exact, it is notoptimal: it does not produce the smallest possible
number of classes. There are cases where a deeper analysis would allow more pairs of tasks to
be declared similar. However, the method seems to be optimal for most real-world instances.

No attempt is made to find symmetries in the choice of resources. To be sure of optimality,
all subsets of the available resources must be tried for assigning to each class. On the other hand,
the order in which the resources of each subset are assigned to one class does not matter.

11.11.1. Functions for using task classes

This section presents the functions for using task classes. A detailed definition of similarity, the
relation that defines how tasks are grouped into classes, appears in Section 11.11.2.

The first step is to define a task class solver, specifying the solution that the tasks are to come
from, the resource type that they must all have, and the common frame:

KHE_TASK_CLASS_SOLVER KheTaskClassSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_FRAME days_frame, HA_ARENA a);

Memory for the solver and everything in it will be taken from arenaa. There is no function to
delete the task class solver; it will be deleted whena is deleted or recycled.

Any number of tasks may be added to the solver by repeatedly calling

bool KheTaskClassSolverAddTask(KHE_TASK_CLASS_SOLVER tcs, KHE_TASK task);

It returnstrue when it is able to addtask totcs, andfalse when it isn’t. The full list of reasons
for not addingtask to tcs is

(1) task has the wrong resource type;

(2) task is not a proper root task;

(3) task, or one of the tasks assigned to it directly or indirectly, is derived from a meet which
is not assigned a time, and consequently the times whentask is running are indefinite;
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(4) Neithertask, nor any of the tasks assigned to it directly or indirectly, is derived from a meet,
and consequently there are no assigned times associated withtask;

(5) task has already been added.

For convenience there is also

void KheTaskClassSolverAddAllTasks(KHE_TASK_CLASS_SOLVER tcs);

which callsKheTaskClassSolverAddTask for all the tasks oftcs’s solution. Only those which
KheTaskClassSolverAddTask adds, as just explained, are actually added totcs.

The classes are created as the tasks are added, and may be accessed at any time by calling

int KheTaskClassSolverClassCount(KHE_TASK_CLASS_SOLVER tcs);
KHE_TASK_CLASS KheTaskClassSolverClass(KHE_TASK_CLASS_SOLVER tcs, int i);

in the usual way. It is safe (although unusual) to access them, then add more tasks, then
access them again. If the only changes made after the classes are created are assignments and
unassignments of resources to and from proper root tasks, the classes (being unaffected by these
things) remain up to date. They go out of date and become unsafe to use when other aspects of
the tasks change, notably their groupings and domains. Attaching or unattaching event resource
monitors also makes the classes out of date, although it does not render them unsafe to use.

It is also possible to access just the classes that begin at a particular time:

int KheTaskClassSolverClassAtTimeCount(KHE_TASK_CLASS_SOLVER tcs,
KHE_TIME time);

KHE_TASK_CLASS KheTaskClassSolverClassAtTime(KHE_TASK_CLASS_SOLVER tcs,
KHE_TIME time, int i);

KheTaskClassSolverClassAtTimeCount returns the number of classes whose start time is
time, andKheTaskClassSolverClassAtTime returns theith of those classes.

Function

void KheTaskClassSolverDebug(KHE_TASK_CLASS_SOLVER tcs, int verbosity,
int indent, FILE *fp);

produces the usual debug print oftcs ontofp with the given verbosity and indent.

There are many operations for querying task classes. Their tasks are accessed by calling

int KheTaskClassTaskCount(KHE_TASK_CLASS tc);
KHE_TASK KheTaskClassTask(KHE_TASK_CLASS tc, int i,
KHE_COST *asst_cost, KHE_COST *non_asst_cost);

in the usual way. In addition to returning a task,KheTaskClassTask sets*asst_cost to the cost
of assigning that task, and*non_asst_cost to the cost of not assigning it. The cost of assigning
or not assigning a task can vary depending on other task assignments, but the costs returned here
are lower bounds on the true costs that do not depend on other assignments:

• *non_asst_cost depends only on assign resource monitors with linear cost functions;
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• *asst_cost depends only on prefer resources monitors with linear cost functions and
empty sets of preferred resources.

The tasks are returned so that the ones most in need of assignment come first, that is, they are
returned in order of increasing*asst_cost - *non_asst_cost. In practice, tasks for which
this is not the right order lie in different classes.

Function

KHE_RESOURCE_GROUP KheTaskClassDomain(KHE_TASK_CLASS tc);

returns the shared domain of the tasks oftc. There are also attributes modelled on those of daily
schedule objects (Section 11.8.2):

bool KheTaskClassNoOverlap(KHE_TASK_CLASS tc);
int KheTaskClassFirstDayIndex(KHE_TASK_CLASS tc);
int KheTaskClassLastDayIndex(KHE_TASK_CLASS tc);
KHE_TIME KheTaskClassDayTime(KHE_TASK_CLASS tc, int day_index,
float *workload_per_time);

KheTaskClassNoOverlap returnstrue if each task oftc never runs at two times on one day;
KheTaskClassFirstDayIndex and KheTaskClassLastDayIndex contain the index in the
common frame of the day containing the first and last times; andKheTaskClassDayTime returns
one time that the tasks oftc are running on the day whose index isday_index (and also the
workload per time at that time), orNULL if the tasks are not running on that day.

There are also functions, similar to those for task groups, for assigning resources to
task classes. These leave the choice of the particular task to the class. It will choose the first
unassigned task, which is also the unassigned task with the smallest cost of assignment:

int KheTaskClassUnassignedTaskCount(KHE_TASK_CLASS tc);
bool KheTaskClassHasUnassignedTask(KHE_TASK_CLASS tc);
bool KheTaskClassAssignCheck(KHE_TASK_CLASS tc, KHE_RESOURCE r);
bool KheTaskClassAssign(KHE_TASK_CLASS tc, KHE_RESOURCE r);
void KheTaskClassUnAssign(KHE_TASK_CLASS tc, KHE_RESOURCE r);

Function KheTaskClassUnassignedTaskCount returns the number of unassigned tasks
in tc. KheTaskClassHasUnassignedTask returnstrue when this number is 1 or more.
KheTaskClassAssignCheck returnsfalse if tc has no unassigned tasks, otherwise it finds
the first unassigned task oftc and returns the result of callingKheTaskAssignCheck on it.
KheTaskClassAssign is similar but makes the assignment, if possible.KheTaskClassUnAssign

searches for a task oftc which is assignedr and removes that assignment. Finally,

void KheTaskClassDebug(KHE_TASK_CLASS tc, int verbosity,
int indent, FILE *fp);

produces the usual debug print oftc ontofp with the given verbosity and indent.
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11.11.2. Task similarity

This section defines task similarity precisely. Assignment cost and non-assignment cost were
defined precisely above, and nothing presented here modifies those definitions.

A proper root task may beatomic, meaning that no other tasks are assigned to it, ornon-
atomic, meaning that other tasks are assigned to it. In the non-atomic case, the term ‘task’ refers
to the whole set of atomic tasks: the root task and the tasks assigned to it, directly or indirectly.

Two similar root tasks must have equal domains. We want to assign a resource to a class,
which will not work if the resource can be assigned to some of the class’s tasks but not others.

KHE allows tasks to be created that are not derived from any meet. These would typically
serve as root tasks to which tasks derived from meets could be assigned. Such tasks are consulted
to find the domain when they are proper root tasks, but since they do not run at any times they
are ignored otherwise, i.e. they are not one of the atomic tasks that make up the whole task.

If an atomic task is derived from a meet but that meet has no assigned time, that renders
the entire task containing the atomic task unsuitable for handling by task classes. Such tasks are
ignored; they do not appear in any task class.

The following analysis assumes that the two tasks are atomic. If either is non-atomic, or
both are, they are similar if there is a one to one correspondence between their atomic elements
such that corresponding atomic elements are similar according to what follows. In practice we
need to try only the correspondence produced by sorting the atomic elements by start time. A
non-atomic task’s cost of assignment (or non-assignment) is the sum of the costs of assignment
(or non-assignment) of its atomic elements.

Our two tasks, now assumed atomic, must run at the same times (have the same start time
and duration), with the same workload. So they are similar in themselves, but they must also
be similar in their effect on monitors. Monitors fall into three categories: event monitors,
monitoring the times assigned to events; event resource monitors, monitoring the resources
assigned to tasks;and resource monitors,monitoring resources’timetablesand workloads. Event
monitors can be ignored because we assume that time assignments are fixed: nothing we do can
change their cost. Resource monitors can be ignored because they are concerned only with what
times a resource is busy, and its workload at those times, and we are already requiring similar
tasks to be equal in those respects. That leaves only event resource monitors (assign resource,
prefer resources, avoid split assignments, and limit resources monitors). We ignore unattached
monitors and monitors with weight 0, and divide the rest into two groups:single-task monitors
which monitor a single task, andmulti-task monitorswhich monitor more than one task.

There are two cases where a monitorm monitors more than one task but is nevertheless
classified as a single-task monitor. The first is whenm is an assign resource or prefer resources
monitor with a linear cost function. In this case,mcan be divided (notionally) into one monitor
for each of the tasks it monitors. The second is when all the tasks monitored bymare assigned
to one another (when they have the same proper root). In this case the tasks behave like a single
task. This is quite likely whenm is an avoid split assignments monitor.

We start with multi-task monitors. If taskt is monitored by multi-task monitorm, the cost
of assigning a resource tot depends on the assignments of the other tasks monitored bym. This
indeterminacy in cost prevents us from sorting the tasks of a class once and for all into increasing
assignment cost order. So in this case,t cannot be considered similar to any other task.
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There is however an exception to this rule. Consider two tasks both monitored bym.
An examination of the event resource constraints will show that, provided the two tasks have
equal durations, the effect onmof assigning a given resourcer to either task must be the same.
So the cost of assignment, although indeterminate, is the same for both and does not change
their relative order in the class, som does not prevent the tasks from being declared similar.
Altogether, then, two tasks can only be similar if they have the same multi-task monitors.

We turn now to single-task monitors. Again we divide these monitors into two groups:
resource-independent single-task monitors, for which the cost of assignment or non-assignment
is independent of which resource is assigned to the task, andresource-dependent single-task
monitors, for which that cost depends on which resource is assigned.

The resource-independent single-task monitors are: single-task assign resource monitors;
single-task avoid split assignmentsmonitors;and single-task prefer resourcesand limit resources
monitors whose set of preferred resources is either empty or contains every resource of the
relevant resource type. These monitors never prevent similarity;however, they contribute a fixed
cost of assignment or non-assignment which causes the assignment or non-assignment cost to
vary between tasks within one class, depending on which of these monitors apply to the tasks.

The resource-dependent single-task monitors are just single-task prefer resources and limit
resources monitors whose set of preferred resources is neither empty nor contains every resource.
Consider prefer resourcesmonitors. The assignment cost depends on which resource is assigned,
making the task’s position in a set of tasks sorted by assignment cost indeterminate. So we
require, for similarity, that the resource-dependent single-task prefer resources monitors of the
two tasks can be put into one to one correspondence such that corresponding monitors have the
same hardness, cost function, weight, and preferred resources. We omit these monitors’ costs
from assignment costs; they are indeterminate, but they are the same for both tasks.

Limit resources monitors that monitor a single task never appear in practice, so they hardly
matter. However, it is easy to follow the path made by prefer resources monitors, and require a
one to one correspondence between these monitors such that corresponding monitors have the
same hardness, cost function, weight, preferred resources, and minimum and maximum limits.
Again we omit the costs of these monitors from each task’s assignment cost.

That ends the analysis. To recapitulate, two tasks are similar when they have equal domains
and similar atomic tasks. Atomic tasks are similar when they have the same start times and
durations, their multi-task monitors are the same, and their resource-dependent single-task
monitors have equal attributes. Resource-independent single-task monitors (assign resource
monitors, and prefer resources monitors with empty preferred sets of resources, mainly) have no
effect on similarity; instead, they affect the costs which determine a task’s place in its class.
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A resource solverassigns resources to tasks, or changes existing resource assignments. This
chapter presents the resource solvers packaged with KHE.

12.1. Specification

The recommended interface for resource solvers, defined inkhe_solvers.h, is

typedef bool (*KHE_TASKING_SOLVER)(KHE_TASKING tasking,
KHE_OPTIONS options);

It assigns resources to some of the tasks oftasking, influenced byoptions, returningtrue if
it changed, or at least usually changes, the solution. Taskings were defined in Section 5.5. The
options parameter is as in Section 8.2; by convention, options consulted by resource solvers
have names beginning withrs_.

A resource solver could focus on the initialconstructionof a resource assignment, or on the
repair of an existing resource assignment. It is not wise,however, to try to classify solvers rigidly
in this way, because some can be used for both. A construction solver can be converted into a
repair solver by prefixing it with some unassignments,and a repair solver can be converted into a
construction solver by including missing assignments among the defects that it is able to repair.

Except for preassignments, there is no reason to assign resources, at least in large numbers,
before times are assigned. Accordingly, a resource solver may choose to assume that all meets
have been assigned times. It may alter time assignments in its quest for resource assignments.

The usual way to convert preassignments in the instance into assignments in the solution
is to callKheTaskTreeMake (Section 11.3); this is one of several routine jobs that it carries out.
KheTaskTreeMake does not fix these assignments, although it does reduce the domains of the
affected tasks to singletons. So other solvers should not be able to move preassigned tasks to
other resources, but they can unassign them, which will produce errors if any preassigned tasks
are unassigned when the solution is written.

A split assignmentis an assignment of two or more distinct resources to the tasks monitored
by an avoid split assignments monitor. Apartial assignmentis an assignment of resources to
some of these same tasks, but not all. An assignment can be both split and partial.

12.2. The resource assignment invariant

If all tasks have duration 1, then the matching defines an assignment of resources to tasks which
maximizes the number of assignments. Although larger durations are common, and maximizing
the number of assignments is not the only objective,still it is clear from this fact that the matching
deserves a central place in resource assignment.

319
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Accordingly, the author’s work in resource assignment [9] emphasizes algorithms that
preserve the following condition, called theresource assignment invariant:

The number of unmatchable demand tixels equals its initial value.

Assignments are permitted only when the number of unmatchable demand tixels does not
increase. This keeps the algorithmson a path that cannot lead to new violations of required avoid
clashes constraints, avoid unavailable times constraints, limit busy times constraints, and limit
workload constraints. In practice, most tasks can be assigned while preserving this invariant.

The Boolean optionrs_invariant is used to tell resource solvers whether they should
preserve the resource assignment invariant or not. In principle, every resource solver should
consult and obey this option; in practice,many do but not all. A reasonable strategy is to preserve
the invariant for most of the solve, but to relax it near the end, to allow as many assignments as
possible to be made. This strategy is followed by KHE’s high-level resource solvers (Section
12.12). They set this option, so it is futile for the end user to set it when using these functions.

The invariant is not usually checked after each individual operation. Rather, a sequence
of related operations is carried out, and then the number of unmatchable demand tixels at the
end of the sequence is compared with the number at the start. If it has increased, the sequence
of operations needs to be undone. Such sequences were calledatomic sequencesin Section 4.8,
where the following code (using a mark object) was recommended for obtaining them:

mark = KheMarkBegin(soln);
success = SomeSequenceOfOperations(...);
KheMarkEnd(mark, !success);

When preserving the resource invariant, this needs to be changed to

mark = KheMarkBegin(soln);
init_count = KheSolnMatchingDefectCount(soln);
success = SomeSequenceOfOperations(...);
if( KheSolnMatchingDefectCount(soln) > init_count )
success = false;

KheMarkEnd(mark, !success);

This works without the matching too, since thenKheSolnMatchingDefectCount returns 0.

As a simple but effective aid to getting this right, this code is encapsulated in functions

void KheAtomicOperationBegin(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant);

bool KheAtomicOperationEnd(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant, bool success);

which may be placed before and after a sequence of operations, like this:

KheAtomicOperationBegin(soln, &mark, &init_count, resource_invariant);
success = SomeSequenceOfOperations(...);
KheAtomicOperationEnd(soln, &mark, &init_count, resource_invariant,
success);
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Heremark and init_count are variables of typeKHE_MARK and int, not used for anything
else,resource_invariant is true if the operations must preserve the resource invariant to
be considered successful, andsuccess is their diagnosis of their own success, not including
checking the resource invariant.KheAtomicOperationEnd returnstrue if success istrue and
(if resource_invariant is true) the number of unmatchable demand tixels did not increase:

void KheAtomicOperationBegin(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant)

{

*mark = KheMarkBegin(soln);

*init_count = KheSolnMatchingDefectCount(soln);
}

bool KheAtomicOperationEnd(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant, bool success)

{
if( resource_invariant &&

KheSolnMatchingDefectCount(soln) > *init_count )
success = false;

KheMarkEnd(*mark, !success);
return success;

}

The code is trivial, but useful because it encapsulates a common but slightly confusing pattern.

If the resource invariant is being enforced, there may be no need to include the cost of
demand monitors in the solution cost, since their cost cannot increase. They must continue to
monitor the solution, however, so detaching is not appropriate. Function

void KheDisconnectAllDemandMonitors(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);

disconnects all demand monitors (or all demand monitors which monitor entities of typert,
if rt is non-NULL) from all their parents, including the solution object if it is a parent. Thus, as
required, they continue to monitor the solution, but the costs they compute are not added to the
cost of any group monitor.KheSolnMatchingDefectCount still works, however, and there is
nothing to prevent them from being made children of other group monitors later.

12.3. Unchecked, checked, ejecting, and Kempe task and task set moves

The operation of assigning a resource to a task is fundamental to resource solving. This section
defines four variants of this operation (unchecked, checked, ejecting, and Kempe), and presents
functions for applying them to individual tasks and to task sets (Section 5.6).

In all cases, the task or tasks to be moved can be assigned or unassigned initially;either way,
they are reassigned to the given resource. If the given resource isNULL, that’s fine too; it means
unassignment, even for the Kempe functions, where it would be more natural, arguably, for the
operation to be undefined. The functions all returnfalse when they either cannot carry out the
requested changes, or they can but that changes nothing. Failed operations leave the solution in
its state at the point of failure, so calls on these functions (exceptKheTaskMoveResource) should
be enclosed inKheMarkBegin andKheMarkEnd, to undo failed attempts properly.
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An unchecked task moveis just a call on platform function

bool KheTaskMoveResource(KHE_TASK task, KHE_RESOURCE r);

Although it makes the checks described in Section 4.6, it is called ‘unchecked’ here, because it
does not check whether the move introduces any incompatible tasks (defined below).

An unchecked task set moveis a set of unchecked task moves to the same resource, as
implemented by function

bool KheTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r);

defined here. It moves the tasks ofts tor using calls toKheTaskMoveResource. It returnstrue
whents is non-empty and the individual moves all succeed.

An ejecting task moveis a task move which both moves a resource to a task andejects(that
is, unassigns) the resource from all incompatible tasks. This is done by function

bool KheEjectingTaskMove(KHE_TASK task, KHE_RESOURCE r, bool allow_eject);

whenallow_eject is true. It movestask to r, unassigningr from all incompatible tasks
(defined below), and returningtrue if it succeeds. Failure can be due totask being fixed,
or r not lying in the domain oftask, or r being already assigned totask, or because some
incompatible task cannot be unassigned, or it can be butallow_eject is false, meaning that
ejection is not allowed (this is called an checked task move above).

KheEjectingTaskMove considers two tasks to be incompatible when they overlap in time.
However, in nurse rostering, two tasks are often considered incompatible when they occur on the
same day, so another function is offered which handles such cases using frames (Section 5.10):

bool KheEjectingTaskMoveFrame(KHE_TASK task, KHE_RESOURCE r,
bool allow_eject, KHE_FRAME frame);

This is the same asKheEjectingTaskMove except that two tasks are considered incompatible if
any time that one task is running lies in the same time group offrame as some time that the other
task is running. Hereframe may not be a null frame.

Unlike the corresponding function for ejecting meet moves,KheEjectingTaskMove and
KheEjectingTaskMoveFrame do not consult the matching or use a group monitor. Instead,when
r is non-NULL, they user’s timetable monitor to find the tasks assignedr that are incompatible
with task and unassign them, returningfalse if any cannot be unassigned, because they are
fixed or preassigned. Then they callKheTaskMoveResource and return what it returns.

It is not likely that some incompatible tasktask2 cannot be unassigned because it is fixed.
This is becauseKheTaskFirstUnFixed(task2) (Section 4.6.1) is unassigned, nottask2.

An ejecting task set moveis a set of ejecting task moves to the same resource. This
operation is carried out by functions

bool KheEjectingTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r,
bool allow_eject);

bool KheEjectingTaskSetMoveFrame(KHE_TASK_SET ts, KHE_RESOURCE r,
bool allow_eject, KHE_FRAME frame);
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which perform ejecting task moves on the elements ofts, without or with a frame, returning
true whents is non-empty and all of the individual ejecting task moves succeed.

A Kempe task moveis carried out by functions

bool KheKempeTaskMove(KHE_TASK task, KHE_RESOURCE r);
bool KheKempeTaskMoveFrame(KHE_TASK task, KHE_RESOURCE r, KHE_FRAME frame);

If r is NULL, this is just an unassignment as usual. Otherwise, iftask is initially unassigned,
or assignedr, false is returned. Otherwise, letr2 be the resource initially assigned totask.
KheKempeTaskMove performs a sequence of ejecting task moves, first oftask to r, then of the
tasks ejected by this move tor2, then of the tasks ejected by those moves tor, and so on until
there are no ejected tasks. It fails if any of these ejecting task moves fails, or if tries to move
some task twice. There is noallow_eject parameter because it is inherent in the Kempe idea
to keep going until all tasks are assigned.

A Kempe task set moveis approximately a set of Kempe task moves, carried out by

bool KheKempeTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheKempeTaskSetMoveFrame(KHE_TASK_SET ts, KHE_RESOURCE r,
KHE_FRAME frame);

The tasks must initially be assigned the same resource. This is not exactly like moving the tasks
one by one, because the rule about not moving a task twice applies to the operation as a whole.

Finally, there is a way to select the kind of move to make on the fly, defined by type

typedef enum {
KHE_MOVE_UNCHECKED,
KHE_MOVE_CHECKED,
KHE_MOVE_EJECTING,
KHE_MOVE_KEMPE,

} KHE_MOVE_TYPE;

The usual four functions are offered:

bool KheTypedTaskMove(KHE_TASK task, KHE_RESOURCE r, KHE_MOVE_TYPE mt);
bool KheTypedTaskMoveFrame(KHE_TASK task, KHE_RESOURCE r,
KHE_MOVE_TYPE mt, KHE_FRAME frame);

bool KheTypedTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r,
KHE_MOVE_TYPE mt);

bool KheTypedTaskSetMoveFrame(KHE_TASK_SET ts, KHE_RESOURCE r,
KHE_MOVE_TYPE mt, KHE_FRAME frame);

These switch onmt, then call one of the functions above. There is also

char *KheMoveTypeShow(KHE_MOVE_TYPE mt);

which returns the obvious one-word description ofmt: "unchecked" and so on.
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12.4. Resource assignment algorithms

This section presents four algorithms for constructing initial assignments of resources to tasks.
The next section documents another.

As explained at the start of this chapter, it is not wise to emphasise the distinction between
construction and repair. Although the author has not found any uses for these algorithms in
repair, there may be some;and later in this chapter there is another algorithm (resource matching)
which is useful for both. Indeed, the time sweep algorithm built on resource matching is the
author’s method of choice for constructing an initial assignment in nurse rostering.

12.4.1. Satisfying requested task assignments

When an event resource must be assigned a particular resource, that should appear in the instance
as a preassignment. Such preassignments in the instance are converted to assignments in the
solution by functionKheSolnAssignPreassignedResources (Section 4.3).

When the assignment is merely a preference, it will be included as a request, in the form of
a constraint, not as a preassignment. Function

bool KheSolnAssignRequestedResources(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

may be used to make these requested assignments. It returnstrue if it changes the solution.

It is quite likely that some of the requested assignments will be incompatible with finding a
good solution. That’s fine: the assignments made byKheSolnAssignRequestedResources are
not fixed in any sense; they are open to change by repair algorithms later.

KheSolnAssignRequestedResources works as follows. First, it finds all limit busy times
and cluster busy times monitors which monitor resources of typert, have non-zero cost, and
have non-zero minimum limit without allowing zero. For the cluster busy timesconstraint,a non-
trivial maximum limit can also be used if there are negative time groups,using the transformation
given at the end of Section 3.7.14. We’ll assume a minimum limit and positive time groups here,
but the equivalent case of a maximum limit and negative time groups is also handled.

These monitors all require a resource to be assigned one or more tasks. In some cases,
which we callforcingcases, they force the resource to be assigned a task at a particular time. For
limit busy times constraints, this is true for each time in each time group whose cardinality is not
larger than the minimum limit. For cluster busy times constraints, it is true for each time in time
groups of cardinality one, when the number of time groups is not larger than the minimum limit.
In all other cases, which we callnon-forcingcases, they force the resource to be assigned a task,
but not at a particular time.

Sort the monitors into decreasing combined weight order. Make two passes over the
monitors, handling forcing cases on the first pass, and non-forcing cases on the second.

To handle forcing cases, find each particular time that the resource has to be busy. Try
assigning the resource to each task of its type running at that time,and keep the assignment which
produces the smallest solution cost.

To handle non-forcing cases, determine a set of times such that one of those times has to
be busy (for cluster busy times monitors this will be the set of all times in all time groups that
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are not already busy), try assigning the resource to each task of its type running at any of those
times, and keep the assignment which produces the smallest solution cost.

A monitor may need several repeats of this treatment to reduce its cost to 0. It is important
to, in effect, start again on the monitor after keeping an assignment, since it is possible for one
assignment to affect several times or time groups, especially when tasks have been grouped.

KheSolnAssignRequestedResources consults two options:

rs_requested_off

A Boolean option which, whentrue, causesKheSolnAssignRequestedResources to
do nothing.

rs_requested_nonforced_on

A Boolean option which, whentrue, causesKheSolnAssignRequestedResources to
carry out its second pass over the monitors (the pass that handles non-forced requests). By
default this pass is omitted, because it is harder to justify and less obviously useful than the
first (forced) pass.

It also uses thegs_event_timetable_monitor option (Section 8.3), to find the events running
at each time. It aborts if this option is not inoptions.

There is another function, closely related toKheSolnAssignRequestedResources:

bool KheMonitorRequestsSpecificBusyTimes(KHE_MONITOR m);

It returnstrue if m requests that a resource be busy at one or more specific times, triggering a
forcing case forKheSolnAssignRequestedResources. Precisely, it returnstrue when given:

1. A limit busy times monitor with a non-zero minimum limit, withfalse for allow_zero,
and with one or more time groups whose cardinality is at least the minimum limit.

2. A cluster busy times monitor with a minimum limit equal to or greater than its number of
time groups, withfalse for allow_zero, whose time groups are all positive, with one or
more of them containing just one time.

3. A cluster busy times monitor such that the transformation documented by the theorem at
the end of Section 3.7.14 produces the previous case.

The correspondence withKheSolnAssignRequestedResources is not quite exact, as it turns
out, but the differences are insignificant, practically speaking.

12.4.2. Most-constrained-first assignment

When each unfixed task has no followers, so that each demands a resource for a single interval
of time, as is usual with room assignment, a simple ‘most constrained first’heuristic assignment
algorithm that maintains the resource assignment invariant is usually sufficient to obtain a
virtually optimal assignment (in high school timetabling, not nurse rostering). Function

bool KheMostConstrainedFirstAssignResources(KHE_TASKING tasking,
KHE_OPTIONS options);
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does this. It tries to assign each unassigned unfixed task oftasking, leaving assigned ones
untouched. For each such task, it maintains the set of resources that can currently be assigned to
the task without increasing the number of unmatchable demand tixels. It selects a task with the
fewest such resources, assigns it if possible, and repeats until all tasks have been handled.

Each assignment preserves the resource assignment invariant. If no assignment can do
that, the task remains unassigned. Among all resources that preserve it, as a first priority an
assignment that minimizesKheSolnCost is chosen, and as a second priority, resources that have
already been assigned to other tasks of the event resources of the task and the tasks assigned to
it are preferred. So even when an avoid split assignments constraint is not present, the algorithm
favours assigning the same resource to all the tasks of a given event resource, for regularity.

In fact, KheMostConstrainedFirstAssignResources assigns task groups (Section
11.10), not individual tasks. Each task of a task group is assignable by the same resources, so
one list of suitable resources is kept per task group. At each step, a task group is selected for
assignment for which the number of suitable resources minus the number of unassigned tasks
is minimal.

When a resource is assigned to a task, it becomes less available, so its suitability for
assignment to its other task groups is rechecked. If it proves to be no longer assignable to some
of them, their priorities are changed. The task groups are held in a priority queue (Section A.4),
which allows their queue positions to be updated efficiently when their priorities change.

12.4.3. Resource packing

Topacka resource means to find assignments of tasks to the resource that make the solution cost
as small as possible, while preserving the resource assignment invariant, in effect utilizing the
resource as much as possible [9]. Following the recommended interface for resource assignment
functions (Section 12.1), function

bool KheResourcePackAssignResources(KHE_TASKING tasking,
KHE_OPTIONS options);

assigns resources to the unassigned tasks oftasking using resource packing, as follows.

The tasks are clustered into task groups (Section 11.10). Two numbers help to estimate the
difficulty of utilizing a resource effectively: thedemand durationand thesupply duration. A
resource’s demand duration is the total duration of the task groups it is assignable to. Its supply
duration is the number of times it is available for assignment: the cycle length,minus the number
of its workload demand monitors, minus the total duration of any tasks it is already assigned to.

The resources are placed in a priority queue, ordered by increasing demand duration minus
supply duration. That is, the less demand there is for the resource, or the more supply, the more
important it is to pack it sooner rather than later. In practice, part-time teachers come first in this
order, which is good, because they are difficult to utilize effectively.

The main loop of the algorithm removes a resource of minimum priority from the priority
queue and packs it. If this causes any task groups to become completely assigned, they are
unlinked from the resources assignable to them, reducing those resources’demand durations and
thus altering their position in the priority queue. This is repeated until the queue is empty.

Each resourcer is packed using a binary tree search: at each tree node, one available
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task group is either assigned tor, or not. The task groups are taken in decreasing order of the
maximum, over all taskst of the task group, ofKheMeetDemand(m), wherem is the first unfixed
meet on the chain of assignments out of the meet containingt. This gives preference to tasks
whose meets are hard to move, reasoning that the leftovers will be given split assignments, and
repairing them may require moving their meets. The search tree has a moderate depth limit. At
the limit, the algorithm switches to a simple heuristic which assigns as many tasks as it can.

12.4.4. Split assignments

After solver functions such asKheMostConstrainedFirstAssignResources (Section 12.4.2)
andKheEjectionChainRepairResources (Section 12.8) have assigned resources to most tasks,
some tasks may remain unassigned. These will have to receive split assignments. Function

bool KheFindSplitResourceAssignments(KHE_TASKING tasking,
KHE_OPTIONS options);

reduces the cost of the solution as much as it can, by making split assignments to the unassigned
tasks oftasking while maintaining the resource assignment invariant. Any tasks which were
unassigned to begin with are replaced intasking by their child tasks.

At the core ofKheFindSplitResourceAssignments is a procedure which takes every pair
of resources capable of constituting a split assignment to some task and tries to assign them
greedily to the task, keeping the assignment that produces the lowest solution cost. However,
before entering on that,KheFindSplitResourceAssignments eliminates resources that cannot
be assigned even to one child task, makes assignments that are forced because there is only one
available resource (not forgetting that one forced assignment might lead to another, or that once
a resource has been assigned to one child task it makes sense to assign it to as many others as
possible), and divides each task into independent components (in the sense that no resource is
assignable to two components). In practice, much of what it does is more or less forced.

12.5. Single resource assignment using dynamic programming

This section presents a polynomial-time dynamic programming algorithm that finds an optimal
timetable for a single resource, assuming that time assignments are fixed, and that the resource’s
timetable can be built up step by step in chronological order, as in nurse rostering.

Let the single resource ber. The algorithm finds one timetable forr for each distinct total
number of assigned times. Each timetable minimizes the total cost of the resource constraints
that monitor the timetable ofr, among all timetables with that number of assigned times. The
caller is then free to adopt any one of these timetables. The algorithm does not minimize other
costs, such as the cost of assigning or not assigning tasks, or costs that depend on the timetables
of two resources. It chooses unassigned tasks whose assignment minimizes these costs at the
moment they are chosen, but that is not the same as minimizing them overall.

To run the algorithm, the first step is to create asingle resource solver, by calling

KHE_SINGLE_RESOURCE_SOLVER KheSingleResourceSolverMake(KHE_SOLN soln,
KHE_OPTIONS options);
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Among other things, parameteroptions is used to access the common frame, defining the days
of the cycle. The solver can be deleted when it is no longer wanted, by calling

void KheSingleResourceSolverDelete(KHE_SINGLE_RESOURCE_SOLVER srs);

To solve for a particular resourcer, call

void KheSingleResourceSolverSolve(KHE_SINGLE_RESOURCE_SOLVER srs,
KHE_RESOURCE r, KHE_SRS_DOM_KIND dom_kind, int min_assts,
int max_assts, KHE_COST cost_limit);

This does not change the solution. Instead, it carries out the solve and finds a number of distinct
timetables. The timetables vary in the number of assignments they contain, as explained above.

The type of parameterdom_kind is defined inkhe_solvers.h as

typedef enum {
KHE_SRS_DOM_WEAK,
KHE_SRS_DOM_MEDIUM,
KHE_SRS_DOM_STRONG,
KHE_SRS_DOM_TRIE

} KHE_SRS_DOM_KIND;

Thisdetermineswhether the solve usesweak dominance,medium dominance,strong dominance,
or trie dominance. These terms are explained below. Solutions of minimum cost are found in
any case; there may be some difference in running time.

The solve only finds timetables whose number of assignments is at leastmin_assts and at
mostmax_assts; if these restrictions are not wanted, simply pass0 andINT_MAX. The result of
KheResourceMaxBusyTimes (Section 4.7) would be a good starting point for constructing more
interesting values formin_assts andmax_assts.

The solve only finds timetables whose cost is no larger thancost_limit. A reasonable
value for this in nurse rostering would beKheCost(0, INT_MAX), since hard constraint
violations are unacceptable. To have no cost limit at all, useKheCost(INT_MAX, INT_MAX).

To find out about the timetables produced byKheSingleResourceSolverSolve, call

int KheSingleResourceSolverTimetableCount(KHE_SINGLE_RESOURCE_SOLVER srs);
void KheSingleResourceSolverTimetable(KHE_SINGLE_RESOURCE_SOLVER srs,

int i, int *asst_count, KHE_COST *r_cost);

afterwards.KheSingleResourceSolverTimetableCount returns the number of timetables that
were found, andKheSingleResourceSolverTimetable reports on theith timetable, fori in
the range 0 toKheSingleResourceSolverTimetableCount(srs) - 1. It reports the number
of assignments, and the total cost of the resource monitors ofr (the quantity that is optimized).
The timetables are returned in increasing order of*asst_count.

It is up to the caller to decide which of these timetables, if any, to take into the solution. To
actually change the original solution, call

void KheSingleResourceSolverAdopt(KHE_SINGLE_RESOURCE_SOLVER srs, int i);
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This will change the solution to include theith timetable.

One way (not the only way) to decide among the different solutions is to assume that not
assigning one time has costc, and choose a solution that minimizes

*r_cost - *asst_count * c

breaking ties in favour of solutions whose*asst_count is larger. Function

int KheSingleResourceSolverBest(KHE_SINGLE_RESOURCE_SOLVER srs,
KHE_COST cost_reduction);

does this (thecost_reduction parameter isc), and returns the index of the best timetable by this
measure. It may only be called when there is at least one timetable. The result may be passed
to KheSingleResourceSolverTimetable or KheSingleResourceSolverAdopt.

The caller must choose a suitable value ofc. The best way to do this, probably, is to create
a balance solver (Section 11.4.4) and use the result ofKheBalanceSolverMarginalCost for c.

To move on to another resource, callKheSingleResourceSolverSolve again. It saves
some time (not a huge amount) to use one solver on many resources. All memory is reclaimed
by KheSingleResourceSolverDelete. Finally,

void KheSingleResourceSolverDebug(KHE_SINGLE_RESOURCE_SOLVER srs,
int verbosity, int indent, FILE *fp);

produces a debug print ofsrs ontofp with the given verbosity and indent; and

void KheSingleResourceSolverTest(KHE_SOLN soln, KHE_OPTIONS options,
KHE_RESOURCE r);

creates a single resource solver and tests it by finding optimal timetables forr. It produces some
debug output, including graphs (Section 8.6.2) in subdirectorystats of the current directory.
The user must create this subdirectory beforeKheSingleResourceSolverTest is called.

This algorithm is a precursor of the dynamic resource solver from the next section, and
many of that algorithm’s ideas were first tried out here. The main differences here are that we
assign a single resource for the full set of days, that multi-day tasks do not spoil the optimality,
and that we find a set of alternative solutions with varying numbers of assignments.

12.6. Optimal resource reassignment using dynamic programming

This section presents a dynamic programming algorithm for finding an optimal reassignment
of an arbitrary subset of the resources of an instance over an arbitrary subset of the days of the
instance,assuming time assignments are fixed. The algorithm is a straightforward generalization
of an algorithm that has long been used within column generation solvers for nurse rostering to
produce an optimal timetable for a single nurse.

The algorithm is designed to support a very large-scale neighbourhood (VLSN) search
algorithm which repeatedly chooses some resources and some days, unassigns those resources
on those days, and reassigns them optimally. The initial setup creates data structures whose size
is proportional to the size of the entire solution, but each call on the solver after that has running
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time which depends only on the number of selected resources and days. This is important for
efficiency: if there are 50 resources and 28 days, but one call on the solver reassigns, say, 5
resources over 7 days, we want the running time to depend on 5 and 7, not on 50 and 28.

As Appendix C.2 shows, the running time of one call on the solver isO(n(a + m1) m cmn ),
wheren is the number of selected days,m is the number of selected resources,a is a constant,
the number of shift types, andc is another constant, the number of constraints (usually 1 or 2)
per resource whose maximum limits increase withn (such as limits on the total number of shifts).
As n and m increase, this increases rapidly. Precisely which values lead to feasible running
times is a matter for empirical experiment. The fact that the running time is polynomial inn and
exponential inm comes through clearly in experiments: it can be quite feasible to reassign 14
days or more, but not 14 resources.

Optimality is only guaranteed when each task lies within a single day. Multi-day tasks,
whether derived from events of duration greater than 1 or from task grouping, are handled, but
the solver is only a good heuristic, not optimal, when they are present. Another limitation is
that the solver ignores avoid split assignments and limit idle times constraints. These are never
present in the nurse rostering instances that it is mainly intended for.

Functions

KHE_DYNAMIC_RESOURCE_SOLVER KheDynamicResourceSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

void KheDynamicResourceSolverDelete(KHE_DYNAMIC_RESOURCE_SOLVER drs);

create and delete a dynamic resource solver forsoln which reassigns resources of typert.

KheDynamicResourceSolverMake places the proper root tasks of typert into task
classes (Section 11.11) which last for the life of the solver. During that time, any changes to
their assigned times, domains, or groupings will not change the state of the solver, and so may
cause errors. Calls which assign and unassign resources to proper root tasks are also a problem,
although assignments and unassignments made by the solver itself are not.

KheDynamicResourceSolverMake may returnNULL, signalling that the solver could
not be made. This happens when there is no common frame (optiongs_common_frame), or
there is no event timetable monitor (optiongs_event_timetable_monitor), or one or more
of the task classes contains a task which either has a clash or runs twice on one day (when
KheTaskClassNoOverlap returnsfalse). In this last case it would be better to carry on, treating
the problem tasks as fixed, but there are implementation problems with that.

After creating, but before solving, make any number of calls to

void KheDynamicResourceSolverAddResource(KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_RESOURCE r);

void KheDynamicResourceSolverAddDayRange(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int first_day_index, int last_day_index);

The first adds resourcer (which must have typert and must not be already added) to the solve.
The second adds the days fromfirst_day_index to last_day_index inclusive to the solve.
The values are indexes into the common frame. The union of the ranges is solved; this could be
several disjoint intervals. These calls define theselected resourcesand theselected days.

After loading the resources and day ranges, to do the actual solve call
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bool KheDynamicResourceSolverSolve(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int soln_limit, KHE_DRS_DOM_KIND main_dom_kind, bool use_cache,
KHE_DRS_DOM_KIND cache_dom_kind);

This changesdrs’s solution for the selected resources on the selected days, to an optimal solution
as explained above. It returnstrue when the new solution has lower cost than the previous one.
After it returns,drs is ready to set up for another solve: it is expecting another set of calls to
KheDynamicResourceSolverAddResource andKheDynamicResourceSolverAddDayRange, or
a call toKheDynamicResourceSolverDelete. There is also

void KheDynamicResourceSolverTest(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int soln_limit, KHE_DRS_DOM_KIND main_dom_kind, bool use_cache,
KHE_DRS_DOM_KIND cache_dom_kind);

which is the same asKheDynamicResourceSolverSolve except that it never changes the
solution, not even when it finds a new best one. This is handy when testing.

For both functions,soln_limit limits the number of solutions that the call is permitted to
make. If the limit is reached, the call returns early, usually without changingsoln. It is possible
for KheDynamicResourceSolverSolve to find a better solution and then subsequently reach the
limit, in which case it does changesoln. If a limit is not wanted, setsoln_limit to 0.

Parametermain_dom_kind has type

typedef enum {
KHE_DRS_DOM_NONE,
KHE_DRS_DOM_WEAK,
KHE_DRS_DOM_MEDIUM,
KHE_DRS_DOM_STRONG,
KHE_DRS_DOM_TRIE,
KHE_DRS_DOM_STRONG_WITH_TRADEOFF,
KHE_DRS_DOM_TRIE_WITH_TRADEOFF

} KHE_DRS_DOM_KIND;

and determines the kind of dominance testing used (Appendix ??). This choice will affect the
running time, but it can only affect the result indirectly, by changing the number of solutions
found and thus the effect ofsoln_limit. KHE_DRS_DOM_TRIE_WITH_TRADEOFF is usually best.
KHE_DRS_DOM_NONE requests no dominance testing, to see what difference it actually makes.

The two functions also offer the option of using caching or not. Ifuse_cache is true,
caching is used andcache_dom_kind says what kind of dominance testing to use within the
caches. Ifuse_cache is false, caching is not used andcache_dom_kind is not used either.

A cache is a set of solutions for a given day which have the same parent solution, making
it likely that there will be dominance relations between them. When caching is used, new
solutions are inserted into the cache for the new day rather than the main table for the day. The
usual dominance testing goes on within the cache, which therefore contains only undominated
solutions. Then after all solutions with the same parent solution are tried, the surviving members
of the cache are inserted into the main table,once again with the usual dominance testing,and the
cache is emptied out. The hope is that dominance testing within the small cache will run much
faster than dominance testing within the large main table, saving time overall.
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After one call to KheDynamicResourceSolverSolve and before the next, these two
functions may be called to retrieve some statistics about the solve:

int KheDynamicResourceSolverSolveStatsCount(
KHE_DYNAMIC_RESOURCE_SOLVER drs);

void KheDynamicResourceSolverSolveStats(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int i, int *table_size, float *running_time);

KheDynamicResourceSolverSolveStatsCount returns the number of statistics, usually
the number of open days plus one.KheDynamicResourceSolverSolveStats(drs, i) sets
*table_size to the size of the table on theith open day, and*running_time to the time in
seconds from the start of the solve to the end of that day. Wheni is 0 this will be 0 and the time
to open for solving. For these functions to work correctly, theTESTING compiler flag (defined
near the top of filekhe_sr_dynamic_resource.c) must be set to 1.

Function

void KheDynamicResourceSolverDebug(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int verbosity, int indent, FILE *fp);

produces the usual debug print ofdrs ontofp with the given verbosity and indent.

Finally, here is a precise statement of exactly what one solve does. A taskt is selectedby
a solve if and only if it satisfies the following conditions:

1. Taskt is a proper root task of the given resource type.

2. Taskt, and each task assigned directly or indirectly tot, either does not lie in a meet, or
else it lies in a meet whose time is assigned.

3. Let thebusy timesof t be the times whent, and the tasks assigned directly or indirectly to
t, are running. Tasks which do not lie in meets are ignored here. Thent has at least one
busy time, and no two of its busy times are equal or lie within the same day.

4. Let thefirst busy dayof t be the day containing the chronologically first busy time oft,
and let thelast busy dayof t be the day containing the chronologically last busy time oft.
Let thebusy day rangeof t be the range of days from the first busy day to the last busy day
inclusive. The solver considers all these days to be busy days fort, even if some contain no
busy times. Every day in the busy day range oft must be a selected day.

5. KheTaskDomain(t) has a non-empty intersection with the set of selected resources.

6. Initially,t is either unassigned or assigned one of the selected resources. In the second case,
it must be possible to unassignt.

The result of a solve is a solution which is optimal among all solutions which are identical to the
initial solution except that changes to the assignments of the selected tasks, to either a selected
resource or toNULL, are allowed. Optimality is guaranteed whenever there are no multi-day tasks,
no avoid split assignments constraints, and no limit idle times constraints.

A detailed account of this algorithm and its implementation may be found in Appendix C.
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KheDynamicResourceSolverSolve may be used in any way. One easy way is

bool KheDynamicResourceVLSNSolve(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

This usesKheDynamicResourceSolverSolve as the basis of a very large-scale neighbourhood
(VLSN) search. It makes a solver (aborting ifKheDynamicResourceSolverMake returnsNULL),
calls it repeatedly with various choices of resources and days, and ends by deleting the solver.
It returnstrue and changessoln if at least one of the calls improved the solution, and returns
false with soln unchanged if not. It is influenced by these options:

rs_drs_off

A Boolean option which, whentrue, makesKheDynamicResourceVLSNSolve do nothing.

rs_drs_time_limit

A soft time limit for the entire call toKheDynamicResourceVLSNSolve. The format
is the one accepted byKheTimeFromString (Section 8.1):secs, or mins:secs, or
hrs:mins:secs. There is also the special value-, meaning ‘set no limit’, but that is not
the default value, because that would mean thatKheDynamicResourceVLSNSolve would
run forever. Instead, the default value is60, that is, 60 seconds. The limit is checked after
each solve, so the end could come some time after the limit is reached.

rs_drs_solve_limit

An integer upper limit on the number of calls toKheDynamicResourceSolverSolve. The
special value- means ‘set no limit’. The default value is1000.

rs_drs_soln_limit

An integer upper limit on the number of solutionsKheDynamicResourceSolverSolve
may create on any one call. This becomes thesoln_limit argument of each call to
KheDynamicResourceSolverSolve. This is the only way to limit the time spent on a single
solve. The default value is0, meaning no limit.

rs_drs_dom_kind

A string option defining the dominance testing to use. The value may be"none" (omit dom-
inance testing),"weak", "medium", "strong", "trie", "strongt" (strong with tradeoff),
"triet" (trie with tradeoff), or"indexedt" (indexed with tradeoff). This becomes the
main_dom_kind argument of each call toKheDynamicResourceSolverSolve. The default
value is"triet".

rs_drs_cache_dom_kind

A string option defining the dominance testing to use when caching. It takes the same values
asrs_drs_dom_kind just above, plus"nocache" (omit caching) and"same" (use the
value of rs_drs_dom_kind). It sets theuse_cache andcache_dom_kind arguments of
each call toKheDynamicResourceSolverSolve. The default value is"nocache".

rs_drs_resource_count

An integer option defining the number of resources to choose for each solve. If this exceeds
the number of resourcesof typert, it is reduced to that number. The set of chosen resources
will vary randomly from one call toKheDynamicResourceSolverSolve to the next, but the
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number of chosen resources will be constant. The default value is 1.

rs_drs_day_select

A string option defining how the days are to be selected on each solve. Multiple intervals
may be selected. A detailed explanation follows.

Thers_drs_day_select option contains a sequence of one or moreinterval setsseparated by
semicolons. Each interval set containsa sequence of one or moreintervalsseparated by commas.
Each interval consists of two integers separated by a hyphen. For example,

"0-13;14-27"

contains two interval sets,0-13 and14-27, while

"5-6,12-13,19-20,26-27"

contains one interval set with four intervals.KheDynamicResourceSolverSolve is called once
for each interval set, with the day intervals of that interval set.

There are some special values forrs_drs_day_select. The valueall (the default value)
is equivalent to a single interval set holding a single interval which spans the entire cycle. The
valueall:x is equivalent to a sequence of interval sets, following each other through the cycle,
each containing one interval of lengthx. The last interval will have length less thanx if x does
not divide evenly into the cycle length. For example,all:7 is equivalent to0-6;7-13;... and
so on to the end of the cycle. The valuerandom:x, wherex is an integer, is equivalent to a single
interval set with a single interval whose length isx and whose first day is chosen randomly; a
fresh random choice is made for each set of resources. Ifx exceeds the number of days in the
cycle, it is reduced to that number.

We said earlier that the set of resources varies randomly from one solve to the next. In
fact, a set of resources is chosen and solved for each interval set ofrs_drs_day_select (or one
randomly chosen interval set ifrs_drs_day_select is random:x), then a new set of resources
is chosen and solved for each interval set ofrs_drs_day_select, and so on.

The module that implementsKheDynamicResourceVLSNSolve also offers

void KheDynamicResourceVLSNTest(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

This creates a solver, calls it multiple times, accumulates some statistics, and prints them to one
or more output files in the form of Lout source files for graphs, which the user can convert later
to EPS files using Lout. It only works when theTESTING compiler flag, defined near the top of
source filekhe_sr_dynamic_resource.c, is set to 1. It also requires the user to have previously
created a sub-directory of the current directory calledstats. This is where the output files go.

KheDynamicResourceVLSNTest makes calls onKheDynamicResourceSolverTest rather
than on the more usualKheDynamicResourceSolverSolve. As explained above, these two
functionsare the same except thatKheDynamicResourceSolverTest never changes the solution;
soKheDynamicResourceVLSNTest never does either. It is done this way so that each call on the
solver begins from the same solution. Also, all solves on a given run (as defined below) use the
same random permutation of the resources ofrt. Solves that reassignk resources reassign the
first k resources from this permutation. A fixed set of days, supplied by the caller, is used for
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all tests. Altogether, then, a run that compares two dominance kinds does so fairly: the two tests
start from the same solution and reassign the same resources on the same days.

The data generated by one call toKheDynamicResourceVLSNTest is considered to have a
three-dimensional structure. Along one axis is dominance type: weak, strong, and so on. The
user can choose any subset of the available dominance types, in any order. Along another axis is
the number of resources being reassigned: 1, 2, and so on. The user can choose only the number
of resources; the actual resources are chosen randomly byKheDynamicResourceVLSNTest.
Along another axis are the days. The user can choose any subset of the days.

One call toKheDynamicResourceSolverSolve generates data for one dominance type and
one number of resources,but multiple days. The implementation knows this,but it hides it below
the three-dimensional structure defined here.

The output is also considered to have a three-dimensional structure. Along the first axis we
have one entire graph (in its own file) in each position. Along the second axis we have one data
set of the graph in each position. Along the third axis we have the x-axis of the graph.

The user specifies the mapping from data dimensions to output dimensions. For example,
suppose dominance type is the first output dimension, resources the second, and days the third.
Then there will be one graph for each dominance type, each containing one data set for each
number of resources, with number of days along the x-axis. And so on.

Finally, there are two choices for the y-axis:size, the number of solutions inPk tables, and
time, the running time in seconds. One call toKheDynamicResourceVLSNTest generates two sets
of graphs, one for size and one for time.

To specify the three-dimensional data structure and its mapping to the output structure, the
rs_drs_test option is used. Its default value isnone, meaning to perform no testing. Otherwise
its general format is

rs_drs_test=run;run;...;run

where eachrun specifies a fresh set of graphs and a fresh run, and has format

dim:dim:dim

Eachdim specifies one data dimension; their order specifies the mapping to output dimensions.
Eachdim begins with one ofT for dominance type,R for resources, andD for days. After that
the value is specific for each kind of data. For example,

Tstrong,strongt

specifies dominance types strong and strong with tradeoff. This is without caching; to request
caching, add an ‘@’ followed by the dominance type for caching. For example,

Tstrongt,strongt@strong

tests strong dominance with tradeoff, first without and then with caching. The dominance type
for caching is independent of the main dominance type. Valuesnocache andsame may be used.
Omitting ‘@’ is equivalent tonocache, and ‘@’ followed by nothing is equivalent tosame.

An example for resources is
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R1,3,5,7

which requests 1, 3, 5, and 7 resources. And

DL5-6,12-13,19-20,26-27

specifies the weekend days over four weeks. TheL afterD is optional. When present it specifies
that although all days are to be included in the solve, only the last day is to be printed. This would
normally be used whenD is the first output dimension. Using it with the second produces graphs
with a single data set, and using it with the third produces graphs with a single x-axis point.

Optionrs_drs_soln_limit is also consulted byKheDynamicResourceVLSNTest. It has
the same meaning as it has forKheDynamicResourceVLSNSolve. Setting it to 0 (unlimited)when
testing guarantees that tests with the same resources and days but different dominance types must
return solutions with the same cost, and this is checked.

12.7. Resource matching

Consider the tasks running at some timet. Each task can be assigned at most one resource.
Assuming the resources have hard avoid clashes constraints, each resource can be assigned to at
most one of the tasks. So the assignments to these tasks form a matching in the bipartite graph
with tasks for demand nodes, resources for supply nodes, and feasible assignments for edges.

Consider an initial state in which none of the tasks running at timet is assigned. For each
edge in the bipartite graph, carry out the indicated assignment, label the edge with the cost of the
solution after the assignment is made, and then remove the assignment. The result is a bipartite
graph with edge weights representing the badness of each individual assignment.

Assuming that all tasks have hard assign resource constraints, a maximum matching of
minimum cost in this graph will be a very desirable assignment. Indeed, it will often be optimal.
This can be seen by examining all constraint types: each is either unaffected by the assignment,
or else its effect is independent for each edge, so that the edge weights are valid in combination
as well as individually.Resource matchingis KHE’s name for this general idea.

There is one constraint whose effect is not independent for each edge: the limit resources
constraint from employee scheduling. Resource matching handles this constraint specially, as
described in Section 12.7.2. This special arrangement is exact (preserves optimality) in many
common cases, but in general it is merely heuristic. The resource assignment invariant is another
problem: it may hold for each element of a set of assignments individually, but fail on the whole
set. However, this does not seem to be a problem in practice.

Not all tasks have hard assign resource constraints. In nurse rostering, for example, a shift
requiring between 3and 5nurses is modelled by an event with 5 tasks,only 3of which have assign
resource constraints. Fortunately, missing assign resource constraints are easily handled. For
each task, add a supply node, linked only to that task, representing non-assignment of the task.
The edge weight is just the initial solution cost, because choosing that edge changes nothing.

As described, resource matching constructs assignments; it does not repair them. However,
a repair algorithm is easily made from it: choose a timet, unassign all the tasks running at that
time, reassign them using resource matching, and then either keep the new assignments if they
improve the solution, or revert to the original assignments if they do not.
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During initial construction it may be that some tasks are already assigned, and what is
wanted is to assign the unassigned ones without disturbing the assigned ones. In that case,simply
omit the demand nodes for assigned tasks.

Instead of selecting all tasks running at a single timet, KHE’s implementation selects all
tasks whose times overlap with an arbitrary set of timesT. For |T| ≥ 2, this does not make sense
in general, because one resource could be assigned to two or more of the tasks, and the rationale
for using matching is lost. However, there are at least two cases where it does make sense.

First, whenT is a time group from the common frame (Section 5.10), hard limit busy times
constraints prohibit resources from being assigned to two or more tasks that overlapT.

Second, when resource matching is used for repair, KHE’s version of it specifies that tasks
which are assigned the same resource at the start must be assigned the same resource at the end.
Of course, this does not produce an optimal reassignment of the tasks, because it requires some
tasks to be assigned to the same resources. However, minimum cost weighted matchings can be
found in polynomial time, whereas true optimal reassignment is NP-complete.

12.7.1. A solver for resource matching

This section presents a solver for resource matching. It can be used directly via the interface
given in this section, or indirectly via the applications given in the following two sections.

One solver may be used for many solves. To create and delete a solver, call

KHE_RESOURCE_MATCHING_SOLVER KheResourceMatchingSolverMake(
KHE_SOLN soln, KHE_RESOURCE_GROUP rg, HA_ARENA a);

void KheResourceMatchingSolverDelete(KHE_RESOURCE_MATCHING_SOLVER rms);

The deletion really only happens when arenaa is deleted or recycled; but before then a call to
KheResourceMatchingSolverDelete is needed to carry out some tidying up (there are group
monitors to remove).

The solves have one supply node for each resource ofrg, plus supply nodes representing
non-assignment. Typically,rg would beKheResourceTypeFullResourceGroup(rt) for some
resource typert, but it can be any resource group. It is fixed for the lifetime of the solver.

To carry out one solve, call

bool KheResourceMatchingSolverSolve(KHE_RESOURCE_MATCHING_SOLVER rms,
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, bool edge_adjust1_off,
bool edge_adjust2_off, bool edge_adjust3_off, bool edge_adjust4_off,
bool ejection_off, KHE_OPTIONS options);

If this can find a way to improve the solution, it does so and returnstrue. Otherwise it leaves
the solution unchanged and returnsfalse. Parameterrdms is the set of demand nodes to match
against the supply nodes already present inrms; how to construct it is explained below. The other
parameters affect the detailed behaviour of the solver, as follows.

Whentrue, parametersedge_adjust1_off,edge_adjust2_off,edge_adjust3_off, and
edge_adjust4_off turn off the four edge adjustments. These adjust edge costs so that, in cases
which would otherwise be tied, resources with certain properties are preferred, as follows.
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Edge adjustment 1 gives preference to resources with a larger number of available times
(Section 4.7) over resources with a smaller number. This seems likely to be the most effective
form of edge adjustment, so it is given twice the weight of the others.

Edge adjustment 2 gives preference to resources whose assignment brings a smaller number
of constraints from below their maximum values to their maximum values. Hopefully this will
keep more resources available for assignment for longer.

Edge adjustment 3 tracks the number of consecutive assignments to the resource in recent
solves, and favours resources for which this is smaller. This encourages smaller sequences of
consecutive assignments, which hopefully will give more flexibility when repairing later.

Edge adjustment 4 tracks the time of day of the most recent assignment to the resource, and
favours assignments that repeat that time of day. This encourages sequences of shifts of the same
type. These always seem to be acceptable in nurse rostering, and they are often preferable.

At the end of the call, if limit resources monitors are involved and any of them have
non-zero cost, functionKheEjectionChainRepairInitialResourceAssignment is called to
repair them. This call is omitted if parameterejection_off is true.

Three options fromoptions are consulted. Optionrs_invariant determines whether the
resource assignment invariant is in effect,as usual. If it is, only individual edges that preserve the
invariant are included in the graph, and if, when the solution is changed to reflect the minimum
matching, any of the individual assignments fail the invariant, those assignments are omitted.
Option gs_common_frame supplies the common frame, needed even when edge adjustment
is not in effect, for ejecting task moves. Finally, the first time thatrmds is solved, option
gs_event_timetable_monitor (Section 8.3), which must be present, is used to obtain efficient
access to the tasks which overlap its times.

A demand set is constructed by a sequence of calls beginning with

KHE_RESOURCE_MATCHING_DEMAND_SET KheResourceMatchingDemandSetMake(
KHE_RESOURCE_MATCHING_SOLVER rms, bool preserve_existing);

(for preserve_existing, see below), and continuing with any number of calls to

void KheResourceMatchingDemandSetAddTime(
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, KHE_TIME t);

void KheResourceMatchingDemandSetAddTimeGroup(
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, KHE_TIME_GROUP tg);

void KheResourceMatchingDemandSetAddFrame(
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, KHE_FRAME frame);

in any order. These define a set of timesT: the union of the timest, the time groupstg, and the
time groups offrame. T may not be empty.

A demand set may be saved, and solved multiple times. When it is no longer needed it may
be deleted explicitly, by calling

void KheResourceMatchingDemandSetDelete(KHE_RESOURCE_MATCHING_DEMAND_SET rmds);

Alternatively, deleting its solver’s arena will also delete it, because it is stored in that arena. A
less drastic alternative to deletion is
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void KheResourceMatchingDemandSetClear(KHE_RESOURCE_MATCHING_DEMAND_SET rmds);

which clears outrmds ready for a fresh lot of times.

The demand nodes of one demand node set are specified in two steps: first the tasks to
include, called theselected tasks, are specified, then the grouping of those tasks into demand
nodes. A taskt is selected (its assignment may be changed) when it satisfies these conditions:

1. It has the same resource type as the solver’srg attribute;

2. It is either assigned directly to the cycle task of a resource ofrg, or else it is unassigned;

3. If preserve_existing is true, it is unassigned;

4. It, or some task assigned directly or indirectly to it, lies in a meet which is assigned a time,
directly or indirectly, so as to cause the task to share at least one time withT;

5. It is not derived from a preassigned event resource;

6. Its assignment is not fixed (byKheTaskAssignFix, or because it is a cycle task);

7. Not assigning it might attract a cost. All tasks subject to assign resource constraints of
non-zero cost are included. Some tasks subject to limit resources constraintswith minimum
limits are also included, chosen heuristically, as explained in the depths of Section 12.7.2.

The last item is a compromise. If too few tasks are included, the assignment will be too far from
final to be useful; but if too many are included (including tasks for which assignment is not
needed), then if the resources have minimum workload limits these will favour assigning all
these tasks, over-using the resources early in the cycle and causing workload shortages later.

For each resourcer of rg there is one demand node containing all selected tasks which are
initially assignedr. If there are no such tasks (for example, whenpreserve_existing istrue),
there is no such node. There is also one demand node for each of the remaining selected tasks.
(We are speaking of logical demand nodes here; as the next section explains, equivalent logical
demand nodes are grouped into single nodes by the implementation, for efficiency.)

The supply nodes of one solve consist of one for each resourcer of rg, representing
assignment ofr, and one for each demand node, representing non-assignment of its tasks.
(Again, these are logical supply nodes; in the implementation, all supply nodes representing
non-assignment are grouped into a single supply node.)

When determining which edges are present and their weights, the first step is to unassign
every initially assigned selected task usingKheTaskUnAssign. This must succeed, because the
selected tasks are not fixed. Then, for each demand noded, for each supply nodes representing
assignment of a resourcer, draw an edge betweend ands when the tasks ofd can be assignedr.
This is tested by callingKheEjectingTaskMoveFrame for each task ofd; an edge is added when
all these calls succeed. The edge cost is the solution cost after they are done,optionally with edge
adjustment as described above. There is also an edge fromd to the supply nodes representing
non-assignment of the tasks ofd, whose cost is the (unchanged) solution cost.
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12.7.2. Implementing resource matching

This section describes the implementation of resource matching in detail.

As mentioned earlier, limit resources constraints (or rather monitors) are a problem for
resource matching, because they take away the independence of the edge weights. Suppose that
on the current day there is a requirement for at least one senior nurse. If no special arrangements
are made, every edge to a non-senior nurse will carry a cost. That is not right, because only one
task needs a senior nurse. This problem strongly influences the implementation.

Resource matching detaches all limit resources monitors that affect the current match and
replaces them by adjustments to the edge weights. This restores the lost independence. These
adjustments are oftenexact: they have the same effect on cost as the monitors. When they are
not exact, resource matching loses its local optimality, although it is still a good heuristic.

The algorithm has two parts. The first part,preparation, builds the demand nodes and does
a few other things explained below. It has three phases. The second part,solving, adds the edges,
finds the matching, and makes the assignments. A demand set may be solved repeatedly, but it
is prepared only once, just before it is solved for the first time.

Preparation (first phase): find and group selected tasks. A selected taskis a task that may
be assigned by the current match. Anaffected taskis a task whose assignment is affected by the
current match: it is either selected, or it is assigned, directly or indirectly, to a selected task (its
selected task). For example, if a Saturday night task is grouped with a Sunday night task, then
when solving either Saturday or Sunday, one of the tasks is affected and selected and the other
is affected but not selected.

Given the demand set’s set of timesT, the selected tasks are easily found. For each time
in T, use the event timetable monitor from optiongs_event_timetable_monitor to find the
meets running at that time. For each task of the wanted type in each meet, follow its chain of
assignments to its proper root. By the way it was found, the proper root must satisfy conditions
1, 2, and 4; if it also satisfies conditions 3, 5, and 6, then make it a selected task. Condition 7
(concerning the cost of non-assignment) is not checked here; that will be done later.

A selected task might be encountered more than once while doing this. So to finish this
step, the array of selected tasks it builds is sorted and uniqueified.

The next step is to traverse the uniqueified array of selected tasks, doing two things. First,
if several selected tasks are assigned the same resource when resource matching is called, the
specification states that they should be assigned the same resource by resource matching. So a
task grouper (Section 11.7) is used to group these tasks. In each group, the leader task remains
selected but its followersare assigned to it,demoting them to affected but not selected. From now
on, ‘selected’means ‘selected after grouping’. The grouping is removed at the end of the solve:
the follower tasks are then assigned directly to whatever the leader task is assigned to. Second,
each selected task is placed into its owndemand node, a node of the bipartite graph.

Preparation (second phase): find task profiles and merge equivalent nodes. One selected
task per node would work. But many tasks areequivalent: for each resourcer, assigningr to one
of these tasks has the same effect as assigningr to another. Given that the following calculations
are not cheap and that underlying the weighted bipartite matching algorithm is a flow algorithm,
able to handle multiple equivalent nodes as single nodes with multiplicities represented by edge
capacities, it makes sense to merge nodes containing equivalent tasks into a single node whose
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incoming edge has its number of tasks as a capacity limit. This phase does this.

Determining whether selected tasks are equivalent is done by building atask profilefor
each, such that two tasks are equivalent if their profiles are equal. A selected task’s profile
depends on the task itself and on the tasks assigned to it, directly or indirectly. It consists of the
set of times occupied by those tasks, their total workload, and a set ofpreferences. A preference
is a pair(gi,ci), wheregi is a set of resources, andci is a cost. Its meaning is that the resources of
gi are preferred for this task, and assigning something not ingi attracts costci.

For convenience of presentation, an artificial resourcer0 is defined, such that assigningr0 to
some task means non-assignment of that task. A preference’sgi may includer0.

At the start of this phase, each node contains a single task. It also has a task profile
attribute, which is now initialized to the task profile for the node’s sole task,t say. This is done
by traversingt, the tasks assigned tot, the tasks assigned to those tasks, and so on recursively.
While doing this, the set of times occupied by those tasks, and their total workload, are added to
the profile. Also, for each point where an assign resource or prefer resources monitormmonitors
a taskt ′ which is eithert or assigned directly or indirectly to it, one preference(gi,ci) is added:

• If m is an assign resource monitor,gi is the full set of resources of the task’s resource type,
andci is the duration oft ′ multiplied by the weight ofm’s constraint.

• If m is a prefer resources monitor,gi is m’s resource group plusr0, andci is the duration of
t ′ multiplied by the weight ofm’s constraint.

These preferences express the effect of these monitors exactly. A prefer resources constraint
does not penalize non-assignment, which is whyr0 is included.

Two preferences with the same set of resources may be merged into one, whose cost is the
sum of the two original costs. These merges are done as preferences are added to profiles.

After the traversal of the affected tasks of selected taskt ends, the preferences int’s profile
are sorted, to expedite comparing profiles. After the profiles are done, the nodes are sorted to
bring nodes with equal profiles together, then adjacent nodes with equal profiles are merged.

Preparation (third phase): add preferences representing limit resources monitors. This
phase adds preferences representing limit resources monitors. The representation is often exact,
and when it isn’t, it is usually close.

While preferences representing assign resource and prefer resources monitors were being
added to task profiles in the previous step, a list of all limit resources monitors that monitor
affected tasks was built. This list is now sorted and uniqueified. Each monitor on it is then visited
and preferences are added to represent it.

Before visiting the first limit resources monitor, all affected tasks are visited, and the back
pointer in each is set to its selected task. (All that is actually needed is a boolean mark to indicate
that the task is affected.) After the last limit resources monitor is visited, the affected tasks are
visited again and their back pointers are cleared.

Handling one limit resources monitormi proceeds in two steps. In the first step, several
quantities are calculated: the total durationN of the affected tasks monitored bymi; lower and
upper limitsL andU on the total duration of these tasks which may be assigned resources from its
resource groupgi without incurring a penalty; and for each selected taskt, itsmonitored duration
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td: the total duration of its affected tasks that are monitored bymi. In the second step,preferences
are added based on these quantities.

The first step proceeds as follows.N is initialized to 0, andL andU to mi’s minimum and
maximum limits. Ifmi has no minimum limit,L is set to 0. Ifmi has no maximum limit,U is set
to a very large number. For each selected taskt, td is set to 0.

Nowmi may monitor non-affected tasks as well as affected ones. In practice, limit resources
monitors always limit what is happening at a particular moment in time, so non-affected tasks
might seem to be not a live issue. But consider the grouped Saturday and Sunday tasks above.
While matching Saturday, there may well be a limit resources monitor which monitors the
Sunday task and also other, non-affected Sunday tasks.

A complete traversal of the tasks monitored bymi is carried out. For each task, the back
pointer set earlier tells whether the task is affected by the current match or not. If it is affected, its
duration is added toN and also to the monitored duration of its selected task. If it is not affected,
there are two cases. If it is assigned, directly or indirectly, to a resource fromgi, then its duration
is subtracted from bothL andU. If it is not assigned to any resource, directly or indirectly, then
its duration is subtracted fromL only. This is analogous to how history is handled by cluster busy
times and limit active intervals monitors.

After this, if L is negative,set it to 0,and if it exceedsN, set it toN. Do the same forU. After
that we must have0 ≤ L ≤ U ≤ N. HereL ≤ U is an invariant of this whole step, established by
a requirement of the limit resources constraint and preserved as the step proceeds.

That concludes the first step in the handling of limit resources monitormi, the calculation
of N, L, U, and thedt. The second step adds preferences to demand nodes, as follows.

Selected tasks with total monitored duration at leastL should be assigned resources fromgi,
so find selected taskst whose total monitored duration is as large as possible not exceedingL, and
add preference(gi,widt) to their nodes, to encourage these assignments. Similarly, selected tasks
of monitored duration at leastN − U should not be assigned resources fromgi, so find selected
taskst whose total monitored duration is as large as possible not exceedingN − U, and add
preference(G∪{ r0} − gi,widt) to each of them, to discourage these assignments. Each demand
node receives at most one preference derived frommi, sinceL + (N − U) ≤ N.

Given that all the tasks in one node share the same preferences, it may be necessary to split
nodes while doing this. Only one of the two resulting nodes receives the new preference.

Which demand nodes should these preferences be added to? It is easy to add preferences
derived from assign resource and prefer resources monitors, because the tasks and hence the
nodes are determined; but here the selected tasks must be chosen, from the selected tasks with
positive monitored duration.

Nodes need to be chosen whose preferences are as similar as possible to the new preference
that will come in. It would be wrong to encourage some resources with one preference and a
completely different set of resources with another. This will be investigated further below. For
now, it is assumed that there is an integercompatibilityfor each node with respect tomi, such that
when compatibility is high, adding preference(gi,widt) works well, and when it is low, adding
preference(G∪{ r0} − gi,widt) works well.

The algorithm for adding limit resources preferences, then, is as follows. Calculate the
compatibility of each node, and store it in the node. Sort the nodes into decreasing order of
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compatibility. Consider the tasks as forming a single sequence, beginning with the tasks in the
first node, then the second, and so on. Ignoring tasks of zero monitored duration, find the largest
prefix of this sequence whose tasks have total monitored duration at mostL, and ensure that
preference(gi,widt) applies to each taskt of them and to no other tasks. This may involve some
node splitting, as mentioned earlier. Then find the largest suffix of this sequence whose tasks
have monitored duration at mostN − U, and ensure that preference(G∪{ r0} − gi,widt) applies to
each taskt of them and to no other tasks. Again, this may require some node splitting.

The implementation is slightly different. At each noden, it builds a setA of tasks fromn.
First it adds toA the first task it can find whose monitored duration is non-zero and would not
cause the target (initially eitherL or N − U) to be exceeded. Then it adds toA as many more
tasks fromn as it can, subject to them all having the same monitored duration as the first, and
collectively not exceeding the target. After this is done, ifA is empty it proceeds to the next node.
If A contains every task ofn it adds the new preference ton, updates the target, and proceeds to
the next node. Otherwise it makes a new node holding copies ofn’s preferences plus the new
preference, moves the tasks ofA to it, updates the target, then restarts onn. It does theN − U
preferences before theL ones, because this is slightly simpler to implement,given that new nodes
go on the end of the sorted sequence of nodes.

A formula is needed for the compatibility of a preference(gi,widt) with a nodenj. Let the
intersection of the resource groups of the preferences already present innj beGj. If there are no
preferences,Gj = G∪{ r0} , whereG is the full set of resources. Finding a suitable formula is a
rather puzzling problem; the author’s current choice is

|Gj∩gi|
|Gj |

or 0 if |Gj | = 0(unlikely). This reaches its maximum value, 1, whenGj ⊆ gi, which is reasonable
since adding(gi,widt) to nj does not reduceGj, and its minimum value, 0, whenGj ∩gi is empty.

Although the result will in general be heuristic, not exact, the difficulty should not be
overstated. A typical example might be (a) 5 or 6 nurses, with (b) at least one senior nurse and
(c) at most two trainee nurses. For cases like this, a simple heuristic should do very well.

Let S be the senior nurses andT be the trainee nurses. Constraint (a) adds preferences
of the form(G,wi), whereG is the full set of resources, to 5 tasks, leaves one task untouched,
and adds preferences of the form({ r0}, wi) to the remaining tasks; (b) adds one preference of
the form (S,wi); and (c) adds preferences of the form(G∪{ r0} − T,wi) to all but two of the
tasks. It is easy to verify that (b) will prefer nodes containing(G,wi), while (c) will prefer nodes
containing({ r0}, wi), and also nodes containing(S,wi), sinceS∩(G∪{ r0} − T) = S, becauseSand
T are disjoint.

Set operations are slow, so four optimizations are used. First, in preferences derived from
assign resource constraints,gi is in factNULL. This is because it has no effect on intersections
(except by omittingr0, but r0 is handled separately). Only non-NULL sets of resources need to be
intersected. Second, an intersection is only performed when it is actually needed: when a task
profile already contains at least two preferences with non-NULL sets of resources, and a third is
being considered for adding to it. That makes three non-NULL sets—quite unlikely in practice.
Third, only the size of the intersection in the formula is calculated,not the actual set. And fourth,
intersections are stored as resource sets (Section 5.9), which are cheaper than resource groups.
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Consider any demand noded. Suppose that every preference in its profile containsr0. This
means that, after careful consideration, preparation has concluded that not assigningd’s tasks
would not incur a cost. As explained earlier, it is better not to include such tasks at all, because
they could over-use resources early in the cycle. Accordingly, such nodesd are now deleted.

Finally, preparation ends with the deletion of preferences derived from assign resource
and prefer resources monitors (they are not needed by solving, as explained below). The results
of preparation are stored in the demand set object: the demand nodes with their tasks, profiles,
and preferences; the uniqueified list of relevant limit resources monitors; and the task grouper
recording which tasks have to be assigned the same resource.

Solving. Solving is much easier to describe than preparation. Group tasks as indicated by
the task grouper. Detach the limit resources monitors. From each demand node, add an edge of
capacity 1 to each supply node representing a resource, and an edge of unlimited capacity to the
supply node representing non-assignment. Find a maximum matching of minimum cost and
make the assignments indicated by it. Reattach the limit resources monitors. Ungroup the task
grouper. If parameterejection_off is false and limit resources monitors were involved and
any of them have non-zero cost, callKheEjectionChainRepairInitialResourceAssignment

to repair them. After that, using a mark, if the solution is not improved, undo the assignments.

The cost of the edge from demand noded to the supply node for resourcer (possiblyr0)
is the cost of the solution after that one assignment is made. In addition, to compensate for the
detached limit resources monitors, for each preference(gi,ci) in d derived from a limit resources
constraint such thatgi does not containr,ci is added to the edge cost. Edge costs are not affected
by preferences derived from assign resource and prefer resources monitors, because those mon-
itors are not detached. Their preferences are needed for task equivalence and to guide the place-
ment of preferences derived from limit resources monitors, but they are not used when solving,
so they can be and are deleted at the end of preparation. There are also the separate adjustments
described earlier, the ones controlled by parametersedge_adjust1_off, edge_adjust2_off,
edge_adjust3_off, andedge_adjust4_off.

When there are no limit resources monitors, the algorithm does not waste time on work
inspired by them: grouping equivalent tasks using task profiles is a valuable optimization in
any case, and the third phase of preparation does nothing. Whether the preparation time spent
on limit resources monitors is significant is a question that can only be answered definitely by
testing, but the running time is probably dominated by solving, in which case the answer is no.

This section sheds light on how event resource constraints should be modelled. It is best in
principle to use assign resource and prefer resources constraints, because they affect each task
independently. But if they are replaced by equivalent limit resources constraints, this algorithm
will produce the same matching graph. This opens a path to a useful generalization—the
expression of all event resource constraints by limit resources constraints—by showing that the
efficiency advantage of assign resource and prefer resources constraints need not be lost.

12.7.3. Time sweep resource assignment

In a planning timetable whose columns represent times and whose rows represent resources,
resource packing proceeds vertically: it assigns one row after another.Time sweepproceeds
horizontally,assigning one time (that is, the tasks running at that time)after another. This is likely
to be useful in nurse rostering, where many constraints link nearby times.
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KHE offers this function for time sweep resource assignment:

bool KheTimeSweepAssignResources(KHE_SOLN soln, KHE_RESOURCE_GROUP rg,
KHE_OPTIONS options);

Using resource matching, it assigns resources to those tasks ofsoln whose resource type is that
of rg, and which are initially unassigned. It does not disturb any existing assignments. For how
it handles fixed and preassigned tasks, and other such details, see Section 12.7.1.

KheTimeSweepAssignResources obtains a frame fromKheFrameOption (Section 5.10).
It visits each time group of the frame in chronological order, and uses one resource matching
to assign or reassign the tasks which overlap this time group. It is influenced indirectly by the
resource matching options, and directly by these options:

rs_time_sweep_daily_time_limit

A string option defining a soft time limit for each day. The format is the one accepted by
KheTimeFromString (Section 8.1):secs, or mins:secs, or hrs:mins:secs. There is
also the special value-, meaning ‘set no limit’, and this is the default value.

rs_time_sweep_edge_adjust1_off

A Boolean option which, whentrue, causes edge adjustment 1 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust1_off.

rs_time_sweep_edge_adjust2_off

A Boolean option which, whentrue, causes edge adjustment 2 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust2_off.

rs_time_sweep_edge_adjust3_off

A Boolean option which, whentrue, causes edge adjustment 3 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust3_off.

rs_time_sweep_edge_adjust4_off

A Boolean option which, whentrue, causes edge adjustment 4 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust4_off.

rs_time_sweep_ejection_off

A Boolean option which, whentrue, causes ejection chain repair to be turned off, by
passingtrue to KheResourceMatchingSolverSolve for ejection_off.

rs_time_sweep_lookahead

An integer option which, when it has a positive valuek, causes time sweep to look aheadk
time groups when calculating edge costs. A full description appears below (Section 12.7.4).
The default value, 0, produces no lookahead.

rs_time_sweep_preserve_existing_off

A Boolean option which, whentrue, causes existing assignments to not be preserved, by
passingfalse to KheResourceMatchingSolverSolve for preserve_existing.

rs_time_sweep_cutoff_off

A Boolean option which, whentrue, causes cutoff times to be omitted. Whenfalse,
cutoff times are installed in all cluster busy times and limit active intervals monitors for the
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resourcesofrg,making them ignore all time groups after the largest time of the current time
group. Cluster busy times monitors that request their resources to be busy at specific times,
as reported byKheMonitorRequestsSpecificBusyTimes (Section 12.4.1), are excepted:
they are not cut off. Cutoff times are removed after the last time group.

rs_time_sweep_redo_off

A Boolean option which, whentrue, causes redoing to be omitted. Whenfalse, after
the last time group is assigned, the algorithm returns to the first time group and reassigns
it using resource matching with the same options. The result may be different, because the
following time groups are assigned now, and there are no cutoffs. It sweeps through all the
time groups in this way. At the end, it checks whether the cost improved, and if so it does
another redo sweep, continuing until a complete redo sweep has no effect on cost.

rs_time_sweep_rematch_off

A Boolean option which, whentrue, causes rematching to be omitted. Whenfalse, after
each time group is assigned during the initial sweep, the most recently assigned 2, 3, and
so on up tors_time_sweep_rematch_max_groups time groups are reassigned, using
resource matching with the same options. This rematching is omitted during redoing.

rs_time_sweep_rematch_max_groups

The maximum number of time groups rematched (see just above). The default value is 7.

rs_time_sweep_two_phase

A Boolean option which, whentrue, causes time sweep to run twice. The
first run assigns the resources ofrg with the largest workload limits according to
KheClassifyResourcesByWorkload (Section 11.4.1). The second run assigns the rest.

On one instance, cutoff times and redoing had a very significant effect. Without redoing, cutoff
times reduced final cost from 185 to 149. With redoing, they reduced final cost from 95 to 72.
Edge adjustment produced mixed results. Rematching during time sweep also produced mixed
results, reducing one solution cost by 40 (from 107 to 67), but increasing another by 20.

12.7.4. Time sweep with lookahead

If option rs_time_sweep_lookahead has valuek > 0, KheTimeSweepAssignResources
looks aheadk time groups when calculating edge costs, as follows.

Lookahead issimilar to combinatorial grouping (Section 11.5.4). Suppose that while we are
matching time groupi we need to determine the cost of the edge that connects taskt to resource
r. Set the cutoffs of resource monitors so that they monitor everything up to and including time
groupi + k. Detach all assign resource and limit resources monitors that monitor tasks running
during time groups after time groupi. Then try all combinations of assignments which include
assigningt to resourcer during time groupi, and assigning any task (in fact, the first task in each
demand node,since the others are equivalent)or nothing during time groupsi + 1 ,… , i + k. Take
the minimum of these values and use it as the cost ofe, plus edge adjustments as usual.

The point of including resource monitors up to time groupi + k is to include the cost of
the minimum-cost combination for the resource in the edge cost. The point of excluding assign
resource and limit resources monitors after time groupi is that if some combination leaves some
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event resource unassigned, that does not matter because some other resource might eventually
be assigned to it. For limit resources monitors it would be ideal to ‘detach’ any minimum limit
but leave any maximum limit ‘attached’; but we don’t do that. In any case a maximum limit will
be at least 1 in practice, and we are only assigning one resource.

To support lookahead, a variant ofKheResourceMatchingSolverSolve is offered:

bool KheResourceMatchingSolverSolveWithLookahead(
KHE_RESOURCE_MATCHING_SOLVER rms,
ARRAY_KHE_RESOURCE_MATCHING_DEMAND_SET *rmds_array,
int first_index, int last_index, bool edge_adjust1_off,
bool edge_adjust2_off, bool edge_adjust3_off,
bool edge_adjust4_off, bool ejection_off, KHE_OPTIONS options);

The matched demand set is in*rmds_array at first_index. The lookahead demand sets
follow, ending at last_index. So last_index == first_index means no lookahead,
last_index == first_index + 1 means one day’s worth,and so on. The other parametersare
as forKheResourceMatchingSolverSolve. ARRAY_KHE_RESOURCE_MATCHING_DEMAND_SET is
defined alongsideKHE_RESOURCE_MATCHING_DEMAND_SET in khe_solvers.h.

12.7.5. Resource rematching repair

Resource rematchingrepairs a solution using resource matching. KHE’s function for this is

bool KheResourceRematch(KHE_SOLN soln, KHE_RESOURCE_GROUP rg,
KHE_OPTIONS options, int variant);

It creates a resource matching solver forsoln andrg and calls it on many sets of times.

Parametervariant may be any integer and causes some change in behaviour when it
changes. At present, depending on whether it is odd or even, the time sets rematched are tra-
versed in forward or reverse order. This can be significant, especially when a time limit prevents
all of them from being visited.

KheResourceRematch is influenced indirectly by the resource matching solver options, and
directly by these options:

rs_rematch_off

A Boolean option which, whentrue, causesKheResourceRematch to do nothing.

rs_rematch_select

This determines howKheResourceRematch selects sets of times for solving. Its values are
"none", "defective_tasks", "frame", "intervals", and"auto", for which see below.

rs_rematch_max_groups

An integer option which instructsKheResourceRematch to try sequences of adjacent time
groups of length 1, 2, and so on up to its value. Its default value is 7. It is only consulted
whenrs_rematch_select is "frame" or "intervals".

rs_rematch_edge_adjust1_off

A Boolean option which, whentrue, causes edge adjustment 1 to be turned off, by passing
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true to KheResourceMatchingSolverSolve for edge_adjust1_off.

rs_rematch_edge_adjust2_off

A Boolean option which, whentrue, causes edge adjustment 2 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust2_off.

rs_rematch_edge_adjust3_off

A Boolean option which, whentrue, causes edge adjustment 3 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust3_off.

rs_rematch_edge_adjust4_off

A Boolean option which, whentrue, causes edge adjustment 4 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust4_off.

rs_rematch_ejection_off

A Boolean option which, whentrue, causes ejection chain repair to be turned off, by
passingtrue to KheResourceMatchingSolverSolve for ejection_off.

The choices forrs_rematch_select are as follows. In each case, a set of times may be
selected several times over, but each distinct set is solved only once. As explained above at the
end of the introduction to resource matching, when the selected tasks are initially assigned (as is
assumed here), tasks which share a resource initially will share one finally.

If rs_rematch_select is "none", rematching is turned off, likers_rematch_off.

If rs_rematch_select is "defective_tasks", sets of times suited to repairing high
school timetables are selected. Find the first tasking ofsoln whose resource type is the resource
type ofrg. For each taskt of that tasking which is unassigned or assigned a resource fromrg,
and which is defective (unassigned, assigned an unpreferred resource, part of a split assignment,
or involved in a clash), make one set of times equal to the set of times thatt is running, including
the times of all tasks connected witht by assignments not involving a cycle task.

If rs_rematch_select is "frame", sets of times suitable for repairing nurse rostering
timetables are selected. For each index in the common frame (Section 5.10), the time group at
that index, plusm− 1 immediately following time groups, are united to form one of the sets of
times. There is one set for each value ofmbetween 1 andrs_rematch_max_groups inclusive.

If rs_rematch_select is"intervals", then for each limit active intervals constraint in
the instance, for each index into the sequence of time groups of that constraint, the time group
at that index, plusm− 1immediately following time groups, are united to form one of the sets of
times. There is one set for each value ofm between 1 andrs_rematch_max_groups inclusive.
To these are added the sets of times solved whenrs_rematch_select is "frame".

Finally, if rs_rematch_select is"auto" (the default value), then"defective_tasks"
is chosen when the model is high school timetabling, otherwise"frame" is chosen. The author
had high hopes for"intervals", but his testsshowed an improvement in only one instance, from
107 to 105, which did not justify the increased running time, averaging one or two seconds.
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12.8. Ejection chain repair

Function

bool KheEjectionChainRepairResources(KHE_TASKING tasking,
KHE_OPTIONS options);

uses ejection chains (Chapter 13) to improve the solution by changing the assignments of the
tasks oftasking. It is influenced by many options, including

rs_eject_off

A Boolean option which, whentrue, causes this function to do nothing.

For full details, consult Section 13.7.

12.9. Resource pair repair

One idea for repairing resource assignments is to unassign all tasks assigned to two resources,
then try to reassign those tasks to the same two resources in a better way—an example of
very large-scale neighbourhood (VLSN) search [1, 12]. The search space, although formally
exponential in size, is often small enough to search completely, giving an optimal result.

This section is devoted to functionKheResourcePairReassign, which carries out this
idea while trying to save time by detecting symmetries. Section 12.10 offers another way of
reassigning resources. It does not detect symmetries, but it is more general in several respects.

12.9.1. The basic function

The basic function for carrying out this kind of repair is

bool KheResourcePairReassign(KHE_SOLN soln, KHE_RESOURCE r1,
KHE_RESOURCE r2, bool resource_invariant, bool fix_splits);

It knows that when one task is assigned to another, the two tasks must be assigned the same re-
source;and it believes that tasks that overlap in time must be assigned different resources. It does
not change task domains, fixed assignments, or assignments of tasks to non-cycle tasks. If it can
find a reassignment tor1 andr2 of the tasks currently assigned tor1 andr2 which satisfies these
conditions and givessoln a lower cost, it makes it and returnstrue; otherwise it changes nothing
and returnsfalse. If resource_invariant is true, only changes that preserve the resource
assignment invariant are allowed.KheResourcePairReassign accepts any resources, but it is
most likely to succeed on resources with similar capabilities that are involved in defects.

If fix_splits is true, the algorithm focuses on repairing split assignments, by forcing
tasks unassigned by the algorithm which are linked by avoid split assignments constraints of
non-zero cost to be assigned the same resource in the reassignment. This runs faster, because it
has fewer choices to try, but it may overlook other kinds of improvements.

Within the set of tasks assigned tor1 andr2 originally, there may be subsets which are not
assignable to two resources without introducing clashes. Clashes in the original assignments
can cause this, as can split assignments whenfix_splits is set. Such subsets are ignored by
KheResourcePairReassign; their original assignments are left unchanged.
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12.9.2. A resource pair solver

Resource solver

bool KheResourcePairRepair(KHE_TASKING tasking, KHE_OPTIONS options);

calls KheResourcePairReassign for many pairs of resources. Theresource_invariant
arguments of all these calls are set to thers_invariant option ofoptions. Two other options
control the behaviour ofKheResourcePairRepair:

rs_pair_off

A Boolean option which, whentrue, turns resource pair repair off.

rs_pair_select

This option determines which pairs of resources are tried. If it is"none", no pairs are tried,
giving another way to turn this repair off. If it is"splits" (the default), then for all pairs
of resources involved in all split assignments oftasking, KheResourcePairRepair calls
KheResourcePairReassign for those two resources, with thefix_splits parameter set
totrue. This focuses the solver on repairing split assignments. If it is"partitions", then
KheResourcePairReassign calls KheResourcePairRepair for each pair of resources
in each partition of the resource type oftasking, or in all resource types iftasking has
no resource type, withfix_splits set tofalse. Each resource type with no partitions
is treated as though all resources lie in a single shared partitition. This focuses the solver
on improving resources’ assignments generally. However the search space is often larger,
increasing the chance that the search will be cut short, losing optimality. Value"all"

is the same as"partitions" except that partitions are ignored, so that there is a call on
KheResourcePairReassign for every pair of distinct resources of the types involved.

KheResourcePairRepair collects statistics about its calls toKheResourcePairReassign,
held in thers_pair_calls, rs_pair_successes, andrs_pair_truncs options. Each time
KheResourcePairReassign is called,rs_pair_calls is incremented. Each time it returns
true, rs_pair_successes is incremented. And each time it truncates an overlong search (at
most once per call),rs_pair_truncs is incremented. The caller must initialize and retrieve
these options at the right moments, using the usual options functions (Section 8.2).

12.9.3. Partition graphs

Resource pair repair is essentially about two-colouring a clash graph whose nodes are tasks and
whose edges join pairs of tasks that overlap in time. Although the basic idea is simple enough,
the details become quite complicated, especially when optimizing by removing symmetries in
the search. It has proved convenient to build on a separatepartition graphmodule, which is the
subject of this section. It finds the connected components of a graph (calledcomponentshere),
and, if requested, partitions components into twopartsby two-colouring them.

The module storesa graph whose nodes are represented by valuesof typevoid *. There are
operations for creating a graph in a given arena, adding nodes to it, and visiting those nodes:
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KHE_PART_GRAPH KhePartGraphMake(KHE_PART_GRAPH_REL_FN rel_fn,
HA_ARENA a);

void KhePartGraphAddNode(KHE_PART_GRAPH graph, void *node);
int KhePartGraphNodeCount(KHE_PART_GRAPH graph);
void *KhePartGraphNode(KHE_PART_GRAPH graph, int i);

Deleting the arena deletes the graph, including its components and parts, but not its nodes. These
functions and the others in this section are declared in include filekhe_part_graph.h.

To define the edges, the user passes in arelation functionof typeKHE_PART_GRAPH_REL_FN
which the module calls back whenever it needs to know whether two nodes are connected by an
edge. As the user would define it, this function looks like this:

KHE_PART_GRAPH_REL RelationFn(void *node1, void *node2)
{
...

}

where typeKHE_PART_GRAPH_REL is

typedef enum {
KHE_PART_GRAPH_UNRELATED,
KHE_PART_GRAPH_DIFFERENT,
KHE_PART_GRAPH_SAME

} KHE_PART_GRAPH_REL;

ValuesKHE_PART_GRAPH_UNRELATED andKHE_PART_GRAPH_DIFFERENT are the usual options
for clash graphs, the first saying that there is no edge between the two nodes, the second that there
is an edge which requires the two nodes to be coloured with different colours. The third value,
KHE_PART_GRAPH_SAME, says that the two nodes must be coloured the same colour. It is used,
for example, when the two nodes represent tasks which are linked by an avoid split assignments
constraint, and thefix_splits option is in force.

After all nodes have been added, the user may call

void KhePartGraphFindConnectedComponents(KHE_PART_GRAPH graph);

to find the connected components, which may then be visited by

int KhePartGraphComponentCount(KHE_PART_GRAPH graph);
KHE_PART_GRAPH_COMPONENT KhePartGraphComponent(KHE_PART_GRAPH graph, int i);

The graph that a component is a component of may be found by

KHE_PART_GRAPH KhePartGraphComponentGraph(KHE_PART_GRAPH_COMPONENT comp);

and the nodes of a component may be visited by

int KhePartGraphComponentNodeCount(KHE_PART_GRAPH_COMPONENT comp);
void *KhePartGraphComponentNode(KHE_PART_GRAPH_COMPONENT comp, int i);

KhePartGraphFindConnectedComponents considers two nodes to be connected whenrel_fn
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returnsKHE_PART_GRAPH_SAME or KHE_PART_GRAPH_DIFFERENT when passed those nodes.

If requested, the module will partition the nodes of a component into two sets, such that
two-colouring the component will give the nodes in one set one colour, and the nodes in the other
set the other colour. This gives exactly two ways to two-colour the component, which is all there
are, since once a colour is assigned to one node, its neighbours must be assigned the other colour,
their neighbours must be assigned the first colour, and so on. To carry out this partitioning, call

void KhePartGraphComponentFindParts(KHE_PART_GRAPH_COMPONENT comp);

After that, to retrieve the two parts, call

bool KhePartGraphComponentParts(KHE_PART_GRAPH_COMPONENT comp,
KHE_PART_GRAPH_PART *part1, KHE_PART_GRAPH_PART *part2);

If KhePartGraphComponentFindParts was able to partition the component into two parts,
KhePartGraphComponentParts returnstrue and sets*part1 and*part2 to non-NULL values;
otherwise it returnsfalse and sets them toNULL. To find a part’s enclosing component, call

KHE_PART_GRAPH_COMPONENT KhePartGraphPartComponent(
KHE_PART_GRAPH_PART part);

The nodes of a part may be visited by

int KhePartGraphPartNodeCount(KHE_PART_GRAPH_PART part);
void *KhePartGraphPartNode(KHE_PART_GRAPH_PART part, int i);

as usual.

12.9.4. The implementation of resource pair reassignment

This section describes the implementation ofKheResourcePairReassign. It builds two
partition graphs altogether,afirst graphwhich does the basic analysis,and asecond graphwhich
is used to find and remove symmetries in the first graph.

The same node type is used in both graphs. A node holds a set of tasks. A resource is
assignable to a nodewhen it is assignable to each task of the node. A resource is assignable to
a fixed task when it is assigned to that task (fixed tasks are never unassigned). A resource is
assignable to an unfixed task when it lies in the domain of that task. It is possible for neither,one,
or both resources to be assignable to a node. If neither is assignable, the node isunassignable,
otherwise it isassignable.

When a resource is assignable to a node, there are operations for assigning and unassigning
it. To assign it, assign it to each unfixed task of the node. To unassign it, unassign it from each
unfixed task of the node.

The first graph contains one node for each task initially assignedr1 or r2, containing just
that task. Thus, in the first graph there are no unassignable nodes. Given two nodes, the first
graph’s relation function first checks which resources are assignable to each. If there is no way
to assign the same resource to both nodes, it returnsKHE_PART_GRAPH_DIFFERENT. Otherwise,
if there is no way to assign different resources to the nodes, it returnsKHE_PART_GRAPH_SAME.
Otherwise, iffix_splits is true and the two nodes share an avoid split assignments monitor
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of non-zero cost, it returnsKHE_PART_GRAPH_SAME. Otherwise, if the two nodes overlap in time,
it returnsKHE_PART_GRAPH_DIFFERENT. Otherwise it returnsKHE_PART_GRAPH_UNRELATED.

Next, the graph’s connected components are found and partitioned. It is easy to see,
referring to the relation function, that if a component was successfully partitioned there must be
at least one way (and possibly two ways) to assignr1 to the nodes of one part andr2 to the nodes
of the other part. So a component of the first graph is calledassignableif it was successfully
partitioned, andunassignableotherwise.

For each assignable component, the nodes of one part are merged into one node, and the
nodes of the other are merged into a second node. These two nodes are assignable to different
resources in one or two ways. For each unassignable component, all the nodes are merged into
a single node. It does not matter whether this node is assignable or not; it is never assigned.

Next, the assignable components are sorted into increasing order of number of possible
assignments. Each of theC assignable components has 1 or 2 possible assignments. A tree
search is carried out which tries each of these on each component in turn. The total search
space size is at mostC2 . This is often small enough to search completely. For safety, the search
only explores both assignments until 512 tree nodes have been visited; after that it tries only one
assignment for each component. In the usual way, each time the tree search reaches a leaf it
compares its solution cost with the best so far, and if it is better (and if the resource assignment
invariant is preserved, if required) it takes a copy of its decisions. At the end, the cost of the best
solution found is compared with the initial solution cost, and if the best solution is better it is
installed; otherwise the initial solution is restored.

The search space often has symmetries which would waste time and cause the node limit
to be reached often enough to compromise optimality in practice if they were not removed. The
rest of this section describes them and howKheResourcePairReassign removes them.

Supposer1 andr2 are Mathematics teachers assigned to two Mathematics courses from
the same form, each split into 4 meets of the same durations, running simultaneously. This gives
4 components and a search space of size42 , yet clearly this could be reduced safely to 1. If two
of the simultaneous meets are made not simultaneous, the search space size can still be reduced
safely, to 2. Iffix_splits is true, each set of 4 meets is related, making 1 component and a
search space of size 2—still unnecessarily large when the meets are simultaneous.

A component issymmetricalif it makes no difference which of its two assignments is
chosen. In that case, its assignment choices can be reduced from 2 to 1 by arbitrarily removing
one, halving the search space size. But note the complicating factor in the Mathematicsexample:
one cannot arbitrarily remove one choice from each component, because some combinations of
choices lead to split assignments and others do not. Instead, a way must be found to first merge
the four components into one, which can then be assigned arbitrarily.

Symmetry arises when the two assignment choices of a component affect monitors in the
same way. They need to have the same effect on the state of monitors, so that no difference arises
when the monitors change state again later in response to changes outside the component.

The two choices always have the same effect on the state of event monitors (no effect at
all), and on the state of assign resources monitors, which care only whether tasks are assigned
resources, not which resources. As far as these kinds of monitors are concerned, all components
are symmetrical. Classify the remaining monitors into three groups: resource monitors, prefer
resources monitors, and avoid split assignments monitors. (This description was written before
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the advent of limit resources monitors, and does not take them into account.)

A component isr-symmetrical, p-symmetrical, or s-symmetricalwhen it is assignable both
ways and they affect in the same way all resource, prefer resources, or avoid split assignments
monitors that monitor tasks of the component. (In particular, if there are no monitors of some
type, the component is vacuously symmetrical in that type.) Combinations of prefixes denote
conjunctions of these conditions. For example,symmetricalis shorthand forrps-symmetrical.

Although these definitions are clear in principle, they are rather abstract. An algorithm
needs concrete, easily computable conditions that imply the abstract ones and are likely to hold
in practice. Here are the concrete conditionsused byKheResourcePairReassign, assuming that
the component is assignable both ways.

Suppose that some component’s two parts run at the same times and have the same total
workload. Then the component is r-symmetrical, because only these things affect resource mon-
itors, except clashes—but component assignments have no clashes in themselves, and since the
two parts run at the same times, they have the same clashes with tasks outside the component.

Suppose that, for every prefer resources monitor of non-zero cost which monitors any task
of some component, eitherr1 andr2 are both preferred by the monitor’s constraint, or they are
both not preferred. Then the component is p-symmetrical.

Suppose that, for each task in some componentc which is monitored by an avoid split
assignments monitor of non-zero cost, every task monitored by that monitor either was not
assignedr1 or r2 originally, or else it lies inc. Then the component is s-symmetrical.

To prove this, take one avoid split assignments monitor, and partition the set of tasks mon-
itored by it into those that were not assignedr1 or r2 originally, and so are beyond the scope of
the reassignment (call themS1), and those that were (call themS2). If the tasks ofS2 lie within
two or more components, then which way those componentsare assigned doesmatter. But if they
lie within one component, then the cost of the monitor will be the same whichever assignment is
chosen. This is becauser1 andr2 do not appear among the resources assigned to the tasks ofS1
(if they did, those tasks would be inS2), so the assignments toS2 introduce fresh resources to the
monitor. If all the tasks ofS2 lie in one part of the component, one fresh resource is introduced
by both assignments; if some lie in one part and the others in the other, two fresh resources are
introduced by both assignments. Either way, the effect on the monitor is the same.

Whenfix_splits is true, all tasks which share an avoid split assignments monitor lie in
the same part, so in the same component. So every component is s-symmetrical in that case.

It is easy to check whether a component is rp-symmetrical. This is done as each component
is partitioned. Merely checking for s-symmetry is not enough: as illustrated by the Mathematics
example, several components may need to be merged (by merging their parts) to produce one
s-symmetrical component. This is done using the second partitioning graph, as follows.

The second-graph nodes are the merged nodes from the first-graph components. When two
nodes come from the same first-graph component,KHE_PART_GRAPH_DIFFERENT is returned by
the relation function. Otherwise, if they share an avoid split assignments monitor of non-zero
cost, it returnsKHE_PART_GRAPH_SAME. Otherwise it returnsKHE_PART_GRAPH_UNRELATED.

Two nodes representing the two parts of a first-graph component must lie in the same
second-graph component, because there is an edge between them. So each second-graph
component is a set of first-graph components linked by avoid split assignments constraints.
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For each second-graph component, its first-graph components may be merged if it does
not contain an unassignable first-graph component, at most one of its first-graph components is
not rp-symmetrical, and it is partitionable. The two nodes of the merged component are built by
merging the nodes of each part of the second-graph component. If all the first-graph components
being merged are rp-symmetrical, the resulting component is rps-symmetrical,so either one of its
assignments may be removed. But component merges are valuable even without rps-symmetry.

12.10. Resource reassignment

This section describes an operation calledresource reassignmentwhich in principle can
optimally reassign the tasks assigned to an arbitrary number of resources. We say ‘in principle’
because as the number of resources increases the running time increases dramatically, so that in
practice it can only handle 3 resources, or 4 at most; or alternatively it can handle all resources,
but only when the tasks are running at a very limited range of times.

The first step in resource reassignment is to create areassign solver, by calling

KHE_REASSIGN_SOLVER KheReassignSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

The solver usesgs_common_frame andrs_invariant from options. These values, along with
soln andrt, are fixed for the lifetime of the solver.

A solver object may be deleted by calling

void KheReassignSolverDelete(KHE_REASSIGN_SOLVER rs);

This should be done after solving is completed, and also if any changes to the solution are made
other than those carried out byrs. This is becausers keeps information between solves, so it
will go wrong if the solution changes in ways that it does not know about.

To say which resources are to be involved in the next solve, call

bool KheReassignSolverAddResource(KHE_REASSIGN_SOLVER rs, KHE_RESOURCE r);
bool KheReassignSolverDeleteResource(KHE_REASSIGN_SOLVER rs, KHE_RESOURCE r);
void KheReassignSolverClearResources(KHE_REASSIGN_SOLVER rs);

KheReassignSolverAddResource addsr to the solver, returningfalse and changing nothing
whenr is already present.KheReassignSolverDeleteResource deletesr, returningfalse and
changing nothing whenr is not present. Both abort ifr does not have the resource typert passed
to KheReassignSolverMake. KheReassignSolverClearResources deletes all resources.

One of the resources may beNULL. This causes the solver to select as many non-overlapping
unassigned tasks of typert as it can easily find, and try assigning them,and also unassigning oth-
er tasks,as though unassigned tasks were assigned a resource calledNULL. Only unassigned tasks
in need of assignment according toKheTaskNeedsAssignment (Section 4.6.1) are included.

To carry out an actual solve, call

bool KheReassignSolverSolve(KHE_REASSIGN_SOLVER rs, int first_index,
int last_index, KHE_REASSIGN_GROUPING grouping, bool ignore_partial,
KHE_REASSIGN_METHOD method, int max_assignments);
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This optimally reassigns the solver’s resources to the tasks assigned those resources in thetarget
interval (first_index to last_index inclusive), returningtrue if it improves the solution.

When deciding whether a taskt lies in the target interval,t’s own interval, as returned by
KheTaskFinderTaskInterval (Section 11.8.1), is used to determine which days it is running.
These include days when tasks assigned directly or indirectly tot are running.

Tasks are organized into groups during the solve, and parametergrouping determines how
these groups are made. Two tasks are only eligible to be in the same group if they are assigned the
same resource (possiblyNULL) initially. The tasks of each group are assigned the same resource
throughout the solve. The type ofgrouping is

typedef enum {
KHE_REASSIGN_MINIMAL,
KHE_REASSIGN_RUNS,
KHE_REASSIGN_MAXIMAL

} KHE_REASSIGN_GROUPING;

KHE_REASSIGN_MINIMAL produces no grouping beyond the initial grouping of the tasks (which
is not disturbed);KHE_REASSIGN_RUNS groups sequences of tasks assigned the same resource on
adjacent days (runs); andKHE_REASSIGN_MAXIMAL groups all tasks initially assigned the same
resource which participate in the solve. The meaning of ‘optimal reassignment’ is relative to
these groupings; onlyKHE_REASSIGN_MINIMAL produces true optimal reassignment.

Whenignore_partial is true, tasks that lie partly inside and partly outside the target
interval are ignored, just as though they were not there. Whengrouping isKHE_REASSIGN_RUNS,
this causes some runs to be shorter than they otherwise would be.

Whenignore_partial is false, tasks that lie partly inside and partly outside the target
interval are included in the solve. Furthermore, whengrouping is KHE_REASSIGN_RUNS, tasks
that lie entirely outside the target interval are included when they are part of a run that lies partly
within the target interval.

We say that a groupneeds assignmentwhen at least one of its tasks needs assignment,
according toKheTaskNeedsAssignment (Section 4.6.1). If a group does not need assignment,
then, in addition to trying to assign it to the resources of the solve,KheReassignSolverSolve

will also try unassigning it. Whengrouping is KHE_REASSIGN_RUNS, runs are built so as to
ensure that all tasks in any given run have the same value forKheTaskNeedsAssignment. As
previously stated, for theNULL resource this value must betrue; but for non-NULL resources it
may betrue or false.

The type ofmethod is

typedef enum {
KHE_REASSIGN_EXHAUSTIVE,
KHE_REASSIGN_MATCHING

} KHE_REASSIGN_METHOD;

It determines the algorithm used for solving: exhaustive search or weighted bipartite matching.
The latter is reasonable only when there is one group of tasks per resource: whengrouping is
KHE_REASSIGN_MAXIMAL, or the target interval is narrow. Parametermax_assignments limits
the number of alternatives tried on each call toKheReassignSolverSolve when method is
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KHE_REASSIGN_EXHAUSTIVE. It is not consulted whenmethod is KHE_REASSIGN_MATCHING.

If there arek resources and initially those resources are assignedR groups of tasks, then
each group could be assigned any one of thek resources, making a search space of sizeRk when
method is KHE_REASSIGN_EXHAUSTIVE. However there is some pruning. Before starting the
search, the solver checks the(k − 1)Rpossible new assignments to see which succeed, and does
not try failed ones again. Any group that cannot move at all is omitted from the search, and
groups that overlap with that group have its resource removed from their list of resources to try.
And any assignment which would give a resource two tasks on the same day is not tried. The
test for this is carried out efficiently using intervals.

Unavailable times are taken into account when solution costs are reported, but they are not
taken as a reason to exclude a resource from being assigned to a group. It is not unusual for an
optimal solution to contain a few assignments of resources to tasks at unavailable times.

Function

void KheReassignSolverDebug(KHE_REASSIGN_SOLVER rs,
int verbosity, int indent, FILE *fp);

produces a debug print ofrs ontofp with the given verbosity and indent. Between solves there
is not much to display, mainly the resources.

A convenient way to callKheReassignSolverSolve repeatedly is

bool KheReassignRepair(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

This creates a reassign solver, tries a variety of sets of resources of typert and target intervals,
and ends by deleting the solver and returningtrue if any of the solves improved the solution.
KheResourceReassignRepair consults these options:

rs_reassign_resources

This integer option says how many non-NULL resources fromrt to select for each solve. The
default value is2. The special valueall selectsall resourcesof typert. This isonly feasible
whenmethod is KHE_REASSIGN_MATCHING. Whenmethod isKHE_REASSIGN_EXHAUSTIVE,
larger values (sometimes even 3) can produce long run times.

rs_reassign_select

All sets of resources tried containrs_reassign_resources non-NULL resources. All have
typert. This option determines which of these sets are tried. Its value may be"none" (the
default), meaning that no sets are tried, turningKheReassignRepair off; "all", meaning
that all sets are tried;"adjacent", meaning that each set of resources which are adjacent
to each other inrt are tried; or"defective", meaning that all sets in which at least one of
the resources has a defective resource monitor are tried.

For experimental use there is alsoconstraint:xxx wherexxx stands for any non-empty
string. The cluster busy times constraints of the instance whose names containxxx are
found, and then all sets of resources are selected such that one resource violates one of these
constraints, and the rest are slack (strictly below the maximum) for all of them. The hope is
that optimal reassignment might move tasks from the violating resource to the slack ones.
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rs_reassign_null

Whentrue, this Boolean option says to includeNULL in the set of resources passed to
the solver on each call. This is in addition to thers_reassign_resources non-NULL
resources selected byrs_reassign_select. The default value isfalse as usual.

rs_reassign_parts

The value offirst_index - last_index + 1 on each call. For example, setting this
value to 14 (the default) reassigns two weeks. Ifrs_reassign_parts is larger than the
total number of days, it is silently reduced to the total number of days.

For experimental use there is alsoconstraint:xxx wherexxx stands for any non-empty
string. The cluster busy times constraints of the instance whose names containxxx are
found, and for each time group of each of them, the smallest target interval covering that
time group is one of the target intervals tried. A target interval may be found several times
over in this way, but it is only tried once. For this value ofrs_reassign_parts, options
rs_reassign_start andrs_reassign_increment (just below) are not consulted.

rs_reassign_start, rs_reassign_increment
The value offirst_index on the first call for a given set of resources, and how much it is
incremented by on each subsequent call for that set of resources. The default values are 0
andrs_reassign_parts. Only intervals lying entirely within the legal range are tried.

rs_reassign_grouping

Determines thegrouping argument of each call (see above). It may be"minimal" (the
default),"runs", or "maximal".

rs_reassign_ignore_partial

A Boolean option which determines theignore_partial argument of each call (see
above). The default value isfalse.

rs_reassign_method

Determines themethod argument of each call (see above). Its value may be either
"exhaustive" (the default) or"matching".

rs_reassign_max_assignments

An integer option which determines themax_assignments argument of each call (see
above). Its default value is 1000000.

To allow for up to three calls toKheReassignRepair with separate options, there are also

bool KheReassign2Repair(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

bool KheReassign3Repair(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

KheReassign2Repair is the same except that it consults optionsrs_reassign2_resources,
rs_reassign2_select, and so on;KheReassign3Repair is the same except that it consults
optionsrs_reassign3_resources, rs_reassign3_select, and so on.
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12.11. Trying unassignments

KHE’s solvers assume that it is always a good thing to assign a resource to a task. However,
occasionally there are cases where cost can be reduced by unassigning a task, because the
cost of the resulting assign resource defect is less than the cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSolnTryTaskUnAssignments(KHE_SOLN soln, KHE_OPTIONS options);

for use at the end. It triesunassigningeach proper root task ofsoln. If any unassignment reduces
the cost ofsoln, it is not reassigned. The result istrue if any unassignments were kept.

RestrictingKheSolnTryTaskUnAssignments to proper root tasks ensures that it does no
task ungrouping. By the end there will probably be no groups anyway, but it seems best to keep
the ideas of ungrouping and unassigning distinct.

It might pay to unassign two or more adjacent tasks.KheSolnTryTaskUnAssignments

consults an option for this:

rs_max_unassign

This integer option determines the maximum number of adjacent tasks to try unassigning.
The default value is 1.

For example, settingrs_max_unassign to 2 will try unassigning entire weekends (among other
things), which might pay off if the resource is working on too many weekends.

12.12. Putting it all together

This section presents functions which assemble the pieces described in previous sections.

Three structural decisions face a resource solver. Should it work with split assignments?
Should it preserve the resource assignment invariant? Should it respect the domains of tasks? It
is easy to write solvers that can be used with any combination of these decisions, as follows.

Get unsplit assignments by building a task tree with avoid split assignments jobs. Allow
split assignments by callingKheTaskingAllowSplitAssignments (Section 11.9). Either way,
a solver assigns resources to unfixed tasks, without knowing or caring if they have followers.

By enclosing each attempt to change the solution inKheAtomicTransactionBegin and
KheAtomicTransactionEnd (Section 12.2), a solver can preserve the resource assignment
invariant, or not, depending on the value of a Boolean parameter.

If domains are to be respected, do nothing; if not, then before running the solver, call
KheTaskingEnlargeDomains (Section 11.9) to enlarge them to the full set of resources.

A sequence of three functions,

bool KheTaskingAssignResourcesStage1(KHE_TASKING tasking,
KHE_OPTIONS options);

bool KheTaskingAssignResourcesStage2(KHE_TASKING tasking,
KHE_OPTIONS options);

bool KheTaskingAssignResourcesStage3(KHE_TASKING tasking,
KHE_OPTIONS options);
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packages this chapter’s ideas into a three-stage solver which assigns resources to the tasks of
tasking. Called in order, they take a ‘progressive corruption’ approach to the decisions just
described: they are spotless at first, but they slide into the gutter towards the end.

KheTaskingAssignResourcesStage1 begins by setting option"rs_invariant" to true.
Then it assigns resources to the unassigned unfixed tasks oftasking, using the assignment
algorithm indicated by thers_constructor option, as detailed below. This is followed by a call
to a private function, called the ‘repair part’ here, which tries several kinds of repairs, including
KheResourceRematch (Section 12.7.5),KheEjectionChainRepairResources (Section 12.8),
and, in the employee scheduling model,KheReassignRepair (Section 12.10).

After this, the great majority of the tasks,probably,have been assigned resources. There are
no split assignments, the resource assignment invariant is preserved, and domains are respected.

KheTaskingAssignResourcesStage2 does nothing if the instance contains no avoid split
assignments constraints. Otherwise, it callsKheFindSplitResourceAssignments to build split
assignments, andKheTaskingAllowSplitAssignments to permit all tasks, assigned or not, to
be split. It then calls the repair part. Ejection chain repair will try to remove split assignments
(it has always been able to, but there has been nothing to trigger it until now), and it also tries to
assign unassigned tasks, even at the cost of splitting assignments that were previously unsplit.

KheTaskingAssignResourcesStage3 is very corrupt indeed. It turns the resource
assignment invariant off, enlarges domains by callingKheTaskingEnlargeDomains, then runs
the repair part yet again. Enlarging domains makes sense only at the very end, and will help only
if any resource is better than none. Because the resource assignment invariant is removed, this
stage should be run only after the first two stages have been runfor each resource type.

The options consulted by the three functions directly are

rs_constructor

This option determines which resource solverKheTaskingAssignResourcesStage1 calls
to construct the initial resource assignment. Its possible values are:

"none": no solver is called, so the repair stages have to find assignments as well as repair
them. This is not likely to work well, although it makes a worthwhile test.

"most_constrained": KheMostConstrainedFirstAssignResources (Section 12.4.2).

"resource_packing": KheResourcePackAssignResources (Section 12.4.3).

"time_sweep": KheTimeSweepAssignResources (Section 12.7.3).

"auto" (the default): one of the functions just listed is called, depending on the model and
whether there are avoid split assignments constraints.

"requested_only": only KheSolnAssignRequestedResources (Section 12.4.1) is
called.

"single_test": only KheSingleResourceSolverTest (Section 12.5) is called, once for
each non-empty resource type. Thisalso setsrs_repair_off (see below) totrue, turning
off all repair. This option is not a serious solver, it is for testing single resource solving.
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"dynamic_test": only KheDynamicResourceSolverTest (Section 12.6) is called, once
for each non-empty resource type. This also setsrs_repair_off (see below) totrue,
turning off all repair. This option is not a serious solver, it is for testing dynamic resource
solving.

rs_group_by_resource

This option, whentrue, causes the repair part ofKheTaskingAssignResourcesStage1 to
be executed twice, first in the usual way, and then with the tasks grouped by resource using
KheTaskingGroupByResource (Section 11.6). The grouping is then removed.

rs_cluster_minimum

This option, whentrue, causes a cluster minimum solver (Section 8.5.4) to be run at the
start of KheTaskingAssignResourcesStage1, on the resource type oftasking. Any
monitors associated with groups whose demand is equal to or greater than their supply have
their minimum limits changed to be equal to their maximum limits. These changes remain
in place throughout the solve, until just at the end whenKheSolnEnsureOfficialCost

(Section 8.3) is called. It resets their minimum limits to their initial values.

rs_repair_off

This option, whentrue, causes the repair part to do nothing in all three stages, leaving just
the initial construction, including any repair steps within the construction algorithms.

rs_repair1_off, rs_repair2_off, rs_repair3_off
These three options, whentrue, cause stage 1, 2, or 3 of the repair part to do nothing.

rs_repair_rematch_off

This option, whentrue, turns off rematching repair in the repair parts.

rs_repair_ejection_off

This option, whentrue, turns off ejection chain repair in the repair parts.

rs_multiplier

A string option which when present causesKheSetMonitorMultipliers (Section 8.5.2) to
be called once at the start of Stage 1, and again at the end of Stage 1. Its value isval:str,
whereval is an integer andstr is an arbitrary non-empty string. These two values are
passed to the first call toKheSetMonitorMultipliers, and cause the multipliers of all
cluster busy times monitors derived from constraints whose names or Ids includestr to be
multiplied byval. The second call resets the multipliers in those same monitors to 1.

rs_repair_time_limit

A string option defining a soft time limit for the repair part of each stage. The format
is the one accepted byKheTimeFromString (Section 8.1):secs, or mins:secs, or
hrs:mins:secs, or the special value-, meaning ‘no limit’, which is the default value.

Many other options influence the solvers called by the three functions. All three functions set
thers_invariant option, making it futile for the user to do so if they are used.
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Ejection chains are sequences of repairs that generalize the augmenting paths from bipartite
matching. They are due to Glover [3], who applied them to the travelling salesman problem.

13.1. Introduction

An ejection chain algorithm targets one defect and tries a set of alternativerepairson it. A repair
could be a simple move or swap, or something arbitrarily complex. It removes the defect, but
may introduce new defects. If no new defects of significant cost appear, that is success. If just
one significant new defect appears, the method calls itself recursively to try to remove it; in this
way a chain of coordinated repairs is built up. If several significant new defects appear, or the
recursive call fails to remove the new defect, it undoes the repair and continues with alternative
repairs. It can also try to remove all the new defects.

Corresponding to the well-known function for finding an augmenting path in a bipartite
graph, starting from a given node, is this function, formulated by the author, for ‘augmenting’
(improving) a solution, starting from a given defect:

bool Augment(Solution s, Cost c, Defect d);

(KHE’s interface is somewhat different to this.)Augment has precondition

cost(s) >= c && cost(s) - cost(d) < c

If it can changes to reduce its cost to less thanc, it does so and returnstrue; if not, it leavess
unchanged and returnsfalse. The precondition implies that removingd without adding new
defects would be one way to succeed. Here is an abstract implementation ofAugment:

bool Augment(Solution s, Cost c, Defect d)
{
repair_set = RepairsOf(d);
for( each repair r in repair_set )
{
new_defect_set = Apply(s, r);
if( cost(s) < c )
return true;

for( each e in new_defect_set )
if( cost(s) - cost(e) < c && Augment(s, c, e) )
return true;

UnApply(s, r);
}
return false;

}

It begins by finding a set of ways thatd could be repaired. For each repair, it applies it and

362
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receives the set of new defects introduced by that repair, looks for success in two ways, then
if neither of those works out it unapplies the repair and continues by trying the next repair,
returningfalse when all repairs have been tried without success.

Success could come in two ways. Either a repair reducescost(s) to belowc, or some new
defecte has cost large enough to ensure that removing it alone would constitute success, and a
recursive call targeted ate succeeds. Notice thatcost(s) may grow without limit as the chain
deepens, while there is a defecte whose removal would reduce the solution’s cost to belowc.

The key observation that justifies the whole approach is this: the new defects targeted by the
recursive calls are not known to have resisted attack before. It might be possible to repair one of
them without introducing any new defects of significant cost.

The algorithm stops at the first successful chain. An option for finding the best successful
chain rather than the first has been withdrawn, because of design problems in combining it
with ejection trees (Section 13.5.3). It is no great loss: it produced nothing remarkable, and
ran slowly. Another option, for limiting the disruption caused by the repairs, has also been
withdrawn. It too was not very useful. It can be approximated by limiting the maximum chain
length, as described next.

The tree searched byAugment as presented may easily grow to exponential size,which is not
the intention. The author has tried two methods of limiting its size, both of which seem useful.
They may be used separately or together.

The first method is to limit the maximum chain length to a fixed constant, perhaps 3 or 4.
The maximum length is passed as an extra parameter toAugment, and reduced on each recursive
call, with value 0 preventing further recursion. Not only is this attractive in itself, it also supports
iterative deepening, in whichAugment is called several times on the same defect, with the length
parameter increased each time. Another idea is to use a small length on the first iteration of the
main loop (see below), and increase it on later iterations.

The second method is the one used by augmenting paths in bipartite matching. Just before
each call onAugment from the main loop, the entire solution is marked unvisited (by increment-
ing a global visit number, not by traversing the entire solution). When a repair changes some
part of the solution, that part is marked visited. Repairs that change parts of the solution that are
already marked visited are tabu. This limits the size of the tree to the size of the solution.

Given a solution and a list of its defects, the main loop cycles through the list repeatedly,
callingAugment on each defect in turn, withc set tocost(s). When the main loop exits, every
defect has been tried at least once without success since the most recent success, so no further
successful augments are possible, unless there is a random element withinAugment. Under
reasonable assumptions, this very clear-cut stopping criterion ensures that the whole algorithm
runs in polynomial time, for the same reason that hill-climbing does.

When there are several defect types, severalAugment algorithms are needed, one for each
defect type, dynamically dispatched on the type. The repairs are usually applied directly, rather
than indirectly via objects built to represent them.

Careful work is needed to maximize the effectivenessof ejection chains. Grouping together
monitors that measure the same thing is important, because it reduces the number of defects
and increases their cost, increasing the chance that a chain will be continued. Individual repair
operations should actually remove the defects that they are called to repair (the framework does
not check this), and should do whatever seems most likely to avoid introducing new defects.
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13.2. Ejector construction

KHE offersejectorobjects which provide a framework for ejection chain algorithms, reducing
the implementation burden to writing just the augment functions. An ejector object, stored in a
given arenaa, is constructed by a sequence of calls beginning with

KHE_EJECTOR KheEjectorMakeBegin(char *schedules, HA_ARENA a);

followed by calls which load augment functions, as explained below, and ending with

void KheEjectorMakeEnd(KHE_EJECTOR ej);

The ejector is then ready to do some solving (Section 13.3). The two attributes are returned by

char *KheEjectorSchedules(KHE_EJECTOR ej);
HA_ARENA KheEjectorArena(KHE_EJECTOR ej);

There is no function to delete an ejector; it is deleted when its arena is deleted.

Theschedules string consists of one or moremajor schedulesseparated by semicolons:

<major_schedule>;<major_schedule>; ... ;<major_schedule>

Each major schedule consists of one or moreminor schedulesseparated by commas:

<minor_schedule>,<minor_schedule>, ... ,<minor_schedule>

Each minor schedule consists of a positive integer called itsmaximum length, followed by either
"+" or "-", representing a Boolean value called itsmay revisitattribute. The maximum length
may have the special value"u", meaning unlimited. For example, schedule string

"1+;u-"

contains two major schedules. The first,"1+", has one minor schedule, with 1 for maximum
length andtrue for may revisit; the second,"u-", also has one minor schedule, this time with
unlimited for maximum length andfalse for may revisit.

The entire main loop of the algorithm, which repeatedly tries to augment out of each defect
until no further improvements can be found, is repeated once for each major schedule in order.
Within each main loop, the augment for one defect is tried once for each minor schedule of the
current major schedule, until an augment succeeds in reducing the cost of the solution or all
minor schedules have been tried.

The maximum length determines the maximum number of repairs allowed on one chain.
Value 0 allows no repairs at all and is forbidden. Value 1 allows augment calls from the main
loop, but prevents them from making recursive calls, producing a kind of hill climbing. Value 2
allows the calls made from the main loop to make recursive calls, but prevents those calls from
recursing. And so on.

When the may revisit attribute isfalse, each part of the solution may be changed by at
most one of the recursive calls made while repairing a defect; when it istrue, each part may be
changed by any number of them, although only once along any one chain.

It is not good to set the maximum length to a large value and may revisit totrue in the
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same minor schedule, because the algorithm will then usually take exponential time. But setting
the maximum length to a small constant, or setting may revisit tofalse, or both, guarantees
polynomial time. Another interesting idea isiterative deepening, in which several maximum
lengths are tried. For example,

"1+;2+;3+;u-"

tries maximum length 1, then 2, then 3, and finishes with unlimited length.

A mentioned earlier, in between callingKheEjectorMakeBegin andKheEjectorMakeEnd,
the augment functions need to be loaded. These are written by the user, as described in Section
13.4, and passed to the ejector by calls to

void KheEjectorAddAugment(KHE_EJECTOR ej, KHE_MONITOR_TAG tag,
KHE_EJECTOR_AUGMENT_FN augment_fn, int augment_type);

void KheEjectorAddGroupAugment(KHE_EJECTOR ej, int sub_tag,
KHE_EJECTOR_AUGMENT_FN augment_fn, int augment_type);

The first says that defects which are non-group monitors with tagtag should be handled by
augment_fn; the second says that defectswhich are group monitors with sub-tagsub_tag should
be handled byaugment_fn. Heresub_tag must be between 0 and 29 inclusive. Any values not
set are handled by doing nothing, as though an unsuccessful attempt was made to repair them.
Ejectors handle the polymorphic dispatch by defect type. Theaugment_type parameter is used
by statistics gathering (Section 13.6), and may be 0 if statistics are not wanted.

13.3. Ejector solving

Once an ejector has been set up, the ejection chain algorithm may be run by calling

bool KheEjectorSolve(KHE_EJECTOR ej, KHE_GROUP_MONITOR start_gm,
KHE_GROUP_MONITOR continue_gm, KHE_OPTIONS options);

This runs the main loop of the ejection chain algorithm once for each major schedule, returning
true if it reduces the cost of the solution monitored bystart_gm andcontinue_gm.

The main loop repairs only the defective child monitors ofstart_gm, and the recursive
calls repair only the defective child monitors ofcontinue_gm. These two group monitors could
be equal, and either or both could be an upcast solution. Although it is not required, in practice
every child monitor ofstart_gm is also a child monitor ofcontinue_gm.

Just as an ejector is constructed by a sequence of calls enclosed inKheEjectorMakeBegin

andKheEjectorMakeEnd, so a solve is carried out by a sequence of calls beginning with

void KheEjectorSolveBegin(KHE_EJECTOR ej, KHE_GROUP_MONITOR start_gm,
KHE_GROUP_MONITOR continue_gm, KHE_OPTIONS options);

and ending with

bool KheEjectorSolveEnd(KHE_EJECTOR ej);

KheEjectorSolveEnd does the actual solving. FunctionKheEjectorSolve above just calls
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KheEjectorSolveBegin andKheEjectorSolveEnd with nothing in between.

The only functions callable betweenKheEjectorSolveBegin andKheEjectorSolveEnd
(at least, the only ones that change anything) are

void KheEjectorAddMonitorCostLimit(KHE_EJECTOR ej,
KHE_MONITOR m, KHE_COST cost_limit);

void KheEjectorAddMonitorCostLimitReducing(KHE_EJECTOR ej,
KHE_MONITOR m);

The callKheEjectorAddMonitorCostLimit(ej, m, cost_limit) says that for a chain to end
successfully,not only must the solution cost be less than the initial cost, butKheMonitorCost(m)

must be no larger thancost_limit. KheEjectorAddMonitorCostLimitReducing(ej, m) is
the same except that the cost limit is initialized toKheMonitorCost(m), and if a successful chain
is found and applied which reducesKheMonitorCost(m) to below its current limit, that limit is
reduced to the newKheMonitorCost(m) for subsequent chains.

To visit theselimit monitors, call

int KheEjectorMonitorCostLimitCount(KHE_EJECTOR ej);
void KheEjectorMonitorCostLimit(KHE_EJECTOR ej, int i,
KHE_MONITOR *m, KHE_COST *cost_limit, bool *reducing);

The returned values are the monitor, its current cost limit, and whether that limit may be reduced.
Any number of limit monitors may be added, but large numbers will not be efficient.

Each time the ejector enters the main loop, it makes a copy ofstart_gm’s list of defects
and sorts the copy by decreasing cost. Ties are broken differently depending on the value
of the solution’s diversifier. If thees_limit_defects option is set to some integer (not to
"unlimited"), defects are dropped from the end of the sorted list to ensure that there are no more
thanes_limit_defects of them.

Consider a defectd that the main loop of the ejection chain solver is just about to attempt
to repair. Suppose that the most recent change either to the solution or to the major schedule
occurred before the most recent previous attempt to repaird. Then, if the repair is deterministic,
the current attempt to repaird is certain to fail like the previous attempt did. Accordingly, it is
skipped. The implementation of this optimization uses visit numbers stored in monitors.

In practice, repairs are not deterministic, since, for diversity, KHE’s augment functions vary
the starting points of their traversalsof lists of repairs between calls. However, the author carried
out an experiment on a large instance (NL-KP-03), in which this optimization was turned off but
a check was made to see whether there were any cases where repairs which it would have caused
to be skipped were successful. Over 8 diversified solves there were 15 cases.

The following functions may be called whileKheEjectorSolve is running (that is, from
within augment functions):
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KHE_GROUP_MONITOR KheEjectorStartGroupMonitor(KHE_EJECTOR ej);
KHE_GROUP_MONITOR KheEjectorContinueGroupMonitor(KHE_EJECTOR ej);
KHE_OPTIONS KheEjectorOptions(KHE_EJECTOR ej);
KHE_FRAME KheEjectorFrame(KHE_EJECTOR ej);
KHE_EVENT_TIMETABLE_MONITOR KheEjectorEventTimetableMonitor(KHE_EJECTOR ej);
KHE_SOLN KheEjectorSoln(KHE_EJECTOR ej);
KHE_COST KheEjectorTargetCost(KHE_EJECTOR ej);
bool KheEjectorCurrMayRevisit(KHE_EJECTOR ej);
int KheEjectorCurrLength(KHE_EJECTOR ej);
int KheEjectorCurrAugmentCount(KHE_EJECTOR ej);
bool KheEjectorCurrDebug(KHE_EJECTOR ej);
int KheEjectorCurrDebugIndent(KHE_EJECTOR ej);

KheEjectorStartGroupMonitor, KheEjectorContinueGroupMonitor, and KheEjectorOptions

arestart_gm, continue_gm, andoptions from KheEjectorSolve. KheEjectorFrame is the
value of KheFrameOption(options, "gs_common_frame", ins), for which see Section
5.10. KheEjectorEventTimetableMonitor is the value of thegs_event_timetable_monitor
option (Section 8.3), orNULL if absent. When it is present, augment functions may use it to find
the events running at a given time.

KheEjectorSoln is start_gm’s andcontinue_gm’s solution. KheEjectorTargetCost is
the cost that the chain needs to improve on (c in the abstract code above): the cost of the solution
whenAugment was most recently called from the main loop.KheEjectorCurrMayRevisit is
themay_revisit attribute of the current minor schedule.

KheEjectorCurrLength is 1 when the augment function was called from the main loop, 2
when it was called from an augment function called from the main loop, etc.

KheEjectorCurrAugmentCount is the number of augments since this solve began.
KheEjectorCurrDebug returnstrue whenej is currently debugging, because it is trying to
repair a main loop defect in the monitor stored in thegs_debug_monitor option of options.
It seems to work well for each repair to generate a one-line description of itself when
KheEjectorCurrDebug istrue. KheEjectorCurrDebugIndent is the current amount by which
debug prints should be indented; this is twice the current length.

13.4. How to write an augment function

An augment function has type

typedef bool (*KHE_EJECTOR_AUGMENT_FN)(KHE_EJECTOR ej, KHE_MONITOR d);

The parameters are the ejectorej passed toKheEjectorSolve, and the defectd that the augment
function is supposed to repair. It is a precondition thatd’s cost exceeds its lower bound, and that
reducing its cost to its lower bound would be a step towards a successful augment. The return
value says whether the augment successfully reduced the solution cost or not, and must be the
value returned by the most recent call toKheEjectorRepairEnd below, orfalse if there have
been no repairs. The ejector relies on this value and it must be right.

Augment functions often look like this, although not necessarily exactly:
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bool ExampleAugment(KHE_EJECTOR ej, KHE_MONITOR d)
{
KHE_ENTITY e; bool success; REPAIR r;
e = SomeSolnEntityRelatedTo(d);
if( !KheEntityVisited(e) )
{
KheEntityVisit(e);
for( each r in RepairsOf(e) )
{
KheEjectorRepairBegin(ej);
success = Apply(r);
if( KheEjectorRepairEnd(ej, 0, success) )
return true;

}
if( KheEjectorCurrMayRevisit(ej) )
KheEntityUnVisit(e);

}
return false;

}

FunctionSomeSolnEntityRelatedTo usesd to identify some entity (node, meet, task, etc.)
that will be changed by the repairs, but that should only be changed if it has not already been
visited (tested by callingKheMeetVisited etc. from Section 4.2.5). After the visit, the boiler-
plate code

if( KheEjectorCurrMayRevisit(ej) )
KheEntityUnVisit(e);

marks the entity unvisited if revisiting is allowed.

Since writing the above, it has occurred to the author that the visited entity related tod could
bed itself. The code above that relates to visitinge is now applied tod behind the scenes in the
ejector object. This has the usual effect of prohibiting exponential searches, and it means that
the writer of an augment function can drop all visiting code if desired, producing this:

bool ExampleAugment(KHE_EJECTOR ej, KHE_MONITOR d)
{
bool success; REPAIR r;
for( each r in RepairsOf(d) )
{
KheEjectorRepairBegin(ej);
success = Apply(r);
if( KheEjectorRepairEnd(ej, 0, success) )
return true;

}
return false;

}

The augment function is also conceptually simpler this way: it searches a graph whose nodes
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are defects and whose edges are repairs, without revisiting any node. Of course, the search is
different this way, and the question of whether it is better or worse must be decided empirically.
The author hassuccessfully removed all visitingcode from hisnurse rosteringaugment functions:
running times are often larger, but cost is nearly always lower, often significantly lower.

FunctionRepairsOf builds a set of alternative repairsr of e, andApply(r) stands for the
code that applies repairr. In practice, repairs just need to be iterated over and applied;an explicit
set of them is not needed. Nor is there any need for the augment function to follow any particular
structure; anything that generates a sequence of pairs of calls toKheEjectorRepairBegin and
KheEjectorRepairEnd is acceptable.

For example, some expensive repairs are only worth trying when repairing a defect that is
really present in the solution, not introduced by a previous repair. This can be effected by

if( KheEjectorCurrLength(ej) == 1 )
{
KheEjectorRepairBegin(ej);
...
if( KheEjectorRepairEnd(ej, 0, success) )
return true;

}

This works because, as mentioned earlier,KheEjectorCurrLength(ej) returns 1 when the
augment function was called from the main loop, 2 when the augment function was called by an
augment function called from the main loop, and so on.

FunctionsKheEjectorRepairBegin andKheEjectorRepairEnd are supplied by KHE:

void KheEjectorRepairBegin(KHE_EJECTOR ej);
bool KheEjectorRepairEnd(KHE_EJECTOR ej, int repair_type, bool success);

Calls to them must occur in matching pairs. A call toKheEjectorRepairBegin informs ej
that a repair is about to begin, and the matching call toKheEjectorRepairEnd informs it that
that repair has just ended. The repair is undone and redone as required behind the scenes by
KheEjectorRepairEnd, using marks and paths, so undoing is not the user’s concern.

Therepair_type parameter ofKheEjectorRepairEnd is used to gather statistics about
the solve (Section 13.6). It may be 0 if statistics are not wanted.

Thesuccess parameter tells the ejector whether the caller thinks the current repair was
successful (that is, ran to completion). If it isfalse, the ejector undoes the partially completed
repair and forgets that it ever happened. If it istrue, the ejector checks whether the repair
reduced the cost of the solution, whether there is a single new defect worth recursing on, and so
on. The writer of an augment function can forget that all this is happening behind the scenes.

If KheEjectorRepairEnd returnstrue, the ejector has found a successful chain. When this
happens, the rule is that the augment function should returntrue immediately. It does not matter
whether any entity is marked unvisited or not before exit.

However, there is an exception to this rule. We illustrate this by the following example.

Suppose that, in order to encourage ejection chains to remove a cluster busy times defect,
some days when the resource will be busy are chosen, all meets assigned the resource outside
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those days are unassigned, and repairs are tried which move those meets to the chosen days.

While the repairs are underway, it is desired to limit the domains of the resource’s meets
to the chosen days, to keep the repairs on track. So the repair altogether consists of unassigning
some of the resource’s meets and adding a meet bound to each of the resource’s meets.

Whether the repair is successful or not, after it and the chains below it are finished, the meet
bound must be removed from the resource’s meets, since the domains of the meets should not be
restricted permanently. If the repair is unsuccessful, the meet bound is removed by the ejector as
part of undoing the repair. But if the repair is successful there is a problem, because the repair
is not undone. So in this case, in between receiving thetrue result fromKheEjectorRepairEnd

and returningtrue itself, the augment function should remove the meet bounds that it added.

In general, this kind of cleanup should not change the cost of the solution. It might remove
meet or task bounds, unfix meets or tasks, and so on. Because it is done after a successful chain,
it cannot be assume that the solution is in the same state as when the repair began, although the
user may be able to prove that certain aspects of it cannot have changed, based on his knowledge
of what the augment functions do. In the example, if no repairs remove meet bounds other than
those they add themselves, then the meet bound will still be present and it is safe to delete it.

13.5. Variants of the ejection chains idea

This section presents some variants of the basic ejection chains idea.

13.5.1. Defect promotion

This feature has been withdrawn to streamline the implementation. It has had some successes but
it cannot be crucial,because it does nothing whenstart_gm andcontinue_gm are the same.

Successful chains begin by repairing a defect which is one ofstart_gm’s children,and con-
tinue by repairing defects which are children ofcontinue_gm. The intention is thatstart_gm
should monitor some region of the solution that has only just been assigned, so that there has
been no chance yet to repair its defects, whilecontinue_gm monitors the entire solution so far,
or the part of it that is relevant to repairing the defects ofstart_gm. These two regions may be
the same, which is whystart_gm andcontinue_gm may be the same group monitor; but when
they are different, the difference is important, as the following argument shows.

Suppose onlystart_gm is used. Then the ejector sets out to repair the right defects, but is
unable to follow chains of repairs into parts of the solution that have been assigned previously.
Or suppose onlycontinue_gm is used. If the children ofcontinue_gm are a superset of the
children ofstart_gm, as is always the case in practice, this does allow a full search, but at the
cost of trying again to repair many defects for which a previous repair attempt failed (those in
continue_gm which are not also instart_gm). This can waste a lot of running time.

At this point, however, an unexpected issue enters. Suppose a successful chain is found
which causes some childd of continue_gm to become defective, but which nevertheless
terminateswithout repairingd because it improves the overall solution cost. Here is a new defect,
a child of continue_gm not known to have been repaired previously, and thus worthy of being
targeted for repair; but if it is not also a child ofstart_gm, it won’t be.

Defect promotionaddresses this issue. When an ejection chain is declared successful, the
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ejector examines the defects created by that chain’s last repair that are children ofcontinue_gm.
These come from the trace object in the usual way. It makes any of these that are not children of
start_gm into children ofstart_gm: they get dynamically added to the set of defects targeted by
the current solve. Of course, whenstart_gm andcontinue_gm are the same, it does nothing.

Defect promotion is optional, controlled by optiones_no_promote_defects, whose
default value isfalse. On one run it reduced the final solution cost from 0.04571 to 0.03743,
while increasing running time from 286.84 seconds to 490.21 seconds—a substantial amount,
but nothing like what would have occurred ifstart_gm had been replaced bycontinue_gm.

13.5.2. Fresh visit numbers for sub-defects

It is common for a monitor to monitor several points in the solution. For example, a prefer
times monitor monitors several meets, all those derived from one point of application of the
corresponding prefer times constraint (one event). Arguably, having one monitor for each meet
would make more sense; but there is a problem with this, at least when the cost function is not
Linear, because then there is no well-defined value of the cost of such a monitor. A cost is only
defined after all the deviations of thesub-defectsat all the monitored points are added up.

The usual way to repair a defective monitor which monitors several points is to visit each
point, determine whether that point is a sub-defect, and try some repairs if so. When the repair
is of a main loop defect (when the current length is 1), it makes sense for the augment function to
give a fresh visit number to each sub-defect, so that the repair at each sub-defect is free to search
the whole solution, as in this template:

for( i = 0; i < KheMonitorPointCount(m); i++ )
{
p = KheMonitorPoint(m, i);
if( KheMonitorPointIsDefective(p) )
{
if( KheEjectorCurrLength(ej) == 1 )
KheSolnNewGlobalVisit(soln);

if( KheMonitorPointTryRepairs(p) )
return;

}
}

CallingKheSolnNewGlobalVisit opens up the whole solution for visiting. This is what would
happen if the monitor was broken into smaller monitors, one for each point. It is important,
however, not to callKheSolnNewGlobalVisit at deeper levels, since that amounts to allowing
revisiting, so it leads to exponential time searches.

Fresh visit numbers arenotassigned in this way within the augment functions supplied with
KHE. Instead, a more radical version of the idea is offered by thees_fresh_visits option.
When set totrue, it causes

if( KheEjectorCurrLength(ej) == 1 )
KheSolnNewGlobalVisit(soln);

to be executed within each call toKheEjectorRepairBegin, opening up the entire solution, not
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just to each sub-defect at length 1, but to each repair of each sub-defect at length 1.

13.5.3. Ejection trees

The variant described here has been withdrawn. Ejection beams (Section 13.5.5) perform a
similar function more simply.

An ejection treeis like an ejection chain except that at each level below the first, instead of
repairing one newly introduced defect, it tries to repair several (or all) of the newly introduced
defects, producing a tree of repairs rather than a chain.

Ejection trees are not likely to be useful often. It is true that the run time of an ejection
tree is limited as usual by the size of the solution, but its chance of success is lower than usual,
because it must repair several defects at the lower level to succeed at the higher level. If repairing
the first defect produces two new defects, repairing each of those produces two more, and so on,
then the result is a huge number of defects that must all be repaired successfully. And to make
a repair which introduces a defect and then repair that defect using an ejection tree is to spend a
lot of time on a defect that can be removed much more easily by undoing the initial repair.

However, when the original solution has a very awkward defect, the best option may be a
complex repair which usually introducesseveral new defects. For example, the best way to repair
a cluster busy times overload defect may be to unassign every meet on one of the problem days.
In that case, it makes sense to use an ejection tree at that level alone: that is, to try a repair that
introduces several defects, then try to repair them by finding an ejection chain for each.

Themax_sub_chains parameter ofKheEjectorRepairEndLong allows for ejection trees,
by specifying the maximum number of defects introduced by that repair that are to be repaired.
Different repairs may have different values ofmax_sub_chains. For example, the complex
cluster busy times repair could be tried only whenKheEjectorCurrLength(ej) is 1, with
max_sub_chains set toINT_MAX. All other repairs could be given value 1 formax_sub_chains,
producing ordinary chains elsewhere.

A set of defects now has to be repaired, not necessarily just one. One option would have
been to change the interface ofAugment to pass this set to the user. This was not done, because
it would be a major change from the targeted repairs used by ejection chains. Instead, just as the
framework handles the dynamic dispatch by defect type, so it also accepts a whole set of defects
for repair and passes them one by one to conventionalAugment calls.

The remainder of this section explains the implementation of ejection trees (and indeed
ejection chains) by presenting a more detailed description of theAugment function than the one
given at the start of this chapter.

To begin with, it was stated earlier that the main loop tries an augment for every defective
child of start_gm. In fact, main loop augments are tried only for defectsd such that

Potential(d) = KheMonitorCost(d) - KheMonitorLowerBound(d)

is positive. Clearly, whenPotential(d) == 0 there is no chance of improvement.

We also need to consider monitor cost limits, which require that the solution not change
so as to cause the cost of some given monitors to exceed given limits (Section 13.3). To handle
them, the interface ofAugment is changed to
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bool Augment(Solution s, Cost c, Limits x, Defect d);

wherex is a set of monitor cost limits.Augment returnstrue if the value ofs afterwards is such
thats’s cost is less thanc and the limitsx are all satisfied. This condition is evaluated by

bool Success(Solution s, Cost c, Limits x)
{
return cost(s) < c && LimitsAllSatisfied(s, x);

}

The precondition ofAugment(s, c, x, d) is changed to

!Success(s, c, x) && cost(s) - GPotential(d) < c

That is, the solution must not have already reached the target cost and limits, and thegeneralized
potentialof d, GPotential(d), is large enough to suggest that repairingd might get it there. Its
postcondition isSuccess(s, c, x) if true is returned, and ‘s is unchanged’otherwise.

For a main loop defect,cost(s) is c, GPotential(d) is Potential(d), andAugment

may be called exactly when itis called—whenPotential(d) > 0. For defects at lower
levels,GPotential(d) is the amount that the cost ofd increased when the repair that produced
d occurred, as returned byKheTraceMonitorCostIncrease (Section 6.8.3). Often, the cost
beforehand will beKheMonitorLowerBound(d), so that this increase will just bePotential(d)
as before; but ifd was already defective beforehand it will be smaller, makingd less likely to be
augmented. The point is that we can only realistically hope to remove the new cost added when
the previous repair was made,not the pre-existingcost. (KHE usedPotential(d) here for many
years; the switch toGPotential(d) produced better cost on average, and better running time; a
few individual instances had marginally worse cost.)

The new defects chosen for repair must beopen defects: defects whose generalized
potential is positive,according toKheTraceMonitorCostIncrease. Themax_sub_chains open
defects of largest generalized potential, or all open defects if fewer thanmax_sub_chains open
defects are reported by the trace, are selected. In the code below, this selection is made by line

{d1, ..., dn} = SelectOpenDefects(new_defect_set, MaxSubChains(r));

This is implemented by a call toKheTraceReduceByCostIncrease (Section 6.8.3).

Here is the more detailed implementation ofAugment:
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bool Augment(Solution s, Cost c, Limits x, Defect d)
{
repair_set = RepairsOf(d);
for( each repair r in repair_set )
{

new_defect_set = Apply(s, r);
if( Success(s, c, x) )
return true;

if( NotAtLengthLimit() )
{
{d1, ..., dn} = SelectOpenDefects(new_defect_set, MaxSubChains(r));
for( i = 1; i <= n; i++ )
{
sub_c = c + GPotential(d(i+1)) + ... + GPotential(dn);
sub_x = (i < n ? {} : x); /* empty limit set except at end */
if( Success(s, sub_c, sub_x) )

continue;
if( cost(s) - GPotential(di) >= sub_c )

break;
if( !Augment(s, sub_c, sub_x, di) )

break;
if( Success(s, c, x) )

return true;
}

}
reset s to its state just before Apply(s, r);

}
return false;

}

As before, all of this except the loop that iterates over and applies repairs is hidden in calls to
KheEjectorRepairBegin andKheEjectorRepairEnd. It is easy to verify that this satisfies the
revised postcondition. The reset near the end is carried out by a call toKheMarkUndo.

After the usual test for success immediately after the repair, if the length limit has not been
reached the new code selectsn open defects for repair, then callsAugment recursively on each
in turn. The complicating factor is the choice of a target cost and set of limits for each recursive
call, denotedsub_c andsub_x above. Using the originalc andx, as is done with ejection chains,
would wrongly place the entire burden of improving the solution onto the first recursive call.

When repairingd1, the right cost target to shoot for is

sub_c = c + GPotential(d2) + ... + GPotential(dn);

The best that can be hoped for from repairingd2 isGPotential(d2), the best that can be hoped
for from repairingd3 is GPotential(d3), etc. So if the first recursiveAugment cannot reduce
cost(s) below the given value ofsub_c, there is little hope that after all the recursive augments
it will be reduced belowc. The same idea is applied for each of thedi.

When a recursive call toAugment changes the solution, someGPotential(di) values may
change. So this code re-evaluatessub_c from scratch on each iteration of the inner loop, rather
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than attempting to save time by adjusting the previous value ofsub_c.

The choice ofsub_x causes limits to be ignored except when carrying out the last augment.
This is in accord with the intention of monitor cost limits, which is to only check them at the end.
It would be a mistake to check them earlier. For example, the repair of the cluster busy times
defects described above is likely to violate a monitor cost limit when it deassigns meets. These
do need to be reassigned by the end, but they will not all be reassigned earlier.

After definingsub_c andsub_x but before the call toAugment, the code executes

if( Success(s, sub_c, sub_x) )
continue;

if( cost(s) - GPotential(di) >= sub_c )
break;

These lines ensure that the precondition of the recursiveAugment call holds at the time it is made.
If Success(s, sub_c, sub_x) holds, then the aim of that call has already been achieved, so
the algorithm moves on to the next one. It does not matter that it skips theSuccess(s, c, x)

test further on, because there has been such a test since the last time the solution changed. If
cost(s) - GPotential(di) >= sub_c holds, then the algorithm has no real hope of beating
sub_c by repairingdi, and so no real hope of success at all, so it abandons the current repair.

Success(s, c, x) implies Success(s, sub_c, sub_x) throughoutAugment, because
sub_c >= c andsub_x is a subset ofx. This cannot be used to simplifyAugment, but it does
have one or two interesting consequences. For example, it applies transitively down through all
active calls toAugment, so whileSuccess(s, sub_c, sub_x) isfalse at any level of recursion,
the original aim of the ejection tree cannot be satisfied.

When repairingdn, sub_c == c and sub_x == x. This gives confidence thatAugment
could succeed, and shows that it reduces to the originalAugment whenMaxSubChains(r) == 1,
except for the different expression of how one open defect is selected.

The method described here finds the first chain that repairsd1, fixes it, and moves on tod2.
Representing the higher path by a solid arrow, the chains (successful or not) that repaird1 by
dashed arrows, and the chains (successful or not) that repaird2 by dotted arrows, the picture is

Another possibility is to find the first chain that repairsd1, then try to find chains ford2, but if
that fails, to continue searching for other chains ford1:

This approach is implementable within the current framework, but it has not been tried. Ejection
beams (Section 13.5.5) do something of this kind.
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13.5.4. Sorting repairs

The variant described here never performed very well, and it has now been withdrawn.

Each repair is usually followed immediately by recursive calls which extend the chain,
where applicable. Setting thesave_and_sort parameter ofKheEjectorRepairEndLong to
true invokes a different arrangement. Paths representing the repairs are saved in the ejector
without recursion. After the last repair they are sorted into increasing order of the cost of the
solutions they produce, and each is tried in turn, just as though they had occurred in that sorted
order [5].

In practice,save_and_sort would be given the same value for every repair of a given
defect. However, it is legal to use a mixture of values. Those given valuetrue will be saved,
those given valuefalse will be recursed on immediately in the usual way. If any of those lead
to success, that chain is accepted and any saved repairs are forgotten.

Only repairs with some hope of success are saved: those for which

Success(s, c, x) || (NotAtLengthLimit() &&
cost(s) - (GPotential(d1) + ... + GPotential(dn)) < c)

holds after the repair, in the terminology of Section 13.5.3.

The author’s experience withsave_and_sort has been disappointing. Chains can end
successfully anywhere in the search tree, and low solution cost at an intermediate point is not
a good predictor of a successful end. Every saved repair is executed once before sorting to
establish the solution cost after it, then undone. If the repair is tried later, it is executed again (by a
path redo). The significant benefit needed to justify this extra work does not seem to be there.

13.5.5. Ejection beams

Ejection beamsare yet another variant of the basic ejection chains idea. They are similar to the
now-withdrawn ejection trees in that they aim to allow the algorithm to carry on when more than
one defect is introduced by a repair.

An ejection beam, or justbeam, is a non-empty set of monitorsm, each with itscost, denoted
cost(m), and itstarget, denotedtarg(m). The value ofcost(m) is the cost ofm in the current
solution, as usual. The value oftarg(m) will be specified shortly; it is a value that the algorithm
aspires to reducecost(m) to.

A beam is a true set: no monitor may appear in it twice. Its cardinality (its number of
monitors) may be at most some small integerK (a parameter of the algorithm) whose value must
be at least 1. The value might be 2 or 3, for example.

Instead of passing a single defective monitor, the basic call passes an entire beamB:

bool Augment(Solution s, Cost c, Beam B)

As usual, ifAugment can find a way to reduce the cost ofs to less thanc, it does so and returns
true, otherwise it changes nothing and returnsfalse. But now it has a set of monitors, all those
in B, to repair. WhenAugment is called, each of these monitorsm is unvisited and satisfies

cost(m) > targ(m) >= 0
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Furthermore, along with the usualcost(s) >= c, the condition

Open(s, c, B) = cost(s) - sum[m in B](cost(m) - targ(m)) < c

holds initially. So one way forAugment to succeed would be to reduce the cost of every monitor
in B down to its target without introducing any new defects.

Like the ejection chain algorithm, the ejection beam algorithm has a main loop that tries to
repair each top-level defectm whose cost exceeds its lower bound. To do this it first marks all
monitors unvisited, then it callsAugment, settings to the current solution,c to the cost of the
current solution, andB to a beam consisting of a single element,m, settingtarg(m) to m’s lower
bound. This clearly satisfies the initial conditions ofAugment.

Here is the implementation ofAugment. We’ve added aLimits parameter which handles
the limits imposed byKheEjectorAddMonitorCostLimit (Section 13.3):

bool Augment(Solution s, Cost c, Limits x, Beam B)
{
choose an arbitrary element d of B;
MonitorSetVisited(d);
repair_set = RepairsOf(d);
for( each repair r in repair_set )
{

new_defect_set = Apply(s, r);
if( Success(s, c, x) )
return true;

if( LimitsNotReached() && BeamMerge(s, c, B, new_defect_set, K, &B2) )
{
if( Augment(s, c, x, B2) )
return true;

}
reset s to its state just before Apply(s, r);

}
return false;

}

HereSuccess compares the solution cost withc and checks the limits:

bool Success(Solution s, Cost c, Limits x)
{
return cost(s) < c && LimitsAllSatisfied(s, x);

}

while LimitsNotReached returnstrue if the various limits, on number of augments and so on,
have not yet been reached.

Apart from a few minor details, this version ofAugment is clearly the original one with a set
of monitorsB instead of a single defectd. It demands nothing additional from the user except a
single value forK at the start.

The key new step isBeamMerge. It returns a new non-empty beamB2 which is the set
union of B andnew_defect_set, sorted into decreasingcost(m) - targ(m) order. Monitors
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are omitted when they are visited, and they are dropped from the end of the sorted list until
just before dropping another would makeOpen(s, c, B2) false. If the number of monitors
remaining exceedsK, MakeBeam returnsfalse. So if the recursive call toAugment is made,B2 is
a beam of size at mostK which satisfies the precondition ofAugment.

A new monitorm enteringB2 has itstarg(m) value set to its cost beforer was applied.
Clearly,cost(m) > targ(m) >= 0, becausetarg(m) is cost(m) beforer was applied, and
it was r that causedm to appear innew_defect_set, meaning thatm’s cost increased. The
algorithm aspires to remove the new defects introduced byr, which in the case ofm means
returning its cost to what it was beforer, so this is a suitable value fortarg(m).

A monitorm could lie in bothB andnew_defect_set, if it was a defect before applyingr,
andr made it worse. That is fine; it will appear only once inB2, with its originaltarg(m).

Ejectors always run the ejection beam code, but the default value ofK is 1, producing
ejection chains.K is determined by thees_max_beam option (Section 13.7), so setting this to a
value larger than 1 is the way to get true ejection beams.

13.6. Gathering statistics

Ejectors gather statistics about their performance. This takes a negligible amount of time, as the
author has verified by comparing run times with preprocessor flagKHE_EJECTOR_WITH_STATS

in the ejector source file set to 0 (no statistics) and 1(all statistics). On two typical instances, the
increase in overall run time caused by gathering statistics was less than 0.1 seconds.

13.6.1. Options for choosing ejectors and schedules

Each ejector holds its own statistics, independently of other ejectors. Some statistics accumulate
across the entire lifetime of an ejector; they are never reset. This makes it possible, for example,
to measure the performance of time repair ejection chains and resource repair ejection chains
over an entire set of instances, by carrying out all time repairs in all instances using one ejector
and all resource repairs in all instances using another.

To facilitate this,options objects usually contain two ejectors,under names"ejector1" and
"ejector2", as explained in Section 13.7.1; they could contain more.

The next question is what schedules to give to these ejectors. A set of schedules is an option,
so theoptions object has optiones_schedules for it, whose value is a string. Its default value
is "1+,u-", for the meaning of which see Section 13.2.

Setting the schedule string does not set any ejector schedules, it merely sets one option of
options, to a fresh copy of the string it is given. User code must set the actual schedules, using
helper functionKheEjectorSetSchedulesFromString (Section 13.2).

13.6.2. Statistics for analysing Kempe meet moves

The ejector itself does not maintain statistics for analysing Kempe meet moves. These are stored
in kempe_stats objects, one of which is conveniently available from optionts_kempe_stats

(Section 10.2.2). This object is passed to the calls toKempeMeetMove made by the augment
functions described in this chapter. Only Kempe meet moves which are complete repairs on their
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own are passed this object, not Kempe meet moves combined with other operations (meet splits
and merges, for example). So by the end of an ejction chain run, statistics about these Kempe
meet moves will have been accumulated in thets_kempe_stats option of theoptions object
passed to the ejection chain repairs.

13.6.3. Statistics describing a single solve

The statistics presented in this section make sense only for one call toKheEjectorSolveEnd. So
they are available only until the next call toKheEjectorSolveEnd, when they are reset.

An improvementis an ejection chain or tree, rooted in a defect examined by the main loop,
which is applied to the solution and reduces its cost. Each time an improvement is applied, four
facts about it are recorded. The number of improvements applied is returned by

int KheEjectorImprovementCount(KHE_EJECTOR ej);

and the four facts about theith improvement (counting from 0 as usual) are returned by

int KheEjectorImprovementNumberOfRepairs(KHE_EJECTOR ej, int i);
float KheEjectorImprovementTime(KHE_EJECTOR ej, int i);
KHE_COST KheEjectorImprovementCost(KHE_EJECTOR ej, int i);
int KheEjectorImprovementDefects(KHE_EJECTOR ej, int i);

These return the number of repairs in theith improvement (this tends to increase withi), the time
from the moment whenKheEjectorSolveEnd was called to the moment after the improvement
was applied, the solution cost afterwards, and the number of defects ofstart_gm afterwards.
Times are measured in seconds, to a precision much better than one second. There are also

KHE_COST KheEjectorInitCost(KHE_EJECTOR ej);
int KheEjectorInitDefects(KHE_EJECTOR ej);

which return the cost and number of defects whenKheEjectorSolve began.

13.6.4. Statistics describing multiple solves

The statistics presented in this section make sense across multiple calls toKheEjectorSolveEnd.
They are initialized when the ejector is created and never reset.

It is interesting to see how many repairs make up one improvement. Each time an
improvement occurs on any solve during the lifetime of the ejector, one entry in a histogram of
numbers of repairs is incremented. This histogram can be accessed at any time by calling

int KheEjectorImprovementRepairHistoMax(KHE_EJECTOR ej);
int KheEjectorImprovementRepairHistoFrequency(KHE_EJECTOR ej,
int repair_count);

KheEjectorImprovementRepairHistoMax returns the maximum, over all improvements
x, of the number of repairs that make upx, or 0 if there have been no improvements.
KheEjectorImprovementRepairHistoFrequency returns the number of improvements with
the given number of repairs. Also, functions
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int KheEjectorImprovementRepairHistoTotal(KHE_EJECTOR ej);
float KheEjectorImprovementRepairHistoAverage(KHE_EJECTOR ej);

use this same basic information to find the total number of improvements, and the average
number of repairs per improvement when there is at least one improvement.

Another histogram, again with one element for each improvement, records the number of
calls toAugment since the most recent on in the main loop:

int KheEjectorImprovementAugmentHistoMax(KHE_EJECTOR ej);
int KheEjectorImprovementAugmentHistoFrequency(KHE_EJECTOR ej,
int augment_count);

int KheEjectorImprovementAugmentHistoTotal(KHE_EJECTOR ej);
float KheEjectorImprovementAugmentHistoAverage(KHE_EJECTOR ej);

This is helpful, for example, in deciding whether it would be useful to terminate a search after
some number of augments has failed to find an improvement. A method of doing this is built
into ejectors, but not offered as an official option at the moment.

Another interesting question is how successful the various augment functions and repairs
are. There are methodological issues here, however. For example, if one kind of repair is tried
before another, it has more opportunities to both succeed and fail than the other. If there are
several alternatives to choose from, the best test would be to compare the results of several
complete runs, one for each alternative. No statistical support is needed for that. But even after
the best alternatives are chosen, there remains the question of whether each component is pulling
its weight. The statistics to be described now attempt to answer this question.

An augment typeis a small integer representing one kind of augment function. Arepair
typeis a small integer representing one kind of repair. FunctionsKheEjectorAddAugment and
KheEjectorAddGroupAugment assign an augment type to each augment function, and thus to
each call on an augment function. Each repair is followed by a call toKheEjectorRepairEnd

(Section 13.4), and itsrepair_type parameter assigns a repair type to that repair. Based on this
information, the ejector records the following statistics:

1. For each distinctaugment_type, the number of repairs made by calls on augment functions
with that augment type;

2. For each distinct(augment_type, repair_type) pair, the number of repairsof that repair
type made by calls on augment functions with that augment type;

3. For each distinctaugment_type, the number of successful repairs made by calls on
augment functions with that augment type;

4. For each distinct(augment_type, repair_type) pair, the number of successful repairs
of that repair type made by calls on augment functions with that augment type.

Only repairs with atrue value for thesuccess parameter ofKheEjectorRepairEndLong are
counted. For the purposes of statistics gathering, a repair is considered successful if it causes its
enclosingAugment function to returntrue, whether this happens immediately,or after recursion,
or after saving and sorting. The statistics may be retrieved at any time by calling
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int KheEjectorTotalRepairs(KHE_EJECTOR ej, int augment_type);
int KheEjectorTotalRepairsByType(KHE_EJECTOR ej, int augment_type,
int repair_type);

int KheEjectorSuccessfulRepairs(KHE_EJECTOR ej, int augment_type);
int KheEjectorSuccessfulRepairsByType(KHE_EJECTOR ej, int augment_type,
int repair_type);

whereaugment_type andrepair_type are arbitrary non-negative integers. Based on these
numbers,a reasonable analysisof the effectivenessof the augment functionsand their repairscan
be made. For example, the effectiveness of an augment function can be measured by the ratio
of the third number to the first. Adding up the result ofKheEjectorTotalRepairsByType over
all values ofrepair_type produces the result ofKheEjectorTotalRepairs, and adding up the
result ofKheEjectorSuccessfulRepairsByType over all values ofrepair_type produces the
result ofKheEjectorSuccessfulRepairs.

13.6.5. Organizing augment and repair types

KheEjectorAddAugment andKheEjectorAddGroupAugment accept anyaugment_type values.
The user should define these values using an enumerated type. The following function may be
called any number of times during the ejector’s setup phase, to tell it what values to expect:

void KheEjectorAddAugmentType(KHE_EJECTOR ej, int augment_type,
char *augment_label);

This tells ej to expect calls toKheEjectorAddAugment and KheEjectorAddGroupAugment

with the given value ofaugment_type, and associates a label with that augment type. Labels
must be non-NULL; copies are stored, not originals. No checks are made that the values passed
via KheEjectorAddAugment and KheEjectorAddGroupAugment match those declared by
KheEjectorAddAugmentType. But if they do, then making tables of statistics is simplified by
calling the following functions afterwards.

To visit all the augment types declared by calls toKheEjectorAddAugmentType, call

int KheEjectorAugmentTypeCount(KHE_EJECTOR ej);
int KheEjectorAugmentType(KHE_EJECTOR ej, int i);

To retrieve the label corresponding to an augment type, call

char *KheEjectorAugmentTypeLabel(KHE_EJECTOR ej, int augment_type);

In this way, suitable values for passing toKheEjectorTotalRepairs and the other statistics
functions above can be generated, along with labels to identify the statistics.

The same functionality is offered for repair types.KheEjectorRepairBegin may be passed
any values forrepair_type, but the user knows which values will be passed, and the following
function may be called any number of times during the ejector’s setup phase to tell it this:

void KheEjectorAddRepairType(KHE_EJECTOR ej, int repair_type,
char *repair_label);

KheEjectorAddRepairType declares thatej can expect calls toKheEjectorRepairBegin
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with the given value ofrepair_type, and associates a label with that repair type. Labels must
be non-NULL; copies are stored, not originals. No checks are made that the values passed via
KheEjectorRepairBegin match those declared byKheEjectorAddRepairType. But if they do,
then making tables of statistics is simplified by calling the following functions afterwards.

To visit all the repair types declared by calls toKheEjectorAddRepairType, call

int KheEjectorRepairTypeCount(KHE_EJECTOR ej);
int KheEjectorRepairType(KHE_EJECTOR ej, int i);

To retrieve the label corresponding to a repair type, call

char *KheEjectorRepairTypeLabel(KHE_EJECTOR ej, int repair_type);

There is no way to declare which combinations of augment type and repair type to expect. The
author handles this by ignoring cases whereKheEjectorTotalRepairsByType returns 0.

13.7. Ejection chain time and resource repair functions

Previous sections have described ejectors in general. This section describes how ejectors are put
to use in three ejection chain time and resource repair functions:

bool KheEjectionChainNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

bool KheEjectionChainLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

bool KheEjectionChainRepairResources(KHE_TASKING tasking,
KHE_OPTIONS options);

KheEjectionChainNodeRepairTimes repairs the assignments of the meets of the descendants
of the child nodes ofparent_node, and KheEjectionChainLayerRepairTimes repairs the
assignments of the meets of the descendants of the child nodes oflayer. This is useful for
repairing the time assignments of a layer immediately after they are made, without wasting
time on earlier layers where repairs have already been tried and are very unlikely to succeed.
KheEjectionChainRepairResources repairs the assignments of the tasks oftasking.

All three functions make assignments as well as change them, so may be used to construct
solutions as well as repair them. However, there are better ways to construct solutions.

Although these functions target different parts of the solution, they share much of their
implementation. In particular, they call the same augment functions, although the detailed
behaviour of those functions depends on several options.

Here is the full list of options consulted or set by these functions. By convention, these
options all have names beginning withes_. The most important options from the point of view
of the user are those that he can reasonably set:

rs_ejector_off

A Boolean option which, whentrue, causesKheEjectionChainRepairResources to
do nothing.
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es_ejector1, es_ejector2
These two options hold ejector objects.KheEjectionChainNodeRepairTimes and
KheEjectionChainLayerRepairTimes use the ejector object stored under key
es_ejector1, whileKheEjectionChainRepairResources uses the ejector object stored
under keyes_ejector2. For full details on this method of obtaining ejector objects, see
Section 13.7.1. While there is no pressing need for the user to set these options, since they
will be set the first time they are needed, retrieving them at the end of the solve can be useful,
since they will then contain statistics on the performance of the ejection chain algorithm.

es_vizier_node

A Boolean option which, whentrue, instructsKheEjectionChainNodeRepairTimes and
KheEjectionChainLayerRepairTimes to insert a vizier node (Section 9.5.4) temporarily
while they run.

es_layer_repair_long

A Boolean option which, whentrue, instructsKheEjectionChainLayerRepairTimes
to target every layer up to and including the current layer when repairing the current layer.
Otherwise only the current layer is targeted.

es_nodes_before_meets

A Boolean option which, whentrue, instructs augment functions that try both node swaps
and meet moves to try the node swaps first.

es_kempe_moves

This option determines whether augment functions that move meets use Kempe moves in
addition to ejecting and basic ones (Section 10.2.2). Its possible values aretrue, meaning
to use them,false, meaning to not use them, andlarge_layers (the default), meaning to
use them when moving the meets of nodes that lie in layers of large duration relative to the
cycle duration, reasoning that swaps are usually needed when such meets are moved.

es_fuzzy_moves

A Boolean option which, whentrue, instructs augment functions that move meets to try
fuzzy meet moves (Section 10.7.4) in addition to the other kinds of meet moves. If they
do, to conserve running time they only do so when repairing a defect of the current best
solution, not when repairing a defect introduced by a previous repair. At present thewidth,
depth, andmax_meets arguments passed toKheFuzzyMeetMove are fixed constants.

es_no_ejecting_moves

A Boolean option which, whentrue, instructs augment functions that assign and move
meets to not use ejecting moves, only basic ones (Section 10.2.2).

es_no_limit_busy_sequences

A Boolean option which, whentrue, instructs augment functions that repair limit busy
times defects to move only single assignments, not sequences of assignments.

es_schedules

The value here is a string describing the schedules to apply to an ejector. The default value
is "1+,u-". For the meaning of this, consult Section 13.2.
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es_max_augments

An upper limit on the number of augments tried on each attempt to repair a main loop de-
fect. The default value is120, which may be more effective than a larger number, especially
when there is a time limit, because it helps the search to not waste time on lost causes.

es_max_repairs

An upper limit on the number of repairs tried on each attempt to repair a main loop defect.
The default value isINT_MAX.

es_no_promote_defects

(withdrawn) A Boolean option which, whentrue, instructs an ejector not to promote
defects (Section 13.5.1).

es_fresh_visits

A Boolean option which, whentrue, instructs an ejector to make fresh visits (Sec-
tion 13.5.2).

es_max_beam

An integer option which gives the maximum number of monitors that may appear in a beam
(Section 13.5.5). The default value is 1, producing ejection chains rather than beams.

es_limit_defects

An option whose value is either"unlimited" or an integer. This integer is a limit on the
number of defectshandled by the main loop of the ejector. Each time the main list of defects
is copied and sorted, if its size exceeds this limit, defects are dropped from the end until it
doesn’t. When the option is not set, or its value is"unlimited", no limit is applied.

es_task_seq_swaps_off

A Boolean option which, whentrue, causes each move of a sequence of tasks on adjacent
days to not try to find a second sequence of tasks in the other direction.

es_group_limit_resources_off

A Boolean option which, whentrue, instructsKheEjectionChainPrepareMonitors
(Section 13.7.4) to not group limit resources monitors for the same events and resource
types. Grouping these monitors is not exact, which is why this option is offered to turn it
off, but it may be helpful anyway, to reduce the density of these constraints.

es_widening_off, es_reversing_off, es_balancing_off
Boolean options which, whentrue, cause widening, reversing, and balancing to be omitted
from task move repairs.

Note: Task move repairs treat taskst for whichKheTaskNeedsAssignmentHasCost(t) is
false as free time. Inserting this note in the right place is still to do.

es_widening_max

When widening is in effect (whenes_widening_off is false), this integer option
determines the maximum number of frame time groups that widening covers. Calling
this numberm, and supposing the task set being moved already coverss time groups, the
maximum is max(m,s). The default value is 4.
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es_balancing_max

When balancing is in effect (whenes_balancing_off is false), this integer option
determines the maximum number of repairs that move a task set in the other direction to
the main move. The default value is 12.

es_full_widening_on

A boolean option which, whentrue, includes full widening in task move repairs. This
swaps timetables from the task being moved back to the start or forward to the end of the
cycle. It is effective, but its slowness typically increases cost on solves limited by time.

es_optimal_on

A boolean option which, whentrue, causes optimal widened task set moves to be used. In
that case,es_optimal_width just below is consulted, as ises_balancing_off above,
but the other options fromes_widening_off down to here are ignored.

es_optimal_width

Whenes_optimal_on is true, this integer option determines how many extra days to
include in the optimal move. The default value, 6, adds 6 extra days. When these are added
to the one day typically involved in the original move, this covers a full week.

The following options are set by KHE’s functions, making it futile for the user to set them:

es_split_moves

A Boolean option which, whentrue, instructs augment functions that move meets to try
split meet moves in addition to other kinds of meet moves.KheGeneralSolve2020 sets
this option totrue when the instance contains soft split events or distribute split events
constraints, reasoning that they may not have been satisfied by structural solvers.

es_repair_times

A Boolean option which, whentrue, lets augment functions change meet assignments.
KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes set it
to true, whileKheEjectionChainRepairResources sets it tofalse.

es_limit_node

This option holds a node object. When it is non-NULL, it causes augment functions that
assign and move meets to limit their repairs to the descendants of that node. This option is
set by all three functions.

es_repair_resources

A Boolean option which, whentrue, lets augment functions change task assignments.
KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes set it
to false, whileKheEjectionChainRepairResources sets it totrue.

All three functions require certain monitor groupings, but they set them up and remove them
themselves. It is reasonable to worry about the time it takes to set up these group monitors.
To investigate this question, the author ran just the group monitor setup and removal parts of
function KheEjectionChainNodeRepairTimes 10000 times on a typical instance (BGHS98)
and measured the time taken. This was 31.35 seconds, or about 0.003 seconds per setup/remove.
This is not significant if it is done infrequently.
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13.7.1. Obtaining ejector objects

The first issue is where the ejector objects come from. They need to be loaded with the right
augment functions, and they need to be available after the solve, to give access to their statistics.
KHE offers a function for creating an ejector object with its augment functions loaded:

KHE_EJECTOR KheEjectionChainEjectorMake(KHE_OPTIONS options, HA_ARENA a);

This returns a new ejector object, ready to solve with, stored in arenaa. Its schedules come from
thees_schedules option ofoptions, and its augment functions are the ones defined by KHE.
However, the three ejection chain solvers obtain their ejector objects indirectly, by calling

KHE_EJECTOR KheEjectionChainEjectorOption(KHE_OPTIONS options, char *key);

This retrieves the object fromoptions with the given key, casts it toKHE_EJECTOR, and returns
it; or if there is no such object, it callsKheEjectionChainEjectorMake(options, a) to create
one, adds it tooptions under the given key, and returns it. The ejector’s lifetime is the lifetime
of options, becausea is KheOptionsArena(options).

For KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes

the key is"es_ejector1"; for KheEjectionChainRepairResources it is"es_ejector2". This
allows for collecting two sets of statistics, for time assignment and resource assignment.

13.7.2. Limiting the scope of changes

Ejection chains work best when they are free to follow chains into any part of a solution, and
make any repairs that help. This freedom can conflict with the caller’s desire to limit the scope
of the changes they make, typically because initial assignments have not yet been made to some
parts of the solution, and an ejection chain repair should not anticipate them.

For example, suppose resourcer is preassigned to some tasks, and there are others it could
be assigned to. The preassigned tasks go intor ’s timetable when their meets are assigned times,
and could then create resource defects that an ejection chain time repair algorithm knows about.
Suppose a limit busy times underload defect is created (quite likely when the workload on some
day first becomes non-zero), and its augment function tries (among other things) to assign more
tasks tor to increase its workload on that day. This is not done at present,but it is plausible. Then
there will be an unexpected burst of resource assignment during time assignment.

One romantic possibility is to ‘let a thousand flowers bloom’ and just accept such repairs.
The problem with this is that a carefully organized initial assignment can be much better than
the result of a set of uncoordinated individual repairs.

Another possibility is to fix the assignments of all variables beyond the scope of the current
phase of the solve to their current values, often null values. This is a very reliable approach, and
arguably the most truthful, because it says to the ejection chain algorithm, in effect, ‘for reasons
beyond your comprehension,you are not permitted to change these variables.’ But it suffers from
a potentially severe efficiency problem: a large amount of time could be spent in discovering a
large number of repairs, which all fail through trying to change fixed variables.

Yet another possibility is to have one ejector object for each kind of call (one for repairing
time assignments,another for repairing resource assignments,and so on), with different augment
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functions. The augment functions for time repair would never assign a task, for example. This
was the author’s original approach, but as the code grew it became very hard to maintain.

At present the author is using the following somewhat ad-hoc ideas to limit the scope of
changes. They do the job at very little cost in code and run time.

The start group monitor is one obvious aid to restricting the scope of a call. For example,
time repair calls do not include event resource monitors in their start group monitors.

Many repairs move meets and tasks, but do not assign them. It seems that once a meet or
task has been assigned, it is always reasonable to move it during repair. So the danger areas are
augment functions that assign meets and tasks, not augment functions that merely move them.

Augment functions for assign time and assign resource defects must contain ‘dangerous’
assignments. But suppose that the assign time or assign resource monitor for some meet or task
is not in the start group monitor. Then a repair of that monitor cannot occur first on any chain;
and if the meet or task is unassigned to begin with, it cannot occur later either, since the monitor
starts off with maximum cost, so its cost cannot increase, and only monitors whose cost has in-
creased are repaired after the first repair on a chain. So assign time and assign resource augment
functions can be included without risk of the resulting time and resource assignments being out
of scope. This is just as well, since they are needed after ejecting meet and task moves.

If it can be shown, as was just done, that certain events will remain unassigned, then they
can have no other event defects, since those require the events involved to be assigned. Similarly,
unassigned event resources will never give rise to other event resource defects.

Another idea is to add options to the options object that control which repairs are tried. This
is as general as different ejector objects with different augment functions are, but, if the options
are few and clearly defined, it avoids the maintenance problems. If many calls on augment
functions achieve nothing because options prevent them from trying things, that would be an
efficiency problem, but there is no problem of that kind in practice.

The options object contains anes_repair_times option, which whentrue allows repairs
that assign and move meets, and anes_repair_resources option, which whentrue allows
repairs that assign and move tasks. It takes virtually no code or time to consult these options;
often, just one test at the start of an augment function is enough.

When moving a meet, its chain of assignments is followed upwards, trying moves at each
level. But if the aim is to repair only a small area (one runaround, say), then even if a repair
starts within scope, it can leave it as it moves up the chain. This has happened, and has caused
problems. So the options object contains anes_limit_node option, whose value is a node. If
it is non-NULL, meet assignments and moves are not permitted outside its proper descendants.

KheEjectionChainNodeRepairTimes andKheEjectionChainLayerRepairTimes set option
es_repair_times to true, es_repair_resources tofalse, andes_limit_node to the parent
node, or toNULL if it is the cycle node. Thefalse value fores_repair_resources solves the
hypothetical problem, given as an example at the start of this section, of limit busy times repairs
assigning resources during time assignment.

KheEjectionChainRepairResources sets optiones_repair_times to false, option
es_repair_resources totrue, and optiones_limit_node toNULL. Settinges_repair_times
to true here would also be reasonable, although slow; it would allow the repairs to try meet
moves while repairing task assignments.
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13.7.3. Correlation problems involving demand defects

Section 9.8 discusses the problem of correlated monitors, and how it can be solved by grouping.
Demand monitors obviously correlate with avoid clashes monitors: when there is a clash, there
will be both an avoid clashes defect and an ordinary demand defect. They also correlate with
avoid unavailable times, limit busy times, and limit workload monitors: when there is a hard
avoid unavailable times defect, for example, there will also be a demand defect. This section
explores several ways of handling these correlations, beginning with grouping.

Group the correlated monitors.Grouping is the ideal solution for correlation problems, but
it does not work here. There are two reasons for this.

First, although every avoid clashes defect has a correlated ordinary demand defect, unless
the resource involved is preassigned there is no way to predict which monitors will be correlated,
since that depends on which resource is assigned to the demand monitors’ tasks.

Second, grouping workload demand monitors with the resource monitors they are derived
from has a subtle flaw. A demand defect is really the whole set of demand monitors that
compete for the insufficient supply. (These sets are quite unpredictable and cannot themselves
be grouped.) A workload demand defect shows up, not in the workload demand monitor itself,
but in an ordinary demand monitor that competes with it. This is because the last demand tixel
to change its domain and require rematching is the one that misses out on the available supply,
and workload demand monitors never change their domains. So this grouping still leaves two
correlated defects ungrouped: the group monitor and the unmatched ordinary demand monitor.

If grouping does not work, then one of the correlated monitors has to be detached or
otherwise ignored. There are several ways to do this.

Detach demand monitors.This does not work, because no-one notices that six Science
meets are scheduled simultaneously when there are only five Science laboratories, and the
resulting time assignment is useless.

Attach demand monitors but exclude them from continue group monitors.This preventscor-
related monitors from appearing on defect lists,but both costscontinue to be added to the solution
cost, so removing the resource defect alone does not produce an overall improvement. The chain
terminates in failure; the ejector cannot see that repairing the resource defect could work.

Attach demand monitors but exclude them from the solution and continue group monitors;
add a limit monitor holding them.Then other monitors will be repaired, but no chain which
increases the total number of demand defects will be accepted. This has two problems.

First, it can waste time constructing chains which fall at the last hurdle when it is discovered
that they increase demand defects. This is particularly likely during time repair: the six Science
meets problem could well occur and pass unnoticed for a long time.

Second, although it prevents demand defects from increasing, it does not repair them. This
rules it out for time repair, which is largely about repairing demand defects, but it may not matter
for resource repair. Resource repair cannot reduce the number of demand defectsunless it moves
meets: merely assigning resources reduces the domains of demand tixels, which cannot reduce
demand defects. Even moving meets is unlikely to reduce demand defectsduring resource repair,
since many of those moves will have been tried previously, during time repair.

Detach correlated resource monitors.Instead of detaching demand monitors, detach the
resource monitors they correlate with. Each kind of resource monitor is considered below. The
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main danger here isinexactness: if some detached resource monitor is not modelled exactly by
the demand monitors that replace it, then some defects go undetected and unrepaired.

Detach all avoid clashes monitors.For every avoid clashes defect there is an ordinary
demand defect. The only inexactness is that avoid clashes monitors may have any weights,
whereas demand monitors have equal weight, usually 1 (hard). But avoid clashes constraints
usually have weight 1 (hard) or more, so this does not seem to be a problem in practice, given
that, as the specification says, hard constraint violations should be few in good solutions.

Detach avoid unavailable times monitors that give rise to workload demand monitors.
These are monitors with weight at least 1 (hard). The modelling here is exact apart from any
difference in hard weight, so again there is no problem in practice.

Detach limit busy times monitors that give rise to workload demand monitors.These are
monitors with weight at least 1 (hard) which satisfy the subset tree condition (Section 7.4.2).
Apart from the possible difference in hard weight, this is exact except for one problem: limit busy
times constraints can impose both a lower and an upper limit on resource availability in some set
of times, and workload demand monitors do not model lower limits at all.

This can be fixed by (conceptually) breaking each limit busy times monitor into two, an
underload monitor and an overload monitor, and detaching the overload monitor but not the
underload monitor. KHE expresses this idea in a different way, chosen because it also solves the
problem presented by limit workload monitors, to be discussed in their turn.

Limit busy times monitors have two attributes,Minimum andMaximum, such that less than
Minimum busy times is an underload,and more thanMaximum is an overload. Add a third attribute,
Ceiling, such thatCeiling >= Maximum, and specify that, with higher priority than the usual
rule, when the number of busy times exceedsCeiling the deviation is 0.

FunctionKheLimitBusyTimesMonitorSetCeiling (Section 6.6.5) may be called to set the
ceiling. Setting it toINT_MAX (the default value) produces the usual rule. Setting it toMaximum

is equivalent to detaching overload monitoring.

Detach limit workload monitors that give rise to workload demand monitors.Limit
workload monitors are similar to limit busy times monitors whose set of times is the entire cycle.
However, the demand monitors derived from a limit workload monitor do not necessarily model
even the upper limit exactly (Section 7.4.1). This problem can be solved as follows.

Consider a resource with a hard limit workload monitor and some hard workload demand
monitors derived from it, and suppose that all of these monitors are attached. As the resource’s
workload increases, it crosses from a ‘white region’ of zero cost into a ‘grey region’ where the
limit workload monitor has non-zero cost but the workload demand monitors do not, and then
into a ‘black region’where both the limit workload monitor and the workload demand monitors
have non-zero cost. This black region is the problem.

The problem is solved by adding aCeiling attribute to limit workload monitors, as for
limit busy times monitors. FunctionKheLimitWorkloadMonitorSetCeiling (Section 6.6.6)
sets the ceiling. As before, the default value isINT_MAX. The appropriate alternative value is not
Maximum, but rather a value which marks the start of the black region, so that the limit workload
monitor’s cost drops to zero as the workload crosses from the grey region to the black region. In
this way, all workload overloads are reported, but by only one kind of monitor at any one time.

There is one anomaly in this arrangement: a repair that reduces workload from the black
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region to the grey region does not always decrease cost. This is a pity but it is very much a
second-order problem, given that the costs involved are all hard costs, so that in practice repairs
are wanted that reduce them to zero. What actually happens is that one repair puts a resource
above the white zone, and this stimulates a choice of next repair which returns it to the white
zone. Repairs which move between the grey and black zones are possible but are not likely to
lie on successful chains anyway, so it does not matter much if their handling is imperfect.

The appropriate value forCeiling is the number of times in the cycle minus the total
number of workload demand monitors for the resource in question, regardless of their origin.
When the resource’s workload exceeds this value, there will be at least one demand defect, and
it is time for the limit workload monitor to bow out.

To summarize all this: there is some choice during resource repair, but detaching resource
monitors (with ceilings) always works, and it is the only method that works during time repair.

13.7.4. Primary grouping and detaching

To install and remove the primary groupings used by ejection chains, call

void KheEjectionChainPrepareMonitors(KHE_SOLN soln,
KHE_OPTIONS options);

void KheEjectionChainUnPrepareMonitors(KHE_SOLN soln);

This includes detaching some resource monitors, as in the plan evolved in Section 13.7.3. This
section explains exactly whatKheEjectionChainPrepareMonitors does.

KheEjectionChainPrepareMonitors partitions the events ofsoln’s instance into classes,
placing events into the same class when following the fixed assignment paths out of their meets
proves that their meets must run at the same times. It then groups event monitors as follows.

Split events and distribute split events monitors.For each class, it groups together
the split events and distribute split events monitors that monitor the events of that class. It
gives sub-tagKHE_SUBTAG_SPLIT_EVENTS to any group monitors it creates. There is also a
KHE_SUBTAG_DISTRIBUTE_SPLIT_EVENTS subtag, but it is not used.

Assign time monitors.For each class, it groups the assign time monitors that monitor the
events of that class, giving sub-tagKHE_SUBTAG_ASSIGN_TIME to any group monitors.

Prefer times monitors.Within each class, it groups those prefer times monitors that
monitor events of that class whose constraints request the same set of times, giving sub-tag
KHE_SUBTAG_PREFER_TIMES to any group monitors.

Spread events monitors.For each spread events monitor, it finds the set of classes that hold
the events it monitors. It groups attached spread events monitors whose sets of classes are equal,
giving sub-tagKHE_SUBTAG_SPREAD_EVENTS to any group monitors. Strictly speaking, only
monitors whose constraints request the same time groups with the same limitsshould be grouped,
but that check is not currently being made.

Link events monitors.Like split events monitors, these are usually handled structurally, so
it does nothing with them. They usually have provably zero fixed cost, so are already detached.

Order events monitors.For each order events monitor, it finds the sequence of classes that
hold the two events it monitors. It groups attached order events monitors whose sequences of
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classes are equal, giving sub-tagKHE_SUBTAG_ORDER_EVENTS to any group monitors. Strictly
speaking,only monitorswhose constraints request the same event separationsshould be grouped,
but that check is not currently being made.

Next, KheEjectionChainPrepareMonitors partitions the event resources ofsoln’s
instance into classes, placing event resources into the same class when following the fixed
assignment paths out of their tasks proves that they must be assigned the same resources. It then
groups event resource monitors as follows.

Assign resource monitors.For each class, it groups the assign resource monitors of that
class’s event resources, giving sub-tagKHE_SUBTAG_ASSIGN_RESOURCE to any group monitors.

Prefer resources monitors.Within each class, it groups those prefer resources monitors that
monitor the event resources of that class whose constraints request the same set of resources,
giving sub-tagKHE_SUBTAG_PREFER_RESOURCES to any group monitors.

Avoid split assignments monitors.There seems to be no useful primary grouping of these
monitors, so nothing is done with them. They may be handled structurally, in which case they
will have provably zero fixed cost and will be already detached.

Students who follow the same curriculum have the same timetable. So for each resource
typert such that a call toKheResourceTypeDemandIsAllPreassigned(rt) (Section 3.5.1) shows
that its resources are all preassigned,KheEjectionChainPrepareMonitors groups the resource
monitors ofrt’s resources as follows.

Avoid clashes monitors.It groups those avoid clashes monitors derived from the same
constraint whose resources attend the same events, giving sub-tagKHE_SUBTAG_AVOID_CLASHES

to any group monitors.

Avoid unavailable times monitors.It groups avoid unavailable times monitors derived from
the same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG_AVOID_UNAVAILABLE_TIMES.

Limit idle times monitors. It groups limit idle times monitors derived from the same con-
straint whose resources attend the same events, giving sub-tagKHE_SUBTAG_LIMIT_IDLE_TIMES

to any group monitors.

Cluster busy times monitors.It groups cluster busy times monitors derived from the
same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG_CLUSTER_BUSY_TIMES.

Limit busy times monitors.It groups limit busy times monitors derived from the same con-
straint whose resources attend the same events, giving sub-tagKHE_SUBTAG_LIMIT_BUSY_TIMES

to any group monitors.

Limit workload monitors.It groups limit workload monitors derived from the same con-
straint whose resources attend the same events, giving sub-tagKHE_SUBTAG_LIMIT_WORKLOAD to
any group monitors.

Limit active intervals monitors. It groups limit active intervals monitors de-
rived from the same constraint whose resources attend the same events, giving sub-tag
KHE_SUBTAG_LIMIT_ACTIVE_INTERVALS to any group monitors.

Fixed assignments between meets are taken into account when deciding whether two
resources attend the same events. As far as resource monitors are concerned, it is when the
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resource is busy that matters, not which meets it attends.

KheEjectionChainPrepareMonitors also treats some resource monitors according to the
plan from Section 13.7.3, whether they are grouped or not:

• It detaches all attached avoid clashes monitors.

• For each attached avoid unavailable times monitorm for which a workload demand monitor
with originating monitorm is present (all hard ones, usually), it detachesm.

• For each attached limit busy times monitorm for which a workload demand monitor with
originating monitorm is present (all hard ones satisfying the subset tree condition of Section
7.4.2, usually), ifm’s lower limit is 0 it detachesm, otherwise it setsm’s ceiling attribute to
its maximum attribute, by callingKheLimitBusyTimesMonitorSetCeiling.

• For each attached limit workload monitorm for which a workload demand monitor with
originating monitorm is present (all hard ones, usually), it setsm’s ceiling attribute to the
cycle length minus the number of workload demand monitors form’s resource (regardless
of origin), or 0 if this is negative, by callingKheLimitWorkloadMonitorSetCeiling.

Section 13.7.3 has the reasoning.

Finally, KheEjectionChainPrepareMonitors groups demand monitors as follows. If a
limit monitor containing these monitors is wanted, a separate call is needed (Section 13.7.5).

Ordinary demand monitors.For each set of meets such that the fixed assignment paths
out of those meets end at the same meet, it groups the demand monitors of those meets’ tasks,
giving sub-tagKHE_SUBTAG_MEET_DEMAND to any group monitors. The reasoning is that the only
practical way to repair an ordinary demand defect is to change the assignment of its meet (or
some other clashing meet), which will affect all the demand monitors grouped with it here.

Workload demand monitors.These remain ungrouped. As explained in Section 13.7.3,
workload demand defects appear only indirectly, as competitors of ordinary demand defects.

13.7.5. Secondary groupings

Section 9.8 introduces the concept of secondary groupings. The three ejection chain functions
need secondary groupings built on primary groupings for their start group monitors (but not
their continue group monitors, since they use the solution object for that), and other secondary
groupings for their limit monitors. These are the subject of this section.

KheEjectionChainNodeRepairTimes uses the group monitor returned by

KHE_GROUP_MONITOR KheNodeTimeRepairStartGroupMonitorMake(KHE_NODE node);

as its start group monitor. The result has sub-tagKHE_SUBTAG_NODE_TIME_REPAIR. Its children
are monitors, or primary groupings of monitors where these are already present, of two kinds.
First are all assign time, prefer times, spread events, order events, and ordinary demand monitors
that monitor the meets ofnode and its descendants, plus any meets whose assignments are fixed,
directly or indirectly, to them. Second are all resource monitors. Only preassigned resources are
assigned during time repair, but those assignments may cause resource defects which can only
be repaired by changing time assignments, just because the resources involved are preassigned.
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KheEjectionChainLayerRepairTimes chooses one of the group monitors returned by

KHE_GROUP_MONITOR KheLayerTimeRepairStartGroupMonitorMake(
KHE_LAYER layer);

KHE_GROUP_MONITOR KheLayerTimeRepairLongStartGroupMonitorMake(
KHE_LAYER layer);

as its start group monitor, depending on optiones_layer_repair_long. The result has sub-tag
KHE_SUBTAG_LAYER_TIME_REPAIR, with the same children as before, only limited to those that
monitor the meets and resources oflayer, or (if es_layer_repair_long is true) of layers
whose index number is less than or equal tolayer’s.

KheEjectionChainRepairResources uses the group monitor returned by

KHE_GROUP_MONITOR KheTaskingStartGroupMonitorMake(KHE_TASKING tasking);

for its start group monitor. The result has sub-tagKHE_SUBTAG_TASKING, and its children are
the following monitors (or primary groupings of those monitors, where those already exist):
the assign resource, prefer resources, and avoid split assignments monitors, and the resource
monitors that monitor the tasks and resources oftasking. If the tasking is for a particular
resource type, only monitors of entities of that type are included.

To allow an ejection chain to unassign meets temporarily but prevent it from leaving meets
unassigned in the end, a limit monitor is imposed which rejects chains that allow the total cost of
assign time defects to increase. This monitor is created by calling

KHE_GROUP_MONITOR KheGroupEventMonitors(KHE_SOLN soln,
KHE_MONITOR_TAG tag, KHE_SUBTAG_STANDARD_TYPE sub_tag);

passingKHE_ASSIGN_TIME_MONITOR_TAG andKHE_SUBTAG_ASSIGN_TIME as tag parameters.

To prevent the number of unmatched demand tixels from increasing, when that is requested
by theresource_invariant option, the group monitor returned by function

KHE_GROUP_MONITOR KheAllDemandGroupMonitorMake(KHE_SOLN soln);

is used as a limit monitor. Its sub-tag isKHE_SUBTAG_ALL_DEMAND, and its children are all
ordinary and workload demand monitors. Primary groupings are irrelevant to limit monitors, so
these last two functions take no account of them.

13.7.6. Augment functions

The augment functions passed to the ejector are private to KHE. This section explains what they
do in detail. It may be somewhat out of date.

The augment functions consult several options. Thees_repair_times, es_limit_node,
andes_repair_resources options are particularly important because they limit the scope of
repairs. They cannot be set by the user—or rather, they can, but that would be futile because
they are reset within the main functions. Any repair which assigns or moves a meet consults
es_repair_times, and only proceeds if it istrue. It tries moving each ancestor of the meet,
since that will also move the original meet; but ifes_limit_node is non-NULL, it omits moves
of meets lying within nodes which are not proper descendants ofes_limit_node. Any repair



394 Chapter 13. Ejection Chains

which assigns or moves a task consultses_repair_resources, and only proceeds if it istrue.

Here is the full list of repair operations executed by KHE’s augment functions.

Node swaps, which useKheNodeMeetSwap (Section 10.2.1) to swap the assignments of the
meets of two nodes. If thees_nodes_before_meets option istrue, then if node swaps are tried
at all, they are tried before (rather than after) meet moves.

Basic and ejecting meet assignments and moves and Kempe meet moves,which move meets
(Section 10.2.2). Where it is stated that a Kempe meet move is tried, it is in fact tried only when
thees_kempe_moves option (Section 13.7) istrue, or it islarge_layers and the meet to be
moved lies in at least one layer whose duration is at least 80%of the duration of the cycle. Where
it is stated that an ejecting meet assignment or move is tried, a basic meet assignment or move
is tried instead when thees_no_ejecting_moves option istrue.

Fuzzy meet moves, which move meets in a more elaborate way (Section 10.7.4). These are
not mentioned below, but they are tried after Kempe and ejecting meet moves, although only
when thees_fuzzy_moves option istrue and the current length is 1.

Split moves, which split a meet into two and Kempe-move one of the fragments, andmerge
moves, which Kempe-move one meet to adjacent to another and merge the two fragments. As
well as being used to repair split defects, split moves are used similarly to fuzzy meet moves:
although not mentioned below, they are tried after Kempe and ejecting meet moves, but only
when thees_split_moves option istrue and the current length is 1. These Kempe meet moves
are not influenced by thees_kempe_moves option.

Ejecting task assignments and moves, which assign or move a task to a given resource and
then unassign any clashing tasks (Section 12.3).

Ejecting task-set moves, which use ejecting task moves to move a set of tasks to a common
resource, succeeding only if all of the moves that change anything succeed.

Meet-and-task moves, which Kempe-move a meet at the same time as moving one of its
tasks, succeeding only if both moves succeed.

Each repair is enclosed in calls toKheEjectorRepairBegin andKheEjectorRepairEnd as
usual. In the more complex cases, such as the last two on the list above, thesuccess argument
of KheEjectorRepairEnd is set totrue only if all parts of the repair succeed. Some of the more
complex repairs are tried only when the current length is 1, that is, when the defect being repaired
is truly present, not introduced by some other repair.

Some alternative repairs are naturally tried one after another. The ejecting task moves of
a given task to each resource in its domain is one example. Here are three less obvious, but
nevertheless very useful sequences of alternative repairs.

A Kempe/ejecting meet moveis a sequence of one or two alternative repairs, first a Kempe
meet move, then an ejecting meet move with the same parameters. The ejecting meet move
is omitted when the Kempe meet move reports that it did only what a basic meet move would
have done, since in that case the ejecting move is identical to the Kempe move. This sequence
is similar to making an ejecting move and then, on the next repair, favouring a particular
reassignment of the ejected meet(s) which is likely to work well. Fuzzy and split moves may
follow the Kempe and ejecting meet moves, as explained above.

A resource underload repairfor resourcer and time groupg is a sequence of alternative
repairs which aim to increase the number of timesr is busy withing. Unlessg is the whole cycle,
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for each task assignedr whoseoverlap(the number of times it is running withing) is less that its
duration, it tries all ejecting meet moves of the task’s meet which increase its overlap. After that
it tries an ejection tree repair like the one described below for cluster busy times defects, which
aims to empty out the entire time group—a quite different way to remove the defect.

A resource overload repairfor resourcer and time groupg is a sequence of alternative re-
pairs which aims to decrease the number of timesr is busy withing. First, for each task assigned
but not preassignedr whose overlap is non-zero, it tries all ejecting task moves of the task to its
domain’s resources. Then, for each task assigned (including preassigned)r whose overlap isnon-
zero, it tries all ejecting meet moves of the task’s meet which decrease the overlap.

Wherever possible,sequences of alternative repairschange the starting point of the traversal
of the alternatives on each call. For example, when trying alternative resources, the code is

for( i = 0; i < KheResourceGroupResourceCount(rg); i++ )
{
index = (KheEjectorCurrAugmentCount(ej) + i) %
KheResourceGroupResourceCount(rg);

r = KheResourceGroupResource(rg, index);
... try a repair using r ...

}

The first resource tried depends on the number of augments so far,an essentially random number.
This simple idea significantly decreases final cost and run time.

Following is a description of what each augment function does when given a non-group
monitor with non-zero cost to repair. When given a group monitor with non-zero cost, since
the elements of a group all monitor the same thing in reality, the augment function takes any
individual defect from the group and repairs that defect.

Split events and distribute split events defects.Most events are split into meets of suitable
durations during layer tree construction, but sometimes the layer tree does not remove all these
defects, or a split move introduces one. In those cases, the split analyser (Section 9.7.1) from the
options object is used to analyse the defects and suggest splits and merges which correct them.
For each split suggestion, for each meet conforming to the suggestion, a repair is tried which
splits the meet as suggested. For each merge suggestion, for each pair of meets conforming to the
suggestion, four combined repairs are tried, each consisting of, first, a Kempe meet move which
bring the two meets together, and second, the merge of the two meets. The four Kempe moves
move the first meet to immediately before and after the second, and the second to immediately
before and after the first.

Assign time defects.For each monitored unassigned meet, all ejecting meet moves to a
parent meet and offset that would assign the meet to a time within its domain are tried.

Prefer times defects.For each monitored meet assigned an unpreferred time, all
Kempe/ejecting meet moves to a parent meet and offset giving a preferred time are tried.

Spread events defects.For each monitored meet in an over-populated time group, all
Kempe/ejecting moves of the meet to a time group that it would not over-populate are tried; and
for each under-populated time group, for each meet whose removal would not under-populate its
time group, all Kempe/ejecting moves of it to the under-populated time group are tried.
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Link events defects.These are not repaired; they are expected to be handled structurally.

Order events defects.These are currently ignored. It will not be difficult to find suitable
meet moves in the future.

Assign resource defects.For each monitored unassigned task, all ejecting assignments of
the task to resources in its domain are tried. Then if thees_repair_times option permits, all
combinations of a Kempe meet move of the enclosing meet and an ejecting assignment of the
task to resources in its domain are tried.

Prefer resources defects.For each monitored task assigned an unpreferred resource, all
ejecting moves of the task to preferred resources are tried.

Avoid split assignments defects.For each resource participating in a split assignment there
is one repair: all involved tasksassigned that resource are unassigned,all involved tasks’domains
are restricted to the other participating resources, and a set of ejection chains is tried, each of
which attempts to reassign one of the unassigned tasks. The repair succeeds only if all these
chains succeed, making an ejection tree, not a chain. This is expensive and unlikely to work, so
it is only tried when the defect is a main loop defect or only one task needs to be unassigned.

Avoid clashes defects.Avoid clashes monitors are detached during ejection chain repair,
since their work is done by demand monitors. So there are no avoid clashes defects.

Avoid unavailable times defects.A resource overload repair (see above) for the monitored
resource and the unavailable times is tried.

Limit idle times defects.For each task assigned the monitored resource at the start or end of
a ‘day’ (actually, a time group being monitored), each Kempe/ejecting meet move of that task’s
meet such that the initial meet move reduces the number of idle times for that resource is tried.
Calculating this condition is not trivial, but the augment function does it exactly. Task moves
could help to repair limit idle times defects for unpreassigned resources, but in current data sets
the resources involved are usually preassigned, so task moves are not currently being tried.

After the repairs just given are tried, if the repair has length 1 (if the defect was not created
by a previous repair on the current chain),a complex repair is tried which eliminatesall idle times
for one resource on one day. Take the meets assigned that resource on that day. A retimetabling
of those meets on that day with no clashes and no idle times is defined by a starting time for the
first meet and a permutation of the meets (their chronological order in the assignment). If there
arek meets ands starting times that don’t put the last meet off the end of the day, then there
ares ⋅ k! retimetablings in total. In practice this is a moderate number. For safety, only a limited
number of retimetablings is tried, by switching to a single permutation at each new node after a
fixed limit (currently 1000) is reached.

Cluster busy times defects.If the resource is busy in too few monitored time groups, all
ejecting meet moves are tried which move a meet which is not the only meet in a monitored time
group (either because every monitored time group it overlaps with overlaps with at least one
other meet, or because it does not overlap with any monitored time groups) to a monitored time
group in which it is. If the resource is busy in too many monitored time groups, then for each
monitored time grouptg containing at least one meet, if the length is 1 ortg contains exactly
one meet, all the meets intg are unassigned, andtg and all monitored time groups containing no
meets are removed from the domains of all meets assigned the resource. This is an ejection tree
repair if more than one meet is unassigned: all of the unassigned meets must be reassigned for
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success. The repair must ensure that the domains are restored on success as well as on failure.

Limit busy times defects.For each set of times when the resource is underloaded (resp.
overloaded), a resource underload (resp. overload) repair of the resource at those times is tried.

Limit workload defects.If the resource is overloaded, a resource overload repair is tried,
taking the set of times to be the entire cycle. There is currently no repair for underloads.

Ordinary and workload demand defects.If the defect has a workload demand monitor
competitor (possibly itself, although workload demand monitors rarely fail to match), a resource
overload repair is tried for the workload demand monitor’s resource and the domain of its
originating monitor. If the defect has no workload demand defect competitor, all ejecting meet
moves of competitor meets to anywhere different are tried; but meets within vizier nodes are not
moved in this case, since that would only shift the problem to a different time.

13.7.7. Repair operations for nurse rostering

This section is obsolete. It will be rewitten eventually. Meanwhile,see my KHE18 nurse rostering
solver paper.

Apart from the absence of time assignment, nurse rostering is characterized by constraints
that relate what a resource does on one day to what it does on adjacent days. Because of them,
it makes sense to use repairs which move small sets of tasks, from adjacent days, as a block from
one resource to another. Many authors of nurse rostering solvers have come to this conclusion.

Suppose that a defect arises that might be repaired by an augment that movestask from r1

to r2, as carried out byKheTaskMoveAugment. Either ofr1 andr2, but not both, may beNULL.
The idea offered here is that in the nurse rostering case,KheTaskMoveAugment should reinterpret
a request to movetask as a request to move several tasks from adjacent days, includingtask.

Which tasks should be chosen? Initially, they should all be assigned to whatevertask is
assigned to initially (possiblyNULL), otherwise the rationale for this kind of move is lost. The
number of adjacent days to include tasks from is harder to be sure about, except that, as we search
in each direction fromtask’s day, we are obliged to stop after we reach the first or last day, and
if there is no task assigned whattask is assigned to initially. Furthermore, ifr2 is already busy
on some day, it is not likely to be useful to give it another task on that day. So the search should
stop at the first case of that. So we have a different set of moves to make for eachr2.

Our plan is to move justtask to begin with, thentask plus one day, thentask plus 2 days,
and so on up tok days, wherek is a parameter that we can choose, by means of an option perhaps.
We will try moving all sets of from 1 tok days that includetask. Clearly,k must be small, say
4 at most. Onlytask will be marked visited and checked for being visited.

The set of possible repairs here has two dimensions, one indexed by sets of days to move,
the other byr2. We could iterate in any order that maximizes efficiency. It would be good, for
example, to build task sets as required, and remember them from one resource to the next.

We also need to be able to handle ‘negative moves’, where we have a time group rather than
a task and the idea is to move something out of that time group or into it. This is done now by
KheNurseOverload, but not very effectively.



Appendix A. Modules Packaged with KHE
This chapter documents several modules packaged with KHE and used by it behind the scenes.
By including their header files the user may also use these modules.

A.1. Arenas and arrays

Note – the Ha library has been flown in from another project of the author’s,called Howard. Its
header file ishoward_a.h.

This section describes Howard’s Ha library, which provides arenas and extensible arrays.

A.1.1. Arenas

An arena is an object (a pointer to a private struct) of typeHA_ARENA. It represents an unlimited
amount ofarena memory: heap memory held in an arena so that it can be freed all at once later.
Starting from Version 2.1, all memory allocated by KHE is arena memory.

For creating and deleting arenas, the operations are

HA_ARENA HaArenaMake(bool large);

HaArenaMake creates an arena. Parameterlarge does nothing except get itself stored in the
arena, where it can be retrieved by calling

bool HaArenaLarge(HA_ARENA a);

It is a hint that the arena may become (very) large. Function

void HaArenaDelete(HA_ARENA a);

deletesa, freeing all its arena memory. Also,

void HaArenaClear(HA_ARENA a);

frees most ofa’s memory, returning it to its state immediately afterHaArenaMake.

The author has had some unpleasant experiences with themalloc memory allocator
supplied with his Linux system on large runs with multiple threads, and he has concluded that
recycling memory viamalloc andfree is best avoided. Accordingly, function

HaArenaRecycle(HA_ARENA a);

is provided, which is similar toHaArenaClear in that it tellsa that all of its objects excepta itself
are no longer wanted, but different in that it does not freea’s memory. Instead, it retains it and
uses it for subsequent allocations.

HaArenaRecycle is usually used in conjunction with a free list of arenas. When an arena
is needed, it is taken from this list if possible, otherwise it is created byHaArenaMake. When an

398



A.1. Arenas and arrays 399

arenaa is no longer needed,HaArenaRecycle(a) is called anda is added to the free list. In this
way, memory is efficiently recycled without callingfree. FunctionsKheArenaSetArenaBegin
andKheArenaSetArenaEnd (Appendix A.1.2) do this.

Operations

void *HaAlloc(HA_ARENA a, size_t size);
void HaMake(X res, HA_ARENA a);

allocate memory.HaAlloc returns a pointer to at leastsize_t bytes of arena memory froma,
aligned suitably for any data and initialized to zero. MacroHaMake setsres (which may have
any pointer typeX) to point to at leastsizeof(*res) bytes of memory obtained fromHaAlloc.
These objects may not be resized. For resizable objects, see Section A.1.5.

Arenas obtain their memory frommalloc (actuallycalloc). As long ascalloc continues
to supply memory, an arena will continue to supply memory to the user. If a request for memory
from calloc fails, thenHaArenaMake andHaAlloc returnNULL, andHaMake setsres to NULL.

The memory pointed to by a variablea of typeHA_ARENA is arena memory from arenaa.
This memory is freed along with the rest of the arena memory when the arena is deleted.

HaAlloc initializes the memory to zero for two reasons. First, an uninitialized object field
can cause a program to behave differently each time it runs. If all object memory is initialized
to zero, an uninitialized field is still a bug, but at least the program behaves the same each time it
runs. Second,HaArrayContains (Section A.1.3) comparesgeneric objects usingmemcmp. When
these objects are structs with gaps in them, this will only be correct if the gaps are equal.

The cost of callingHaArenaMake andHaArenaDelete is small enough to allow many small
arenas to come and go. A call toHaArenaMake generates one call tocalloc requesting 14 words
of memory, a few internal function calls which will certainly be inlined, and about 15 initializing
assignments. A call toHaArenaDelete generates one call tofree and three assignments when
the arena is empty, growing logarithmically (i.e. negligibly slowly) as the amount of memory
allocated in the arena increases. Section A.1.5 has more detail.

A.1.2. Arena sets

An arena setis a set of arenas. It is a convenient place to store recycled arenas while they are
waiting for new uses. To create a new, empty arena set, call

HA_ARENA_SET HaArenaSetMake(HA_ARENA a);

The arena set (but not its arenas) lies in arenaa and will be freed whena is freed.

In practice, what is mainly wanted is the ability to add an arena and extract one:

void HaArenaSetAddArena(HA_ARENA_SET as, HA_ARENA arena);
HA_ARENA HaArenaSetLastAndDelete(HA_ARENA_SET as);

HaArenaSetAddArena addsarena to as, andHaArenaSetLastAndDelete deletes and returns
the last arena fromas. Also useful are

int HaArenaSetArenaCount(HA_ARENA_SET as);
HA_ARENA HaArenaSetArena(HA_ARENA_SET as, int i);
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which return the number of arenas inas, and theith arena, counting from 0 as usual.

Typically, there is one arena set per thread. When a thread terminates, the arenas of its arena
set need to be passed on to the arena set of the parent thread. For this there is

void HaArenaSetMerge(HA_ARENA_SET dest_as, HA_ARENA_SET src_as);

It moves the arenas ofsrc_as to dest_as, leavingsrc_as empty.

Since arena sets are mainly for recycling arenas, two convenience functions are offered:

HA_ARENA HaArenaSetArenaBegin(HA_ARENA_SET as, bool large);
void HaArenaSetArenaEnd(HA_ARENA_SET as, HA_ARENA a);

If as is non-NULL, HaArenaSetArenaBegin returns a fresh arena, extracted fromas if there
is one with the givenlarge attribute, or else newly created, andHaArenaSetArenaEnd calls
HaArenaRecycle(a) then addsa to as. If as is NULL, the two functions just callHaArenaMake
andHaArenaDelete.

For completeness, a few other operations are provided:

void HaArenaSetClear(HA_ARENA_SET as);
void HaArenaSetDropFromEnd(HA_ARENA_SET as, int n);
void HaArenaSetDeleteArena(HA_ARENA_SET as, HA_ARENA arena);
bool HaArenaSetContainsArena(HA_ARENA_SET as, HA_ARENA arena, int *pos);
void HaArenaSetDebug(HA_ARENA_SET as, int verbosity, int indent,
FILE *fp);

These clearas back to the empty set, remove the lastn arenas fromas, deletearena (which must
be present) fromas, returntrue whenarena lies inas, and produce a debug print ofas ontofp
with the given verbosity and indent.

A.1.3. Arrays

Like C’s native arrays, Ha’s arrays aregeneric: they may have elements of any one type, of any
width, and the C compiler will report an error if there is a type mismatch. But, unlike C’s arrays,
Ha’s arrays areextensible: they may grow to any length during use.

The type of an extensible generic array must be declared using atypedef invoking macro
HA_ARRAY. For example, the following declarations already appear withinhoward_a.h:
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typedef HA_ARRAY(bool) HA_ARRAY_BOOL;
typedef HA_ARRAY(char) HA_ARRAY_NCHAR;
typedef HA_ARRAY(wchar_t) HA_ARRAY_CHAR;
typedef HA_ARRAY(short) HA_ARRAY_SHORT;
typedef HA_ARRAY(int) HA_ARRAY_INT;
typedef HA_ARRAY(int64_t) HA_ARRAY_INT64;
typedef HA_ARRAY(void *) HA_ARRAY_VOIDP;
typedef HA_ARRAY(char *) HA_ARRAY_NSTRING;
typedef HA_ARRAY(wchar_t *) HA_ARRAY_STRING;
typedef HA_ARRAY(float) HA_ARRAY_FLOAT;
typedef HA_ARRAY(double) HA_ARRAY_DOUBLE;

Create your own array type by placing any type at all between the parentheses.

To gain access towchar_t andint64_t, howard_a.h includes header files<wchar.h> and
<stdint.h>. Use oflong just leads to trouble, in the author’s experience, since its width varies
across platforms, soint64_t, a standard 64-bit signed integral type, is used instead.

A variable of any of these types is a struct (not a pointer to a struct) with three fields: a
typed pointer to arena memory holding the elements, the number of elements that that memory
canhold, and the number of elements that it currentlydoeshold. Structs are used rather than
pointers to structs because extensible arrays are mainly used as aids to the implementation of
other abstractions, and are thus usually private to one class or function, not shared. So there is
no problem in having their structs lie directly in class objects or on the call stack, rather than in
arena memory at the end of a pointer; and it is more efficient this way.

An array may be a field of an object that lies in one arena, while the array’s arena memory
lies in a different arena. But that would be unusual, since the array would normally have the same
lifetime as the object, and thus would naturally belong in the same arena.

When an array is initialized, it contains no elements and no arena memory is allocated for it.
Its pointer to arena memory points to a shared empty array in its arena. As the array grows, arena
memory for it is allocated and reallocated, but always from the same arena. Each reallocation
approximately doubles the number of elements that the array can hold, ensuring that another
reallocation will not be needed soon, while wasting at most as much space as is used. Memory
freed by a reallocation becomes available to hold other resizable objects in the same arena.

If one array is assigned to another using the C= operator or parameter passing, the arrays
will have separate copies of their three fields, yet share their elements. This is only safe when
the original array is not used afterwards, or the array’s length remains constant thereafter.

Ha’s array operations are macros, necessarily so since they are generic. They take structs as
parameters,not pointers to structs. This encourages the user to think of arrays as opaque objects,
like file pointers and so on. A disadvantage of macros is that their parameters may be evaluated
more than once during a call. Unless explicitly stated otherwise, the user should assume that all
parameters of all array operations are evaluated more than once. In many cases they are.

The first operation on any array must be to initialize it by a call to

void HaArrayInit(ARRAY_X a, HA_ARENA arena);

This setsa to empty and specifies the arena which will supply its memory when elements are
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added later. Here and throughout this section, array operations are presented as though they are
functions, even though they are really macros, andARRAY_X stands for the type created by

typedef HA_ARRAY(X) ARRAY_X;

for any typeX. To find the arena that an initialized arraya lies in, call

HA_ARENA HaArrayArena(ARRAY_X a);

In general,memory allocated by Howard’s functions can only be reclaimed by deleting the arena.
However, resizable objects such as arrays are an exception, and function

void HaArrayFree(ARRAY_X a);

frees the arena memory used bya, if any. This does not freea itself;a is not a pointer. It frees the
memory holding the elements ofa, making it available to other resizable objects ina’s arena.

To find the number of elements currently stored in an array, call

int HaArrayCount(ARRAY_X a);

The elements have indexes from0 to HaArrayCount(a) - 1 inclusive, as usual in C. For
efficiency, array bounds are not checked by any Ha operation. To access the element with index
i, or the first element, or the last element, call

X HaArray(ARRAY_X a, int i);
X HaArrayFirst(ARRAY_X a);
X HaArrayLast(ARRAY_X a);

HaArray andHaArrayFirst evaluate their parameters only once, and all three operations can be
used as variables as well as values. So one can write, for example,

HaArray(frequencies, i)++;

to increment the element offrequencies whose index isi, or

do_something(&HaArrayFirst(a))

to pass a pointer to an element.

To add one element to an array, the operations are

X HaArrayAdd(ARRAY_X a, int i, X x);
X HaArrayAddFirst(ARRAY_X a, X x);
X HaArrayAddLast(ARRAY_X a, X x);

HaArrayAdd addsx to a at indexi, which may range from0 to HaArrayCount(a) inclusive. It
makes room forx by shifting elements up one place, including reallocating arena memory if
necessary. It returnsx. HaArrayAddFirst(a, x) is equivalent toHaArrayAdd(a, 0, x), and
HaArrayAddLast(a, x) is a faster version ofHaArrayAdd(a, HaArrayCount(a), x).

void HaArrayFill(ARRAY_X a, int len, X x);

addsx 0 or more times to the end ofa, stopping whenHaArrayCount(a) is at leastlen.
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X HaArrayPut(ARRAY_X a, int i, X x);

replaces the value at indexi with x and returnsx. It evaluates its parameters only once. And

void HaArrayMove(ARRAY_X a, int dest_i, int src_i, int len);

uses the Cmemmove function to move (that is, copy with overlapping allowed) thelen elements
starting at indexsrc_i to indexdest_i. It assumes without checking thatlen >= 0 and that
src_i anddest_i are at least0 and at mostHaArrayCount(a) - len. It is used byHaArrayAdd
above andHaArrayShiftRight, HaArrayShiftLeft, andHaArrayDeleteAndShift below to
do their shifting.

For searching an array there is

bool HaArrayContains(ARRAY_X a, X x, int *pos);

It returnstrue if a containsx, setting*pos to the index of its first occurrence;otherwise it returns
false, leaving*pos unchanged. The individual comparisons are made bymemcmp.

Two operations shift the entire contents of an array to the right or left:

void HaArrayShiftRight(ARRAY_X a, int n, X x);
void HaArrayShiftLeft(ARRAY_X a, int n);

HaArrayShiftRight shifts the elements ofa to the right byn places. Afterwards, the array has
n more elements than it did before. The firstn places, opened up by the shift, are each initialized
to x. It is up to the caller to ensure that0 <= n. HaArrayShiftLeft shifts the elements ofa to
the left byn places. Afterwards, the array hasn fewer elements than it did before. It is up to the
caller to ensure that0 <= n andn <= HaArrayCount(a).

Two operations delete theith element, offering two ways to fill the gap it leaves behind:

void HaArrayDeleteAndShift(ARRAY_X a, int i);
void HaArrayDeleteAndPlug(ARRAY_X a, int i);

HaArrayDeleteAndShift shifts the elements afteri down one place;HaArrayDeleteAndPlug
assigns the last element to positioni, then deletes the last element. Operations

bool HaArrayFindDeleteAndShift(ARRAY_X a, X x, int *pos);
bool HaArrayFindDeleteAndPlug(ARRAY_X a, X x, int *pos);

call HaArrayContains, returning what it returns but also usingHaArrayDeleteAndShift or
HaArrayDeleteAndPlug to delete the element it found, if any. There are also

void HaArrayDeleteLast(ARRAY_X a);
void HaArrayDeleteLastSlice(ARRAY_X a, int n);
void HaArrayClear(ARRAY_X a);

for deleting the last element, deleting the lastn elements (which can be done very efficiently),
and deleting the lastHaArrayCount(a) elements, leaving the array empty. And

X HaArrayLastAndDelete(ARRAY_X a);
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returns the last element ofa and also deletes it froma. Deleting elements does not free any
memory. The vacated memory remains available to the array, should it decide to grow again.

Here are some more complex operations that change the contents of arrays.

void HaArraySwap(ARRAY_X a, int i, int j, X tmp);

Swap the elements ofa at positionsi andj. Parametertmp is a variable used to hold an element
temporarily while swapping.

void HaArrayWholeSwap(ARRAY_X a, ARRAY_X b, ARRAY_X tmp);

Swap two whole arrays, that is, swap the contents of their structs, usingtmp as a temporary.

void HaArrayAppend(ARRAY_X dest, ARRAY_X source, int i);

Append the elements ofsource to the end ofdest, leavingsource unchanged. Parameteri is
a variable used as an external cursor when scanningsource.

void HaArraySort(ARRAY_X a, int(*compar)(const void *, const void *));

Sorta by means of a call toqsort, usingcompar as the comparison function.

void HaArraySortUnique(ARRAY_X a,
int(*compar)(const void *, const void *));

Like HaArraySort, except that after sorting, elements are deleted until no two adjacent elements
return 0 when compared usingcompar. If this is done purely for uniqueifying, it is common to
implementcompar as a mere subtraction of two pointers. However, on a 64-bit architecture this
yields a 64-bit integer, and merely returning this cast toint, the return type ofcompar, does not
work. Use a conditional expression returning-1, 0, or 1 instead.

Finally, Ha offers iterator macros for traversing arrays:

HaArrayForEach(ARRAY_X a, X x, int i)
HaArrayForEachReverse(ARRAY_X a, X x, int i)

These iterate over the elements ofa, in forward or reverse order. Within each iteration,x is one
element ofa andi is the index ofx in a. For example,

HaArrayForEach(strings, str, i)
fprintf(stdout, "string %d: %s\n", i, str);

prints the elements of arraystrings. Like all Howard’s iterators, both macros expand to

for( ... ; ... ; ... )

and may be used syntactically in any way that this construct may be.

A.1.4. Version string

MacroHA_HOWARD_VERSION is a wide character string defining the current version of Howard.
For example, its value was
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L"Howard Version 1.0 (June 2011)"

at the time of writing.

A.1.5. Howard’s memory allocator

This section contains more information about Howard’s memory allocator than the user is likely
to need. It explains how memory is aligned, presents the operations for allocating resizable arena
memory, and describes how the allocator works.

Howard’s memory allocator promises to return memory aligned correctly for any kind
of data. However, there seems to be no standard way to find out what that alignment is. So
file howard_a.h includes a typedef of a typeHA_ALIGN_TYPE, and the allocator assumes that
memory aligned with this type aligns with all types. By default this typedef is

typedef void *HA_ALIGN_TYPE;

but it may be changed to any type whose width is at least the width of a pointer.HaArenaMake

checks this condition and aborts if it does not hold, since the implementation depends on it.

Resizable arena memoryis arena memory returned by functionsHaResizableAlloc and
HaResizableReAlloc, defined below. Given a pointer to resizable arena memory, the allocator
can deduce what arena it is from and what its size is (in bytes):

HA_ARENA HaResizableArena(void *resizable);
size_t HaResizableSize(void *resizable);

The value ofHaResizableSize may be larger than the size requested whenresizable was
allocated. The functions for allocating and freeing resizable arena memory are

void *HaResizableAlloc(HA_ARENA a);
void *HaResizableReAlloc(void *resizable, size_t size);
void HaResizableFree(void *resizable);

HaResizableAlloc returns a pointer to0 bytes of resizable arena memory from arenaa. This
may seem useless, but experience shows that it produces the most convenient initial value. All
pointers to 0 bytes froma are shared, so there is no memory cost.HaResizableReAlloc assumes
thatresizable points to resizable arena memory, and begins by finding its arena and size. If
size is no larger than this old size,resizable is returned. Ifsize is larger, a pointer tosize
or more bytes of resizable arena memory from the same arena is returned. Its first old size bytes
are copied fromresizable usingmemcpy, andresizable is reclaimed for re-use by other calls
for resizable memory from the same arena (unless its size is 0).HaResizableFree reclaims
resizable just asHaResizableReAlloc does, but without allocating new memory.

Like ordinary arena memory, resizable arena memory is aligned suitably for any kind of
data. Resizable arena memory is not initialized to zero, however.

The remainder of this section describes the implementation of the arena memory allocator,
including how it tries to avoid various problems that memory allocators are prone to.

An arena obtains its memory fromcalloc. A piece of memory given to an arena bycalloc

will be called achunk; a piece of memory given to the user by an arena will be called ablock.
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Let A besizeof(HA_ALIGN_TYPE). Since the memory returned has to align, every block
might as well contain (and does contain) a number of bytes which is a multiple ofA. If the num-
ber requested is not a multiple ofA, it is increased to the next multiple ofA. The resulting wasted
memory is called thealignment overhead. It will be negligible in practice, and often zero.

An arena cannot satisfy all the block requests it receives out of one chunk. So it calls
calloc more than once, and maintains a linked list of all the chunks it receives. The arena object
contains a pointer to the most recently obtained chunk; this chunk’s firstA bytes hold a pointer
to the next most recently obtained chunk, and so on. The secondA bytes in each chunk hold the
total number of words in the chunk, and the total number of words not yet allocated. Thus the
memory overhead per chunk iscalloc’s overhead, plus2A bytes to hold the the singly linked
list of chunks and the two integers.

The linked list serves two purposes. First, when the arena is deleted, its memory is freed
by traversing the list and freeing each chunk. The arena object itself, and the block list header
objects described below, lie within chunks like user blocks do, and so are freed when the chunks
are freed. Second, when a block is required, the first step is to try to obtain it from the first chunk
on the list. Later chunks may not be entirely used up, but they are never tried.

When one chunk holds many blocks,arena allocation is much better than general allocation.
Blocks are allocated contiguously within chunks, with no memory overhead other than the align-
ment overhead. Unless a new chunk is needed, allocating a block is very fast: just round up the
requested size, test whether memory is available in the first chunk, and make two assignments.

All chunks cannot be the same size, for two reasons. First, if they were, for memory
efficiency one would want that size to be large; but a large chunk would be wasteful if the arena
remains small,as it may do if there is one arena per function. Second,a request for a block whose
size is larger than the chunk size could not be satisfied.

Accordingly, the chunks obtained fromcalloc vary in size, as follows. The arena contains
anormal sizefield. Whenever a new chunk is needed, the normal size is first increased. Then, if
the request is for less memory than the normal size, a chunk of the normal size is obtained from
calloc and placed first in the chunk list, and the request is satisfied from within that chunk. If
the request is for as much as or more memory than the normal size, a chunk of the requested size
is obtained fromcalloc and placed second in the chunk list, and the request is satisfied from this
chunk, which it fills completely.

The normal sizes are( n2 − 2)A, for n = 4, n = 5, and so on. This ensures that memory is
not wasted on unnecessarily large chunks. Whencalloc’s overhead is added, chunk sizes will
probably be powers of 2, and asn increases,a thread-awarecalloc will allocate chunks on cache
boundaries. Even ifcalloc is not thread-aware, each arena should be accessed by only one
thread, which alone should give reasonable cache behaviour.

When an arena is recycled, its chunks are moved to a different singly linked list, therecycled
chunk list, and their memory is reset to 0. The chunk holding the arena object itself is treated
somewhat differently: it stays on the main chunk list, and only the part of its memory that does
not hold the arena object is reset to 0. When allocating memory, if the current chunk is too full,
then before making a new chunk, the recycled chunk list is examined. If it is non-empty, its first
chunk becomes the current chunk and the whole process is restarted. Otherwise a new chunk is
obtained fromcalloc as usual.

It remains to describe how resizable blocks are handled. The size of each resizable block
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is Rn A for somen ≥ 0, whereR0 = 0 andRn = 3 ⋅ n2 − 1for n ≥ 1. These numbers (0, 5, 11, 23,
47, …) make good hash table sizes. From 5 onwards, each is obtained from its predecessor by
doubling and adding one.

Growing out of each arena object is a linked list ofblock list headerobjects. The first
block list header containsR0 and a pointer to a singly linked list of all free blocks of sizeR0A
(this particular pointer is alwaysNULL); the second containsR1 and a pointer to a singly linked
list of all free blocks of sizeR1A; and so on. Each block list header also contains a pointer to its
arena and a pointer to the block list header for the next larger size. Initially, only the first block
list header is present.

In addition to theRnAbytes passed to the user, a resizable block hasAbytes, just in front of
the pointer returned to the user, holding a pointer to the block list header holdingRn. If the block
is free, its secondA bytes holds a pointer to the next free resizable block of that size.

Given a user’s pointer to a resizable block, one can find its block list header by going backA
bytes and following the pointer. The block list header gives access to the block’s arena and size,
and to the free block list of blocks of that size.

A resizable block of at least a given size can be obtained by searching the block list header
list for the first block list header whose block size is sufficiently large. New block list headers
are added if required as the search proceeds. Once the appropriate block list header is reached,
its first free block is returned to the user; or if it has no free blocks, a fresh block is obtained from
HaAlloc, a pointer to the block list header is placed in its firstAbytes,and a pointer to its(A+ 1)th
byte is returned to the user.HaResizableReAlloc begins its search for a block list header from
resizable’s block list header. Most calls toHaResizableReAlloc request blocks about double
the old size, so most traversals of the list of block list headers visit only one block list header,
ensuring that the time taken to find a new resizable block is usually a small constant.

The memory overhead isA bytes per allocated block (holding the pointer to the block list
header), plus the space occupied by the block list headers (negligible once the blocks grow to
even moderate size), plus the free blocks, plus any unused space within allocated blocks.

The worst case is elicited by an arena containing a single extensible array that grows one
element at a time. (Thiscase can be duplicated by growing two arrays in parallel.) Now, resizable
blocks are needed just because the application cannot predict how much memory will be needed.
Thus, the application might as well ask for sizes of the formRn A, and the extensible array
module does this. As the array grows, it leaves a trail of freed blocks behind it of sizes(5 + 1)A,
(11+ 1)A, (23 + 1)A, and so on. Their total size is less than half the current block size. The current
block may itself be only half full, so at worst, three times as much memory is allocated as is used.
But none of this memory is completely lost: half of it is available for further growth of the array,
the other half is available for other arrays, and all of it is freed when the arena is deleted.

A.2. Strings and symbol tables

Note – the Hn library has been flown in from another project of the author’s, called Howard.
Three libraries,Hw,Hn,and Ho,are documented here,but only the Hn library is included in KHE.
Its header file ishoward_n.h.

This section describes Howard’s Hw library, which provides operations on wide strings
(typewchar_t *), and symbol tables whose keys are wide strings. It also documents Howard’s
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Hn library, which is the same except that its strings are narrow (typechar * instead of
wchar_t *).

A.2.1. Strings

One handy use for extensible arrays is to build up strings piece by piece in arena memory,
similarly toopen_memstream from POSIX-2008:

void HwStringBegin(HA_ARRAY_CHAR ac, HA_ARENA a);
void HwStringAdd(HA_ARRAY_CHAR *ac, wchar_t *format, ...);
wchar_t *HwStringEnd(HA_ARRAY_CHAR ac);

HwStringBegin andHwStringEnd are in fact macros.HwStringAdd is a function; note that a
reference to the array is passed, not the array itself.HA_ARRAY_CHAR is defined by Ha and holds
an extensible array of wide characters.HwStringBegin initializes this array to empty (like
HaArrayInit);HwStringAdd appends a formatted string to the growing array;andHwStringEnd

adds the finalL’\0’ and returns the string. The string returned byHwStringEnd (call it str) may
be freed later, by calling eitherHaArrayFree(ac) or, equivalently,HaResizableFree(str).
There is also

void HwStringVAdd(HA_ARRAY_CHAR *ac, wchar_t *format, va_list args);

which is toHwStringAdd whatvwprintf is towprintf.

Thanks to a robust implementation, there is no limit on the size of any one of the formatted
strings added to*ac by these functions. There is an unchecked limit ofINT_MAX - 1 on the total
length of the string, because typeHA_ARRAY_CHAR stores an array length in anint field.

In between the calls toHwStringBegin andHwStringEnd, ordinary array operations may
be applied toac as usual. For example,

HaArrayFill(ac, 80, L’ ’);

pads outac to length 80 with blanks.

For the convenience of applications which sometimes need to build a string and sometimes
need to write to a file, functions

void HwStringAddOrPrint(HA_ARRAY_CHAR *ac, FILE *fp,
const wchar_t *format, ...);

void HwStringVAddOrPrint(HA_ARRAY_CHAR *ac, FILE *fp,
const wchar_t *format, va_list args);

are defined. These are likeHwStringAdd and HwStringVAdd when ac != NULL, and like
fwprintf andvfwprintf whenac == NULL (sofp had better be non-NULL in that case).

Hw offers three other functions that create strings in arena memory:

wchar_t *HwStringCopy(wchar_t *s, HA_ARENA a);
wchar_t *HwStringSubstring(wchar_t *s, int start, int len, HA_ARENA a);
wchar_t *HwStringMake(HA_ARENA a, const wchar_t *format, ...);

These are functions, not macros. The arena memory remains allocated until the arena is freed.
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HwStringCopy returns a copy ofs, like the Linuxwcsdup. HwStringSubstring returns the
substring ofs which begins at positionstart, counting from 0, and has lengthlen, or less ifs
ends before then.HwStringMake returns a formatted string:

name = HwStringMake(a, L"%ls/%ls_%d", dir_name, file_name, version);

Thanks to a robust implementation,HwStringMake imposes no length limits. There is also

wchar_t *HwStringVMake(HA_ARENA a, const wchar_t *format, va_list args);

which is toHwStringMake whatvwprintf is towprintf.

Howard is written on the assumption that strings stored in memory will generally be wide
strings. Even so, some conversion is needed when interfacing with the operating system, so Hw
offers two functions that convert from and to narrow strings:

wchar_t *HwStringFromNarrow(char *s, HA_ARENA a);
char *HwStringToNarrow(wchar_t *s, HA_ARENA a);

For example,HwStringFromNarrow is useful for converting a command-line argument, which
is a narrow string, to a string, andHwStringToNarrow is useful for converting a file name to the
narrow string format required byfopen. These strings may be freed immediately by passing
them toHaResizableFree, or kept until the arena is deleted later.

The standard C library offers several functions which query strings (wcscmp, wcsstr, etc.).
These may be used on Hw’s strings. Hw supplements these functions with a few others:

int HwStringCount(wchar_t *s);
bool HwStringIsEmpty(wchar_t *s);

Return the length ofs, like wcslen; returntrue if s has count 0.

bool HwStringEqual(wchar_t *s1, wchar_t *s2);

Returntrue if s1 ands2 are equal.

bool HwStringContains(wchar_t *s, wchar_t *substr, int *pos);

If substr occurs withins, return true with *pos set to the starting position of the first
occurrence ofsubstr within s. Otherwise returnfalse with *pos not set.

bool HwStringBeginsWith(wchar_t *s, wchar_t *prefix);
bool HwStringEndsWith(wchar_t *s, wchar_t *suffix);

Returntrue if prefix occurs withins at the start, or ifsuffix occurs withins at the end.

A.2.2. Abort and assert

Hw offers two functions for checking assertions:

void HwAbort(wchar_t *fmt, ...);
void HwAssert(bool cond, wchar_t *fmt, ...);
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HwAbort’s parameters are the same aswprintf’s, but it prints ontostderr and then callsabort.
HwAssert does nothing ifcond is true, and it does whatHwAbort does ifcond is false. It is a
function, not a macro, so its parameters must be well-defined whethercond is true or not.

A.2.3. Symbol tables

A symbol table is a set ofentries, each consisting of akey, which is a string, and avalue, whose
type is the same for all entries but is otherwise arbitrary. One table may contain any number of
entries. Entries may be added, deleted, and retrieved by key.

As for Ha’s arrays, and for the same reasons, Hw’s symbol tables are structs, not pointers to
structs, and the operations are macros. The implementation is a linear probing hash table, which
is essentially just an array (actually two arrays,one for keys, one for values). At any moment,not
all of the array’s elements contain entries. The table doubles in size when it becomes 80% full.

To define a symbol table type whose keys are strings of typewchar_t * and whose values
have typeX, whereX is any type, write this:

typedef HW_TABLE(X) TABLE_X;

From now on,TABLE_X stands for any type defined by a typedef like this one, andX stands for
the type between the parentheses in that typedef. To initialize a symbol table, call

void HwTableInit(TABLE_X table, HA_ARENA a);

To find the arena containing a given table, call

HA_ARENA HwTableArena(TABLE_X table);

When the symbol table is no longer needed, its memory may be reclaimed by

void HwTableFree(TABLE_X table);

This does not freetable itself (table is not a pointer). It frees the memory used to hold the
arrays of keys and values, although not the keys and values themselves.

To add an entry to a symbol table, call

void HwTableAdd(TABLE_X table, wchar_t *key, X value);
bool HwTableAddUnique(TABLE_X table, wchar_t *key, X value, X other);

HwTableAdd adds a new entry with the given key and value to the table, even if that causes the
table to contain two or more entries with the same key.HwTableAddUnique, on the other hand,
first checks whether there is already an entry with the given key. If so, it setsother to the value
of an existing entry with the given key and returnsfalse without changing the table. If not, it
adds the new entry and returnstrue without settingother.

Two variants ofHwTableAdd andHwTableAddUnique are offered:

void HwTableAddHashed(TABLE_X table, int hash_code, wchar_t *key,
X value);

bool HwTableAddUniqueHashed(TABLE_X table, int hash_code, wchar_t *key,
X value, X other);
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These are the same as the originals, except for parameterhash_code, which is assumed to be the
hash code ofkey (before reduction modulo the table size), as returned byHwTableHash:

int HwTableHash(wchar_t *key);

Passing the hash code explicitly saves time when inserting the same entry into several tables.

Retrieval has three forms. The first is the ‘contains’ form, which merely reports whether an
entry with the given key is present:

bool HwTableContains(TABLE_X table, wchar_t *key, int pos);
bool HwTableContainsHashed(TABLE_X table, int hash_code, wchar_t *key,
int pos);

bool HwTableContainsNext(TABLE_X table, int pos);

HwTableContains returnstrue if table contains an entry with the given key, settingpos to its
position in the table, orfalse if there is no such entry, in which casepos is an empty position.
HwTableContainsHashed is the same, except that it assumes thathash_code is the hash code of
key (before reduction modulo the table size).HwTableContainsNext assumes thatpos is a non-
empty position oftable; it searches the table beyond that point (wrapping around to the front
if necessary) for an entry with the same key as the one at that point. LikeHwTableContains,
it returnstrue or false depending on whether it finds such an entry, and it changespos to its
position, or to an empty position.

The second form of retrieval is the ‘contains value’ form, which reports whether an entry
with the given key and value is present:

void HwTableContainsValue(TABLE_X table, wchar_t *key, X value,
int pos);

void HwTableContainsValueHashed(TABLE_X table, int hash_code,
X value, int pos);

HwTableContainsValue hashes the key and then compares values along the table using the
C ‘==’ operation, instead of comparing keys. It runs very quickly since it executes no string
comparisons. Owing to problems behind the scenes it does not return a Boolean result. Instead,
it is syntactically afor statement which setspos to the position of the entry if present. Function
HwTableOccupied, defined below, may be used to determine the outcome, like this:

HwTableContainsValue(table, "fred", fred, pos);
if( HwTableOccupied(table, pos) )
{
/* fred is present at position pos */

}

HwTableContainsValueHashed is the same, except that it avoids hashing the key as usual. In
fact it does not need to know the key, so the usualkey parameter is omitted.

The third form of retrieval is the ‘retrieve’ form, which sets avalue parameter to the value
associated with the given key if found, and leavesvalue untouched if not:
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bool HwTableRetrieve(TABLE_X table, wchar_t *key, X value, int pos);
bool HwTableRetrieveHashed(TABLE_X table, int hash_code, wchar_t *key,
X value, int pos);

bool HwTableRetrieveNext(TABLE_X table, X value, int pos);

Apart from settingvalue, these are the same as the corresponding ‘contains’versions.

Thepos parameters of retrieval functions have several uses. They are needed to ensure that
concurrent retrievals do not interfere with each other. They can be passed to

bool HwTableOccupied(TABLE_X table, int pos);
wchar_t *HwTableKey(TABLE_X table, int pos);
X HwTableValue(TABLE_X table, int pos);

which returntrue if positionpos is occupied (has an entry), and if so, the key and value of the
entry at positionpos. And they are used by the operations to be defined next.

Assuming that there is an entry at positionpos,

void HwTableReplace(MTABLE_X table, int pos, X value);

replaces the entry’s value, and

void HwTableDelete(TABLE_X table, int pos);

deletes the entry. For example,

if( HwTableContains(table, L"fred", pos) )
HwTableDelete(table, pos);

deletes an entry with keyL"fred", if there is one. Function

void HwTableClear(TABLE_X table);

deletes every entry in the table, leaving it empty.

For traversal there are iterator macros in the usual style:

void HwTableForEachWithKey(TABLE_X table, wchar_t *key, X value, int pos)
void HwTableForEachWithKeyHashed(TABLE_X table, int hash_code,

wchar_t *key, X value, int pos)

These visit each entry with a given key.HwTableForEachWithKeyHashed is the same as
HwTableForEachWithKey except that the user supplies the hash code as well as the key, as for
HwTableRetrieveHashed. For example, to visit every person calledL"fred" in tablepeople:

HwTableForEachWithKey(people, L"fred", person, pos)
{

... visit person ...
}

On each iteration, this code setsperson to a person with nameL"fred", andpos to the position
of that person in the table. A similar iterator macro visits every entry of the table:



A.2. Strings and symbol tables 413

void HwTableForEach(TABLE_X table, wchar_t *key, X value, int pos)

The entries will be visited in an essentially random order, as usual with hash tables. For example,
the following code counts the number of entries intable:

count = 0;
HwTableForEach(table, key, value, pos)
count++;

This number is not maintained automatically. Another fairly useless number is

int HwTableSize(TABLE_X table);

which is the current array size. It will be somewhat larger than the current number of entries.

A.2.4. Narrow strings and symbol tables

This section describesHoward’sHn library. It is the same as Hw except that its stringsarenarrow
(have typechar * instead ofwchar_t *), so the description is brief.

For creating narrow strings in arena memory there are functions

void HnStringBegin(HA_ARRAY_NCHAR anc, HA_ARENA a);
void HnStringAdd(HA_ARRAY_NCHAR *anc, char *format, ...);
char *HnStringEnd(HA_ARRAY_NCHAR anc);
void HnStringVAdd(HA_ARRAY_NCHAR *anc, const char *format, va_list args)

(HnStringBegin andHnStringEnd are macros). For either adding to a string in memory or
adding to a file, use functions

void HnStringAddOrPrint(HA_ARRAY_NCHAR *anc, FILE *fp,
const char *format, ...);

void HnStringVAddOrPrint(HA_ARRAY_NCHAR *anc, FILE *fp,
const char *format, va_list args);

Other functions which create strings in arena memory are

char *HnStringCopy(char *s, HA_ARENA a);
char *HnStringSubstring(char *s, int start, int len, HA_ARENA a);
char *HnStringMake(HA_ARENA a, const char *format, ...);
char *HnStringVMake(HA_ARENA a, const char *format, va_list args);
char *HnStringFromWide(wchar_t *s, HA_ARENA a);
wchar_t *HnStringToWide(char *s, HA_ARENA a);

For querying strings there are
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int HnStringCount(char *s);
bool HnStringIsEmpty(char *s);
bool HnStringEqual(char *s1, char *s2);
bool HnStringContains(char *s, char *substr, int *pos);
bool HnStringBeginsWith(char *s, char *prefix);
bool HnStringEndsWith(char *s, char *suffix);

For handling white space there are

bool HnStringIsWhiteSpaceOnly(char *s);
char *HnStringCopyStripped(char *s, HA_ARENA a);

HnStringIsWhiteSpaceOnly returnstrue if s isNULL or consists of white space charactersonly
(including whens is empty), andHnStringCopyStripped returns a copy ofs with any white
space characters at the beginning or end removed; ifs is NULL or there are no non-white space
characters it returns the empty string.

For abort and assert there are

void HnAbort(char *fmt, ...);
void HnAssert(bool cond, char *fmt, ...);

A symbol table is defined by

typedef HN_TABLE(X) TABLE_X;

and initialized, its arena returned, and freed by

void HnTableInit(TABLE_X table, HA_ARENA a);
HA_ARENA HnTableArena(TABLE_X table);
void HnTableFree(TABLE_X table);

Entries are added with

void HnTableAdd(TABLE_X table, char *key, X value);
bool HnTableAddUnique(TABLE_X table, char *key, X value, X other);

plus the two variants

void HnTableAddHashed(TABLE_X table, int hash_code, char *key,
X value);

bool HnTableAddUniqueHashed(TABLE_X table, int hash_code, char *key,
X value, X other);

Hash codes are calculated with

int HnTableHash(char *key);

Retrievals are carried out with
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bool HnTableContains(TABLE_X table, char *key, int pos);
bool HnTableContainsHashed(TABLE_X table, int hash_code, char *key,
int pos);

bool HnTableContainsNext(TABLE_X table, int pos);

void HnTableContainsValue(TABLE_X table, char *key, X value,
int pos);

void HnTableContainsValueHashed(TABLE_X table, int hash_code,
X value, int pos);

bool HnTableRetrieve(TABLE_X table, char *key, X value, int pos);
bool HnTableRetrieveHashed(TABLE_X table, int hash_code, char *key,
X value, int pos);

bool HnTableRetrieveNext(TABLE_X table, X value, int pos);

The positions returned by the retrieve operations may be used in

bool HnTableOccupied(TABLE_X table, int pos);
char *HnTableKey(TABLE_X table, int pos);
X HnTableValue(TABLE_X table, int pos);

To replace a value, delete an entry, or clear the table, call

void HnTableReplace(TABLE_X table, int pos, X value);
void HnTableDelete(TABLE_X table, int pos);
void HnTableClear(TABLE_X table);

To iterate over all entries with a given key, use iterator macros

void HnTableForEachWithKey(TABLE_X table, char *key, X value, int pos)
void HnTableForEachWithKeyHashed(TABLE_X table, int hash_code,

char *key, X value, int pos)

To iterate over all entries, use

void HnTableForEach(TABLE_X table, char *key, X value, int pos)

Finally,

int HnTableSize(TABLE_X table);

returns the size of the hash table.

A.2.5. Pointer tables and groups

A pointer tableis like an object table in that it is a hash table indexed by non-NULL void pointers
rather than strings. However, the value of what the pointer points to is used to index the table.
To make this work, the table needs to be given two functions, one to hash what the pointer points
to, and one to compare two of those things to decide whether they are equal. So the user must
supply two functions with these signatures:
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int KeyHash(void *p);
bool KeyEqual(void *p1, void *p2);

Then Howard does the rest.

Two equal keys must have the same hash value. In other words, ifKeyEqual(p1, p2)

returnstrue, thenKeyHash(p1) andKeyHash(p2) must be equal. Without this the pointer table
will not work as expected.

There is an optional third user-defined function,

void KeyDebug(void *p, FILE *fp);

When present, it is used byHpTableDebug below to produce a debug print of keyp onto file fp.

This section describes Howard’s Hp library, which implements pointer tables, offering
operations analogous to the symbol table operations from Hw and Hn.

A pointer table whose keys are what is pointed to by void pointers and whose values have
typeX, for anyX, is defined by

typedef HP_TABLE(X) TABLE_X;

It is initialized, its attributes are returned, and it is freed by

void HpTableInit(TABLE_X table, HP_HASH_FN key_hash_fn,
HP_EQUAL_FN key_equal_fn, HP_DEBUG_FN key_debug_fn, HA_ARENA a);

HP_HASH_FN HpTableKeyHashFn(TABLE_X table);
HP_EQUAL_FN HpTableKeyEqualFn(TABLE_X table);
HP_DEBUG_FN HpTableKeyDebugFn(TABLE_X table);
HA_ARENA HpTableArena(TABLE_X table);
void HpTableFree(TABLE_X table);

whereHP_HASH_FN, HP_EQUAL_FN, andHP_DEBUG_FN are the types of the three user-supplied
functions described above. The value ofkey_debug_fn may beNULL, but the other two have to
really hash a key and compare two keys for equality.

Entries are added with

void HpTableAdd(TABLE_X table, void *key, X value);
bool HpTableAddUnique(TABLE_X table, void *key, X value, X other);

plus the two variants

void HpTableAddHashed(TABLE_X table, int hash_code, void *key,
X value);

bool HpTableAddUniqueHashed(TABLE_X table, int hash_code, void *key,
X value, X other);

Retrievals are carried out with
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bool HpTableContains(TABLE_X table, void *key, int pos);
bool HpTableContainsHashed(TABLE_X table, int hash_code, void *key,
int pos);

bool HpTableContainsNext(TABLE_X table, int pos);

void HpTableContainsValue(TABLE_X table, void *key, X value,
int pos);

void HpTableContainsValueHashed(TABLE_X table, int hash_code,
X value, int pos);

bool HpTableRetrieve(TABLE_X table, void *key, X value, int pos);
bool HpTableRetrieveHashed(TABLE_X table, int hash_code, void *key,
X value, int pos);

bool HpTableRetrieveNext(TABLE_X table, X value, int pos);

The positions returned by the retrieve operations may be used in

bool HpTableOccupied(TABLE_X table, int pos);
void *HpTableKey(TABLE_X table, int pos);
X HpTableValue(TABLE_X table, int pos);

To replace a value, delete an entry, or clear the table, call

void HpTableReplace(TABLE_X table, int pos, X value);
void HpTableDelete(TABLE_X table, int pos);
void HpTableClear(TABLE_X table);

To iterate over all entries with a given key, use iterator macros

void HpTableForEachWithKey(TABLE_X table, void *key, X value, int pos)
void HpTableForEachWithKeyHashed(TABLE_X table, int hash_code,

void *key, X value, int pos)

To iterate over all entries, use

void HpTableForEach(TABLE_X table, void *key, X value, int pos)

or

void HpTableForEachValue(TABLE_X table, X value, int pos)

to omit retrieving each key (which can produce unwanted error messages about unused
variables). Function

int HpTableSize(TABLE_X table);

returns the size of the table. Function

float HpTableProbeLength(TABLE_X table);

returns the average, taken over all calls toHpTableAddUnique, HpTableAddUniqueHashed,
HpTableContains, HpTableContainsHashed, HpTableRetrieve, HpTableRetrieveHashed,
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andHpTableContainsNext, of the number of probes of non-empty table entries made by those
calls. The result should be less than about 3; higher values are a sign that the hash function is not
working effectively. HpTableProbeLength requires macroHP_DEBUG_PROBE_LENGTH, defined
at the top of filehoward_p.h, to have value1; when it has value0,HpTableProbeLength returns
-1.0. This is also the value returned when no calls to the functions have been made.

Finally, function

void HpTableDebug(TABLE_X table, int indent, FILE *fp);

produces a debug print oftable onto filefp with the given indent. This can be long. It uses
parameterkey_debug_fn to produce a debug print of each key, unlesskey_debug_fn is NULL,
in which case it prints the address of each key

Hp also offers a version of the pointer table idea in which the keys have no corresponding
values. This is useful when the need is merely to build a set of objects and find out whether a
given object is present in the set or not. Hp calls this data structure apointer group.

A pointer group is not generic; its unique type isHP_GROUP. It is initialized, its arena
returned, and freed by

void HpGroupInit(HP_GROUP group, HP_HASH_FN key_hash_fn,
HP_EQUAL_FN key_equal_fn, HP_DEBUG_FN key_debug_fn, HA_ARENA a);

HP_HASH_FN HpGroupKeyHashFn(HP_GROUP group);
HP_EQUAL_FN HpGroupKeyEqualFn(HP_GROUP group);
HP_DEBUG_FN HpGroupKeyDebugFn(HP_GROUP group);
HA_ARENA HpGroupArena(HP_GROUP group);
void HpGroupFree(HP_GROUP group);

Entries are added with

void HpGroupAdd(HP_GROUP group, void *key);
bool HpGroupAddUnique(HP_GROUP group, void *key);

plus the two variants

void HpGroupAddHashed(HP_GROUP group, int hash_code, void *key);
bool HpGroupAddUniqueHashed(HP_GROUP group, int hash_code, void *key);

Note the absence of values.

Retrievals are carried out with

bool HpGroupContains(HP_GROUP group, void *key, int pos);
bool HpGroupContainsHashed(HP_GROUP group, int hash_code, void *key,

int pos);
bool HpGroupContainsNext(HP_GROUP group, int pos);

There are noContainsValue or Retrieve operations. The positions returned by the contains
operations may be used in

bool HpGroupOccupied(HP_GROUP group, int pos);
void *HpGroupKey(HP_GROUP group, int pos);
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To delete an entry or clear the group, call

void HpGroupDelete(HP_GROUP group, int pos);
void HpGroupClear(HP_GROUP group);

To iterate over all entries with a given key, use iterator macros

void HpGroupForEachWithKey(HP_GROUP group, void *key, int pos)
void HpGroupForEachWithKeyHashed(HP_GROUP group, int hash_code,

void *key, int pos)

To iterate over all entries, use

void HpGroupForEach(HP_GROUP group, void *key, int pos)

Finally,

int HpGroupSize(HP_GROUP group);

returns the size of the group.

A.3. Sets of integers

A.3.1. Variable-length bitsets

KHE comes with a C module called LSet for managing variable-length sets of smallish unsigned
integers implemented as bit vectors. The module consists of header filekhe_lset.h and im-
plementation filekhe_lset.c. These are stored and compiled with KHE, but they can also be
used separately. KHE formerly used LSet extensively behind the scenes (all its time groups,
resource groups, and event groups were represented both as arrays of elements and LSets of ele-
ment index numbers), although now SSets (Appendix A.3.3) are used instead. LSet may be use-
ful when writing helper functions and solvers. To use it, simply includekhe_lset.h. Including
khe_solvers.h does not automatically includekhe_lset.h as well.

File khe_lset.h begins with these two type definitions:

typedef struct lset_rec *LSET;
typedef HA_ARRAY(LSET) ARRAY_LSET;

The first defines the type of an LSet, and the second defines an array of LSets, as usual.

Internally, an LSet is represented by a pointer to astruct containing a length followed
by the bit vector itself. When an element needs to be added that would overflow the currently
allocated memory, the whole LSet is freed and a new one is returned. This is not particularly
convenient for the user of LSet but it is the most efficient way.

Functions

LSET LSetNew(void);
void LSetFree(LSET s);

create a new, empty LSet and free an LSet;
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LSET LSetCopy(LSET s);

creates a fresh new LSet with the same value ass. Function

void LSetShift(LSET s, LSET *res, unsigned int k,
unsigned int max_nonzero);

takes two existing LSets,s and*res, and replaces the current value of*res by s with k added
to each of its elements, except that elements which would thereby have value greater than
max_nonzero are omitted. The old*res will be freed and a new one allocated if necessary. This
arcane function is used behind the scenes to calculate shifted time domains. Function

void LSetClear(LSET s);

clearss back to the empty set, and

void LSetInsert(LSET *s, unsigned int i);
void LSetDelete(LSET s, unsigned int i);

insert elementi (changing nothing ifi is already present) and delete it (changing nothing ifi is
already absent). The value ofi is arbitrary but very large values are obviously undesirable, since
the bit vectors then become very large.

void LSetAssign(LSET *target, LSET source);

replaces the current value of*target with the value ofsource, reallocating*target if
necessary. The value is a copy, there is no sharing anywhere in the LSet module.

The next three functions implement the set operations of union, intersection,and difference,
replacing their first parameter’s value with the result of the operation:

void LSetUnion(LSET *target, LSET source);
void LSetIntersection(LSET target, LSET source);
void LSetDifference(LSET target, LSET source);

The usual Boolean operations are available on LSets:

bool LSetEmpty(LSET s);
bool LSetEqual(LSET s1, LSET s2);
bool LSetSubset(LSET s1, LSET s2);
bool LSetDisjoint(LSET s1, LSET s2);
bool LSetContains(LSET s, unsigned int i);

These returntrue whens is empty, whens1 ands2 are equal, whens1 is a subset ofs2, when
s1 ands2 are disjoint, and whens containsi. Functions

unsigned int LSetMin(LSET s);
unsigned int LSetMax(LSET s);

return the smallest and largest elements ofs respectively, using an efficient table lookup on the
first or last non-zero byte. Both functions abort ifs is empty. Function

int LSetLexicalCmp(LSET s1, LSET s2);
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returns a negative, zero, or positive result depending on whethers1 is lexicographically less than,
equal to, or greater thans2. Function

void LSetExpand(LSET s, ARRAY_SHORT *add_to)

assumes that*add_to is an initialized array, and adds the elements ofs to the array in increasing
order by repeated calls toHaArrayAddLast. Function

char *LSetShow(LSET s);

returns a display ofs in static memory (so it is not thread-safe, but it does keep four separate
buffers, allowing it to be called several times in one line of debug output). Finally,

void LSetTest(FILE *fp);

tests the module and prints its results onto filefp.

A.3.2. Sorted sets

Many of KHE’s object collections are represented by a set of sorted integers, which are indexes
into arrays of objects. Sets of times are represented usingshiftable sets(Appendix A.3.3), for
efficient calculation of time group neighbourhoods. Other collections are represented by an
extensible array of integers, sorted into increasing order. TheseKHE setsare described here.

The KHE set module consistsof header filekhe_set.h and implementation filekhe_set.c.
These are stored and compiled with the KHE platform, but they can also be used separately. To
use KHE sets, simply includekhe_set.h. Includingkhe_platform.h or khe_solvers.h does
not automatically includekhe_set.h.

File khe_set.h contains this definition of typeKHE_SET, representing one KHE set:

typedef struct khe_set_rec { ... } KHE_SET;

We’ve omitted the contents, but that is just an extensible array of integer indexes, stored in
increasing order. KHE sets are sets, not multisets—there are no duplicates among the items.

TypeKHE_SET is a struct, not a pointer to a struct, becauseKHE_SET is intended as an aid
to implementing other modules, and values of typeKHE_SET are expected to be private fields of
these other modules’ structs. Structs are better than pointers to structs in these cases, because
they save memory and avoid one level of indirection.

To pass aKHE_SET as a parameter it is always best to pass its address, not the struct itself.
The following functions appear to violate this rule, but they are in fact macros which insert the
address-of operators for you. For example, the function given as

void KheSetUnion(KHE_SET to_s, KHE_SET from_s);

below is really macro

#define KheSetUnion(to_s, from_s) KheSetImplUnion(&(to_s), &(from_s))

and thus passes itsKHE_SET parameters by reference.

To initialize KHE sets to an empty set, using memory from arenaa, call
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void KheSetInit(KHE_SET s, HA_ARENA a);

To make a new KHE setto_s in arenaa by copying another setfrom_s, call

void KheSetCopy(KHE_SET to_s, KHE_SET from_s, HA_ARENA a);

To copy the elements offrom_s to an existing setto_s, first clearingto_s, call

void KheSetCopyElements(KHE_SET to_s, KHE_SET from_s);

To clears, call

void KheSetClear(KHE_SET s);

To insertitem into s, call

void KheSetInsert(KHE_SET s, int item);

This does nothing ifitem is already present. To deleteitem from s, call

void KheSetDelete(KHE_SET s, int item);

This does nothing ifitem is not present. To delete the last (largest) element, assuming there is
one, call

void KheSetDeleteLast(KHE_SET s);

There are operations to replaceto_s by its union, intersection, and difference fromfrom_s:

void KheSetUnion(KHE_SET to_s, KHE_SET from_s);
void KheSetIntersect(KHE_SET to_s, KHE_SET from_s);
void KheSetDifference(KHE_SET to_s, KHE_SET from_s);

and operations to return the cardinality of the union, intersection, difference, and symmetric
difference, without changingto_s:

int KheSetUnionCount(KHE_SET to_s, KHE_SET from_s);
int KheSetIntersectCount(KHE_SET to_s, KHE_SET from_s);
int KheSetDifferenceCount(KHE_SET to_s, KHE_SET from_s);
int KheSetSymmetricDifferenceCount(KHE_SET to_s, KHE_SET from_s);

For finding the number of elements, theith element, and the last element, there are

int KheSetCount(KHE_SET s);
int KheSetGet(KHE_SET s, int i);
int KheSetGetLast(KHE_SET s);

Then there are the Boolean queries
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bool KheSetEmpty(KHE_SET s);
bool KheSetEqual(KHE_SET s1, KHE_SET s2);
bool KheSetSubset(KHE_SET s1, KHE_SET s2);
bool KheSetDisjoint(KHE_SET s1, KHE_SET s2);
bool KheSetContains(KHE_SET s, int item);

which returntrue whens is empty, whens1 is equal to, a subset of, and disjoint froms2, and
whens containsitem. For sorting an array of sets to bring equal sets together there is

int KheSetTypedCmp(KHE_SET s1, KHE_SET s2);

Also offered are

int KheSetMin(KHE_SET s);
int KheSetMax(KHE_SET s);

which return the minimum (first) and maximum (last) elements ofs.

For iterating over sets there are the iterator macros

KheSetForEach(KHE_SET s, int t, int i)
KheSetForEachReverse(KHE_SET s, int t, int i)

These work likeHaArrayForEach andHaArrayForEachReverse, repeatedly settingt to theith
item of s, asi increases or decreases. Finally,

char *KheSetShow(KHE_SET s);

returns a string representation ofs. The result lies in static memory and will be overwritten by
the next call toKheSetShow. More precisely,KheSetShow holds four static memory buffers,each
200 characters long. Any result which should be longer than 200 characters is safely truncated
to 200 characters (including the final’\0’). The fifth call toKheSetShow re-uses the buffer used
by the first call, the sixth call re-uses the buffer used by the second call, and so on.

There are tables whose entries have sets for keys and generic pointers for values. These are
implemented by tries, so the integer elements of the sets should not be very large.1 To create a
new table using memory from a given arena, and to insert and retrieve in it, call

KHE_SET_TABLE KheSetTableMake(HA_ARENA a);
void KheSetTableInsert(KHE_SET_TABLE st, KHE_SET s, void *val);
bool KheSetTableRetrieve(KHE_SET_TABLE st, KHE_SET s, void *val);

One can obtain a debug print of a table from

void KheSetTableDebug(KHE_SET_TABLE st, int indent, FILE *fp);

At present these are the only table operations offered.

1The first level of the trie is indexed by the first element, the second level is indexed by the second element minus the first
element, the third level by the third element minus the second, and so on. This helps to keep the trie arrays short. KHE
sets may contain arbitrary integers, but KHE sets used as table indexes may only contain non-negative integers.
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A.3.3. Shiftable sets

KHE has a C module called SSet for managingshiftable setsof integers. These are sets which
hold an integershift which is added to each value, allowing shifted copies to be created very
efficiently, as needed when implementing time group neighbourhoods. A shifted copy may also
besliced, that is, trimmed at each end to produce a subset of the original set.

The module consists of header filesset.h and implementation filesset.c. These are
stored and compiled with KHE, but they can also be used separately. To use SSet, simply include
sset.h. Includingkhe_solvers.h does not automatically includesset.h as well.

File sset.h contains this definition of typeSSET, representing one shiftable set:

typedef struct sset_rec { ... } SSET;

We’ve omitted the contents, but they include an array of items, the shift, and a few other
things. The items are stored as themselves (as integers) in increasing order. SSets are sets, not
multisets—there are no duplicates among the items.

Type SSET is a struct, not a pointer to a struct, becauseSSET is intended as an aid to
implementing other modules, and values of typeSSET are expected to be private fields of these
other modules’structs. Structs are better than pointers to structs in these cases, because they save
memory and avoid one level of indirection.

To pass anSSET as a parameter it is always best to pass its address, not the struct itself.
The following functions appear to violate this rule, but they are in fact macros which insert the
address-of operators for you. For example, the function given as

void SSetUnion(SSET to_ss, SSET from_ss);

below is really macro

#define SSetUnion(to_ss, from_ss) SSetImplUnion(&(to_ss), &(from_ss))

and thus passes its SSet parameters by reference.

Each SSet object contains afinalized flag which, when set, prohibits further changes to
the value of the set (although the set can be re-initialized). This has been included to prevent the
user from changing a set after slicing it, since that could change and indeed invalidate its slices.

Each SSet object also contains aslice flag which istrue when the SSet is a shifted version,
and perhaps a slice, of another set. This is used only when freeing an SSet: when an SSet is
freed, the memory used to hold its items is freed only when theslice flag isfalse, avoiding
freeing that memory multiple times. Of course, freeing an SSet invalidates all its shifted and
sliced versions. In the KHE application they are held nearby and freed at the same time.

To initialize (or re-initialize) an SSet to an unfinalized empty set with shift 0, call

void SSetInit(SSET ss, HA_ARENA a);

Memory for the SSet will be taken from arenaa. As usual with arenas, there is no operation to
free this memory; instead, it will be freed when the arena is deleted. To change the value of an
unfinalized SSet, use these functions:
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void SSetClear(SSET ss);
void SSetInsert(SSET ss, int item);
void SSetDelete(SSET ss, int item);
void SSetUnion(SSET to_ss, SSET from_ss);
void SSetIntersect(SSET to_ss, SSET from_ss);
void SSetDifference(SSET to_ss, SSET from_ss);

These clearss back to the empty set, insertitem (or do nothing ifitem is already present),
deleteitem (or do nothing ifitem is not present), and change the value ofto_ss to its union,
intersection, or difference withfrom_ss. Whento_ss andfrom_ss are the exact same object,
SSetUnion andSSetIntersect do nothing, which is the mathematically correct thing to do, but
SSetDifference aborts, as a sanity measure.

Once these changes are complete, a call to

void SSetFinalize(SSET ss);

finalizesss. This causes later attempts to change it to abort with an error message. Function

bool SSetIsFinalized(SSET ss);

returnstrue whenss has been finalized.

Function

void SSetInitShifted(SSET to_ss, SSET from_ss, int shift);

initializes (or re-initializes)to_ss to a finalized SSet holding the items offrom_ss with shift

added to each item. The shift is stored separately, allowingto_ss to sharefrom_ss’s item
memory. Herefrom_ss must be finalized. Function

void SSetInitShiftedAndSliced(SSET to_ss, SSET from_ss, int shift,
int lower_lim, int upper_lim);

first carries out the same shift, but then it trimsto_ss at each end, removing all items with value
less thanlower_lim, and all items with value larger thanupper_lim. Again,from_ss must be
finalized and the item memory is shared withfrom_ss.

The following functions perform queries on SSets without changing their values:

int SSetCount(SSET ss);
int SSetGet(SSET ss, int i);
int SSetMin(SSET ss);
int SSetMax(SSET ss);

They return the cardinality ofss; itsith element, counting from 0 as usual, with the items stored
and thus returned in increasing order; its first (smallest) element; and its last (largest) element.
The last three functions are tiny macros and do not check that the calls are valid.

The following more complex queries are also offered:
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bool SSetEmpty(SSET ss);
bool SSetEqual(SSET ss1, SSET ss2);
bool SSetSubset(SSET ss1, SSET ss2);
bool SSetDisjoint(SSET ss1, SSET ss2);
bool SSetContains(SSET ss, int item);

These returntrue whenss is empty, whenss1 is equal to, a subset of, or disjoint fromss2, and
whenss containsitem.

The current shift is returned by

int SSetShift(SSET ss);

However, calling this is unlikely to be a good idea, because it goes behind the abstraction.

For convenience, iterator macros are defined which expand tofor loops:

SSetForEach(SSET ss, int *item, int *i)
SSetForEachReverse(SSET ss, int *item, int *i)

These iterate over the items ofss, setting*item and*i to each item and its index in turn. For
example, to sum the elements one would write

int total, item, i;
total = 0;
SSetForEach(ss, &item, &i)
total += item;

SSetForEachReverse is like SSetForEach except that it iterates in reverse order.

Function

char *SSetShow(SSET ss);

returns a string stored in static memory showing the value ofss, for example"{0, 3-5}". When
the set is finalized an asterisk is appended to the string. A long result is neatly elided to fit into
the 200-character buffer set aside to hold it. Actually there are four such buffers, andSSetShow

may be called up to four times before one of its previous results is overwritten.

Function

void SSetTest(FILE *fp);

carries out a fixed set of tests on this module, writing its results tofp.

The SSet module also offers tables indexed by SSets, as follows:

SSET_TABLE SSetTableMake(HA_ARENA a);
void SSetTableInsert(SSET_TABLE st, SSET ss, void *val);
bool SSetTableRetrieve(SSET_TABLE st, SSET ss, void **val);
void SSetTableDebug(SSET_TABLE st, int indent, FILE *fp);
void SSetTableTest(FILE *fp);

SSetTableMake returns a new, empty table.SSetTableFree frees the memory used byst.
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SSetTableInsert inserts an entry with keyss (actually&ss, and there is no copying of the
SSet) and valueval into st. It aborts with an error message if an entry with an equal key is
already present. It would be disastrous to changess after it has been inserted into a table, but
SSetTableInsert does not actually requiress to be finalized.SSetTableRetrieve retrieves
the entry with keyss fromst, setting*val to its value and returningtrue on success,and setting
*val to NULL and returningfalse on failure. Finally,SSetTableDebug produces a debug print
of st ontofp with the given indent, andSSetTableTest tests the table code, with output tofp.

The table is implemented by a trie structure; each item is used to index an extensible array.
Actually, for items after the first, the difference between the item and the previous item (always
non-negative because items are held in increasing order) is used. Sets whose items are large
integers should not be stored in these tables, because they will lead to excessively long arrays.

A.4. Priority queues

When a solver needs to visit things in priority order, it is easiest to just put them in an array and
sort them. Occasionally, however, their priorities change as solving proceeds, and then, since
resorting after every change is not efficient, a priority queue is needed.

KHE comes with a C priority queue module called PriQueue, consisting of header file
khe_priqueue.h and implementation filekhe_priqueue.c. These are stored and compiled
with KHE, but can also be used separately. To use PriQueue, simply includekhe_priqueue.h.
Includingkhe.h does not automatically includekhe_priqueue.h as well. The implementation
uses a Floyd-Williams heap with back indexes. Each operation takesO(log(n)) time at most.

File khe_priqueue.h begins with these type definitions:

typedef struct khe_priqueue_rec *KHE_PRIQUEUE;

typedef int64_t (*KHE_PRIQUEUE_KEY_FN)(void *entry);
typedef int (*KHE_PRIQUEUE_INDEX_GET_FN)(void *entry);
typedef void (*KHE_PRIQUEUE_INDEX_SET_FN)(void *entry, int index);

The first defines the type of a PriQueue as a pointer to a private record in the usual way. The
others define the types of callback functions stored within the PriQueue and called by it.

An entryis one element of a priority queue. PriQueue is generic: its entries are represented
by void pointers and may have any type consistent with that. Each entry has akey, which is its
priority in the priority queue, and anindex, which is used internally by PriQueue to point to its
position in the priority queue. A typical entry type would look like this:

typedef struct my_entry_rec {
int64_t key; /* PriQueue key */
int index; /* PriQueue index */
...

} *MY_ENTRY;

where... stands for other fields. PriQueue needs to retrieve the key, and to retrieve and set the
index, which is what the three callback functions are for. Here they are for typeMY_ENTRY:
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int64_t MyEntryKey(void *entry)
{
return ((MY_ENTRY) entry)->key;

}

int MyEntryIndex(void *entry)
{
return ((MY_ENTRY) entry)->index;

}

void MyEntrySetIndex(void *entry, int index)
{
((MY_ENTRY) entry)->index = index;

}

PriQueue sets the value of an entry’s index field to a positive integer during an insertion, and to
zero during a deletion. Accordingly, the user should initialize it to zero, and then it can be used
to determine whether the entry is currently in a priority queue or not.

To create a new PriQueue, call

KHE_PRIQUEUE KhePriQueueMake(KHE_PRIQUEUE_KEY_FN key,
KHE_PRIQUEUE_INDEX_GET_FN index_get,
KHE_PRIQUEUE_INDEX_SET_FN index_set, HA_ARENA a);

For the example above, the call would be

KhePriQueueMake(&MyEntryKey, &MyEntryIndex, &MyEntrySetIndex, a);

Initially the queue is empty. There is no operation to delete a priority queue; instead, it is deleted
when arenaa is deleted. To test whether a priority queue is empty or not, call

bool KhePriQueueEmpty(KHE_PRIQUEUE p);

To insert an entry, call

void KhePriQueueInsert(KHE_PRIQUEUE p, void *entry);

making sure that the entry’s key is defined beforehand; the index need not be, since it will be set
by PriQueue. Functions

void *KhePriQueueFindMin(KHE_PRIQUEUE p);
void *KhePriQueueDeleteMin(KHE_PRIQUEUE p);

return an entry with minimum key, assuming thatp is not empty, andKhePriQueueDeleteMin
removes the entry from the queue at the same time. Function

void KhePriQueueDeleteEntry(KHE_PRIQUEUE p, void *entry);

deletesentry from p; it must lie inp.

To update the priority of an entry, first change its key and then call
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void KhePriQueueNotifyKeyChange(KHE_PRIQUEUE p, void *entry);

to informp that it has changed. This will changeentry’s order in the queue, moving it forwards
or backwards as required. Finally,

void KhePriQueueTest(FILE *fp);

tests the module and prints its results onto filefp.

A.5. XML handling with KML

KML is a C module for reading and writing XML. It consists of a header file calledkml.h, and
implementation files calledkml.c andkml_read.c. These are stored and compiled with the
KHE platform, andkhe_platform.h includeskml.h. They can also be abstracted from it and
used separately, although they do use theHa memory module (Appendix A.1).

KHE uses KML to read and write XML. The KHE user encounters KML in exactly one
place: when reading an archive, an object of typeKML_ERROR is returned if there is a problem.

A.5.1. Representing XML in memory

TypeKML_ELT represents one node in an XML tree structure, including its label, attributes, and
children. The operations for querying aKML_ELT object are

int KmlLineNum(KML_ELT elt);
int KmlColNum(KML_ELT elt);
char *KmlLabel(KML_ELT elt);
KML_ELT KmlParent(KML_ELT elt);
char *KmlText(KML_ELT elt);

KmlLineNum andKmlColNum return a line number and column number stored in the element,
presumably recording its position in some input file somewhere.KmlLabel returns the label
of the element, andKmlParent returns its parent element in the tree structure, orNULL if none.
KmlText returns the text content ofelt, or NULL if none.

For querying the attributes ofelt the operations are

int KmlAttributeCount(KML_ELT elt);
char *KmlAttributeName(KML_ELT elt, int index);
char *KmlAttributeValue(KML_ELT elt, int index);
bool KmlContainsAttributePos(KML_ELT elt, char *name, int *index);
bool KmlContainsAttribute(KML_ELT elt, char *name, char **value);

KmlAttributeCount returns the number ofelt’s attributes, andKmlAttributeName and
KmlAttributeValue return itsindex’th attribute’s name and value. The first attribute has
index 0. Negative indexes are allowed:-1 means the last attribute,-2 the second last, and
so on. KmlContainsAttributePos returnstrue if elt contains an attribute with the giv-
en name, setting*index to its index if so; otherwise it returnsfalse and sets*index to -1.
KmlContainsAttribute has the same return value, but it sets*value to the attribute’s value if
found, and toNULL otherwise.
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For querying the children ofelt the operations are

int KmlChildCount(KML_ELT elt);
KML_ELT KmlChild(KML_ELT elt, int index);
bool KmlContainsChildPos(KML_ELT elt, char *label, int *index);
bool KmlContainsChild(KML_ELT elt, char *label, KML_ELT *child_elt);

KmlChildCount returns the number of children, andKmlChild returns theindex’th child, again
counting from 0 with negative indices allowed.KmlContainsChildPos returnstrue if elt

contains a child with the given label, setting*index to the index of the first such child if so;
otherwise it returnsfalse and sets*index to-1. KmlContainsChild has the same return value,
but it sets*child_elt to the first such child if found, and toNULL otherwise.

There are operations for constructingKML_ELT objects directly:

KML_ELT KmlMakeElt(int line_num, int col_num, char *label, HA_ARENA a);
void KmlAddAttribute(KML_ELT elt, char *name, char *value);
void KmlAddChild(KML_ELT elt, KML_ELT child);
void KmlDeleteChild(KML_ELT elt, KML_ELT child);
void KmlAddText(KML_ELT elt, char *text);
void KmlAddFmtText(KML_ELT elt, char *fmt, ...);

KmlMakeElt creates a new element with the given line number, column number, and label,
using memory from arenaa; KmlAddAttribute adds an attribute;KmlAddChild adds a child;
KmlDeleteChild deletes a child; andKmlAddText andKmlAddFmtText add text, either as given
or formatted usingsprintf (with no risk of overflow). They may be called repeatedly on one
elt, in which case the successive texts are concatenated. All these functions store copies, kept
in arenaa, of the strings they are passed, not the original strings.

As usual throughout KHE, there is no operation for freeing the memory used by an element.
Instead, it is freed when arenaa is deleted. Typically, a whole tree is built in one arena, so that
it can be freed very efficiently by deleting the arena.

It is not safe to retrieve a string from an element,delete the enclosing arena,and then attempt
to use the string. Such strings must be copied into a longer-lived arena. KHE’s operations all do
this, so there is no danger when KHE converts elements into archives, instances, etc.

A.5.2. Error handling and format checking

KML does not print any error messages; instead it reports an error by returning an object of type
KML_ERROR, containing the line number and column number of the point of error, plus a message
explaining what the problem was:

int KmlErrorLineNum(KML_ERROR ke);
int KmlErrorColNum(KML_ERROR ke);
char *KmlErrorString(KML_ERROR ke);

These objects can form the basis of error messages printed by the user.

KML’s operations for reading a file check only for well-formedness,not for conformance to
a legal document type definition, nor for high-level semantic constraints. During the conversion
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from KML_ELT to the user’s own data structure, other errors may be uncovered, and it is conve-
nient to be able to report those as objects of typeKML_ERROR also. Accordingly, operation

KML_ERROR KmlErrorMake(HA_ARENA a, int line_num, int col_num,
char *fmt, ...);

is provided. It creates a new object of typeKML_ERROR in arenaa, initializes it with the given line
number, column number, and formatted text (as forprintf), and returns it. There is also

KML_ERROR KmlVErrorMake(HA_ARENA a, int line_num, int col_num,
char *fmt, va_list ap);

which is toKmlErrorMake whatvprintf is toprintf, and

bool KmlError(KML_ERROR *ke, HA_ARENA a, int line_num, int col_num,
char *fmt, ...);

which is likeKmlErrorMake except that it sets*ke to the object it makes, and always returns
false. This is convenient for uses such as

if( bad_thing_discovered )
return KmlError(ke, a, line_num, col_num, "bad %s thing", str);

which bails out of a function that returns a boolean indicating whether all is well. There is also

KML_ERROR KmlErrorCopy(KML_ERROR ke, HA_ARENA a);

which returns a fresh copy ofke in arenaa.

To check whether aKML_ELT object conforms to a document type definition, call:

bool KmlCheck(KML_ELT elt, char *fmt, KML_ERROR *ke);

If elt conforms to the definition expressed byfmt, thentrue is returned; otherwise,false is
returned and*ke is set to an object recording the nature of the error, including a line and column
number taken from eitherelt itself or one of its children, as appropriate.

Parameterfmt describes the attributes and children ofelt—not the label ofelt, which will
have already been checked by the timeelt is examined, nor the children’s children, which may
be checked by the user during a recursive traversal ofelt’s children. For example,

"+Reference : #Value"

says thatelt has an optional attribute whose name isReference, and exactly one child whose
label isValue and whose body must contain text denoting an integer (no children). The part
before the colon specifies attributes, and the part after it (if there is a colon at all) specifies chil-
dren. An initial+means optional,and an initial*means zero or more;neither means exactly one.
After that, an initial$means text (no children),and an initial#means text representing an integer
(again, no children); neither means that there may be children. Here is a longer example:

"Reference : +#Duration +Time +Resources"

The element must have exactly one attribute,Reference. It has up to three children,an optional
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integerDuration, followed by an optionalTime, and finally an optionalResources. As
mentioned, the structure of the children may be checked by subsequent calls toKmlCheck.

A.5.3. Reading XML files

The simple way to read an XML file is to call

bool KmlReadFile(FILE *fp, FILE *echo_fp, KML_ELT *res, KML_ERROR *ke,
HA_ARENA a);

KmlReadFile readsfp, which must be open for reading UTF-8. Ifecho_fp != NULL, it writes
everything it reads toecho_fp, as a debugging aid. If there were no problems with the read,*res

is set to a newKML_ELT object representing the XML that was found, andtrue is returned. The
operations of Appendix A.5.1 may be used to traverse*res. Otherwise,*ke is set to an error
object (Appendix A.5.2) describing the first error (reading stops there), andfalse is returned.

KmlReadFile skips over any prolog, then reads exactly one element (including its descen-
dants) fromfp, from the first tag infp to the matching end tag, then skips over any epilog (trailing
comments, etc.) which involves skipping white space as well to see if epilog elements are there.
After KmlReadFile ends,fp remainsopen, leaving it to the caller to either close it or keep reading
from it. At that point, either end of file will have been reached, or else the next character read
will be the first character that could not be part of the epilog, pushed back usingungetc.

All memory consumed byKmlReadFile, including memory for*res and its descendants,
and for*ke if needed,comes from arenaa. After everything useful has been extracted from*res

and its descendants,a may be deleted or recycled as usual.

XML files can be large, and it may be better to read and process them one piece, orsegment,
at a time. A segment is defined by an element called itsroot. It consists of its root plus its root’s
descendants, excluding elements which are the roots of other segments, and their descendants.

There is aroot segmentwhose root element is the overall root. So every element lies in one
segment, the one defined by its nearest ancestor (possibly itself) that is the root of a segment.

Reading in segments requries several steps. The first step is to call

KML_READER KmlReaderMake(void *impl, HA_ARENA_SET as, HA_ARENA a);

This creates aKML_READER object in arenaa. Theimpl parameter is a pointer back to the user’s
data structures, andas is an arena set which is the source of any arenas, additional toa, that may
be needed, of which more later. Functions

void *KmlReaderImpl(KML_READER kr);
HA_ARENA_SET KmlReaderArenaSet(KML_READER kr);
HA_ARENA KmlReaderArena(KML_READER kr);

return the three attributes ofkr.

While the file is being read (while functionKmlReaderReadFileSegmented below is
running), callbacks are made to user code, which might detect a semantic error which should
abort the whole read. For this there is

void KmlReaderFail(KML_READER kr, KML_ERROR ke);
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which uses a C long jump to return early fromKmlReaderReadFileSegmented with errorke.

There is no operation to reclaim the memory consumed by aKML_READER object. As usual,
it is freed when its arena is deleted.

The second step is to make matching pairs of calls to these functions:

void KmlReaderDeclareSegmentBegin(KML_READER kr, char *path_name,
KML_SEGMENT_FN segment_begin_fn);

void KmlReaderDeclareSegmentEnd(KML_READER kr,
KML_SEGMENT_FN segment_end_fn);

These give the path names of the elements which are to be the roots of segments. For example,
suppose that the file structure is

HighSchoolTimetableArchive
+Instances

*Instance
+SolutionGroups

*SolutionGroup
*Solution

where+ means optional,* means zero or more, and indenting indicates nesting, and suppose that
eachInstance, SolutionGroup, andSolution is to be one segment. Then the calls are

KmlReaderDeclareSegmentBegin(kr, "HighSchoolTimetableArchive", &fn1);
KmlReaderDeclareSegmentBegin(kr, "Instances/Instance", &fn2);
KmlReaderDeclareSegmentEnd(kr, &fn3);
KmlReaderDeclareSegmentBegin(kr, "SolutionGroups/SolutionGroup", &fn4);

KmlReaderDeclareSegmentBegin(kr, "Solution", &fn5);
KmlReaderDeclareSegmentEnd(kr, &fn6);

KmlReaderDeclareSegmentEnd(kr, &fn7);
KmlReaderDeclareSegmentEnd(kr, &fn8);

using indenting to show the structure. They mimic the structure of the file. Each path name is
a sequence of one or more element names separated by slashes, and is relative to the enclosing
segment, except at the root. As a special case, an element name may be"*", and then it will
match with any name.

In cases like those forInstance andSolution above, where there are no inner segments,
segment_begin_fn is called immediately beforesegment_end_fn, as will be explained below.
In that case two callbacks are not needed, and so KML offers

void KmlReaderDeclareSegment(KML_READER kr, char *path_name,
KML_SEGMENT_FN segment_fn);

to replaceKmlReaderDeclareSegmentBegin andKmlReaderDeclareSegmentEnd:
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KmlReaderDeclareSegmentBegin(kr, "HighSchoolTimetableArchive", &fn1);
KmlReaderDeclareSegment(kr, "Instances/Instance", &fn2);
KmlReaderDeclareSegmentBegin(kr, "SolutionGroups/SolutionGroup", &fn3);

KmlReaderDeclareSegment(kr, "Solution", &fn4);
KmlReaderDeclareSegmentEnd(kr, &fn5);

KmlReaderDeclareSegmentEnd(kr, &fn6);

There is no substantial difference.

A path name can also be a sequence of path names separated by colons, like this:

"HighSchoolTimetableArchive:EmployeeScheduleArchive"

Then elements indicated by all paths are the roots of segments, with the same inner segments.

The third step is to actually read the file, by calling

bool KmlReaderReadFileSegmented(KML_READER kr, FILE *fp, FILE *echo_fp,
KML_ERROR *ke);

KmlReaderReadFileSegmented is similar toKmlReadFile, except that noKML_ELT is returned.
It can be called multiple times on oneKML_READER, although not in parallel.

As KmlReaderReadFileSegmented reads the file, it calls callback functions
segment_begin_fn andsegment_end_fn at the beginning and end of each segment. In the
syntax that the user would use to declare these functions, they are

void segment_begin_fn(KML_SEGMENT ks)
{

... process ks ...
}

This allows the user access to each segment, at the start of the segment and again at the end.

The call onsegment_begin_fn does not occur at the moment its element begins in the
input file. That would not be useful, because none of the element’s content is available then.
Instead, the callback is delayed until the first inner segment is about to begin, or if there are no
inner segments, until the segment is about to end. At that point, the segment’s root contains data
that can be processed into an initial value for the corresponding object on the user side.

The call onsegment_end_fn occurs as the segment’s root element is ending, and can be
used to finalize the corresponding user data structure. Either or both ofsegment_begin_fn and
segment_end_fn may beNULL, and then the corresponding callback is omitted.

The final step is to write the callback functions. Within each function, the user has access
to segmentks, to which the following functions may be applied:

KML_ELT KmlSegmentRoot(KML_SEGMENT ks);
KML_READER KmlSegmentReader(KML_SEGMENT ks);
HA_ARENA KmlSegmentArena(KML_SEGMENT ks);

KmlSegmentRoot returns the root of the segment. From there one can explore the children, their
children, and so on, insofar as they exist at the moment that the callback occurs. One can never



A.5. XML handling with KML 435

reach the elements of any inner segments in this way, not even from the callback at the end of
the segment, because such elements are not made children of their (logical) parent elements in
the usual way. The same fact looked at from the other side means that the root element has no
parent, so there is no way to reach elements in the enclosing segment.

KmlSegmentReader returns theKML_READER object passed to the enclosing call to
KmlReaderReadFileSegmented. This is useful for reaching user data structures via
KmlReaderImpl, ending the read early with failure viaKmlReaderFail, and so on.

KmlSegmentArena returns the segment’s arena. This holds the segment object itself, its root
element, and the root element’s decendants. Care is needed not to create objects, for example
error objects, in a segment’s arena that are intended to outlast the segment. An alternative arena
that will outlast the segment isKmlReaderArena(KmlSegmentReader(ks)).

The use of arenas in segmented file reading is somewhat complex, in that the root segment is
a special case. Its arena is the arena passed toKmlReaderMake. That arena holds both the reader
object and the root segment,and is not deleted by KML. The user should delete or recycle it after
the whole read is over. Each of the other segments has its own arena, taken from the arena setas

passed toKmlReaderMake (or created, as usual, ifas is empty). This arena is deleted, or rather
recycled throughas, immediately after the segment’ssegment_end_fn returns. So the user must
ensure that everything needed on the user side is extracted from the segment by that time. It is
almost certainly a disastrous error to store the segment passed in the callback function, or any of
its elements, in user-side data structures.

A.5.4. Writing XML files

Writing an XML file begins with the creation of aKML_FILE object, by calling

KML_FILE KmlMakeFile(FILE *fp, int initial_indent, int indent_step);

Pointer typeKML_FILE, defined inkml.h, represents an XML file open for writing (never
reading). It holds a file pointer and a few attributes describing the state of the write, including a
current indent, used to produce neatly indented XML. Filefp must be open for writing UTF-8
characters;initial_indent is the initial indent, typically 0, andindent_step is the number of
spaces to indent at each level, typically 2 or 4.

When reading an XML file using KML it is necessary to first read the file into aKML_ELT

object, and then build the user data structure that is really wanted, while traversing theKML_ELT

object. The reverse procedure may be used for writing, by calling

void KmlWrite(KML_ELT elt, KML_FILE kf);

KmlWrite writeselt and its attributes and children recursively tokf. But it is also possible to
write directly to a file while traversing the user’s data structure, without usingKML_ELT objects.
To do this, the operations are

void KmlBegin(KML_FILE kf, char *label);
void KmlAttribute(KML_FILE kf, char *name, char *value);
void KmlPlainText(KML_FILE kf, char *text);
void KmlFmtText(KML_FILE kf, char *fmt, ...);
void KmlEnd(KML_FILE kf, char *label);
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KmlBegin begins an object with the given label, andKmlEnd ends it. KML does not check that
the labels match, even though they must. Immediately after callingKmlBegin, any number of
calls toKmlAttribute are allowed; each adds one attribute, with the given name and value, to
the object just begun. After that,KmlPlainText may be called to add some text as the body of
the object, orKmlFmtText to add some formatted text as the body (wherefmt and the following
parameters are suitable for passing on tofprintf). KmlPlainText prints the characters&<>’"
in their escape sequence forms (&amp; and so on);KmlFmtText does not, so it is best limited to
tasks that cannot generate such characters (printing numbers, etc.). Alternatively,any number of
nested calls toKmlBegin …KmlEnd may precede the matchingKmlEnd, to add children.

For convenience, three operations are offered which write an entire element in one call:

void KmlEltAttribute(KML_FILE kf, char *label, char *name, char *value);
void KmlEltPlainText(KML_FILE kf, char *label, char *text);
void KmlEltFmtText(KML_FILE kf, char *label, char *fmt, ...);

These are simple combinations of the functions above, only writing on one line (except newlines
in text). KmlEltAttribute writes an object with the given label and attribute, but no body.
KmlEltPlainText andKmlEltFmtText write an object with the given label, no attributes, and a
plain or formatted text body. A few other such functions are available, for which seekml.h.



Appendix B. Implementation Notes
This chapter documents aspects of the implementation of KHE. It is included mainly for the
author’s own reference; it is not needed for using KHE.

B.1. Source file organization

The KHE platform is organized in object-oriented style, with one C source file for each major
type. A type’s internalsare visible only within its file;all access to them is via functions. Headers
for some of these functions appear inkhe_platform.h, making them available to the end user.
Headers for others appear inkhe_interns.h, making them available only to the platform.

Although this section applies to all source files, it is motivated by the problemsof organizing
the source files of types defining parts of solutions. Some of these are quite large. For example,
file khe_meet.c, which holds the internals of typeKHE_MEET, is about 5000 lines long.

There is a canonical order for the types representing parts of solutions:KHE_SOLN,
KHE_MEET, KHE_MEET_BOUND, KHE_TASK, KHE_TASK_BOUND, KHE_MARK, KHE_PATH, KHE_NODE,
KHE_LAYER, KHE_ZONE, KHE_TASKING. The intention of defining this order is that these types
should be handled in this order whenever appropriate—in this Guide for example.

Source files are organized internally by dividing them intosubmodules, which are segments
of the files separated by comments. Each submodule handles one aspect of the type. Here is a
generic list of the submodules appearing in any one file, in their order of appearance:

Type declaration
Simple attributes (back pointers,visit numbers,etc.)
Creation and deletion
Relations with objects of the same type (copy,split, etc.)
Relations with objects of different types
File reading and writing
Debug

Simple attributes are easily handled attributes that are not closely related to any following
categories. They may appear in separate submodules, or be grouped into one submodule. Each
relation is one submodule (counting opposite operations, such as split and merge, as part of one
relation), except that a large relation may be broken into several submodules. Relations with
different types appear in the canonical order defined above.

An attempt has been made to keep the submodules in the same order as their functions
are presented in this Guide, except for debugging. Some submodules have no defined position
according to this rule, because they are present only to support other submodules, and offer no
functions to the end user. Those are placed where they seem to fit best.

437



438 Appendix B. Implementation Notes

B.2. Relations between objects

This section explains how KHE maintains relations between objects. Not every relation is
maintained as explained here, but it is the author’s aim to achieve that in time.

The most common relation,by far, is theone-to-manyrelation, in which one object is related
to any number of objects of the same or another type: one node contains any number of meets,
one meet contains any number of tasks, one meet is assigned any number of meets, and so on.

Let KHE_A be the type of the entity that there is one of, andKHE_B be the type of the
entity that there are many of. KHE implements the relation by placing one attribute, of type
ARRAY_KHE_B, in KHE_A, holding the manyKHE_B objects related toKHE_A, and two inKHE_B:

KHE_A a;
int a_index;

holding the oneKHE_A object related to this object, and this object’s index in that object’s array.
Any attributes of the relation, such as the offset attribute of the meet assignment relation, appear
alongside these two. In theKHE_A class file, functions

void KheAAddB(KHE_A a, KHE_B b);
void KheADeleteB(KHE_A a, KHE_B b);

are defined which add and delete elements of the relation, as well as the usualKheABCount and
KheAB functions which iterate over the array. In theKHE_B class file, functions

KHE_A KheBA(KHE_B b);
void KheBSetA(KHE_B b, KHE_A a);
int KheBAIndex(KHE_B b);
void KheBSetAIndex(KHE_B b, int a_index);

get and set thea anda_index attributes ofb, supporting constant time deletions. Instead of
searching forb in a’s array,a_index is used to find it directly. It is overwritten by the entity at the
end of the array,whose index is then changed. This assumes that the order of the array’selements
may be arbitrary, as is usually the case. The setter functions are private to the platform.

This plan allows aKHE_B object to be unrelated to anyKHE_A object (just set itsa attribute to
NULL), but does not supportmany-to-manyrelations, where aKHE_B object may be related to any
number ofKHE_A objects. On the rare occasions when KHE needs this kind of relation, it adapts
the familiar edge lists implementation of graphs: it defines a typeKHE_A_REL_B representing
one element of the many-to-many relation, and installs one one-to-many relation fromKHE_A to
KHE_A_REL_B, and another fromKHE_B to KHE_A_REL_B. This givesKHE_A_REL_B attributes

KHE_A a;
int a_index;
KHE_B b;
int b_index;

and places it in arrays in bothentity_a andentity_b. Now the operations for adding and
deleting an element of the relation must add or delete two one-to-many relations, as well as
creating or deleting oneKHE_A_REL_B object, which is done using a free list to save time.
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B.3. Kernel operations

The promises made in connection with marks and paths, that all operations that change a solution
can be undone (except changes to visit numbers), and that undoing a deletion recreates the object
at its original address, have significant implications for the implementation.

The KHE platform has an inner layer called thesolution kernel, or just thekernel, consisting
of a set of private operations, calledkernel operations, which change a solution. Each kernel
operation has a name of the formKheEntityKernelOp, whereEntity is the data type and
Op is the operation. It is the kernel operations that are stored in paths. All operations (except
operations on visit numbers) change the solution only by calling kernel operations, so if those are
correctly done, undone, and redone, all operations will be correctly done, undone, and redone.

For the record, here is the complete list of kernel operations:

KheMeetKernelSetBack
KheMeetKernelAdd
KheMeetKernelDelete
KheMeetKernelSplit
KheMeetKernelMerge
KheMeetKernelMove
KheMeetKernelAssignFix
KheMeetKernelAssignUnFix
KheMeetKernelAddMeetBound
KheMeetKernelDeleteMeetBound
KheMeetKernelSetAutoDomain

KheMeetBoundKernelAdd
KheMeetBoundKernelDelete
KheMeetBoundKernelAddTimeGroup
KheMeetBoundKernelDeleteTimeGroup

KheLayerKernelSetBack
KheLayerKernelAdd
KheLayerKernelDelete
KheLayerKernelAddChildNode
KheLayerKernelDeleteChildNode
KheLayerKernelAddResource
KheLayerKernelDeleteResource

KheTaskKernelSetBack
KheTaskKernelAdd
KheTaskKernelDelete
KheTaskKernelSplit
KheTaskKernelMerge
KheTaskKernelMove
KheTaskKernelAssignFix
KheTaskKernelAssignUnFix
KheTaskKernelAddTaskBound
KheTaskKernelDeleteTaskBound

KheTaskBoundKernelAdd
KheTaskBoundKernelDelete

KheNodeKernelSetBack
KheNodeKernelAdd
KheNodeKernelDelete
KheNodeKernelAddParent
KheNodeKernelDeleteParent
KheNodeKernelSwapChildNodesAndLayers
KheNodeKernelAddMeet
KheNodeKernelDeleteMeet

KheZoneKernelSetBack
KheZoneKernelAdd
KheZoneKernelDelete
KheZoneKernelAddMeetOffset
KheZoneKernelDeleteMeetOffset

Each KheEntityKernelOp function has a companionKheEntityKernelOpUndo function.
KheEntityKernelOp carries out its operation and adds itself to the solution’s path, if present.
KheEntityKernelOpUndo undoes whatKheEntityKernelOp did, only without removing itself
from the solution’s path, since it is called by a function that has already done that.



440 Appendix B. Implementation Notes

A redo must be identical to the original operation, because both can be inverted by calling
KheEntityKernelOpUndo and removing one record from the solution path. So there are no
KheEntityKernelOpRedo functions;KheEntityKernelOp functions are called instead.

Some operations come in opposing pairs (split and merge, fix and unfix, and so on), such
that doing one is the same as undoing the other, except that a do or redo adds a record to the
solution’s path, whereas an undo does not. In these cases the implementation contains one
private function calledKheEntityDoOp1 and another calledKheEntityDoOp2, whereOp1 and
Op2 are opposing pairs. These functions carry out the two operations without touching the so-
lution’s path. ThenKheEntityKernelOp1, KheEntityKernelOp2, KheEntityKernelOp1Undo,
and KheEntityKernelOp2Undo are each implemented by one call onKheEntityDoOp1 or
KheEntityDoOp2, plus an addition to the solution’s path if the operation is notUndo.

Operations that create and delete objects are awkward, as it turns out, so the rest of this
section is devoted to them. The meet split and merge operations are particularly awkward, so we
will start with the regular creation and deletion operations, generically namedKheEntityMake

andKheEntityDelete, and treat meet splitting and merging afterwards.

Solution objects are recycled through free lists held in the enclosing solution. When a new
object is needed, it is taken from the free list, or from the solution’s arena if the free list is empty.
When an object is no longer needed, it is added to the free list. When the solution is deleted, and
only then, the objects on the free list are deleted as part of the deletion of the arena. Free lists
not only save time in handling the objects, they also save time in handling any extensible arrays
within those objects: those arrays remain initialized while the object is on the free list.

An operation which obtains a new object from a memory allocator or free list cannot be
a kernel operation, because then a redo would not re-create the object at its previous memory
location. An operation which returns an object to a memory allocator or free list cannot be a
kernel operation,because an undo would not re-create the object at its previous memory location.
So only the part ofKheEntityMake which initializes the object and links it into the solution is
the kernel operation, and only the part ofKheEntityDelete which unlinks the object from the
solution is the kernel operation. This leads to this picture of the life cycle of a kernel object:

nonexist freelist unlinked linked

KheEntityDoMake

KheEntityDoMake

KheEntityDoGet

KheEntityDoGet

KheEntityUnGet KheEntityUnGetKheEntityDoAdd

KheEntityDoAdd

KheEntityUnAdd KheEntityUnAdd

Statenonexistmeans that the object does not exist;freelist means that it exists on a free list;
unlinkedmeans that it exists, not on a free list, not linked to the solution, but referenced from
somewhere on some path; andlinkedmeans that it exists and is linked to the solution.

KheEntityDoMake obtains a fresh object from the memory allocator and initializes its
private arrays. There is no correspondingKheEntityUnMake operation,because memory is freed
only by deleting arenas, not directly.

KheEntityDoGet obtains a fresh object from the free list, or fromKheEntityDoMake if the
free list is empty. Either way, the object’s arrays are initialized, although not necessarily empty.
Objects returned byKheEntityDoMake do not actually enter the free list.KheEntityUnGet does
the opposite, adding the object it is given to the free list.

KheEntityDoAdd initializes the unlinked object it is given, assuming that its private arrays
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are initialized, although not necessarily empty (it clears them), and links it into the solution.
KheEntityUnAdd does the opposite, unlinking the object it is given from the solution.

The kernel operationsKheEntityKernelAdd and KheEntityKernelDelete and their
Undo companions are each implemented by one call toKheEntityDoAdd or KheEntityUnAdd,
plus an addition to the solution path if the function is not an undo.KheEntityKernelAdd

and KheEntityKernelDelete form an opposing pair, as defined above, except that
KheEntityKernelDelete may include a call toKheEntityUnGet as explained below.

The public function that creates a kernel object,KheEntityMake, is KheEntityDoGet

followed by KheEntityKernelAdd. The public function that deletes one,KheEntityDelete,
begins with kernel operations that help to unlink the object (unassignments and so on), then ends
with KheEntityKernelDelete.

An object can be referenced from the solution and from paths, and there is no simple rule
saying when to callKheEntityUnGet to add it to the free list. To solve this problem, an integer
reference count field is placed in each kernel object, counting the number of references to the
object. Not all references are counted. References from paths at points where the object is added
or deleted are counted. For example, in a path’s record of a meet split or merge, the reference
to the second meet is counted, but not the first. So reference counts increase when paths grow or
are copied, and decrease when paths shrink or are deleted. Also,KheEntityDoAdd adds 1 to the
count,andKheEntityUnAdd subtracts1. This summarizes references from the solution generally
in one unit of the count.

When the reference count falls to zero,KheEntityUnGet is called to return the object to the
free list. This could happen during a call toKheEntityUnAdd, or when a path shrinks: during a
call toKhePathDelete, or while undoing, which shrinks the solution’s main path.

An unlinkedobject could have come from the free list, and so could contain no useful
information. It would be a mistake forKheEntityDoAdd to assume that the object it is given has
passed throughKheEntityUnAdd and retains useful information from when it was previously
linked. Instead,KheEntityDoAdd must initialize every field of the object it is given, assuming
that its arrays are initialized, but not that they contain useful information.

An example of getting this wrong would be to try to preserve the list of tasks of a meet in
itstasks array when it is unlinked, in a mistaken attempt to ensure that they remain available for
when the meet is recreated. What really happens is that before deleting the meet,KheMeetDelete

deletes its tasks,so records of those task deletions appear on the solution path just before the meet
deletion. When an undo recreates the meet, it immediately goes on to recreate the tasks, without
any need for their preservation in the dormant meet.

A meet split is similar to a creation of the second meet, and a meet merge is similar to a
deletion of the second meet. The main new problem is that tasks need to be split and merged
too. So separate kernel operations are defined for splitting the meet itself and for splitting one
of its tasks, and conversely for merging two meets and for merging two of their tasks. The user
operation for meet splitting does a kernel meet split followed by a sequence of kernel task splits,
and the user operation for meet merging does the opposite.

The key advantage of doing it this way is that tasks are stored explicitly in paths, and their
reference counters take account of this. So the usual method of handling the allocation and
deallocation of entities generally, described above, applies without change to the tasks created
and deleted by meet splitting and merging.
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Meet bounds are related to meets in much the same way as tasks are. Once again, the kernel
meet split operation does not make meet bounds for the split-off meet; instead, they are made
by separate kernel meet bound creation operations, and thus will be undone before a meet split
is undone. Task bounds are handled similarly.

Paths have negligible time cost compared with the operations they record; and their space
cost is moderate, provided they are not used to record wandering methods like tabu search.
Reference counting as implemented here also costs very little: in time, a few simple steps, only
carried out when creating or deleting a kernel object, not each time the object is referenced; and
in space, one integer per kernel object.

B.4. Monitor updating

When the user executes an operation that changes the state of a solution, KHE works out the
revised cost. For efficiency, this must be done incrementally. This section explains how it is
done—but just for information: the functions defined here cannot be called by the user.

The monitors are linked into a network that allows state changing operations to flow
naturally to where they need to go. Only attached monitors are linked in; detached ones are
removed, so that no time is wasted on them. The full list of basic operations that affect cost is

KheMeetMake
KheMeetDelete
KheMeetSplit

KheMeetMerge
KheMeetAssign
KheMeetUnAssign

KheTaskMake
KheTaskDelete
KheTaskAssign
KheTaskUnAssign

Six originate inKHE_MEET objects, four inKHE_TASK objects. From there their impulses flow to
objects of three private types:

KHE_MEET KHE_EVENT_IN_SOLN

KHE_TASK KHE_EVENT_RESOURCE_IN_SOLN

KHE_RESOURCE_IN_SOLN
KheMeetMake

KheMeetMake
KheMeetDelete
KheMeetSplit
KheMeetMerge
KheMeetAssign
KheMeetUnAssign

Split

Split
Merge
AssignTime
UnAssignTime

Add

Add
Delete
Split
Merge
AssignTime
UnAssignTime

Add

Add
Delete
Split
Merge
AssignResource
UnAssignResource

Split

Split
Merge
AssignTime
UnAssignTime
AssignResource
UnAssignResource

KheTaskMake

KheTaskMake
KheTaskDelete
KheTaskAssign
KheTaskUnAssign
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KHE_EVENT_IN_SOLN holds information about one event in a solution: the meets derived from
it (whereKheEventMeet gets its values from), a list of ‘event resource in solution’ objects, one
for each of its event resources, and a list of monitors, possibly including a timetable (timetables
are monitors).KHE_EVENT_RESOURCE_IN_SOLN holds information about one event resource in
a solution: the tasks derived from it, and a list of monitors.KHE_RESOURCE_IN_SOLN holds
information about one resource in a solution: the tasks it is currently assigned to, and a list of
monitors, usually including a timetable.

The connections are fairly self-evident. For example, ifKheMeetMake is called to make a
meet derived from a given instance event, then that event’s event in solution object needs to know
this, and theAdd operation (full nameKheEventInSolnAddMeet) informs it. KheMeetAssign
only generates anAssignTime call when the assignment links the meet, directly or indirectly, to
a cycle meet, assigning a time to it. Event resource in solution objects are not told about time
assignmentsand unassignments. Calls only pass from a task objecttask to a resource in solution
object whentask is assigned a resource.

The connections leading out ofKHE_EVENT_IN_SOLN are as follows:

KHE_EVENT_IN_SOLN

KHE_SPLIT_EVENTS_MONITOR

KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR

KHE_ASSIGN_TIME_MONITOR

KHE_PREFER_TIMES_MONITOR

KHE_EVENT_TIMETABLE_MONITOR

KHE_SPREAD_EVENTS_MONITOR

KHE_ORDER_EVENTS_MONITOR
Add

Add
Delete
Split
Merge

Add

Add
Delete
Split
Merge
AssignTime
UnAssignTime

Split events and distribute split events monitors do not need to know about time assignment and
unassignment. Based on the calls they receive, they keep track of meet durations and report cost
accordingly. Assign time and prefer times monitors are even simpler; they report cost depending
on whether the meets reported to them are assigned times or not.

Event timetables are used by link events constraints, which need to know the times when
the event’s meets are running, ignoring clashes, which is just what timetables offer.

A spread events monitor is connected to the event in solution objects corresponding to each
of the events it is interested in. It keeps track of how many meets from those events collectively
have starting times in each of its time groups, and calculates deviations accordingly. Spread
events monitors are not attached to timetables because, although their monitoring is similar,
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there are significant differences: spread events monitor time groups come with upper and lower
limits, making them not sharable in general, and the quantity of interest is the number of distinct
meets that intersect each time group, not the number of busy times calculated by the time group
monitors attached to timetables.

An order events monitor is connected to the two event in solution objects corresponding to
the two events it is interested in. These keep track of the events’meets, including their number,
and the monitor itself keeps track of the number of unassigned meets. So determining whether
both events have at least one meet, and whether there are no unassigned meets, take constant
time. If both conditions are satisfied, the monitor traverses both sets of meets to calculate the
deviation and cost when a meet is added, deleted, or assigned a time. (In practice, events subject
to order events constraints do not split, so this too takes constant time.) The other operations are
faster: unassigning a time produces cost 0, and splitting and merging do not change the cost.

The connections leading out ofKHE_EVENT_RESOURCE_IN_SOLN are

KHE_EVENT_RESOURCE_IN_SOLN

KHE_ASSIGN_RESOURCE_MONITOR

KHE_PREFER_RESOURCES_MONITOR

KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR

KHE_LIMIT_RESOURCES_MONITOR
Add

Add
Delete
Split
Merge
AssignResource
UnAssignResource

None of these monitors cares about time assignments and unassignments. Assign resource
monitors and prefer resources monitors are very simple, reporting cost depending on whether the
tasks passed to them are assigned or not.

An avoid split assignments monitor is connected to one event resource in solution object
for each event resource in its point of application. It keeps track of a multiset of resources, one
element for each assignment to each task it is monitoring, and its cost depends on the number of
distinct resources in that multiset.

A limit resources monitor is connected to one event resource in solution object for each
event resource it monitors. It keeps count of the number of assignments of resources from its
resource group.

The connections leading out ofKHE_RESOURCE_IN_SOLN are
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KHE_RESOURCE_IN_SOLN

KHE_LIMIT_WORKLOAD_MONITOR

KHE_RESOURCE_TIMETABLE_MONITOR
AssignResource

AssignResource
UnAssignResource

Split

Split
Merge
AssignTime
UnAssignTime
AssignResource
UnAssignResource

Limit workload constraints do not need to know about time assignments, evidently, but they also
do not need to know about splits and merges, since these do not change the total workload.

Calculating workloads is then very simple. Each meet receives a workload when it is
created, and when a resource is assigned, the workload limit monitors attached to its resource in
solution object are updated, and pass revised costs to the solution.

KHE_RESOURCE_TIMETABLE_MONITOR receivesmany kinds of calls. However,since it main-
tains a timetable containing tasks with assigned times, all these can be mapped to just two in-
coming operations,which we callAddTaskAtTime andDeleteTaskAtTime. For example,a split
maps to oneDeleteTaskAtTime and twoAddTaskAtTime calls. The outgoing operations are

KHE_RESOURCE_TIMETABLE_MONITOR

KHE_AVOID_CLASHES_MONITOR

KHE_TIME_GROUP_MONITOR
ChangeClashCount

ChangeClashCount
Flush

AssignTimeNonClash

AssignTimeNonClash
UnAssignTimeNonClash
Flush

An avoid clashes monitor is notified whenever the number of meets at any one time increases to
more than 1 or decreases from more than 1 (operationChangeClashCount above). It uses these
notifications to maintain its deviation. It updates the solution when aFlush is received from the
timetable at the end of the operation.

The other monitors are attached to the timetable at each time they are interested in, and are
notified when one of those times becomes busy (when its number of meets increases from 0 to
1) and when it becomes free (when its number of meets decreases from 1 to 0), by operations
AssignTimeNonClash andUnAssignTimeNonClash above.

A time group monitor monitors one time group within one timetable. It is attached to its
timetable at the times of its time group, so is notified when one of those times becomes busy or
free. It keeps track of the number of busy and idle times in its time group. As an optimization,
the number of idle times is calculated only when at least one limit idle times monitor is attached
to the time group monitor; otherwise the number is taken to be 0.

Old and new values for the number of busy and idle times are stored, and when a flush is
received they are propagated onwards via operationChangeBusyAndIdle:
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KHE_TIME_GROUP_MONITOR

KHE_AVOID_UNAVAILABLE_TIMES_MONITOR

KHE_LIMIT_IDLE_TIMES_MONITOR

KHE_CLUSTER_BUSY_TIMES_MONITOR

KHE_LIMIT_BUSY_TIMES_MONITOR

KHE_LIMIT_ACTIVE_INTERVALS_MONITOR
AddBusyAndIdle

AddBusyAndIdle
DeleteBusyAndIdle
ChangeBusyAndIdle

When a monitor is attached, functionAddBusyAndIdle is called instead, and when a monitor is
detached, functionDeleteBusyAndIdle is called instead.

An unavailable times monitor is connected to a time group monitor monitoring the
unavailable times. It receives an updated number of busy times fromChangeBusyAndIdle and
reports any change of cost to the solution.

A limit idle times monitor is connected to the time group monitors corresponding to the time
groups of its constraint. It receives updated idle counts from each of them, and based on them
it maintains its deviation.

A cluster busy times monitor is connected to the time group monitors corresponding to the
time groups of its constraint. It is interested in whether the busy counts it receives from them
change from zero to non-zero, or conversely.

A limit busy times monitor is connected to the time group monitors corresponding to the
time groups of its constraint. It receives updated busy counts from each of them, and based on
them it maintains its deviation.

A limit active intervals monitor is connected to the time group monitors corresponding to
the time groups of its constraint. It is interested in whether the busy counts it receives from them
change from zero to non-zero, or conversely. Using a data structure holding the current set of
active intervals, it maintains its deviation by tracking changes in their lengths (Appendix B.6).

B.5. Monitor attachment and unattachment

Monitor attachment and unattachment are constrained by some basic facts: they can occur at
any time while a solver is running; unattachment is intended to save time, which means that an
unattached monitor must be genuinely unlinked from the solution; and an unattached monitor
has cost 0. Also, it is convenient to bring a monitor into existence in the unattached state and
then attach it, because there is a lot of shared code between creation and attachment.

When a monitor is unattached, it is in theunattached state. Its cost is 0 by definition, and its
attached flag isfalse. Any other attributes that change as the solution changes are in principle
undefined, because an unattached monitor, including these attributes, is usually out of date.
However a monitor’s invariant is free to assign particular values to any of these attributes in the
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unattached state, if that is convenient.

A monitor becomes attached in two steps. The first step is to convert the unattached state
into theunlinked state, which is the appropriate state for the monitor when it is formally attached
but not yet linked in to the constraint propagation network. Itsattached flag istrue, and its
attributes that change as the solution changes (including its cost) have well-defined values, and
its cost has been reported to its parents. The second step is to call on each relevant part of the
constraint propagation network, informing it that the monitor is now attached and wants to
receive updates. Each such part will call back with an initial update, that the monitor uses to bring
itself fully up to date.

It is true that one could take a different approach, in which the monitor’s state is not
well-defined, and cost is not reported to parents, until after the monitor is fully linked in to the
constraint propagation network. However, linking to part of the solution or to a monitor often
has the same effect on the monitor as a change of state in that part of the solution or monitor, and
the approach taken here brings out that commonality.

Returning now to our two-step approach, we give some examples of unlinked states. To
keep above the details we confine ourselves to theunlinked cost: the monitor’s cost in the
unlinked state. This is often 0, but not always. Here are a few examples.

The unlinked cost of an assign resource monitor is 0, because it is not linked to any event
resources, and so it cannot be aware of any unassigned ones.

The unlinked cost of a limit busy times monitor is 0, because its cost is summed over its
time groups, and initially it is linked to none.

The main causes of non-zero unlinked costs are minimum limits. Consider a limit workload
monitor with a minimum limit. When it is unlinked, it has no evidence that its resource is
assigned any work at all, and so its unlinked deviation is the cost of being assigned nothing.

In general, the process of attachment of monitorm looks like this:

m->attached = true;
if( unlinked_cost > 0 )
{
m->cost = unlinked_cost;
report to parents the cost change from 0 to m->cost;

}
add the links from the solution and other monitors to m;

As previously explained, the last step produces callbacks tom that further change its state, and so
possibly its cost. Unattachment reverses what attachment did:

remove the links from the solution and other monitors to m;
assert(m->cost == unlinked_cost);
if( unlinked_cost > 0 )
{
report to parents the cost change from m->cost to 0;
m->cost = 0;

}
m->attached = false;
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B.6. The limit active intervals monitor

Monitors can be quite lengthy to implement, given the many state-changing operations they need
to accept. However they are usually straightforward,once one understands the basic structure of
taking a state change in, producing a new cost, and reporting it if it changed.

The limit active intervals monitor has a much longer and more complex implementation
than the other monitors. Finding an efficient and coherent implementation was challenging, so
this section documents that implementation in detail.

The basic data structure is a sequence oftime group infoobjects, one for each time group,
holding four fields: a pointer to the time group monitor for that time group, a polarity, andstate
andintervalfields. A time group info object will be referred to here simply as a time group.

The state field contains the time group’s state. The user is encouraged to believe that there
are two states, active and inactive, but in fact there are three: active, inactive, andopen, meaning
that the monitor cannot assume that the time group is either active or inactive.

As Jeff Kingston’s paper on history [10] explains, a limit active intervals monitor is
actually aprojectionof a larger monitor spanning the full cycle. Itshistory_before attribute
says how many active time groups there are immediately preceding the current monitor, and its
history_after attribute says how many time groups (in any state) there are following it. The
time group sequence is extended at each end to accommodate thesevirtual time groups:

a
history_before

history_before

ai aio
0

0

o
history_after

history_aftercutoff_index

cutoff_index

This diagram illustrates several points. Thereal (non-virtual) time groups are represented by
the white box. The first has index 0. But some indexes outside this range are permitted: down
to -history_before, and up tocount + history_after - 1, wherecount is the number
of real time groups. Actual objects are not present in the two extended parts of the range, but
nevertheless the monitor’s functions accept these indexes. They behave as though each time
group in the left part is active, and each time group in the right part is open. In this way, the
virtuality of these time groups is hidden, except that it is not possible to change their state.

One could simplify the implementation by creating objects for all time groups, but that
would be a mistake. It would be safe enough forhistory_before, but history_after
could be very large, and creating all those extra time groups would waste time and memory.

A real time group can be active, inactive, or open. It is open when it lies at or after the
cutoff index and its busy count is zero. Otherwise, it is either active or inactive, depending on
its busy count and polarity in the usual way. A virtual time group is active when it lies in the
history_before range, and open when it lies in thehistory_after range, except that all
time groups (real and virtual) are inactive when the monitor is not attached.

This definition exposes the similarity between cutoff indexes and history after: both specify
that some part of the cycle is not being solved, and hence that time groups there may be open.

There is an asymmetry in when a time group is open which needs explanation. Consider
a real time group at or after the cutoff index. When it is busy (because of a preassignment, say,
or task grouping), its activity or inactivity, depending on its polarity, is known, so considering it
to be open, while possible, entails a loss of potentially valuable information. But when it is not
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busy, its activity or inactivity is not known, so its state must be open, at least by default.

KheLimitActiveIntervalsMonitorSetNotBusyState mitigates this by allowing the user
to specify that when a given time group is at or after the cutoff index and is not busy, its state
is to be active or inactive rather than open. It would perhaps be better to add to the platform an
operation that declares that a certain resource will not be assigned anything at a certain time. But
such an operation would be a major undertaking and it is not likely that it will ever be added.

We’ve reached a key point: we now know what time groups (real and virtual) there are, and
how the state of each time group is defined. So we have a firm foundation to build intervals on.
In doing so we will forget that some time groups are virtual. We will also forget why time groups
have the states they have, and simply take those states as given.

An interval is a sequence of adjacent time groups. Anactive interval, or a-interval, is a
maximal sequence of adjacent active time groups. Maximum limits are checked by comparing
the lengths of the a-intervals with the limit. Anao-intervalis a maximal sequence of adjacent
time groups, each of which is either active or open. Minimum limits are checked by comparing
the lengths of the ao-intervals with the minimum limit.

Actually the rules just given have a flaw. If an ao-interval is entirely open (if it contains no
active time groups), then it is not defective, even if its length is less than the minimum limit. For
now we will pretend that this flaw does not exist. We’ll return to it and handle it later.

An interval is represented by an object in the usual way, containing indexes defining its end-
points, and its cost. One option would be to maintain a list of a-intervals when the monitor has a
non-trivial maximum limit,and a list of ao-intervals when the monitor has a non-trivial minimum
limit. However, given that many monitors have both and that open time groups are uncommon,
this seems too expensive. What we actually do is maintain a list of ao-intervals only.

When a time group changes state for any reason, the sequence of ao-intervals is adjusted to
take account of the change. The relevant ao-intervals are easily reached, because each active and
each open time group contains a pointer to its enclosing interval. It may be necessary to lengthen
an adjacent interval, or merge two intervals that become adjacent, or even to delete an interval
(when the changing time group was its only element). Each interval that changes recalculates its
cost and reports the change in cost to the monitor, which passes on the total change in cost.

New intervals come from a free list of interval objects in the monitor; deleted intervals
return there. So once a solve is well under way there is little or no memory allocation.

It is trivial for an ao-interval to check itself against a minimum limit, because it knows its
own length. (We are still ignoring the problem of ao-intervals with no active time groups.) To
check itself against a maximum limit, it might seem that it needs to find all the a-intervals within
itself and check them against the limit. This is potentially slow. Of particular concern are cases
where there is a small cutoff index, and hence, potentially, a long ao-interval extending past it,
with a-intervals (produced by preassignments, say) scattered along it.

Here, however, we use the fact that the cost of a limit active intervals monitor when there
is a cutoff index is open to negotiation. We include the following in its definition:violations of
limits by active intervals that begin at or after the cutoff index attract no cost. This is a plausible
part of what it means to install a cutoff index; but its real reason for being there is efficiency.

Where then are the a-intervals whose costs we need to calculate? They must begin before
the cutoff index, so they must lie in ao-intervals that begin before the cutoff index. They cannot
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be preceded by open time groups, because all open time groups lie at or after the cutoff index.
So the a-intervals we need are exactly those whose first time group is the first time group of its
enclosing ao-interval, which itself must begin before the cutoff index.

For each ao-interval, even at and after the cutoff index, let itsinitial a-interval be the
a-interval (if any) whose first time group is the ao-interval’s first time group. Record in each
ao-interval the length of its initial a-interval, or 0 if there is no initial a-interval. When the
ao-interval’sfirst time group is before the cutoff index, compare this with the maximum limit and
generate a cost.

These initial a-interval lengths are easy to maintain as time groups change state and intervals
are merged and split. At the worst, when a time group changes from open to active just at the end
of the initial a-interval, the time groups from there on must be scanned to see how much longer
the initial a-interval has become.

Finally, we can now solve the problem of ao-intervals with no active time groups. Since
open time groups can only occur at or after the cutoff index, such intervals always begin at or
after the cutoff index. And we have just introduced a rule which requires all such intervals to
have no cost. Problem solved.

B.7. An arena and arena set plan

Arenas and arena sets can be used to allocate and free memory very efficiently. However, if their
advantages are to be realized, a carefully worked out plan for them is needed.

Some basic facts constrain this plan. Although arenas are cheap to create, still their number
should be minimized,since from one point of view every arena creation is an unproductive use of
time and memory;and it callsmalloc and thus may produce contention. Accordingly,all objects
that are known to have the same lifetime should share an arena. For example, any significant
solver will allocate memory while it is running, but after it ends its effect will be confined to
changes in the solution it worked on. So it makes sense for all memory allocated by a solver to be
kept in a single arena, and for that arena to be deleted or recycled as one of the final steps of that
solver. Again, the objects making up one solution will all be deleted together (except the solution
object itself, which may need to survive as a placeholder), so they should lie in one arena.

To maximize the re-use of memory, two rules are needed. First, there should be as few arena
sets as possible, since then there will be as few idle arenas as possible. The minimum number
of arena sets is one per thread, because arena sets have no locking and cannot be shared between
threads. It would be possible to have locked arena sets and create just one global arena set that
all arenas come from, but that approach has not been followed, because even though there would
be very little contention for this arena set, still we prefer to avoid all unnecessary locking.

When a thread ends, its arena set is deleted, after moving its arenas across into the arena set
of the parent thread, the one that will be continuing. Care is needed here when the thread’s arena
set is stored in other objects that are continuing, as KHE stores it in solution objects.

KHE stores the arena set in solution objects but nowhere else. When the thread ends, the
arena set field of every solution that is being kept is set to the parent thread’s arena set, leaving
no trace of the thread arena set in any continuing object.

The second rule for maximizing re-use of memory is that every arena should be taken
from an arena set and returned to an arena set when it is no longer needed:HaArenaMake and
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HaArenaDelete should not be called directly. The main issue here is ensuring that an arena set
is available at every point in the program. For the implementer of KHE, and for users who write
their own multi-threaded programs, this takes some care; but for most users of KHE, it is trivial,
because KHE supplies a suitable arena set with every solution, that the user can obtain arenas
from via functionsKheSolnArenaBegin andKheSolnArenaEnd (Section 4.2.2).

We also need to consider modules which assist solvers, such as the priority queue or
weighted bipartite matching modules. Such modules might not wish to get their memory from
KheSolnArenaBegin and KheSolnArenaEnd, because they want to be independent of KHE
solution objects and rely only on Ha, or because they can use the same arena as the solver that
calls them, saving arena creations. These modules typically accept an arena parameter, and offer
no operation to delete themselves, that being done when the arena they are passed is deleted.

The remainder of this section analyses an issue that has puzzled the author. In general, it
arises when it is not known whether a program is going to break into multiple threads or not.

When a solution is created afresh, it is clear that it is going to be solved, and it can be passed
the arena set of the thread it is being solved by. Different solutions may thus have different arena
sets. But when a solution is read, the read is part of a single thread that reads many solutions,and
all solutions would naturally share a single arena set (and do so in the current implementation).

Now consider reading some solutions and resuming solving them in parallel. KHE offers
no functions for doing this, but there is nothing to prevent it, except that there will be a contention
problem in their shared arena set.

However, there is a way out. There is no contention within individual arenas, because each
solution occupies a separate arena (in fact two, owing to the placeholder issue). So the answer
is to create one new arena set for each solution and install it by callingKheSolnSetArenaSet.
Then parallel solving can proceed without problems. Solutions can even be deleted in parallel:
the arenas freed by deletions will be recycled into the new arena sets, not into the old one.



Appendix C. Resource Reassignment Using
Dynamic Programming

This Appendix describes the dynamic programming algorithm for resource reassignment from
Section 12.6. Its source file,khe_sr_dynamic_resource.c, is over 13,000 lines long, making
it easily the largest of KHE’s solvers.

C.1. Overview of the algorithm

This section gives an overview of the algorithm, omitting implementation details.

Let the resources selected for reassignment be{ r1,… ,rm} . Their order does not matter. Let
the days selected for reassignment (that is, the time groups of the common frame) be〈d1,… ,dn〉
in chronological order. This is not the full sequence of days of the cycle; other days, the
unselected ones, may occur before, between, and after the selected days. Let{s0,s1,… ,sa} be the
shift types, wheres0 is a special shift type denoting non-assignment (a free day).

As a step towards the dynamic programming algorithm, consider first a tree search
algorithm which assigns ansi to eachrj ond1, then ansi to eachrj ond2, and so on. Each day has

m(a + 1) choices, so the tree tries mn(a + 1) timetables altogether. Clearly this will find the best
timetable, but at the cost of exploring an infeasibly large number of alternatives in practice.

Let asolution for dk be an assignment of shift types to each resource{ r1,… ,rm} on each of
the selected days〈d1,… ,dk〉. A solution always contains, for each selected resource, a finished
timetable for the firstk selected days and no assignments for the other selected days. Often we
just saysolutionwhendk is clear from the context or we are speaking generally, but we always
mean this particular kind of solution. All solutions implicitly include many assignments from the
initial solution(the one we are finding a reassignment for): all time assignments,all assignments
of unselected resources, and all assignments of selected resources on unselected days.

Consider these two solutions ford5, assuming that there is just one resource,r1:

s1 s1 s1 s0 s0 s2 s2 s2 s0 s0

If there is no constraint on the total number ofs1 shifts that may be assignedr1, and none on the
total number ofs2 shifts that may be assignedr1, then these two solutions are indistinguishable
from here on. If, say, the second has a smaller cost than the first (for example if there is an upper
limit of 2 on the number of consecutives1shifts, but not on the number of consecutives2 shifts),
then it is safe to not explore the search tree rooted at the first solution, because any timetable it
leads to will be worse than the corresponding timetable in the search tree rooted at the second
solution. The dynamic programming algorithm exploits this idea.

Of course, one cannot simply ignore all but one solution fordk. In the example, if thereare
upper limits on the number ofs1 ands2 shifts, then the search trees rooted at both solutions must
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be explored, because the different numbers ofs1 ands2 shifts may lead to different costs later.

Given two solutionsS1 andS2 for the same daydk, S1 dominates S2 if the presence ofS1
allowsS2 to be dropped. Dominance works by associating an array of integerswith each solution,
called itssignature. The signature has one element for each constraint, usually, recording the
constraint’s state. For example, if there is a maximum limit on the number of shifts worked, the
signature of solutionSwill have one element recording the number of shifts worked inS. By
comparing this element inS1 andS2 we can find out ifS1 dominatesS2 as far as this constraint
goes. IfS1 dominatesS2 for all constraints, and its cost is not larger, thenS1 dominatesS2.

The solver implements several kinds of dominance. The simplest isweak dominance,
which says thatS1 dominatesS2 when their signatures are equal at every position, and the cost
of S1does not exceed the cost ofS2. Having equal signatures means that all costs incurred as the
solve progresses beyonddk will be the same, soS1’s cost advantage will never be lost. A more
powerful kind,strong dominance, makes a ‘≤’, ‘≥’, or ‘=’ comparison at each element, depending
on whether the constraint there has a maximum limit, a minimum limit, or both.

The dynamic programming algorithm is as follows. Search the search tree in a breadth-first
fashion, first finding solutions ford1, then solutions ford2, and so on. For each daydk, maintain
Pk, a set of solutions fordk found so far. As each new solutionx for dk is created, see whetherx
is dominated by any existing solution inPk and drop it if so. If not, addx to Pk and drop fromPk
any existing solutions that are dominated byx. In this way, instead of eventually containing all
solutions fordk, Pk eventually contains allundominatedsolutions fordk.

SupposePk is complete. To extend beyond there, for each solutionx in Pk, create one new
solution for each combination of assignments of therj to thesu on daydk+1. Each of these new
solutions is fordk+1(ignoring multi-day tasks), so each gets added toPk+1, with dominance testing
applied withinPk+1 just as withinPk. On the last day,dn, all that is required for dominance is
smaller cost, as we will see later. SoPn contains at most one solution, and that is the result.

We will say more about how tasks are selected in Appendix C.6, including multi-day tasks
and why they sacrifice optimality. One shift type here corresponds to onetask classthere.

As we will see, each solution comes with a cost. Solution cost is non-decreasing along each
path in the search tree,because no cost is added until it is certain that subsequent assignmentswill
not remove it. (This is true even of constraintswith minimum limits,whose cost might otherwise
be expected to decrease as the solve proceeds.) So the algorithm compares the cost of each newly
created solutionx with the cost of the initial solution, and deletesx when its cost is not smaller.
This is important: it prunes away many inferior alternatives.

C.2. Running time

We now prove the result stated in Section 12.6, that one solve runs in timeO(n(a + m1) m cmn ),
wherem is the number of selected resources,n is the number of selected days,a is a constant,
the number of shift types, andc is another constant (usually 1or 2), the number of constraints per
resource whose maximum limits increase withn (such as limits on the total number of shifts).

Recall thatPk is the set of stored solutions fordk, for 1 ≤ k ≤ n. Let W(k) be the number
of solutions inPk when weak dominance is used (‘W’ is for ‘weak dominance’). LetW(0) = 1,
standing for the root of the search tree, before the first day. Our first task is to estimateW(k).
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A constraint only needs a presence in the signatures of daydk solutions if its cost is affected
by what happens ondk or earlier, anddk is not the last day it is affected by. This is because on
earlier days there is nothing for the signature to remember, and on its last day its cost is finalized
and added to the solution cost, so that again there is nothing for the signature to remember.

We’ll see later that the solver represents constraints by expressions; so this analysis speaks
of expressions, but the reader can safely take them to be constraints. LetEk be the set of
expressions which need a presence in the signatures for daydk. If x ∈ Ek, thenx contributes one
value to the signature of each solution fordk. Let v(x,k) be the number of distinct values that
could be stored on behalf ofx in the signature of a solution fordk. For example, there areOR
expressions representing the logical ‘or’ of their children. Ifx is anORexpression, the stored
value could be 0 or 1, sov(x,k) = 2.

The signature of a solution inPk is the concatenation of the values stored for the expressions
x ∈ Ek, and under weak dominance the solutions ofPk have distinct signatures, so

W(k) ≤ ∏
x∈ Ek

v(x,k)

The next questions are, how large couldEk be, and how large couldv(x,k) be? To answer these
questions, we will focus on nurse rostering instances that occur in practice, and we divide their
constraints (strictly, monitors) into three classes.

In the first class lie all event resource constraints. In practice, each of these applies to a
single day, and so its expressions do not lie in anyEk, and contribute nothing to the product.

In the second class lie resource constraints that concern local patterns, such as prohibiting
a day shift following a night shift, or requiring both days of a weekend to be busy or neither.
Clearly, for one resource on one day, there will be only a small constant number of these, sayb,
andv(x,k) will also be a small constant, typically 2. So these constraints contribute aboutb2 to
the product per resource, orbm2 over allmselected resources.

In the third class lie resource constraints that concern global limits, for example on the total
number of shifts worked. For each resource there will only be a small constant number of such
constraints, sayc, but for themv(x,k) will be larger, on the order ofn. For one resource this
contributes aboutcn to the product, or cmn over allmselected resources.

Putting these three cases together, and observing that the last term dominates, we get

W(k) ≤ ∏
x∈ Ek

v(x,k) = O( cmn )

wherec is the number of constraints per resource whose upper limits are on the order ofn.

Given a solution inPk, we may take the running time of assigning one more day’s worth of
shifts, including creating a new solution object, finding its signature and cost, and looking up the
signature in thePk+1hash table, to bem. This is because the number of constraints per resource
on a particular day is a constant. Our implementation does indeed do this inO(m) time.

For each of theW(k) solutions inPk we generate at most(a + m1) new solutions, wherea is
the number of shift types (really task classes that begin on daydk), making a total running time
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of (a + m1) mW(k) to generate thePk+1hash table. So the overall running time is at most

∑
0≤k<n

(a + m1) mW(k) ≤ n(a + m1) mW(n) = O(n(a + m1) m cmn )

as advertised.

In some models, shifts have durations in minutes and there is a constraint on the total
duration of the shifts taken by a nurse. This could lead to a very large value ofv(x,k), although
the number should be manageable if all durations are multiples of, say, 30 or 60 minutes.

The author has not found any way to tighten up this analysis for strong dominance. It is
easy to see thatS(k) ≤ W(k), whereS(k) is the size ofPk when strong dominance is used. This
can be proved using induction onk and the fact that every case of weak dominance is also a case
of strong dominance. The running time for creating one solution and inserting it intoPk must be
multiplied byS(k), to account for the cost of the pairwise dominance tests. (Weak dominance is
much faster, merely requiring a retrieval of the signature in a hash table.) One would think that
this would make strong dominance significantly slower, but testing suggests otherwise.

An important practical factor is the extent to which solutions get pruned because their cost
exceeds the cost of the initial solution. Again there seems to be no way to estimate this. Its effect
will be larger as the initial solution improves, and also as the search approaches its end.

C.3. Introducing the implementation

This section and the following sections describe the implementation. The order of presentation
follows the order of the source code, in filekhe_sr_dynamic_resource.c. Many of the types
are mutually recursive, so some forward references are unavoidable.

Many solver objects parallel KHE objects. The main types are:

KHE type Dynamic resource solver (DRS) type
KHE_RESOURCE KHE_DRS_RESOURCE
KHE_TIME_GROUP (of common frame) KHE_DRS_DAY
KHE_TASK KHE_DRS_TASK
KHE_SOLN KHE_DRS_SOLN
KHE_CONSTRAINT KHE_DRS_EXPR

They represent the corresponding KHE objects, with extra information needed by the solver.
Constraints are represented by expression trees, andKHE_DRS_EXPR is an abstract supertype with
many concrete subtypes, representing different types of expressions.

The solver utilizes two kinds of trees: search trees, whose nodes represent solutions and
have typeKHE_DRS_SOLN; and expression trees, representing constraints, whose nodes have type
KHE_DRS_EXPR. This makes the term ‘node’ ambiguous, so it will not be used. Instead, search
tree nodes will be called solutions, and expression tree nodes will be called expressions.

KheDynamicResourceSolverMake(soln, rt, options) creates data structures for all
of soln relevant to resource typert. It saves time, when there are many solves, for all resource,
day, task, and expression objects to be created just once. OnlyKHE_DRS_SOLN objects are created
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during one solve, basically, and they come from a free list, recycled from previous solves.

A solve may generate thousands of solutions, all needing to be kept in case they turn out to
lie on the path to the optimal solution. Such large numbers were not envisaged when KHE was
designed, and no attempt was made to minimize the memory consumed byKHE_SOLN objects.
So although it would be logical to represent a solution by aKHE_SOLN object, it would be quite
impractical.KHE_DRS_SOLN uses far less memory.

When KheDynamicResourceSolverMake returns, all its objects are in theclosedstate,
meaning that they are not part of any solve. Closed objects contain values that reflect the initial
solution. At the start of each solve, a process calledopeningoccurs, which identifies the DRS
resources, days, tasks, and expressions that are part of that solve. Opening also unassigns any
KHE tasks corresponding to opened tasks which happen to be assigned initially. Its running time
depends on the number of objects opened, not on the total number of objects.

At the end of each solve, an opposite process calledclosingoccurs, which returns the open
objects to the closed state, with values that reflect the solution found by the solve. Closing also
performs the KHE task assignments needed to change the KHE solution into the new solution.

In between opening and closing we build the search tree, a process we callsearching. So
the implementation has four main operations:constructionof a solver object and its many
associated objects (a slow but easy job which needs little documentation); opening; searching;
and closing. The last three operations, carried out in sequence, make onesolve.

C.4. Resources

This section describes the DRS resource and its operations. Here is its type definition:

typedef struct khe_drs_resource_rec *KHE_DRS_RESOURCE;
typedef HA_ARRAY(KHE_DRS_RESOURCE) ARRAY_KHE_DRS_RESOURCE;

struct khe_drs_resource_rec {
KHE_RESOURCE resource;
int open_resource_index;
ARRAY_KHE_DRS_RESOURCE_ON_DAY days;
ARRAY_KHE_DRS_SIGNATURE extend_signatures;
KHE_DRS_TASK_ON_DAY extend_fixed_dtd;
KHE_DRS_SIGNATURE extend_fixed_signature;

};

The last three fields are used byKheDrsSolnExtend and will be explained later. For the rest, it
contains the corresponding KHE resource, the resource’s index in the array of open resources
when open (or-1 when closed), and an array ofKHE_DRS_RESOURCE_ON_DAY objects, one for
each day of the cycle, recording what the resource is doing on that day:

typedef struct khe_drs_resource_on_day_rec *KHE_DRS_RESOURCE_ON_DAY;
typedef HA_ARRAY(KHE_DRS_RESOURCE_ON_DAY) ARRAY_KHE_DRS_RESOURCE_ON_DAY;
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struct khe_drs_resource_on_day_rec {
KHE_DRS_RESOURCE encl_dr;
KHE_DRS_DAY day;
KHE_DRS_TASK_ON_DAY closed_asst;
ARRAY_KHE_DRS_EXPR external_today;
ARRAY_KHE_DRS_EXPR internal_today;

};

Hereencl_dr andday hold the DRS resource and day that this object is for; they are fixed.

Supposedr is an object of typeKHE_DRS_RESOURCE, and supposedrd is one of its
KHE_DRS_RESOURCE_ON_DAY objects. When there is no solve underway, or there is a solve butdr

is not open to reassignment ondrd->day during that solve,drd->closed_asst says whatdr is
doing on that day. Ifdr is free on that day,drd->closed_asst is NULL. When there is a solve
anddr is open to reassignment ondrd->day, drd->closed_asst is unused and has valueNULL.
There would be no problem adding a Booleanopen field to make it quite clear at every moment
whetherdrd is open or closed, but it turns out that that is not needed, so it has been omitted.

Theexternal_today field is a fixed array of expressions representing parts of constraints
(always resource constraints) that are affected by whatdrd is doing on this day. When whatdrd
is doing changes, these expressions need to be informed. They areexternalexpressions: they are
leaves in their expression trees. Theinternal_today field is the same, except that it contains
internal (non-leaf) expressions. For not very good reasons, it is not defined until the resource is
opened for solving, although every time that happens it contains the same expressions.

Resource and resource on day objects are easily built during the initialization of the solver.
The most complex resource operation is the one for opening a resource on the selected days.
Before presenting that operation, here is typeKHE_DRS_DAY_RANGE, defining an integer interval:

typedef struct khe_drs_day_range_rec {
int first;
int last;

} KHE_DRS_DAY_RANGE;

The interval runs fromfirst to last inclusive (empty whenfirst > last). The fields are
indexes into the common frame or an array of days, making an interval of days: aday range.

Here now is the function for opening resourcedr:
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void KheDrsResourceOpen(KHE_DRS_RESOURCE dr, int open_resource_index,
KHE_DRS_PACKED_SOLN init_soln, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_DAY_RANGE ddr, open_day_range; int i, j, k, open_day_index;
KHE_DRS_RESOURCE_ON_DAY drd; KHE_DRS_TASK dt; KHE_DRS_EXPR e;
KHE_DRS_TASK_ON_DAY dtd;
dr->open_resource_index = open_resource_index;
open_day_index = 0;
HaArrayForEach(drs->selected_day_ranges, ddr, i)

for( j = ddr.first; j <= ddr.last; j++ )
{

/* unassign any task assigned on drd, if it lies entirely in ddr */
drd = HaArray(dr->days, j);
dtd = drd->closed_asst;
if( dtd != NULL )
{

dt = dtd->encl_dt;
if( KheDrsDayRangeSubset(dt->encl_dtc->day_range, ddr) )
{

KheDrsTaskUnAssign(dt, true);
if( init_soln != NULL )

KheDrsPackedSolnSetTaskOnDay(init_soln, open_day_index,
open_resource_index, dtd);

}
}

/* clear the internal_today array */
HaArrayClear(drd->internal_today);

/* gather for opening expressions depending on drd */
open_day_range = KheDrsDayRangeMake(open_day_index, open_day_index);
HaArrayForEach(drd->external_today, e, k)
{

e->open_day_range = open_day_range;
KheDrsExprGatherForOpening(e, drs);

}

/* increase open_day_index */
open_day_index++;

}
}

The first step is to setdr->open_resource_index. After that, the two outer loops setj to the
index in the cycle of each selected day, so each assignment ofdrd setsdrd to a resource on day
object that needs to be opened. Opening it involves, first, unassigning any task assigned todr on
that day, unless it is part of a grouped task which extends beyond the current day range, including
adding that assignment to packed solutioninit_soln (see Section C.13) so that it can be redone
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later if required; second, clearing theinternal_today array ready for receiving expressions;
and third, gathering the expressions dependent ondrd into a list. These expressions need to be
opened, but that is delayed until that list is traversed later.

A point that confused the author is that the calls toKheDrsTaskUnAssign unassign KHE
tasks and so change the cost of the solution. Does this cause problems for the cost accounting?
No, because the original solution cost is saved before these unassignments are made, and
the costs stored in expressions are not affected by them: when those expressions are opened
later, they subtract their costs from the total, and those costs do not take these unassignments
into account.

The matchingKheDrsResourceClose operation merely resetsdr->open_resource_index
to -1. It does not make any task assignments, because functionKheDrsTaskAssign below does
that, including setting theclosed_asst fields in the affected resource on day objects.

To finish off resources, here is the other non-trivial resource function. This one is called
when searching. When a search comes to enumerate the assignments that can be made to a
resource on a given day, it needs to know whether the resource’s assignment is in fact fixed on
that day. This function returnstrue in that case, with*dtd set to what the resource is fixed to:

bool KheDrsResourceOnDayIsFixed(KHE_DRS_RESOURCE_ON_DAY drd,
KHE_DRS_SOLN soln, KHE_DRS_TASK_ON_DAY *dtd)

{
KHE_DRS_TASK_ON_DAY dtd1, dtd2;

/* if drd has a closed assignment, it’s fixed to that */
if( drd->closed_asst != NULL )
return *dtd = drd->closed_asst, true;

/* if drd’s resource is assigned to a task in soln which is */
/* still running, then drd is fixed to that */
if( KheDrsSolnResourceIsAssigned(soln, drd->encl_dr, &dtd1) &&

KheDrsTaskBusyOnDay(dtd1->encl_dt, drd->day, &dtd2) )
return *dtd = dtd2, true;

/* otherwise drd has no fixed assignment */
return *dtd = NULL, false;

}

Even though the resource is open and the day in question is open, the resource could still have a
closed assignment, usually arising from a multi-day task, which is only opened if all the days it
is running are open. The first test handles that. The resource could also have been assigned to
a multi-day task yesterday (that is, insoln), so must continue with that task today. The second
test handles that:KheDrsSolnResourceIsAssigned returnstrue if the resource is busy insoln,
andKheDrsTaskBusyOnDay returnstrue if the task it is busy with then is still running.
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C.5. Days

TypeKHE_DRS_DAY represents one day, that is, one time group of the common frame:

typedef struct khe_drs_day_rec *KHE_DRS_DAY;
typedef HA_ARRAY(KHE_DRS_DAY) ARRAY_KHE_DRS_DAY;

struct khe_drs_day_rec {
int frame_index;
int open_day_index;
KHE_TIME_GROUP time_group;
ARRAY_KHE_DRS_TASK_CLASS task_classes;
ARRAY_KHE_DRS_EXPR nr_internal_today;
ARRAY_KHE_DRS_DOM_TEST dom_tests;
HA_ARRAY_INT eq_dom_test_indexes;
KHE_DRS_SOLN_SET soln_set;

};

Theframe_index field is the day’s time group’s index in the common frame. It is a fixed value,
set when the day is created duringKheDynamicResourceSolverMake. Theopen_day_index

field is the day’s index in the list of open days when it is open, and-1 when it is closed. The
time_group field holds the time group defining the day, taken from the common frame.

Thetask_classes field holds a set oftask classes. Each is a set of similar tasks, as will be
explained below. The first time of every task in every class lies in this day’s time group.

The next three fields are only defined when the day is open; they are fixed throughout any
one solve. Thenr_internal_today field is a list of all open internal (non-leaf) expressions
whose values are affected by what is happening onday. They are sorted into postorder, that is,
the children of any expression appear earlier in the list than the expression itself. Actually, only
expressions not derived from resource constraints (i.e. derived from event resource constraints)
are included innr_internal_today, which explains the ‘nr_’ in the name: it stands for ‘not
resource constraint’.

Thedom_tests andeq_dom_test_indexes fields are concerned with dominance testing
and will be explained later (Section C.10).

Thesoln_set field is also only defined when the day is open. It is initialized to empty at the
start of each solve, but comes to hold the set of all undominated solutions within which resources
are assigned tasks up to and including this day. This field was calledPk in Section C.1.

The operations on days are quite simple. Creation is straightforward as usual. Opening sets
open_day_index and clears the fields defined when the day is open (they are given their actual
values later, when opening expressions, explained below). Closing reverses what opening did.
Searching adds solutions to thesoln_set field but leaves the day object itself untouched.

C.6. Tasks

For each proper root task of the required resource type, there is a corresponding DRS task:
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typedef struct khe_drs_task_rec *KHE_DRS_TASK;
typedef HA_ARRAY(KHE_DRS_TASK) ARRAY_KHE_DRS_TASK;

struct khe_drs_task_rec {
KHE_DRS_TASK_CLASS encl_dtc;
int index_in_encl_dtc;
bool extend_must_assign;
bool open;
KHE_TASK task;
KHE_COST asst_cost;
KHE_COST non_asst_cost;
KHE_DRS_RESOURCE closed_asst;
ARRAY_KHE_DRS_TASK_ON_DAY days;

};

Each DRS task lies in one DRS task class (Section C.7);encl_dtc is that task class, and
index_in_encl_dtc is the task’s index in that class. Theextend_must_assign field is used by
KheDrsSolnExtend and will be discussed later.

Thetask field is the corresponding KHE proper root task. Theopen field is true when
this task is open (when there is a current solve and this task may be assigned or reassigned by it).
When a DRS task is open, itsclosed_asst field isNULL and its KHE task is unassigned. When
a DRS task is closed, itsclosed_asst field is set to the DRS resource corresponding to the KHE
resource assigned to the KHE task, or toNULL when the KHE task is unassigned.

Theasst_cost field is a constant lower bound on the cost of not assigningtask, and the
non_asst_cost field is a constant lower bound on the cost of not assigning it. These values
come fromKheTaskClassTask (Section 11.11).

Thedays field holds oneKHE_DRS_TASK_ON_DAY object for each day the task is running:

typedef struct khe_drs_task_on_day_rec *KHE_DRS_TASK_ON_DAY;
typedef HA_ARRAY(KHE_DRS_TASK_ON_DAY) ARRAY_KHE_DRS_TASK_ON_DAY;

struct khe_drs_task_on_day_rec {
KHE_DRS_TASK encl_dt;
KHE_DRS_DAY day;
KHE_TASK task;
KHE_TIME time;
KHE_DRS_RESOURCE_ON_DAY closed_asst;
ARRAY_KHE_DRS_EXPR external_today;

};

Hereencl_dt is the enclosing DRS task,day is the day concerned, andtask is the KHE task
running on this day: either the original KHE proper root task, or some other KHE task assigned,
directly or indirectly, to that task. Also,time is the time withinday thattask is running.

A multi-day task is considered by the solver to be running on all days from its first busy day
to its last (inclusive). If there is an intermediate day when the task is not running, there is still a
task on day object for that day, but itstask andtime fields areNULL. It is not possible for a task
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to be running twice on one day (see below for why).

Theclosed_asst field holds the resource on day that this task on day is assigned to when
the task is closed. It is non-NULL when theclosed_asst field of the enclosing DRS task is
non-NULL, but it holds a DRS resource on day object, not a DRS resource object.

Finally,external_today holds a list of all external expressions (expressions with no child
expressions) whose value depends on what this task is doing on this day. This is similar to the
external_today field in resource on day objects, except that these leaves lie in expression
trees representing event resource constraints (assign resource, prefer resources, and limit
resources constraints) rather than in expression trees representing resource constraints. When
the assignment of the task represented here changes, these expressions need to be informed.

This function makes a closed assignment of a DRS resource to a DRS task:

void KheDrsTaskAssign(KHE_DRS_TASK dt, KHE_DRS_RESOURCE dr, bool task)
{
KHE_DRS_TASK_ON_DAY dtd; int i; KHE_DRS_RESOURCE_ON_DAY drd;
HnAssert(dt->closed_asst == NULL, "KheDrsTaskAssign error 1");
HnAssert(dr != NULL, "KheDrsTaskAssign error 2");
if( task && !KheTaskAssignResource(dt->task, dr->resource) )
HnAbort("KheDrsTaskAssign error 3");

dt->closed_asst = dr;
HaArrayForEach(dt->days, dtd, i)
{
drd = KheDrsResourceOnDay(dr, dtd->day);
HnAssert(dtd->closed_asst == NULL, "KheDrsTaskAssign error 4");
HnAssert(drd->closed_asst == NULL, "KheDrsTaskAssign error 5");
dtd->closed_asst = drd;
drd->closed_asst = dtd;

}
}

KheDrsTaskAssign only omits callingKheTaskAssignResource when the object is first built.
KheDrsResourceOnDay returns the resource on day object representing whatdr is doing on
dtd->day. Whendtd->closed_asst or drd->closed_asst changes, the expressions in their
external_today arrays must be informed. This is done separately fromKheDrsTaskAssign.

It will become clear (Section C.7) that only unassigned tasks are ever opened, so all that
needs to be done when opening a task is to set itsopen field totrue and to gather for opening all
the expressions in theexternal_today arrays of its task on day objects:
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void KheDrsTaskOpen(KHE_DRS_TASK dt, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
KHE_DRS_TASK_ON_DAY dtd; KHE_DRS_EXPR e; int i, j, di;
KHE_DRS_DAY_RANGE open_day_range;

/* open dt */
HnAssert(!dt->open, "KheDrsTaskOpen internal error 1");
HnAssert(dt->closed_asst == NULL, "KheDrsTaskOpen internal error 2");
dt->open = true;

/* gather external expressions for opening */
HaArrayForEach(dt->days, dtd, i)
{
di = dtd->day->open_day_index;
open_day_range = KheDrsDayRangeMake(di, di);
HaArrayForEach(dtd->external_today, e, j)
{
e->open_day_range = open_day_range;
KheDrsExprGatherForOpening(e, drs);

}
}

}

Closing a DRS task sets theopen field tofalse, and may also assign a DRS resource:

void KheDrsTaskClose(KHE_DRS_TASK dt, KHE_DRS_RESOURCE dr)
{
if( dt->open )
{
dt->open = false;
if( dr != NULL )
KheDrsTaskAssign(dt, dr, true);

}
}

KheDrsTaskClose may be called on the same task several times, but does the work only once.

C.7. Task classes

The basic idea of task classes is that in every instance there are often equivalent tasks. To
be equivalent, two tasks must run at the same times, but they must also be subject to the same
constraints, so that assigning a resource to one task of a class is really the same as assigning it to
another. When trying alternative assignments we can save a lot of time by recognizing this and
avoiding alternatives which formally are different but in reality are equivalent.

The dynamic resource solver calls on a task class solver from Section 11.11 to partition the
set of all the proper root tasks of the required resource type into task classes. Then for each of
theseKHE_TASK_CLASS objects it makes oneKHE_DRS_TASK_CLASS object, and for each KHE
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task in each class it adds one DRS task to the DRS task class. It callsKheTaskClassNoOverlap

on each class, and if any of the calls returnfalse, no solver is created. So it is safe for the solver
to assume that none of its tasks run twice at the same time or on the same day.

The type declarations forKHE_DRS_TASK_CLASS are:

typedef struct khe_drs_task_class_rec *KHE_DRS_TASK_CLASS;
typedef HA_ARRAY(KHE_DRS_TASK_CLASS) ARRAY_KHE_DRS_TASK_CLASS;

struct khe_drs_task_class_rec {
KHE_TASK_CLASS orig_task_class;
KHE_DRS_DAY_RANGE day_range;
ARRAY_KHE_DRS_TASK all_tasks;
ARRAY_KHE_DRS_TASK unassigned_tasks;
int extend_used;

};

Here orig_task_class is the KHE_TASK_CLASS that this DRS task class is derived from,
day_range says which days the tasks of this class are busy (they are all busy on the same days),
all_tasks contains the DRS tasks corresponding to the KHE tasks oforig_task_class,
unassigned_tasks contains those tasks fromall_tasks which are open during the current
solve, andextend_used is used byKheDrsSolnExtend and will be explained later.

During solving, we wantunassigned_tasks to contain the open tasks of this class, that is,
the tasks fromall_tasks which are available for the open resources to be assigned to. By the
time that solving starts, these tasks will all be unassigned. When we buildunassigned_tasks

at the start of each solve, there are two issues.

First, two tasks lying in the same class may differ in the cost incurred by assigning (or not
assigning) them. Those which are least costly come first in the class, and should be chosen for
assignment before later tasks in the class. This is explained fully in Section 11.11.2. So open
tasks must appear withinunassigned_tasks in the same order that they appear inall_tasks.

Second, we want the running time of opening and closing to be proportional to the
number of objects opened, not the total number of objects. Accordingly, we cannot build
unassigned_tasks by traversingall_tasks when opening, becauseall_tasks may contain
many tasks which will not be opened, because they are assigned unselected resources.

So we proceed as follows. When the DRS task class is created,unassigned_tasks is
initialized to contain all unassigned DRS tasks fromall_tasks. Whenever a DRS task from
all_tasks is unassigned, itsencl_dts field is followed to its enclosing DRS task class and it is
added tounassigned_tasks. But when it is assigned, it is not deleted fromunassigned_tasks.
So at any moment,unassigned_tasks must contain all the unassigned tasks fromall_tasks,
but it may contain some assigned tasks as well.

Each DRS task class is stored in thetask_classes field of one day object: the first day on
which its tasks are busy. If that day is one of the selected days for solving, as part of opening it,
each of its task classes is visited and potentially opened by a call toKheDrsTaskClassOpen:
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void KheDrsTaskClassOpen(KHE_DRS_TASK_CLASS dtc, KHE_DRS_DAY_RANGE ddr,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_TASK dt; int i;
if( KheDrsDayRangeSubset(dtc->day_range, ddr) &&

!KheResourceSetDisjointGroup(drs->selected_resource_set,
KheTaskClassDomain(dtc->orig_task_class)) )

{
/* dtc can open; organize and open unassigned_tasks; none used */
KheDrsTaskClassOrganizeUnassignedTasks(dtc);
HaArrayForEach(dtc->unassigned_tasks, dt, i)
KheDrsTaskOpen(dt, drs);

dtc->extend_used = 0;
}
else
{
/* dtc can’t open; set dtc->extend_used to make that clear */
dtc->extend_used = INT_MAX;

}
}

This function is slightly mis-named: it only opensdtc if its tasks lie entirely within open day
rangeddr and their shared domain is not disjoint from the set of open resources.

Opening a task class begins by sortingunassigned_tasks so that the genuinely unassigned
tasks come first, in their order inall_tasks (theindex_in_encl_dtc field helps with this), and
deleting any assigned tasks from the end.KheDrsTaskClassOrganizeUnassignedTasks does
these two steps. After that, the unassigned tasks are opened. This way, the issues identified above
are handled correctly. This is done after resources are opened, by which time all tasks from the
class that were assigned a selected resource are unassigned, and so lie inunassigned_tasks,
justifying the statement made earlier that only unassigned tasks are ever opened.

We finish our treatment of task classes by giving two functions that are called when
searching.KheDrsTaskClassAcceptResourceBegin returnstrue if dtc contains an unused
task thatdr could be assigned to, returning it indt if so, and incrementingdtc->extend_used,
which records the number of unassigned tasks that have been assigned to open resources:
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bool KheDrsTaskClassAcceptResourceBegin(KHE_DRS_TASK_CLASS dtc,
KHE_DRS_RESOURCE dr, KHE_DRS_TASK *dt)

{
if( dtc->extend_used < HaArrayCount(dtc->unassigned_tasks) &&

KheResourceGroupContains(KheTaskClassDomain(dtc->orig_task_class),
dr->resource) )

{

*dt = HaArray(dtc->unassigned_tasks, dtc->extend_used);
dtc->extend_used++;
return true;

}
else

return false;
}

If it returnstrue, the assignment will take place, but this is done separately. Later, when the
assignment is removed, a call is made to

void KheDrsTaskClassAcceptResourceEnd(KHE_DRS_TASK_CLASS dtc)
{
dtc->extend_used--;

}

to undoKheDrsTaskClassAcceptResourceBegin by decrementingdtc->extend_used.

C.8. Dominance testing

As Section C.1explained, a basic part of the algorithm isdominance testing: finding cases where
one solution dominates another, allowing the dominated solution to be dropped.

We gave an example of dominance testing in Section C.1; here is another. Consider these
two solutions with a single open resource. Suppose that the only constraint isC, a maximum
limit of 3 on consecutives1 shifts:

s1 s1 s1 s0 s0 s1 s1 s1 s1 s1 s0 s1 s1 s0 s1 s1

The signature is the number of consecutives1 days adjacent to the end of the solution (3 in the
first solution, 2 in the second). Earlier consecutive days have ended and added their costs to the
total; they have no presence in the signature. Clearly, the second solution dominates the first:
as the solutions are extended through later days, each extension of the second will cost no more
than the corresponding extension of the first. It will cost less when the next assignment iss1.

When there are many constraints (as there always is), each constraint usually contributes
one element to the signatures. SolutionS1 dominatessolutionS2 if the cost ofS1is no more than
the cost ofS2, and at each position along the signatures,S1’s signature dominatesS2’s signature.

There is in fact a whole landscape of dominance tests, varying in the cases of dominance
they find, their implementation effort, and their running time. Even the definition of dominance
just given is open to adjustment, as we will see. Not finding all cases of dominance does not
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invalidate the dynamic programming algorithm, although experience shows that the more
cases found, the better, even if the cost in running time is high, because keeping even a few less
solutions on one day can lead to keeping many fewer solutions on later days.

Following the implementation, we present dominance testing in three stages. First, in
this section, we explain it in general, focusing onstrong dominance, the test at the centre of
the landscape. Then, in Section C.10 we present functionKheDrsSolnDominates, which tests
whether one solution dominates another. Finally, in Section C.12, we consider how sets of
solutions can be organized so that the operation of inserting a new solution, including finding
and removing dominated solutions, can be performed efficiently.

Given solutionsS1 andS2 with costsc(S1) andc(S2), we say thatS1 strongly dominates S2
whenc(S1) ≤ c(S1), and for each constraintC,C’s signature inS1strongly dominates its signature
in S2. In the example, the test for strong dominance atC is ‘≤’, but that is not always the case.
Careful analysis is needed, as follows.

Consider a constraintC with a non-negative integer maximum limitU (possibly∞), a
non-negative integer minimum limitL (possibly 0), and a Boolean allow zero flagZ. We require
L ≤ U, and if Z is true we requireL ≥ 2. The C constantINT_MAX is used to represent∞.

We assume here that the valuev stored in signatures on behalf ofC is C’s determinant, the
non-negative integer which is compared with the limits to produce a deviation and then a cost.
Some constraints do not have explicit limits and determinant, but it is always easy to reformulate
those constraints to use them, which we do (Section C.15.6).

Sometimes what is stored is a value for the determinant which is smaller than the true value
but guaranteed to produce the same costs. Our formulas can safely remain ignorant of this: the
value stored is a determinant, and it produces the correct costs, and that is all we need.

Suppose the signature of solutionS1contains valuev1 for C, and the signature of solutionS2
contains valuev2 for C. We want to know whetherv1dominatesv2,writtendom(v1,v2). Abstractly,
v1dominatesv2 when these values ensure that, in each extension ofS1, the cost ofC is not greater
than it is in the corresponding extension ofS2. We need to make this concrete.

Maximum limits affect dominance independently of minimum limits. Letdom_max(v1,v2)
be the dominance condition for the maximum limit, and letdom_min(v1,v2) be the dominance
condition for the minimum limit. Dominance requires both:

dom(v1,v2) = dom_max(v1,v2) and dom_min(v1,v2)

Clearly,dom_max(v1,v2) is true whenv1 ≤ v2, because asS1 andS2 are extended, corresponding
solutions continue to havev1 ≤ v2 for C, and the cost associated with a maximum limit is always
a monotone non-decreasing function of the determinant. Butdom_max(v1,v2) is also true when
v1 is so small thatC cannot ever violate the maximum limit, either now or on subsequent days,
because then, in each extension ofS1, the cost ofC is 0, which cannot be greater than the cost of
C in S2. We write this condition asvery_small(v), and we get

dom_max(v1,v2) = very_small(v1) or v1 ≤ v2

Includingvery_small(v1) may seem unimportant, but, as remarked above, the algorithm is such
that even a small increase in the chance of a dominance test returning true can have a large
cumulative effect on the number of solutions that need to be kept.
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We require the formula forvery_small(v) to be justv ≤ a for somea. The choice of
a varies from one constraint type to another, so we’ll postpone that for now; but here is an
example. Suppose the instance covers four weekends andC imposes a maximum limit of two
busy weekends for some resourcer. Suppose that the current solve has unassigned the first two
weekends, that we have just finished assigning the first weekend, and thatr is free on the first
weekend, busy on the third weekend, and free on the fourth weekend. Then the determinantv1
is 1 so far and there is only one unassigned weekend remaining, soC cannot be violated now or
on any future day, and sovery_small(v1) is true.

However we choosea, the conditiona ≤ U must hold. This is because ifU = ∞, a ≤ U is
the only possibility, while ifU < ∞, we can havea > U, but if we do, then whenv = a we have
v > U andv has violated the maximum limit, contrary to our purpose in definingvery_small(v).

Addingvery_smallallows us to avoid treating the absence of a maximum limit as a special
case: we seta to ∞, makingvery_small(v1) anddom_max(v1,v2) true as required. Unlikev1 and
v2, a can be negative, meaning that no value ofv1 is small enough to guarantee dominance.

We turn now to minimum limits. Assuming for now thatZ is false,v1 dominatesv2 when
v1 ≥ v2, because asS1 andS2 are extended, corresponding solutions continue to havev1 ≥ v2 for C,
and the cost associated with a minimum limit is always a monotone non-increasing function of
the determinant. Butdom_min(v1,v2) is also true whenv1 is so large thatC cannot ever violate
the minimum limit, either now or on subsequent days, because then, in each extension ofS1,
the cost ofC is 0, which cannot be greater than the cost ofC in S2. We write this condition as
very_large(v), and we get

dom_min(v1,v2) = very_large(v1) or v1 ≥ v2

We require the formula forvery_large(v) to be justv ≥ b for someb. Once again, we need to
look into further details before we chooseb. However, whatever choice we ultimately make, the
conditionb ≥ L must hold. This is because if we choose someb < L, then whenv = b we have
v < L andv has violated the minimum limit, contrary to our purpose in definingvery_large(v).

Addingvery_largeallows us to avoid treating the absence of a minimum limit as a special
case. We setb to 0, makingvery_large(v1) and sodom_min(v1,v2) true as required. Unlikev1and
v2, b could be negative, although here that is the same as settingb to 0, sincev is non-negative.

The next step is to incorporateZ, the allow zero flag, into our analysis.Z has no effect on
maximum limits, but it does modify the costs produced by minimum limits: value 0 can violate
a minimum limit and produce a cost, but that cost disappears if the allow zero flag is set.

Assume that the allow zero flag is set. Ifvery_large(v1) is true, the cost ofC is still 0 in all
extensions ofS1, sov1dominatesv2. The remaining cases can therefore ignorevery_large(v1). To
be quite certain about them, we use brute force.

Case 1: v1 = 0andv2 = 0. When the two values are equal inS1 andS2, they remain equal in
all pairs of corresponding extensions. Sov1 dominatesv2 in this case (andv2 dominatesv1).

Case 2: v1 = 0 andv2 > 0. At this moment,C has no cost inS1 but it may have a cost inS2.
Consider corresponding extensionsT1of S1andT2 of S2, in both of which the value has increased
by 1. There may be a cost inT1, and no cost inT2. Sov1 does not dominatev2 in this case.

Case 3: v1 > 0 andv2 = 0. This is tricky, because here we havev1 ≥ v2, which is enough for
dominance when there is no allow zero flag. But suppose several days go by, these values do not
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change, and we reach the last day of the constraint. ThenC may have a cost in the first extension
and it definitely has cost 0 in the second. Sov1 does not dominatev2 in this case.

Case 4: v1 > 0 andv2 > 0. Z has no effect here, either now or on subsequent days, because
neither value is ever 0. So the analysis and formula for whenZ is false applies here.

We can also say of Case 1 that the formula (although not the analysis) for whenZ is false
applies. So a concise expression of the test here is

very_large(v1)  or  (v1 ∼ v2 and v1 ≥ v2)

definingv1 ∼ v2 to beZ ⇒ (( v1 = 0) = (v2 = 0)). In words,v1 ∼ v2 is true either whenZ is false, or
whenZ is true andv1 andv2 are either both 0 or both non-zero (Cases 1 and 4). Overall,

dom(v1,v2) = [v1 ≤ a or v1 ≤ v2]  and  [v1 ≥ b or (v1 ∼ v2 and v1 ≥ v2)]
where  v1 ∼ v2  stands for  Z ⇒ (( v1 = 0) = (v2 = 0))

We box this key formula to make it easy to refer back to. Herea,b, andZ are constants; they may
be different on different days, but on any one day they are the same for all tests.

We’ll be using four simple equivalences:

This is equivalent to this

v ≤ e1 and v ≤ e2 v ≤ min(e1,e2)
v ≤ e1 or v ≤ e2 v ≤ max(e1,e2)
v ≥ e1 and v ≥ e2 v ≥ max(e1,e2)
v ≥ e1 or v ≥ e2 v ≥ min(e1,e2)

The first part of thedom(v1,v2) formula,v1 ≤ a or v1 ≤ v2, is equivalent tov1 ≤ max(a,v2). When
Z is false, the second part,v1 ≥ b or v1 ≥ v2, is equivalent tov1 ≥ min(b,v2).

Before moving on there is a minor question whose answer is needed elsewhere: when is
dom(v1,v2) the same asv1 = v2 for all v1andv2? The obvious answer is whenZ is false,a < 0, and
b = ∞, for then

dom(v1,v2) = [v1 ≤ a or v1 ≤ v2]  and  [v1 ≥ b or (v1 ∼ v2 and v1 ≥ v2)]

= [false or v1 ≤ v2]  and  [false or (true and v1 ≥ v2)]

= v1 = v2

But, perhaps surprisingly, the caseZ is true,a < 0, andb = ∞ also works:

dom(v1,v2) = [v1 ≤ a or v1 ≤ v2]  and  [v1 ≥ b or (v1 ∼ v2 and v1 ≥ v2)]

= [false or v1 ≤ v2]  and  [false or ((v1 = 0) = (v2 = 0) and v1 ≥ v2)]

= v1 ≤ v2 and (v1 = 0) = (v2 = 0) and v1 ≥ v2
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= v1 = v2

sincev1 = v2 implies (v1 = 0) = (v2 = 0). Or to put it another way, if(v1 = 0) = (v2 = 0) is false,
causingdom(v1,v2) to be false, we must havev1 ≠ v2 anyway. Soa < 0andb = ∞ are sufficient.

Reflexivity and transitivity.We can prove thatdomis reflexive very simply, by evaluating
dom(v,v). Proving transitivity is tedious,but important for assuringourselves that our dominance
test is well behaved. We have to show thatdom(v1,v2) anddom(v2,v3) imply dom(v1,v3), if a, b,
andZ are the same in all three formulas.

If relationsR1 andR2 are transitive, thenR1 and R2 is transitive. This easy result allows us
to focus on a single signature value as we have been doing, knowing that when we build the full
signature plus a cost, transitivity will be preserved. We also use it below.

First we show that∼ is transitive: thatv1 ∼ v2 andv2 ∼ v3 together implyv1 ∼ v3. If Z is false,
all three conditions are true, so we can assume thatZ is true, reducingx ∼ y to (x = 0) = (y = 0).
Supposev2 = 0. Thenv1 ∼ v2 impliesv1 = 0, andv2 ∼ v3 impliesv3 = 0, sov1 ∼ v3 is true. Now
supposev2 ≠ 0. Then the same argument shows thatv1 ≠ 0 andv3 ≠ 0, so againv1 ∼ v3 is true.

Next we show thatdom_max(v1,v2) anddom_max(v2,v3) imply dom_max(v1,v3). This is
equivalent to showing thatv1 ≤ max(a,v2) and v2 ≤ max(a,v3) imply v1 ≤ max(a,v3), which is
easy: a valid substitution gives usv1 ≤ max(a,max(a,v3)) = max(a,v3).

Finally, we showdom_min(v1,v2) anddom_min(v2,v3) imply dom_min(v1,v3). We are given

v1 ≥ b or (v1 ∼ v2 and v1 ≥ v2)

and

v2 ≥ b or (v2 ∼ v3 and v2 ≥ v3)

and we need to prove

v1 ≥ b or (v1 ∼ v3 and v1 ≥ v3)

Whenv1 ≥ b the result is evidently true, so we can assumev1 < b. The first formula then proves
thatv1 ≥ v2, which gives usv2 < b. So we have eliminatedb, and our result will follow if, given

v1 ∼ v2 and v1 ≥ v2

and

v2 ∼ v3 and v2 ≥ v3

we can prove

v1 ∼ v3 and v1 ≥ v3

But this is trivial, because∼ and≥ are transitive, so their conjunction is transitive. Thendom,
being the conjunction ofdom_maxanddom_min, is also transitive.

Dominated and dominating sets.The trie implementation of dominance testing makes use
of two families of sets:
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dominated(x) = {v | v ≥ 0 and dom(x,v)}

which is the set of values that are dominated byx, and

dominating(x) = {v | v ≥ 0 and dom(v,x)}

which is the set of values that dominatex. There are no negative signature values, so we require
x ≥ 0 andv ≥ 0. We need concrete formulas for these sets.

The dominating set is easier to work out, so we’ll start with that:

dominating(x) = {v | v ≥ 0 and dom(v,x)}

= {v | v ≥ 0 and [v ≤ a or v ≤ x]  and  [v ≥ b or (v ∼ x and v ≥ x)]}

The first two parts come to0 ≤ v ≤ max(a,x). WhenZ is false, the third part isv ≥ min(b,x), so
the set we need is just an interval:

dominating(x) = {v | max(0,min(b,x)) ≤ v ≤ max(a,x)}     if Z = false

WhenZ is true, we need to consider the casesx = 0 andx ≥ 1separately. IfZ is true andx = 0,
the conditionv ∼ x becomesv = 0, giving

dominating(0) = {v | 0 ≤ v ≤ max(a,0)  and  [v ≥ b or (v = 0 and v ≥ 0)]}

= {v | 0 ≤ v ≤ max(a,0)  and  [v ≥ b or v = 0]}

= {v | [0 ≤ v ≤ max(a,0) and v ≥ b] or [0 ≤ v ≤ max(a,0) and v = 0]}

= {v | max(0,b) ≤ v ≤ max(a,0) or v = 0}    if Z = true and x = 0

If Z is true andx ≥ 1, v ∼ x becomesv ≥ 1, giving

dominating(x) = {v | 0 ≤ v ≤ max(a,x)  and  [v ≥ b or (v ≥ 1 and v ≥ x)]}

= {v | 0 ≤ v ≤ max(a,x)  and  [v ≥ b or v ≥ x]}

= {v | 0 ≤ v ≤ max(a,x)  and  v ≥ min(b,x)}

= {v | max(0,min(b,x)) ≤ v ≤ max(a,x)}     if Z = true and x ≥ 1

Putting these cases together, we get

dominating(x) =




{v | max(0,min(b,x)) ≤ v ≤ max(a,x)}     if Z = false

{v | max(0,b) ≤ v ≤ max(a,0) or v = 0}     if Z = true and x = 0
{v | max(0,min(b,x)) ≤ v ≤ max(a,x)}     if Z = true and x ≥ 1

The first and third cases have yielded the same formula.

We move on now to the set of values that are dominated byx. For brevity we will use the
notationχ(c,e1,e2) for if c then e1 else e2.
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dominated(x) = {v | v ≥ 0  and  dom(x,v)}

= {v | v ≥ 0  and  [x ≤ a or x ≤ v]  and  [x ≥ b or (x ∼ v and x ≥ v)]}

WhenZ is false, once again this is an interval:

dominated(x) = {v | v ≥ 0  and  [x ≤ a or x ≤ v]  and  [x ≥ b or x ≥ v)]}

= {v | χ(x ≤ a,0,x) ≤ v ≤ χ(x ≥ b,∞,x)}     if Z = false

This is not hard to see. The only lower limits onv are0 ≤ v andx ≤ v, with the latter applying
(and subsuming0 ≤ v) exactly whenx > a, hence the lower limit onv. Similarly, the only upper
limit on v is x ≥ v, which applies exactly whenx < b.

WhenZ is true, again we need to consider the casesx = 0andx ≥ 1separately. IfZ is true
andx = 0, the conditionx ∼ v becomesv = 0, giving

dominated(0) = {v | v ≥ 0  and  [0 ≤ a or 0 ≤ v]  and  [0 ≥ b or (v = 0 and 0 ≥ v)]}

= {v | v ≥ 0  and  [0 ≥ b or v = 0]}

= {v | 0 ≤ v ≤ χ(0 ≥ b,∞,0)}    if Z = true and x = 0

with the last line following by the same kind of argument used earlier. IfZ is true andx ≥ 1, the
conditionx ∼ v becomesv ≥ 1, giving

dominated(x) = {v | v ≥ 0  and  [x ≤ a or x ≤ v]  and  [x ≥ b or (v ≥ 1 and x ≥ v)]}

First, substitutingv = 0 into the condition tells us that 0 is in the set when

0 ≥ 0  and  [x ≤ a or x ≤ 0]  and  [x ≥ b or (0 ≥ 1 and x ≥ 0)]

which simplifies tox ≤ max(a,0)  and  x ≥ b. Assuming now thatv ≥ 1, we get

dominated(x) = {v | v ≥ 1  and  [x ≤ a or x ≤ v]  and  [x ≥ b or (v ≥ 1 and x ≥ v)]}

= {v | v ≥ 1  and  [x ≤ a or x ≤ v]  and  [x ≥ b or x ≥ v)]}

= {v | χ(x ≤ a,1,max(1,x)) ≤ v ≤ χ(x ≥ b,∞,x)}

following the argument for whenZ is false, modified byv ≥ 1. Putting all this together gives

dominated(x) =





{v | χ(x ≤ a,0,x) ≤ v ≤ χ(x ≥ b,∞,x)}     if Z = false

{v | 0 ≤ v ≤ χ(0 ≥ b,∞,0)}     if Z = true and x = 0
χ(x ≤ max(a,0) and x ≥ b, {0}, {}) ∪

{v | χ(x ≤ a,1,max(1,x)) ≤ v ≤ χ(x ≥ b,∞,x)}
    if Z = true and x ≥ 1

The formula for the first case also handles the second, as shown by substitutingx = 0 into it. The
formulas for bothdominating(x) anddominated(x) are rather messy, but they are definite and
easy to implement. Both yield an interval, possibly empty, and possibly with0 added.
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The dominance testing described here carries out one dominance test for each expression
for which the current day is at least the first and at most the second-last open day. Each test is
independent of the others, causing some minor cases of dominance to be missed. For example,
suppose there is a maximum limit on the number of busy weekends, and the current day is a
Saturday. If, in solutionS1, there are strictly fewer completed busy weekends than in solutionS2,
then as far as this constraint is concerned,S1 dominatesS2 irrespective of what is happening on
the current day. Our dominance testing fails to find this case of dominance.

C.9. Tradeoff dominance

This section explainstradeoff dominance, an enhancement of strong dominance which increases
the number of cases where dominance is detected.

Suppose that solutionS1 fails to dominate solutionS2, but only at one point along the
signature, and only by 1. Suppose that the corresponding constraint has weightw. Then the
effect of this failure is that at some point in the future, that constraint could have a cost in some
extension ofS1 which is at mostw greater than its cost in the corresponding extension ofS2
(assuming the cost function is not quadratic), and this is why dominance fails.

But if c(S1) + w ≤ c(S2), this extrawcannot makeS1cost more thanS2 in the future. In other
words,S1 still dominatesS2 even though dominance appears to fail at this one point.

This idea easily extends to differences greater than 1, and to multiple points along the
signature. It is simply a matter, as we proceed along the signature, of adding toc(S1) the cost of
overlooking each violation of dominance. Then, ifc(S1) exceedsc(S2) at any point, dominance
has failed even with this tradeoff.

We wish to build tradeoff dominance on top of strong dominance. The strong dominance
condition at one point along the signature has some complications, which we will need to take
into consideration. For convenience we repeat it here:

dom(v1,v2) = [v1 ≤ a or v1 ≤ v2]  and  [v1 ≥ b or (v1 ∼ v2 and v1 ≥ v2)]
where  v1 ∼ v2  stands for  Z ⇒ (( v1 = 0) = (v2 = 0))

We want tradeoff dominance to do everything that strong dominance does, but we want to avoid
complex analyses. Here is our function for tradeoff dominance at one point on the signature:
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bool KheDrsDomTestDominatesWithTradeoff(KHE_DRS_DOM_TEST dt,
int val1, KHE_COST *cost1, int val2, KHE_COST cost2)

{
if( KheDrsDomMax(dt, val1, val2) )
{
if( KheDrsDomMin(dt, val1, val2) )
return true;

else if( dt.allow_zero )
return false;

else
return KheDrsTryTradeoff(dt, val2 - val1, cost1, cost2);

}
else
{
if( KheDrsDomMin(dt, val1, val2) )
return KheDrsTryTradeoff(dt, val1 - val2, cost1, cost2);

else
return false;

}
}

It returnstrue if val1 dominatesval2, increasing*cost1 if a cost tradeoff is needed to
justify the result. HereKheDrsDomMax implementsdom_max(v1,v2), KheDrsDomMin implements
dom_min(v1,v2), andKheDrsTryTradeoff is

bool KheDrsTryTradeoff(KHE_DRS_DOM_TEST dt, int delta_val,
KHE_COST *cost1, KHE_COST cost2)

{
KHE_COST cost;
if( dt.tradeoff_allowed )
{
cost = *cost1 + dt.tradeoff_cost * delta_val;
return cost <= cost2 ? (*cost1 = cost, true) : false;

}
else
return false;

}

If val1 andval2 pass both tests, we have strong dominance and no tradeoff is needed. If they
pass the max test but fail the min test, thenval2 - val1 times the weight of their constraint
must be added to*cost1 to justify dominance. If they pass the min test but fail the max test,
thenval1 - val2 times the weight of their constraint must be added to*cost1.

There are two cases where we give up: whenval1 andval2 fail the min test and the allow
zero flag is set; and when they fail both tests. We won’t analyse the first case, but we will show
that they fail both tests exactly when all ofv1 > a, v1 > 0, v1 < b, Z is true, andv2 = 0are true.

First, suppose all these conditions are true. Then it is trivial to evaluatedom_max(v1,v2) and
dom_min(v1,v2), and confirm that both evaluate to false.
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Second, and conversely, supposedom_max(v1,v2) anddom_min(v1,v2) are both false. Then
sincedom_max(v1,v2) is false, we havev1 > a andv1 > v2. And sincedom_min(v1,v2) is false, we
havev1 < b andv1 ∼/ v2 or v1 < v2. But v1 > v2, sov1 ∼/ v2, that is,Z is true, one ofv1 andv2 is zero,
and the other is non-zero. From this andv1 > v2 we getv1 > 0andv2 = 0.

To summarize, tradeoff dominance does everything that strong dominance does, plus it
trades off cost against failures of dominance for all constraints whose allow zero flag is false.

Tradeoff dominance interacts awkwardly with the trie data structure. The point of the trie
is to avoid searching some subtrees, but tradeoff dominance could find a dominance relation in
any subtree. So we proceed heuristically, searching only subtrees in which dominance fails by
at most 1. Here are the formulas from Section C.8 for the dominating and dominated sets:

dominating(x) =




{v | max(0,min(b,x)) ≤ v ≤ max(a,x)}     if Z = false

{v | max(0,b) ≤ v ≤ max(a,0) or v = 0}     if Z = true and x = 0
{v | max(0,min(b,x)) ≤ v ≤ max(a,x)}     if Z = true and x ≥ 1

and

dominated(x) =





{v | χ(x ≤ a,0,x) ≤ v ≤ χ(x ≥ b,∞,x)}     if Z = false

{v | 0 ≤ v ≤ χ(0 ≥ b,∞,0)}     if Z = true and x = 0
χ(x ≤ max(a,0) and x ≥ b, {0}, {}) ∪

{v | χ(x ≤ a,1,max(1,x)) ≤ v ≤ χ(x ≥ b,∞,x)}
    if Z = true and x ≥ 1

In both formulas, the result usually includes an interval withx at one end. So we examine
the result of these functions, and if they include an interval withx at one end, and if the value
adjacent tox outside the interval is a valid value, then we choose that value for trying tradeoff
dominance on; otherwise we omit tradeoff dominance. Ifx is at both ends of the interval (when
a constraint has both a maximum and a minimum limit, basically) we try both adjacent values.

C.10. Solutions and signatures

The dynamic programming algorithm is an optimized tree search. The nodes of the tree are
objects of typeKHE_DRS_SOLN:

KHE_DRS_SOLN
no

no day

KHE_DRS_SOLN
day

day 0 KHE_DRS_SOLN
day

day 1

KHE_DRS_SOLN
day

day 1

KHE_DRS_SOLN
day

day 0 KHE_DRS_SOLN
day

day 1

KHE_DRS_SOLN
day

day 1
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One solution object represents a solution consisting of all the time assignments from the initial
solution, all the assignments of closed tasks from the initial solution, and, in solutions for daydi,
some assignments of open tasks to open resources on days up to and includingdi, defined by the
path from the root to the solution. The solution knows that no further assignments will be made
to tasks on closed days or on open days up to and includingdi. This knowledge can have positive
effects, for example on constraints which limit the number of consecutive free days.

The day indexes shown above are open day indexes, not frame indexes. The search tree has
one level of solutions for each open day, plus the extra level holding the root solution. There may
be closed days, obviously, but they are not visible in the search tree.

We will need objects containing just a solution’s cost and signature, so we set up a modest
inheritance structure. The fields common to both types are defined by a macro:

#define INHERIT_KHE_DRS_SIGNATURE \
KHE_COST cost; \
HA_ARRAY_INT sig;

Objects containing just these two fields are defined by

typedef struct khe_drs_signature_rec *KHE_DRS_SIGNATURE;

struct khe_drs_signature_rec {
INHERIT_KHE_DRS_SIGNATURE

};

Full-blown solutions are defined by

typedef struct khe_drs_soln_rec *KHE_DRS_SOLN;

struct khe_drs_soln_rec {
INHERIT_KHE_DRS_SIGNATURE
KHE_DRS_SOLN prev_soln;
KHE_DRS_DAY day;
ARRAY_KHE_DRS_TASK_ON_DAY prev_tasks;

};

Thecost field is the cost of the solution so far. Thesig field is its signature, an array of integers
containing the state of each constraint, as in Section C.1. (The author is guilty of ambivalence
here: ‘signature’can mean just the array of integers, but it can also include a cost.)

The prev_soln field points to this solution’s predecessor (its parent in the search tree).
Theday field is the day of this solution (the day up to and including which all assignments are
complete, and beyond which none have been made). The root solution is identified by having
valueNULL for both these fields. No valid value of typeKHE_DRS_SOLN has valueNULL.

Theprev_tasks field really belongs to the incoming edge, but we are saving memory by
not having edge objects. In the root solution it is empty, since there is no incoming edge. In
other solutions, its length equals the number of open resources, and theith value is the task on
day object assigned theith open resource on this solution’s day, orNULL if that resource is free.

When comparing two solutions for strong dominance, we need their signatures, which are
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stored in the solutions. But we also need to know which test to apply at each position. Since that
information is common to all the solutions for a given daydk, it is stored in the day, in field

ARRAY_KHE_DRS_DOM_TEST dom_tests;

It has one element for each signature position. How it gets initialized we will see later. Using it,
the function for deciding whethersoln1 dominatessoln2 using strong dominance is

bool KheDrsSolnDominates(KHE_DRS_SOLN soln1, KHE_DRS_SOLN soln2,
int start_depth)

{
KHE_DRS_DOM_TEST dt; int i, val1, val2, sig_len; KHE_DRS_DAY day;
if( soln2->cost < soln1->cost )
return false;

day = soln1->day;
sig_len = HaArrayCount(soln1->sig);
for( i = start_depth; i < sig_len; i++ )
{
dt = HaArray(day->dom_tests, i);
val1 = HaArray(soln1->sig, i);
val2 = HaArray(soln2->sig, i);
if( !KheDrsDomTestDominates(dt, val1, val2) )
return false;

}
return true;

}

This says thatsoln1 strongly dominatessoln2 if its cost is no larger and it dominates at every
position of the signature. Parameterstart_depth receives a non-zero value only when it is
known thatsoln1 dominatessoln2 at positions0 .. start_depth - 1.

When constructing a new solution, the obvious thing to do is to build its signature from
scratch, based on the previous solution and the assignments for the new solution. The author
did this originally. However, the signatures of solutions derived from the same previous solution
have some elements in common, as we will see, and this leads to a significant optimization.

XESTT constraints can be divided into three kinds: event constraints, concerned with the
assignment of times to meets; event resource constraints, concerned with the assignment of
resources to tasks; and resource constraints, concerned with the timetables of resources. We can
ignore event constraints here because time assignments are fixed.

When we move to a new day by assigning one task or nothing to each open resource, the
effect on event resource constraints can be quite complex, depending on several or even all of
these assignments. But each resource constraint is affected only by the previous solution and
by the task (or nothing) assigned to its resource: it is independent of everything else that is
happening on that day. This opens the way to our optimization.

As far as resource constraints are concerned, all tasks from a given task class have the same
effect. As we saw earlier, if there arer resources anda shift types (now called task classes),
there are(a + r1) distinct ways to assign task classes to the resources, assuming all task classes
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are open to all resources. An assignment of a particular resource to a particular task class occurs
in (a + r −11) of these assignments. If we don’t take any special action we will be calculating the
effect of each assignment(a + r −11) times, for each task class and resource. The optimization is
to do this calculation just once for each previous solution, resource, and task class.

The unoptimized version asks each constraint to evaluate itself and add its contribution
to the solution’s cost and signature after each new solution is created. We still do this for event
resource constraints, but for resource constraints we do something else. At the time we begin to
extend a given previous solution to all its child solutions (at the start ofKheDrsSolnExtend, as
we’ll see), we calculate for the previous solution, for each resourcer and for each task class, the
effect of assigning a task from the task class tor on r ’s resource constraints, and store the result
in aKHE_DRS_SIGNATURE object rather than aKHE_DRS_SOLN object. These signature objects are
stored in this field of resource objectr:

ARRAY_KHE_DRS_SIGNATURE extend_signatures;

There is one element ofextend_signatures for each task class, plus one extra element holding
the signature that applies when the resource is given a free day.

Given this, when building the signature of a new solution, there is no need to ask resource
constraints to evaluate themselves. Instead, for each assignment of a resource to a task from a
given task class (or nothing), we retrieve the signature for that assignment from the resource
object, add its cost to the solution cost, and append its signature to the solution signature.

Alternatively, the code that builds these signatures may discover that the resource is fixed to
a particular assignment on this day, because it was initially assigned a task on that day that could
not be unassigned, or because the previous solution includes an assignment to a multi-day task
that is continuing on this day. In that case, the code sets fields

KHE_DRS_TASK_ON_DAY extend_fixed_dtd;
KHE_DRS_SIGNATURE extend_fixed_signature;

to the fixed assignment and its signature, and uses them instead.

Here is the code that initializes these fields for a given resourcedr and a given previous
solutionprev_soln:
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void KheDrsResourceSetSignatures(KHE_DRS_RESOURCE dr, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i; KHE_DRS_SIGNATURE sig; KHE_DRS_TASK dt; KHE_DRS_TASK_ON_DAY dtd;
KHE_DRS_TASK_CLASS dtc; KHE_DRS_RESOURCE_ON_DAY drd; KHE_COST moved_cost;

/* delete and free any old signatures */
HaArrayForEach(dr->extend_signatures, sig, i)

if( sig != NULL ) HaArrayAddLast(drs->free_signatures, sig);
HaArrayClear(dr->extend_signatures);
if( dr->extend_fixed_signature != NULL )

HaArrayAddLast(drs->free_signatures, dr->extend_fixed_signature);

drd = KheDrsResourceOnDay(dr, next_day);
if( KheDrsResourceOnDayIsFixed(drd, prev_soln, &dtd) )
{

/* fixed assignment; set extend_fixed_dtd and extend_fixed_signature */
dr->extend_fixed_dtd = dtd;
dr->extend_fixed_signature = KheDrsSignatureBuild(drd, dtd, prev_soln, drs);

/* move any unavoidable cost into drs->extend_cost (see below) */
}
else if( RERUN && drs->rerun != NULL )

... see below ...
else
{

/* ordinary assignment; one sig for each task class, one for free day */
dr->extend_fixed_dtd = NULL;
dr->extend_fixed_signature = NULL;
HaArrayForEach(next_day->task_classes, dtc, i)
{
if( KheDrsTaskClassAcceptResourceBegin(dtc, dr, &dt) )
{
if( !KheDrsTaskBusyOnDay(dt, next_day, &dtd) )
HnAbort("KheDrsResourceSetSignatures internal error");

sig = KheDrsSignatureBuild(drd, dtd, prev_soln, drs);
KheDrsTaskClassAcceptResourceEnd(dtc);

}
else sig = NULL;
HaArrayAddLast(dr->extend_signatures, sig);

}
sig = KheDrsSignatureBuild(drd, NULL, prev_soln, drs);
HaArrayAddLast(dr->extend_signatures, sig);

/* move any unavoidable cost into drs->extend_cost (see below) */
}

}
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It first frees any signatures from previous calls. Then it checks whetherdr has a fixed assignment
onnext_day. If it does, it setsdr->extend_fixed_dtd anddr->extend_fixed_signature to
reflect that. If it doesn’t, it clearsdr->extend_fixed_dtd anddr->extend_fixed_signature,
and adds one signature todr->extend_signatures for each task class onnext_day, plus one
signature for leavingdr free onnext_day.

We won’t showKheDrsSignatureBuild here. It incorporates elements of functions
KheDrsPushAsst, KheDrsMakeEvaluateAndAddSoln, andKheDrsPopAsst (which we will see
later) to assigndtd to drd, evaluate the resource constraints affected by that (including building
their signature), and unassigndtd from drd.

We’ve also omitted theRERUN case, which we’ll discuss separately. During a rerun there is
only one choice for each assignment, so the code there is similar to the fixed assignment case.

Finally, we take another opportunity for optimization that arises here. Every solution for
next_day has to include one of the signatures calculated here. So the cost of every solution has
to include at least the minimum of these signatures’ costs. The ‘see below’ code at the end of
the function calculates this minimum cost and moves it intodrs->extend_cost:

/* move any unavoidable cost into drs->extend_cost */
moved_cost = KheCost(INT_MAX, INT_MAX);
HaArrayForEach(dr->extend_signatures, sig, i)
if( sig != NULL && sig->cost < moved_cost )
moved_cost = sig->cost;

if( moved_cost < KheCost(INT_MAX, INT_MAX) )
{
drs->extend_cost += moved_cost;
HaArrayForEach(dr->extend_signatures, sig, i)
if( sig != NULL )
sig->cost -= moved_cost;

}

The code for this in fixed assignments and reruns is simpler because there is only one choice.

C.11. Searching

This section presents the operations on solutions concerned with searching. We’ll give them all
now, in top-down order, the reverse of the order they appear in the source file. The key operation,
the one that the others help to implement, is

void KheDrsSolnExtend(KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day,
KHE_DYNAMIC_RESOURCE_SOLVER drs);

Given solutionprev_soln, andnext_day, the first day followingprev_soln, this function finds
all ways to extendprev_soln into a solution fornext_day (that is, it makes all combinations
of assignments of open tasks to open resources onnext_day), and adds these new solutions, or
rather the undominated ones, tonext_day’s solution set.

An assignmentis one assignment of a task or nothing to an open resource. Anassignment-
set is a set of assignments, one for each open resource, and is what needs to be added to
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prev_soln to make a new solution.KheDrsSolnExtend could make one new solution for each
distinct assignment-set, but we can reduce this large number of alternatives, as follows.

Naturally,we use task classes,so that at each step in the enumeration of the assignment-sets,
we only need to try assigning a resource to one task from each class, the task whose assignment
causes the smallest increase in cost (or the largest decrease). This was all discussed in detail
earlier (Section C.7). But we can do more.

In addition to grouping the tasks into classes, the task classes module (specifically, function
KheTaskClassTask) reports the cost of assigning each task, and the cost of not assigning it.
The full cost of assignment or non-assignment depends on which resource is assigned and on
other task assignments, but these reported costs are costs that are always incurred, independent
of those considerations. They are thus only lower bounds on the true costs, but we can put lower
bounds to good use. For example, suppose that the assignment cost of some task, when added
to prev_soln->cost, equals or exceeds the costdrs->solve_init_cost that we are trying to
improve on. Then there is no point trying assignment-sets that include that assignment.

The test just given is implemented but will probably not eliminate many assignments. We
can do much better using non-assignment costs. Suppose thatprev_soln->cost plus the cost
of not assigning some task equals or exceedsdrs->solve_init_cost. Then that task is a
must-assign task, meaning that every assignment-set must include an assignment of that task. In
practice, every task with a hard assign resource constraint will be a must-assign task.

As we build assignment-sets, the following fields of the solver objectdrs are used:

ARRAY_KHE_DRS_TASK_ON_DAY extend_prev_tasks;
ARRAY_KHE_DRS_SIGNATURE extend_prev_signatures;
KHE_COST extend_cost;
int extend_must_assign_count;

Each call toKheDrsSolnExtend initializes and uses these fields. Fieldextend_prev_tasks
holds a prefix of theprev_tasks array holding the assignment-set that defines a new solution.
When it reaches the full length (one element for each open resource), a new solution containing
these assignments will be created. Theextend_prev_signatures field runs parallel to the
extend_prev_signatures field: for eachi it holds the signature, previously created by
functionKheDrsResourceSetSignatures given earlier, which describes the effect on resource
constraints of assigning theith element ofextend_prev_tasks to theith open resource. When
a new solution is created, these signatures will be concatenated to form all of the signature of the
solution except that part derived from event resource constraints.

Fieldextend_cost holds the cost of the new solution asbuilt up to thispoint. It is initialized
toprev_soln->cost, and as each assignment is chosen it is increased by the assignment cost of
the assigned task plus the cost of the signature associated with that assignment (representing its
effect on resource constraints) as held inextend_prev_signatures. This is a lower bound on
the cost of any solution containing the assignments held inextend_prev_tasks, and thus may
be compared withdrs->solve_init_cost, the cost we are trying to improve on. We can prune
the search if it equals or exceeds that cost.

If we add the assignment cost of a task, and then subsequently evaluate the event resource
constraints affected by that task and add their costs, we will be double-counting some costs.
However, this is easily avoided, because the constraints that contribute to assignment costs are
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exactly the prefer resources constraints with empty domains. So when we build expression trees
while constructing the solver, we skip over prefer resources constraints with empty domains.

Field extend_must_assign_count holds the number of must-assign tasks that are not
already present inextend_prev_tasks. If this ever drops below the number of open resources
whose assignment has not been chosen yet,we can prune,because there are not enough resources
left to cover the must-assign tasks that are left.

Here isKheDrsSolnExtend. It finishes by callingKheDrsSolnDoExtend, which generates
assignment-sets in all possible ways. But it has quite a lot to do first:

void KheDrsSolnExtend(KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_TASK_CLASS dtc; KHE_DRS_TASK dt; int i, j;
KHE_DRS_RESOURCE dr;

/* begin caching extensions of prev_soln */
KheDrsSolnSetBeginCacheSegment(next_day->soln_set, drs);

/* initialize drs->extend fields other than signatures */
HaArrayClear(drs->extend_prev_tasks); /* not strictly necessary */
HaArrayClear(drs->extend_prev_signatures);
drs->extend_cost = prev_soln->cost;
drs->extend_must_assign_count = 0;
HaArrayForEach(next_day->task_classes, dtc, i)
HaArrayForEach(dtc->unassigned_tasks, dt, j)
if( prev_soln->cost + dt->non_asst_cost >= drs->solve_init_cost )
{
/* dt must be assigned, otherwise cost will be too high */
dt->extend_must_assign = true;
drs->extend_must_assign_count++;

}
else
dt->extend_must_assign = false;

/* initialize signatures */
HaArrayForEach(drs->open_resources, dr, i)
KheDrsResourceSetSignatures(dr, prev_soln, next_day, drs);

/* carry out the main part of the extend */
KheDrsSolnDoExtend(prev_soln, next_day, drs);

/* end caching extensions of prev_soln */
KheDrsSolnSetEndCacheSegment(next_day->soln_set, drs);

}

The call toKheDrsSolnSetBeginCacheSegment will be explained when we come to solution
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sets, along with the matching call toKheDrsSolnSetEndCacheSegment at the end. Next comes
the code that initializes theextend fields of drs. This clearsdrs->extend_prev_tasks and
drs->extend_prev_signatures (although, in fact, the previous call toKheDrsSolnExtend
will have left them empty), setsdrs->extend_cost to prev_soln->cost, and finds the
must-assign tasks by visiting every unassigned taskdt and seeing whetherprev_soln->cost
plus dt->non_asst_cost is drs->solve_init_cost or more. If dt is a must-assign task,
it is marked, anddrs->extend_must_assign_count is incremented. Next come the calls to
KheDrsResourceSetSignatures that were explained previously, after which we are ready to
generate the assignment-sets, by callingKheDrsSolnDoExtend. Here it is:
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void KheDrsSolnDoExtend(KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_RESOURCE dr; int i; KHE_DRS_TASK_CLASS dtc; KHE_DRS_TASK dt;
KHE_DRS_SIGNATURE sig; KHE_DRS_RESOURCE_ON_DAY drd; KHE_DRS_TASK_ON_DAY dtd;

if( HaArrayCount(drs->extend_prev_tasks) >= HaArrayCount(drs->open_resources))
{

/* drs->extend_prev_tasks is ready to make into a solution and evaluate */
KheDrsMakeEvaluateAndAddSoln(prev_soln, next_day, drs);

}
else
{

i = HaArrayCount(drs->extend_prev_tasks);
dr = HaArray(drs->open_resources, i);
drd = KheDrsResourceOnDay(dr, next_day);
if( KheDrsResourceOnDayIsFixed(drd, prev_soln, &dtd) )
{
/* try dtd only */
KheDrsSolnTryAsst(prev_soln, next_day, dtd, drd,
dr->extend_fixed_signature, drs);

}
else if( RERUN && drs->rerun != NULL )
{
/* this is a rerun, take sole dtd (possibly NULL) from drs->rerun */
dtd = KheDrsPackedSolnTaskOnDay(drs->rerun, next_day, dr);
KheDrsSolnTryAsst(prev_soln, next_day, dtd, drd,
dr->extend_fixed_signature, drs);

}
else
{
/* try a task from any class that will accept dr */
HaArrayForEach(next_day->task_classes, dtc, i)
if( KheDrsTaskClassAcceptResourceBegin(dtc, dr, &dt) )
{
if( !KheDrsTaskBusyOnDay(dt, next_day, &dtd) )

HnAbort("KheDrsSolnDoExtend internal error 3");
sig = HaArray(dr->extend_signatures, i);
KheDrsSolnTryAsst(prev_soln, next_day, dtd, drd, sig, drs);
KheDrsTaskClassAcceptResourceEnd(dtc);

}

/* try a free day */
sig = HaArray(dr->extend_signatures, i);
KheDrsSolnTryAsst(prev_soln, next_day, NULL, drd, sig, drs);

}
}

}
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It first checks whetherdrs->extend_prev_tasks contains one element for each open resource.
If so, thenKheDrsMakeEvaluateAndAddSoln (presented at the end of this section) is called to
make a new solution fromprev_soln anddrs->extend_prev_tasks, and either add it to the
table of solutions fornext_day or delete it, depending on the result of dominance testing.

If drs->extend_prev_tasks is not long enough, the code findsdr, the first open resource
without an assignment, and tries to assign it to a task on day object (variabledtd) in all possible
ways. If this run is a rerun (Section C.16) or this resource’s assignment onnext_day is fixed,
there is only one possible assignment, so only one call toKheDrsSolnTryAsst (which we’ll see
in a moment) is made. Otherwise we try assigning one task from each task class that has a task
available, and we also try a free day, represented by aNULL value fordtd.

KheDrsSolnTryAsst adds an assignment todrs->extend_prev_tasks, makes a recursive
call toKheDrsSolnDoExtend, and removes the assignment. However, there are some details:
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void KheDrsSolnTryAsst(KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day,
KHE_DRS_TASK_ON_DAY dtd, KHE_DRS_RESOURCE_ON_DAY drd,
KHE_DRS_SIGNATURE sig, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int save_extend_must_assign_count, avail_resources;
KHE_COST save_extend_cost; KHE_DRS_TASK dt;

/* save drs->extend_cost and drs->extend_must_assign_count */
save_extend_cost = drs->extend_cost;
save_extend_must_assign_count = drs->extend_must_assign_count;

/* update drs->extend_cost and drs->extend_must_assign_count */
if( dtd != NULL )
{
dt = dtd->encl_dt;
if( dtd == HaArrayFirst(dt->days) )
drs->extend_cost += dt->asst_cost;

if( dt->extend_must_assign )
drs->extend_must_assign_count--;

}
drs->extend_cost += sig->cost;

/* push dtd assignment, recurse, and pop dtd assignment */
avail_resources = HaArrayCount(drs->open_resources) -
(HaArrayCount(drs->extend_prev_tasks) + 1);

if( drs->extend_cost < drs->solve_init_cost &&
avail_resources >= drs->extend_must_assign_count )

{
KheDrsPushAsst(drs, dtd, drd, sig);
KheDrsSolnDoExtend(prev_soln, next_day, drs);
KheDrsPopAsst(drs, dtd, drd, sig);

}

/* restore drs->extend_cost and drs->extend_must_assign_count */
drs->extend_must_assign_count = save_extend_must_assign_count;
drs->extend_cost = save_extend_cost;

}

It begins by savingdrs->extend_cost anddrs->extend_must_assign_count so that they can
be restored at the end of the function. It then updates them to take account of the assignment
of dtd to drd: it adds the assignment cost ofdtd’s task todrs->extend_cost, and if dtd is a
must-assign task it reduces the number of remaining must-assign tasks by 1. It also adds the cost
of resource constraints affected by this assignment (sig->cost) to drs->extend_cost.

KheDrsSolnTryAsst then assignsdrd to dtd, calls KheDrsSolnDoExtend recursively,
then removes the assignment. The enclosingif statement checks thatdrs->extend_cost has
not reacheddrs->solve_init_cost, and that enough open resources are available to allow all
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remaining must-assign tasks to be assigned. The values ofdrs->extend_must_assign_count

andavail_resources are correct for afterKheDrsPushAsst has made the assignment.

Here isKheDrsPushAsst:

void KheDrsPushAsst(KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_DRS_TASK_ON_DAY dtd, KHE_DRS_RESOURCE_ON_DAY drd,
KHE_DRS_SIGNATURE sig)

{
KHE_DRS_EXPR e; int i;

/* add the task to the edge */
HaArrayAddLast(drs->extend_prev_tasks, dtd);
HaArrayAddLast(drs->extend_prev_signatures, sig);

if( dtd != NULL )
{
/* update leaf expressions of the task on day */
HaArrayForEach(dtd->external_today, e, i)
KheDrsExprLeafSet(e, dtd, drd, drs);

}
}

It assignsdtd to drd for solving purposes, by appendingdtd to drs->extend_prev_tasks,
and informs the expressions ofdtd->external_today that it has done so; they set their values
accordingly.KheDrsPopAsst undoes whatKheDrsPushAsst did.

KheDrsPushAsst assumes that initially the value of an open external expression is correct
for when there is no assignment. It is changed only when there is an assignment. This saves time
since many tasks are not touched. Also, all solutions generated which include this push share the
running time cost of one pair of calls toKheDrsPushAsst andKheDrsPopAsst.

That finishesKheDrsSolnExtend except forKheDrsMakeEvaluateAndAddSoln, which is
called whendrs->extend_prev_tasks is full:
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void KheDrsMakeEvaluateAndAddSoln(KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SOLN next_soln; KHE_DRS_EXPR e; int i, di;
KHE_DRS_SIGNATURE sig;

/* quit early if over solve_soln_limit */
if( --drs->solve_soln_limit < 0 )

return;

/* make soln for next_day from prev_soln and drs->extend_prev_tasks */
next_soln = KheDrsSolnMake(prev_soln, next_day, drs->extend_cost, drs);
HaArrayAppend(next_soln->prev_tasks, drs->extend_prev_tasks, i);

/* set signature */
HaArrayForEach(drs->extend_prev_signatures, sig, i)

HaArrayAppend(next_soln->sig, sig->sig, i);
di = KheDrsSolnOpenDayIndex(next_soln);
HaArrayForEach(next_day->nr_internal_today, e, i)

KheDrsExprEvalSignature(e, prev_soln, di,
(KHE_DRS_SIGNATURE) next_soln, drs);

/* depending on cost, either add to next_day or free soln */
if( next_soln->cost < drs->solve_init_cost )

KheDrsSolnSetAddSoln(next_day->soln_set, next_soln, drs);
else

KheDrsSolnFree(next_soln, drs);
}

After checking a limit, it makesnext_soln from prev_soln anddrs->extend_prev_tasks. It
then sets itssignature,partly by appending the signatures fromdrs->extend_prev_signatures,
and partly (for event resource constraints) by evaluating from scratch. Then if the cost is less
than the cost of the initial solution, it callsKheDrsSolnSetAddSoln (Section C.12) to add the new
solution to the solution set for the new day; otherwise it frees the solution.

C.12. Solution sets

A solution setis a set of undominated solutionsPk for some daydk.

As mere collections of solutions, solution sets should be very simple. However, there are
three complications. First, the operation for adding a new solutionx to a solution set has to check
for dominance relationships betweenx and the other solutions. This involves three steps:

1. Check whetherPk contains a solutiony which dominatesx. If so, deletex and stop;

2. Remove fromPk all solutionsy such thatx dominatesy;

3. Addx to Pk.
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Second, because this addition operation is potentially slow, the solver offers seven kinds of
dominance testing, and these involve different collection data structures. And third, there is the
option ofcaching, which involves having two collections, themain solution setholding most of
the solutions, and acache solution setholding a smaller number of recently inserted solutions.

Working top-down through the solution set data type, we start with caching:

typedef struct khe_drs_soln_set_rec *KHE_DRS_SOLN_SET;

struct khe_drs_soln_set_rec {
int made_count;
KHE_DRS_SOLN_SET_PART cache;
KHE_DRS_SOLN_SET_PART main;

};

A solution set object holdsmade_count, the number of solutionsx for which an insertion has
been tried; an optionalcache part, which when non-NULL holds a collection of recently inserted
solutions; and amain part, a non-optional collection holding most of the solutions. The idea
of the cache is that solutions derived from the same predecessor solution are likely to exhibit
dominance relations, so keeping them together might save time.

Notice thatcache andmain have the same type,KHE_DRS_SOLN_SET_PART. All the options
that apply to the main collection apply independently to the cache (when there is one) as well.

When caching is used, insertions go into the cache rather than into the main table:

void KheDrsSolnSetAddSoln(KHE_DRS_SOLN_SET soln_set, KHE_DRS_SOLN soln,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
soln_set->made_count++;
if( soln_set->cache != NULL )
KheDrsSolnSetPartAddSoln(soln_set->cache, soln, drs);

else
KheDrsSolnSetPartAddSoln(soln_set->main, soln, drs);

}

FunctionsKheDrsSolnSetBeginCacheSegment andKheDrsSolnSetEndCacheSegment instruct
the solution set to begin and end caching:

void KheDrsSolnSetBeginCacheSegment(KHE_DRS_SOLN_SET soln_set,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
/* actually there is nothing to do here */

}

void KheDrsSolnSetEndCacheSegment(KHE_DRS_SOLN_SET soln_set,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if( soln_set->cache != NULL )
KheDrsSolnSetPartMoveAll(soln_set->cache, soln_set->main, drs);

}
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As the comment says, there is nothing to do to begin caching, but to end it we have to move
every element from the cache (if there is one) to the main table:KheDrsSolnSetPartMoveAll

traverses the cache, using the three-step insertion procedure above to insert every solution it finds
there into the main table, after which it clears the cache, making it empty but notNULL.

The seven kinds of dominance testing are callednone, weak, medium, strong, trie, strong
with tradeoff, andtrie with tradeoffdominance. FunctionKheDynamicResourceSolverSolve
has parameters which determine which kind to use:

bool KheDynamicResourceSolverSolve(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int soln_limit, KHE_DRS_DOM_KIND main_dom_kind, bool use_cache,
KHE_DRS_DOM_KIND cache_dom_kind);

Parametermain_dom_kind determines the kind of dominance testing to use in the main table;
use_cache says whether to use caching; and if it istrue, thencache_dom_kind determines the
kind of dominance testing to use in the cache, quite independently ofmain_dom_kind. Here is
KHE_DRS_DOM_KIND:

typedef enum {
KHE_DRS_DOM_NONE,
KHE_DRS_DOM_WEAK,
KHE_DRS_DOM_MEDIUM,
KHE_DRS_DOM_STRONG,
KHE_DRS_DOM_TRIE,
KHE_DRS_DOM_STRONG_WITH_TRADEOFF,
KHE_DRS_DOM_TRIE_WITH_TRADEOFF

} KHE_DRS_DOM_KIND;

There are differences in the data structures for holding solutions, depending on kind, and so
KHE_DRS_SOLN_SET_PART, the type of the main table and also the cache, is a tagged union type:

typedef struct khe_drs_soln_set_part_rec {
int count;
KHE_DRS_DOM_KIND dom_kind;
union {
KHE_DRS_SOLN_LIST none_dom_set;
TABLE_KHE_DRS_SOLN weak_dom_set;
TABLE_KHE_DRS_SOLN_LIST medium_dom_set;
KHE_DRS_SOLN_LIST strong_dom_set;
KHE_DRS_SOLN_TRIE trie_dom_set;

} u;
} *KHE_DRS_SOLN_SET_PART;

The count field holds the number of solutions, used only for debug and tracing output. The
dom_kind field holds the tag indicating which kind of dominance testing is in use here. The
union holds the appropriate data structures for each kind of dominance testing: a simple list of
solutions for none, strong, and strong with tradeoff dominance testing, hash tables for weak and
medium dominance testing, and a trie for trie and trie with tradeoff dominance testing. We’ll
explain these choices now.
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‘None’ dominance (KHE_DRS_DOM_NONE) omits dominance testing, leaving the search tree
unoptimized except for the comparison of cost so far with initial cost. Whenx is added, no
dominance testing is carried out:x is simply added to the end of the list.

Weak dominance(KHE_DRS_DOM_WEAK) considers solutionx to dominate solutiony if
c(x) ≤ c(y) and the two signatures are equal at every position. This is consistent with strong
dominance (that is, when it declares that dominance is present, a strong dominance test would do
the same), because all the strong dominance tests include equality.

Weak dominance finds fewer cases of dominance that strong dominance, but it has an
efficient implementation.Pk is implemented by a hash table whose keys are signaturesand whose
values are solutions. The three steps are implemented together by looking up the signature of the
new solutionx in the hash table. If another solution with the same signature is already present
only one of the two is kept: one with minimum cost.KheDrsSolnDominates is never called.

Strong dominance(KHE_DRS_DOM_STRONG) representsPk as a simple list:

typedef struct khe_drs_soln_list_rec {
ARRAY_KHE_DRS_SOLN solns;

} *KHE_DRS_SOLN_LIST;

The operation for adding a new solution follows the three steps literally:
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void KheDrsSolnListStrongAddSoln(KHE_DRS_SOLN_LIST soln_list,
KHE_DRS_SOLN soln, KHE_DYNAMIC_RESOURCE_SOLVER drs, int *total_count)

{
KHE_DRS_SOLN other_soln; int i;

/* if soln is dominated by anything else, delete soln and return */
HaArrayForEachReverse(soln_list->solns, other_soln, i)
if( KheDrsSolnDominates(other_soln, soln, 0) )
{
KheDrsSolnFree(soln, drs);
return;

}

/* remove other solns that soln dominates */
HaArrayForEach(soln_list->solns, other_soln, i)
if( KheDrsSolnDominates(soln, other_soln, 0) )
{
KheDrsSolnFree(other_soln, drs);
HaArrayDeleteAndPlug(soln_list->solns, i);
(*total_count)--;
i--;

}

/* add soln to soln_list */
HaArrayAddLast(soln_list->solns, soln);
(*total_count)++;

}

The initial search for a solution that dominatessoln is made in reverse order (from the last
item to the first), for reasons similar to those justifying caching above.HaArrayDeleteAndPlug

removes the last element of the array,and replaces theith element with it if theith element is not
last. There may be two calls toKheDrsSolnDominates for each existing solutionother_soln,
one to see whetherother_soln dominatessoln, the other to see whethersoln dominates
other_soln. Compared with weak dominance, whose hash table retrieval takes constant time,
this makes the running time atdk proportional to the size ofPk.

Papers known to the author use strong dominance but omit details;presumably they do what
KheDrsSolnListStrongAddSoln does. One paper calls this the most time consuming part of its
algorithm, and gives a few unremarkable ideas from the literature for speeding it up.

Of course, strong dominance keeps fewer solutions in eachPk than weak dominance. (It
is easy to show this, using induction onk and the fact that every case of weak dominance is also
a case of strong dominance.) Whether this can compensate for the slower dominance testing is
not clear, and requires empirical investigation.

Medium dominance(KHE_DRS_DOM_MEDIUM) falls between weak and strong dominance.
A hash table is used, but only those elements of the signature subject whose dominance test is
equality are hashed. One hash table entry contains the set of all undominated solutions with the
same values for these signature elements. Within each set, strong dominance is used. The overall
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effect is equivalent to strong dominance, preserving some of the advantage of hashing.

Trie dominance(KHE_DRS_DOM_TRIE) is strong dominance with a faster implementation.

The traditional trie is a symbol table representing some set of values, each associated with
a key which is a sequence of characters. The root of the tree contains an array of subtrees. Each
subtree contains all values whose keys have the same first character, and its index in the array is
the integer value of that character. So to retrieve a value by key, one uses the first character of the
key to index the root array to obtain a child, then the second character to index that child’s array,
and so on. When a subtree contains only a single value, it has a different format: the value and its
key are stored, and retrieval compares the key it is looking for with the stored key to see whether
the value is the one wanted. There are alsoNULL subtrees representing empty sets of values.

Solutions are a natural fit for tries. A solution’s key is itssignature field, a sequence of
small integers well suited to array indexing.

To decide whetherx is dominated by any solution already in trieT, we proceed as follows.
Suppose the first element ofx’s signature isv, and that it is associated with a maximum limit and
so is dominated by any value less than or equal tov. We need to recursively search only those
subtrees with indexes in the range0 to v inclusive, not the whole trie. Similarly ifv is associated
with a minimum limit,we need to search all subtrees fromv to the end of the array of children. If
the test is equality, only the subree with indexvneeds to be searched. And so on. Exact formulas
for where to search may be found in the ‘dominated and dominating sets’part of Section C.8.

Deleting all solutions ofT that are dominated byx is similar,with the array ranges swapped.
If v is associated with a maximum limit, then all solutions dominated byv lie in the rangev to
the end of the array, and so on. Insertion is just the usual trie insertion.

A useful optimization when tries are used is to sort the constraints so that those with larger
limits come first. Then signature elements that need to index larger arrays come earlier in the
signature, and hence those arrays are higher in the trie and so there are fewer of them. This saves
memory, and it also saves time spent initializing and traversingNULL array elements. However,
scope for doing this is limited because our implementation stores the values for the resource
constraints of a given resource in adjacent positions in the signature.

In practice, long arrays are likely to start with manyNULL entries. Suppose the signature
value is the number of shifts that a given resourcer is taking. This will always include some
constant numberc of shifts from history and from unselected days. So there will be at leastc
NULL entries at the start, consuming memory and slowing down dominance testing.

The author did try subtractingc from the values stored in the signature and adding it back
again to values retrieved from the signature. However, that turned out to greatly complicate
dominance testing, owing to an awkward interaction with the allow zero flag.

So instead, each node of the trie usesvarying-base indexing. That is, it contains a field, the
base, which is the base for indexing into its array of children: given a signature value, one needs
to subtract the base before indexing into the child array. As non-NULL elements are added the
array may need to be shifted to the right and its base reduced, which is slow but uncommon.

A signature entry representing workload in minutes can cause efficiency problems for tries,
because it is likely to lead to large arrays of children, mainly filled withNULL entries. The author
has not investigated this in detail, but the answer is probably to find the greatest common divisor
d of all the workloads and let the signature value be the workload in minutes divided byd.
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The trie equivalent ofKheDrsSolnListStrongAddSoln above takes quite a lot of code.
For those familiar with tries this code is very standard, so it is not presented here. Varying-base
indexing is straightforward using theHaArrayShiftRight andHaArrayShiftLeft functions
from the Howard array module.

Strong with tradeoffdominance is strong dominance with cost tradeoffs as described at the
end of Section C.8.

Trie with tradeoffdominance is trie dominance with cost tradeoffsas described at the end of
Section C.8. Trie with tradeoff dominance is not supported very well by the trie data structure,
so it is implemented heuristically: the trie is searched in all the places that trie dominance would
search, plus, at each level the range of children searched is increased by 1. So it finds everything
found by trie dominance, plus it finds cases where any number of signature values violate the
usual rule, but only by at most 1 each. Of course, enough cost must be available to cover these
cases. Not every case of dominance is found, but all cases that are found are true cases.

Before leaving solution sets we just mention two other operations. First,

void KheDrsSolnSetExtend(KHE_DRS_SOLN_SET prev_soln_set,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs);

traverses a solution set, callingKheDrsSolnExtend for each solution it finds. This takes a solve
from Pk to Pk+1. Second, to retrieve the unique final solution, if any,

void KheDrsSolnSetExtractSingleSoln(KHE_DRS_SOLN_SET soln_set,
KHE_DRS_SOLN *final_soln);

is called on the last day’s solution set. Both functions are straightforward, although tedious
because they traverse different data structures depending on the kind of dominance testing.

C.13. Packed solutions

The solver uses a second representation of a solution called apacked solution. Despite its name,
its purpose is not to save space. Rather it is designed to provide easy access to the solution’s
assignment of open resourcei on open dayj. Packed solutionsonly represent complete solutions,
and they are never inserted into tables.

Packed solutions are used in two ways. First, the initial solution, the one that we want to
improve, is stored in a packed solution, so that if we fail to find an improvement we can return to
it. This is like using a mark,except that it returns the whole solver data structure to its initial state,
not just the KHE solution. FunctionKheDrsResourceOpen (Section C.4) builds this solution.

Second, the solver offers the option of rerunning a new best solution as an aid to debugging
(Section C.16). A packed solution holds the new best solution while the rerun is going on.

TypeKHE_DRS_PACKED_SOLN_DAY represents one day of a packed solution:
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typedef struct khe_drs_packed_soln_day_rec {
KHE_DRS_DAY day;
ARRAY_KHE_DRS_TASK_ON_DAY prev_tasks;

} *KHE_DRS_PACKED_SOLN_DAY;

typedef HA_ARRAY(KHE_DRS_PACKED_SOLN_DAY) ARRAY_KHE_DRS_PACKED_SOLN_DAY;

Theday andprev_tasks fields are exactly as in a correspondingKHE_DRS_SOLN object for this
day. TypeKHE_DRS_PACKED_SOLN represents a complete packed solution:

typedef struct khe_drs_packed_soln_rec {
KHE_COST cost;
ARRAY_KHE_DRS_PACKED_SOLN_DAY days;

} *KHE_DRS_PACKED_SOLN;

typedef HA_ARRAY(KHE_DRS_PACKED_SOLN) ARRAY_KHE_DRS_PACKED_SOLN;

It holds the cost of the solution, and an array with one element for each open day.

The operations on packed solutions are straightforward, so they will not be given here.
KheDrsPackedSolnBuildFromSoln converts a completeKHE_DRS_SOLN solution into a packed
solution. KheDrsPackedSolnDelete deletes a packed solution, using free lists in the usual way.
FunctionsKheDrsPackedSolnTaskOnDay and KheDrsPackedSolnSetTaskOnDay get and set
the assignment of open resourcei on open dayj.

C.14. Solving

At last, we are ready for the main solving functions. As explained earlier, a solve has three steps:
opening, searching, and closing. Here is the function which opens a solve:
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void KheDrsSolveOpen(KHE_DYNAMIC_RESOURCE_SOLVER drs, int soln_limit,
KHE_DRS_DOM_KIND dom_kind, KHE_DRS_PACKED_SOLN *init_soln)

{
KHE_DRS_DAY_RANGE ddr; KHE_DRS_DAY day; int i, j; KHE_DRS_EXPR e;
KHE_DRS_RESOURCE dr; KHE_RESOURCE r;

/* initialize fields that vary with the solve */
drs->solve_soln_limit = (soln_limit <= 0 ? INT_MAX : soln_limit);
drs->solve_init_cost = drs->solve_start_cost = KheSolnCost(drs->soln);
HaArrayClear(drs->open_resources);
HaArrayClear(drs->open_days);
HaArrayClear(drs->open_exprs);

/* open selected resources (grows drs->open_resources and drs->open_exprs) */

*init_soln = KheDrsPackedSolnBuildEmpty(drs);
for( i = 0; i < KheResourceSetResourceCount(drs->selected_resource_set); i++ )
{

r = KheResourceSetResource(drs->selected_resource_set, i);
dr = HaArray(drs->all_resources, KheResourceResourceTypeIndex(r));
KheDrsResourceOpen(dr, HaArrayCount(drs->open_resources), *init_soln, drs);
HaArrayAddLast(drs->open_resources, dr);

}

/* open selected days (grows drs->open_days and drs->open_exprs) */
HaArrayForEach(drs->selected_day_ranges, ddr, i)

for( j = ddr.first; j <= ddr.last; j++ )
{
day = HaArray(drs->all_days, j);
KheDrsDayOpen(day, ddr, HaArrayCount(drs->open_days), dom_kind, drs);
HaArrayAddLast(drs->open_days, day);

}

/* open the task classes on the selected days (days must be open first) */
HaArrayForEach(drs->selected_day_ranges, ddr, i)

for( j = ddr.first; j <= ddr.last; j++ )
{
day = HaArray(drs->all_days, j);
KheDrsDayOpenTaskClasses(day, ddr, drs);

}

/* sort drs->open_exprs by increasing postorder index, then open them */
HaArraySort(drs->open_exprs, &KheDrsExprPostorderCmp);
HaArrayForEach(drs->open_exprs, e, i)

KheDrsExprOpen(e, drs);
}

It initializes some fields, and opens the selected resources, days, task classes, and expressions.
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All days must be open before any task classes are opened, because opening a task includes
assigning open day indexes to its task on day objects, and only open days have these.

After opening comes searching, but we’ll look at closing first:

void KheDrsSolveClose(KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_DRS_PACKED_SOLN soln, bool check_rerun_costs)

{
KHE_DRS_DAY day; int i, j; KHE_DRS_EXPR e; KHE_DRS_RESOURCE dr;
KHE_DRS_TASK_ON_DAY dtd; KHE_DRS_PACKED_SOLN_DAY rd;

/* traverse soln, closing assigned tasks */
HaArrayForEachReverse(soln->days, rd, i)
HaArrayForEach(rd->prev_tasks, dtd, j)
if( dtd != NULL )
{
dr = HaArray(drs->open_resources, j);
KheDrsTaskClose(dtd->encl_dt, dr);

}

/* close the open days, including closing unassigned tasks */
HaArrayForEach(drs->open_days, day, i)
KheDrsDayClose(day, drs);

/* close the open expressions */
HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprClose(e, drs);

/* close the open resources */
HaArrayForEach(drs->open_resources, dr, i)
KheDrsResourceClose(dr);

/* close drs */
HaArrayClear(drs->open_resources);
HaArrayClear(drs->open_days);
HaArrayClear(drs->open_exprs);

/* optionally check rerun costs */
if( check_rerun_costs )
... omitted ...

/* check that DRS soln cost equals KHE soln cost */
HnAssert(KheSolnCost(drs->soln) == soln->cost,
"KheDrsSolveClose internal error: soln %.5f != packed %.5f",
KheCostShow(KheSolnCost(drs->soln)), KheCostShow(soln->cost));

}

This closes everything that was previously opened. Parametersoln says which solution to
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install: a new best solution, or the original. Tasks assigned bysoln are closed first, more than
once if they are multi-day tasks. Open but unassigned tasks are closed later, when their days are
closed. Assigned tasks get closed at least twice,but as we saw in Section C.6,KheDrsTaskClose

can safely close a task more than once: only the first call does anything.

Here now is the function for carrying out the search:

bool KheDrsSolveSearch(KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_DRS_PACKED_SOLN *final_soln)

{
KHE_DRS_DAY next_day, day; KHE_DRS_SOLN_SET prev_soln_set;
int i; KHE_DRS_SOLN root_soln, soln;

/* do the search */
prev_soln_set = KheDrsSolnSetMake(KHE_DRS_DOM_NONE, drs);
root_soln = KheDrsSolnMake(NULL, NULL, drs->solve_start_cost, drs);
KheDrsSolnSetAddSoln(prev_soln_set, root_soln, drs);
HaArrayForEach(drs->open_days, next_day, i)
{
KheDrsSolnSetExtend(prev_soln_set, next_day, drs);
prev_soln_set = next_day->soln_set;

}

/* set soln to final solution, or to NULL if none */
if( HaArrayCount(drs->open_days) > 0 )
{
day = HaArrayLast(drs->open_days);
KheDrsSolnSetExtractSingleSoln(day->soln_set, &soln);

}
else
soln = NULL;

if( soln != NULL )
{
/* have solution, convert to packed form and return true */

*final_soln = KheDrsPackedSolnBuildFromSoln(soln, drs);
return true;

}
else
{
/* no solution, return false */

*final_soln = NULL;
return false;

}
}

First it makes a solution setprev_soln_set containing just the root solution, the one not lying
in any day. Then, for each open daynext_day, it callsKheDrsSolnSetExtend (Section C.12) to
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build a new solution set, by trying all ways to extend the solutions ofprev_soln_set by one day.
Finally, it callsKheDrsSolnSetExtractSingleSoln (Section C.12) to check whether a solution
was found for the final day. If so, there can be at most one (because signatures are empty on that
day), and it converts it into a packed solution and returnstrue. Otherwise it returnsfalse.

To complete our presentation of solving, we’ll skip forward in the source file to the function
called by the user to carry out a solve:

bool KheDynamicResourceSolverSolve(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int soln_limit, KHE_DRS_DOM_KIND main_dom_kind, bool use_cache,
KHE_DRS_DOM_KIND cache_dom_kind)

{
return KheDynamicResourceSolverDoSolve(drs, soln_limit, main_dom_kind,
use_cache, cache_dom_kind, false);

}

As shown, this passes its job on toKheDynamicResourceSolverDoSolve, with the extrafalse
argument to indicate that this is a real solve and not a test:
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bool KheDynamicResourceSolverDoSolve(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int soln_limit, KHE_DRS_DOM_KIND main_dom_kind, bool use_cache,
KHE_DRS_DOM_KIND cache_dom_kind, bool test_only)

{
int rcount, i; KHE_RESOURCE r; KHE_DRS_DAY_RANGE ddr;
KHE_DRS_PACKED_SOLN init_soln, new_best_soln, junk; KHE_COST init_cost;

/* open, search, close, and possibly rerun */
init_cost = KheSolnCost(drs->soln);
KheDrsSolveOpen(drs, true, soln_limit, main_dom_kind, use_cache,

cache_dom_kind, &init_soln);
if( !KheDrsSolveSearch(drs, true, &new_best_soln) )
{

/* no new best; close using init_soln */
KheDrsSolveClose(drs, init_soln, false);

}
else if( RERUN )
{

... discussed elsewhere ...
}
else
{

/* have new best solution, close using that */
KheDrsSolveClose(drs, new_best_soln, false);

}

/* delete init_soln and (if present) new_best_soln */
KheDrsPackedSolnDelete(init_soln, drs);
if( new_best_soln != NULL )

KheDrsPackedSolnDelete(new_best_soln, drs);

/* clear out selections ready for a fresh set of resources and days */
KheResourceSetClear(drs->selected_resource_set);
HaArrayClear(drs->selected_day_ranges);

/* return true if the solution has been improved */
return KheSolnCost(drs->soln) < init_cost;

}

It calls onKheDrsSolveOpen, KheDrsSolveSearch, andKheDrsSolveClose, and manages two
packed solutions,init_soln holding the initial solution, andnew_best_soln holding the new
best solution ifKheDrsSolveSearch finds one. For theRERUN code see Section C.16.
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C.15. Expressions

C.15.1. Introduction

The reader is assumed to be familiar withexpression trees, which are tree structures representing

algebraic expressions. For example,√ 2b − 4acmay be represented by the expression tree

sqrt

-

*

b b

*

4 *

a c

If variables have values, each node has a value, dependent on its type and its children’s values.

Each node is similar to the other nodes in some ways (they are all expression tree nodes),
but different in others (for example, in the operations they perform). This situation calls for
inheritance, with an abstract base class representing expression tree nodes in general, inherited
by several concrete child classes representing particular kinds of expressions.

In our application, each constraint (strictly speaking, each point of application of each
constraint, represented in KHE by a monitor) is represented by an expression tree which, given
a particular solution, can be evaluated to yield the cost of the monitor. The abstract base class is
KHE_DRS_EXPR. There are 15 concrete subclasses representing particular types of expressions.
Here we are concerned with introducing expressions generally, so although we will use some
concrete subtypes in examples, we leave the full list for later (Section C.15.6).

Although the term ‘expression’most naturally means ‘expression tree’, we usually use it to
mean ‘expression tree node’. As explained earlier, this is done to avoid the term ‘node’, which
is ambiguous here because it could also mean ‘search tree node’.

Here is an expression tree for constraining the number of busy weekends for resourcer:
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INT_SUM_COST

OR

BUSY_TIME(r,1Sat1)

BUSY_TIME(r,1Sat2)

BUSY_TIME(r,1Sun1)

BUSY_TIME(r,1Sun2)

…

OR

BUSY_TIME(r,4Sat1)

BUSY_TIME(r,4Sat2)

BUSY_TIME(r,4Sun1)

BUSY_TIME(r,4Sun2)

To fit it onto the page, it is drawn sideways with the subtrees for two weekends omitted. We
assume that the instance has 28 days, starting on a Monday, with two shifts per day.

A BUSY_TIME(r, t) expression has value 1whenr is busy at timet. An ORexpression has
value 1 when at least one of its children has value 1. AnINT_SUM_COSTexpression sums the
values of its children, compares the result with the limits (stored in the expression, but not shown
here), and calculates a cost, using a cost function and weight stored in the expression.

Although every expression has a value, different types of expressions have different types
of values. Most have values of typeint; INT_SUM_COSTexpressions have values of type
KHE_COST; and there are also expressions whose values have typefloat.

An external expressionis an expression with no children. Its value depends on the state
of the solution. For example, theBUSY_TIMEexpressions above are external expressions. An
internal expressionis an expression with one or more children. Its value depends on its children’s
values. TheINT_SUM_COSTandORexpressions above are internal expressions.

External and internal expressionsare sometimeshandled differently. For example,although
the implementation allows arbitrary common sub-expressions (that is, it allows any tree to be a
subtree of any number of larger trees), only external expressions utilize this option.

The KHE platform does not use expression trees; it implements each kind of constraint
with its own data structure. Expression trees allow more code sharing than special data structures
do: INT_SUM_COST, for example, is used by several constraints. Another reason for using
expression trees will be given when we come to consider signatures in detail (Section C.15.3).

Here is the base class,KHE_DRS_EXPR:
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typedef struct khe_drs_expr_rec *KHE_DRS_EXPR;
typedef HA_ARRAY(KHE_DRS_EXPR) ARRAY_KHE_DRS_EXPR;

#define INHERIT_KHE_DRS_EXPR \
KHE_DRS_EXPR_TAG tag; \
bool gathered; \
int postorder_index; \
KHE_DRS_RESOURCE resource; \
KHE_DRS_VALUE u; \
ARRAY_KHE_DRS_PARENT parents; \
ARRAY_KHE_DRS_EXPR children; \
KHE_DRS_DAY_RANGE open_day_range; \
ARRAY_KHE_DRS_EXPR open_children; \
HA_ARRAY_INT open_child_indexes; \
HA_ARRAY_INT sig_indexes;

struct khe_drs_expr_rec {
INHERIT_KHE_DRS_EXPR

};

The fields lie in a macro to facilitate inheritance, as we’ll see. Thetag field has enumerated
type and says which concrete type of expression this is. Thegathered field istrue when the
expression has been gathered for opening (explained later) but not actually opened yet.

Each expression has a unique value of thepostorder_index field. Children have smaller
values than their parents, so that if the expressions are sorted by increasingpostorder_index,
they appear in postorder. These fields are set as expressions are created, and remain fixed.

Theresource field is set in expressions that represent resource constraints, to the resource
that the constraint applies to. It isNULL in expressions that represent event resource constraints.

The u field contains the value of the expression when a value is defined. It was stated
earlier that an expression’s value could have typeint, float, or KHE_COST. However, values
of typeKHE_COST are not stored in expressions (instead, as we will see later, costs are reported
immediately to solutions), so typeKHE_DRS_VALUE is

typedef union {
int int_val;
float float_val;

} KHE_DRS_VALUE;

In an expressione of typeOR, say, which has an integer value, the value ise->u.int_val.

Theu field has a defined value in two contexts. First, whene is closed,e’s value is fixed
and itsu field holds that value. Indeed, theu field is assumed to continue to hold the closed value
even aftere opens,but only until its parents open. Second, whene is open, and a solution is being
evaluated which happens to be fore’s last open day,u holdse’s value temporarily, from when
the value is calculated until its parents have retrieved it. Otherwise theu field is undefined.

Theparents field contains pointers to the expression’s parents. Most expressions have one
parent, but external expressions may have several.KHE_DRS_PARENT is
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typedef struct khe_drs_parent_rec {
KHE_DRS_EXPR expr;
int index;

} KHE_DRS_PARENT;

typedef HA_ARRAY(KHE_DRS_PARENT) ARRAY_KHE_DRS_PARENT;

and holds the parent plus the child expression’s index in the list of children of the parent.

Fieldchildren holds the children of thisexpression. The last four fields,open_day_range,
open_children, open_child_indexes, andsig_indexes, are used only when the expression
is open. We’ll discuss them later.

As an example of inheritance, here is typeKHE_DRS_EXPR_OR, the type ofORexpressions:

typedef struct khe_drs_expr_or_rec {
INHERIT_KHE_DRS_EXPR
int closed_state;

} *KHE_DRS_EXPR_OR;

It inherits all the fields ofKHE_DRS_EXPR, making a C typecast fromKHE_DRS_EXPR_OR to
KHE_DRS_EXPR safe. Its tag field has the enumerated valueKHE_DRS_EXPR_OR_TAG.

Several expression types have aclosed_state field. When present in expressionx, it holds
a summary of the values ofx’s closed children, and is always defined, even whenx itself is open.
(If an expression is open, its parents must also be open, but not all of its children need be open.)
In ORexpressions,closed_state is an integer holding the number of closed children whose
value is 1. By consulting this value rather than the closed children themselves, the solver avoids
visiting closed expressions during the solve, as it must if it is to keep its promise of running in
time proportional to the number of open objects, not to the number of objects.

C.15.2. Construction

Constructing expression trees is basically a simple matter of creating the right objects and linking
them together correctly. There are however a couple of things that deserve some attention.

The solver uses three private functions,KheDrsExprInitBegin, KheDrsExprInitEnd,
andKheDrsExprAddChild, for constructing expression trees. For example, suppose we want to
construct anORexpression with some children. We do this as follows:

KHE_DRS_EXPR_OR res;
HaMake(res, drs->arena);
KheDrsExprInitBegin((KHE_DRS_EXPR) res, KHE_DRS_EXPR_OR_TAG, dr, drs);
... initialize fields specific to OR expressions ...
... make child expressions and call KheDrsExprAddChild on each ...
KheDrsExprInitEnd((KHE_DRS_EXPR) res, drs);

KheDrsExprInitBegin initializes the fields of the new object that are common to all expressions,
including tag, dom_test, andresource, which vary from one expression to another. Next,
fieldsspecific to the type of expression being constructed must be initialized. ForORexpressions
this is just theclosed_state field. Then the children of the new expression must be created,
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which involves, for each child, carrying out this same sequence, fromKheDrsExprInitBegin to
KheDrsExprInitEnd, followed by a call toKheDrsExprAddChild to link parent and child.

Correct construction requires thatKheDrsExprInitEnd be called immediately after the
children have been constructed and linked in, but not before. We can see why by studying the
functions.KheDrsExprInitBegin is quite trivial:

void KheDrsExprInitBegin(KHE_DRS_EXPR e, KHE_DRS_EXPR_TAG tag,
KHE_DRS_RESOURCE dr, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
e->tag = tag;
e->gathered = false;
e->postorder_index = -1;
e->resource = dr;
HaArrayInit(e->parents, drs->arena);
HaArrayInit(e->children, drs->arena);
e->open_day_range = KheDrsDayRangeMake(1, 0);
HaArrayInit(e->open_children, drs->arena);
HaArrayInit(e->open_child_indexes, drs->arena);
HaArrayInit(e->sig_indexes, drs->arena);

}

butKheDrsExprInitEnd is more interesting:

void KheDrsExprInitEnd(KHE_DRS_EXPR e, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
e->postorder_index = drs->postorder_count++;
KheDrsExprSetClosedValue(e, drs);

}

There are two points here. First,KheDrsExprInitEnd assignse->postorder_index using a
value from the solver. Clearly, this will only work as intended whenKheDrsExprInitEnd is
called one after it has been called on each ofe’s children.

Second,KheDrsExprInitEnd calls KheDrsExprSetClosedValue (Section C.15.4) to
initialize the value ofe. Although we mainly useKheDrsExprSetClosedValue to find the
closed value ofe at the end of a solve, what it does is just right here: it sets the closed value of
e, assuming that the children ofe have their correct closed values, and that any closed state ine

is correct. The closed value is wanted here, because initially all expressions are closed.

Now here isKheDrsExprAddChild:
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void KheDrsExprAddChild(KHE_DRS_EXPR parent, KHE_DRS_EXPR child,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_PARENT prnt;

/* link parent and child */
HnAssert(HaArrayCount(parent->parents) == 0,
"KheDrsExprAddChild internal error: too late to add child");

prnt.expr = parent;
prnt.index = HaArrayCount(parent->children);
HaArrayAddLast(child->parents, prnt);
HaArrayAddLast(parent->children, child);

/* update state in each parent */
switch( parent->tag )
{
case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrAddChild((KHE_DRS_EXPR_OR) parent, child, drs);
break;

...

}
}

The first part is common to all expressions: it addschild toparent’s list of children, and it adds
parent to child’s list of parents. The second part updates the state of the parent to include the
child, and is specific to each type of expression, hence the large switch. Here is one branch:

void KheDrsExprOrAddChild(KHE_DRS_EXPR_OR eo, KHE_DRS_EXPR child_e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if( child_e->u.int_val == 1 )
eo->closed_state += 1;

}

The closed state ofeo is the number of closed children with value 1. All children are closed
initially, so this adds 1 toeo->closed_state if child_e’s value is 1. The value is well-defined,
becauseKheDrsExprInitEnd is called onchild_e before this call is made.

KheDrsExprAddChild is declared in the expression construction submodule of the source
file, but it is not defined until after the submodules for the subtypes ofKHE_DRS_EXPR. This is to
avoid having to give forward declarations of the subtype versions of the function. This is done
for each expression function which switches on the expression type:KheDrsExprAddChild,
KheDrsExprChildHasOpened, KheDrsExprChildHasClosed, KheDrsExprSetClosedValue,
KheDrsExprLeafSet, KheDrsExprLeafClear, andKheDrsExprEvalSignature.
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C.15.3. Open day ranges and signatures

This section explains in detail the values that expressions add to signatures. The implementation
is part of expression opening and will be given later, in Section C.15.4.

We may have used the termopen day rangepreviously, more or less synonymously with
selected day range. But now we define the open day range of an expression precisely. As an
example, we’ll use the constraint that limits the number of busy weekends for resourcer in a
four-week timetable beginning on a Monday. The weekend days are 5, 6, 12, 13, 19, 20, 26, and
27. Here is the expression tree, from Appendix C.15.1, showing open day ranges:

INT_SUM_COST
6-27

6-27

OR
5-6

5-6

BUSY_TIME(r,1Sat1)
5-5

5-5

BUSY_TIME(r,1Sat2)
5-5

5-5

BUSY_TIME(r,1Sun1)
6-6

6-6

BUSY_TIME(r,1Sun2)
6-6

6-6

…

OR
26-27

26-27

BUSY_TIME(r,4Sat1)
26-26

26-26

BUSY_TIME(r,4Sat2)
26-26

26-26

BUSY_TIME(r,4Sun1)
27-27

27-27

BUSY_TIME(r,4Sun2)
27-27

27-27

A review of the external expression types (likeBUSY_TIME) given in Section C.15.6 will show
that each is affected by what happens on exactly one day. The open day range of an external
expression contains exactly this one day. The open day range of an internal expression (like
INT_SUM_COSTandOR) is the smallest range of days which includes the last day of each of its
children’s open day ranges. For example, the last days of the open day ranges of the children of
theINT_SUM_COSTexpression above are 6, 13, 20, and 27, so its open day range is 6-27. (The
reader who expected it to be 5-27 needs to disabuse himself of that idea now.)

The numbersused in open day rangesare open day indexes,not frame indexes. The example
assumes that all days are open. If some are closed, the open day indexes will be different.

When we speak of an expression’s open days, we mean the days of its open day range. For
example, we can say that every open expression has at least one open day, meaning that every
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open expression has a non-empty open day range.

A solve takes a whole set of solutions for some open daydi, and from each of them it makes
solutions for daydi+1. It needs to be able to pick up a solution for daydi, build a new solution
for daydi+1 consisting of the solution fordi plus one day’s worth of new assignments, and then
set the new solution aside. But it can’t ignore the constraints and their costs, because it needs to
prune solutions whose cost so far is not less than the cost of the initial solution, and it needs to
implement dominance, as described in Section C.1. Information about a solution’s constraints
and costs is stored in itscost andsignature fields.

So then, what does a solution for up to daydi need to store about our example constraint?
Clearly, the number of open busy weekends up todi. This way, as we proceed along any path in
the search tree from the root solution of the tree to a final complete solution, each solution will
record the number of open busy weekends so far. It will be easy, at each solution, to combine the
number of open busy weekends up to the previous day with the task assignment forr on the new
day to find the number of busy weekends up to the new day. Then, on the constraint’s last open
day, the number of open busy weekends can be added to the number of closed busy weekends,
and the sum compared with the limits to find a cost. (Actually, we calculate a cost on every day,
since it may be useful in pruning solutions. See Section C.15.9.)

But supposedi is a Saturday. Then the solution must also remember whether that Saturday
is busy. It is not enough to store just a number of busy weekends, because then it is not possible
to say whether a busy next day (Sunday) makes one more busy weekend or not.

The reader who ponders this will find that an expression contributes a value to store on each
day of its open day range except its last. Before its first open day, there is nothing to remember
(not counting closed state, which is the same for each solution so is stored in the expression). On
days during the open day range other than the last, there is information from that day and previous
days to store. For example, a day 7 solution needs to store, for theINT_SUM_COSTexpression,
the number of open busy weekends so far. This is true even though none of that expression’s
children are open on day 7, which explains why we use open day ranges rather than open day sets.
On the last open day, the expression’s value is found and reported to its parents. It becomes the
parents’ responsibility, so there is nothing to store on that day, or afterwards.

Applying this rule to the tree above, information needs to be stored for theINT_SUM_COST
expression on days 6-26, information for the firstORexpression needs to be stored on day 5, and
so on. Nothing ever needs to be stored for theBUSY_TIMEexpressions, because their open day
ranges contain no days that are not last. Nothing is stored for theINT_SUM_COSTexpression
on day 5, because none of its children will have reported anything then.

It is clear now why we use expression trees to represent constraints. A solution stores one
item of information (or nothing)per expression,not per constraint. The item stored is not usually
the expression’s value. For example, theINT_SUM_COSTexpression’s value is a cost, but what
is stored for it is an integer number of open busy weekends.

The signature of a solution for a given daydi consists of one item of information for each
open expression for whichdi is one of its open days other than the last. The items’ types are not
clear at this point, but, looking ahead, it will turn out that the root of each expression tree will
have typeKHE_COST, and the sum of these costs will be stored in the solution’scost field; while
the non-root expressions will contribute oneint each, held in thesignature field. (Actually
some of them contribute afloat, but those are converted toint by multiplying by 100 and
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rounding. This is convenient but inexact, and arguably should be reexamined.)

When two signatures are compared during dominance testing, each position along the
signature is an independent test. While this keeps things simple, it does cause some cases of
dominance to be missed. For example, suppose that the current day is2Sat, and some resource is
busy on that day in solutionS1but not in solutionS2. If there is a maximum limit on the number
of busy weekends,S1 cannot dominateS2, because the ‘≤’ test at theORexpression affected by
2Sat fails. But suppose the ‘≤’ test at the enclosingINT_SUM_COSTexpression succeeds with
one weekend to spare. ThenS1 does in fact dominateS2. Some day the author might tighten up
the implementation to include such cases. The loss is minor, but every bit helps.

We saw in Section C.10 that the parts of each signature made by expressions representing
resource constraints are calculated separately beforeKheDrsSolnExtend generates any new
solutions, while the parts representing event resource constraints are calculated as new solutions
are generated. This distinction is irrelevant to the actual process of calculating the signature, and
expression objects are unaware of it.

Here are two points that the author is inclined to view as rather profound. The reader can
make up his own mind. First, each expression only ever needs to store a small constant amount
of information in a signature. It never stores anything complicated, such as a set of values.
However, if we were supporting the avoid split assignments constraint we would need to store a
set: the set of distinct resources assigned so far. So this first point may be just luck.

Second, although signatures were created to ensure that costs can be calculated efficiently
as solving proceeds, it turns out that they are just what is needed for dominance testing too. This
has something to do with the fact that a signature contains complete information about the state
of the constraints in its solution, but still it seems somewhat miraculous that the form in which
this information is held for cost calculating should also suit dominance testing.

C.15.4. Opening and closing

This section explains how expressions are opened and closed. An expression needs to be opened
when its value may be affected by an assignment to some open task. Expression opening includes
setting up for signatures, so this section also implements the ideas from the previous section.

The first step in opening expressions is to build a complete list of all expressions that need
to be opened, in fieldopen_exprs of the solver. This is done by calls to this function:

void KheDrsExprGatherForOpening(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_PARENT prnt; int i;
if( !e->gathered )
{
e->gathered = true;
HaArrayAddLast(drs->open_exprs, e);
HaArrayForEach(e->parents, prnt, i)
KheDrsExprGatherForOpening(prnt.expr, drs);

}
}
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Whenevere should open,KheDrsExprGatherForOpening is called. If e->gathered is true,
meaning thate has already been gathered, this does nothing. Otherwise it setse->gathered to
true to ensure thate will not be gathered again on this solve, addse toopen_exprs, and gathers
its parents (an open expression’s parents must also be open).

We have already seen the calls toKheDrsExprGatherForOpening which start the gathering
process, inKheDrsResourceOpen:

open_day_range = KheDrsDayRangeMake(di, di);
HaArrayForEach(drd->external_today, e, k)
{
e->open_day_range = open_day_range;
KheDrsExprGatherForOpening(e, drs);

}

andKheDrsTaskOpen:

open_day_range = KheDrsDayRangeMake(di, di);
HaArrayForEach(dtd->external_today, e, j)
{
e->open_day_range = open_day_range;
KheDrsExprGatherForOpening(e, drs);

}

These gather all external expressions that need to be opened, because they depend on what an
open resource or task is doing. They also set the open day range in each external expression to
the single day that the expression is affected by. ThenKheDrsExprGatherForOpening gathers
their ancestors, which accounts for all expressions that need to be opened. Thegathered flag
ensures that no expression is added todrs->open_exprs twice.

After all expressions have been gathered, they are sorted by increasing postorder index and
opened. Again, we have already seen the code for this, inKheDrsSolveOpen:

HaArraySort(drs->open_exprs, &KheDrsExprPostorderCmp);
HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprOpen(e, drs);

The sorting ensures that parents are opened after their children—a key point.

At the moment each expression opens, it callsKheDrsExprChildHasOpened once for each
parent to inform it that one of its children has opened:
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void KheDrsExprChildHasOpened(KHE_DRS_EXPR e, KHE_DRS_EXPR child_e,
int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i; KHE_DRS_EXPR e2;

/* add child_e to e->open_children */
if( e->tag == KHE_DRS_EXPR_INT_SEQ_COST_TAG )
{
... see the detailed discussion of the INT_SEQ_COST type ...

}
else
{
/* add child_e to e->open_children in last day order */
HaArrayAddLast(e->open_children, NULL);
for( i = HaArrayCount(e->open_children) - 2; i >= 0; i-- )
{
e2 = HaArray(e->open_children, i);
if( e2->open_day_range.last <= child_e->open_day_range.last )
break;

HaArrayPut(e->open_children, i + 1, e2);
}
HaArrayPut(e->open_children, i + 1, child_e);

}

/* add child_e’s last open day to e’s open_day_range */
KheDrsDayRangeAdd(&e->open_day_range, child_e->open_day_range.last);

/* alter the state of e to take account of child_e opening */
switch( e->tag )
{
case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrChildHasOpened((KHE_DRS_EXPR_OR) e,
child_e, child_index, drs);

break;

...
}

}

Herechild_e is the child that has just opened, ande is the parent, not yet opened. Clearlye
must be an internal expression, since it has a child.

The first part ofKheDrsExprChildHasOpened adds the child to the parent’s list of open
children, in increasing last open day index order, and adds the child’s last open day to the open
day range of the parent,as explained in Section C.15.3. The child’sopen day range is finalized by
this point, because children are opened before parents. As the code shows, this first part is done
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differently when the parent is anINT_SEQ_COSTobject. Section C.15.10 has the details.

The second part ofKheDrsExprChildHasOpened updates the state of the parent to take
account of the opening of the child. This is done differently depending on the type of the parent,
so this part is a large switch on the parent’s type tag. Here is one branch of the switch:

void KheDrsExprOrChildHasOpened(KHE_DRS_EXPR_OR eo,
KHE_DRS_EXPR child_e, int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if( child_e->u.int_val == 1 )

eo->closed_state -= 1;
}

Within ORexpressions, theclosed_state field holds the number of closed children whose value
is 1, so it has to be reduced by 1 ifchild_e’s value is 1, sincechild_e is no longer closed.

There are two important points here. First, while an expression is closed, its value is up
to date, and does not change during the current solve. When a closed expression is opened, as
child_e is opened here, it retains its closed value for some time, at least until its parents are
opened. So it is safe here to accesschild_e->u.int_val. Second, this code only touches open
expressions. It avoids closed children, as it must if we are to meet our efficiency goals.

Here now isKheDrsExprOpen:
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void KheDrsExprOpen(KHE_DRS_EXPR e, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{

KHE_DRS_PARENT prnt; KHE_DRS_DAY day; int i, di; KHE_DRS_EXPR child_e;
KHE_DRS_RESOURCE_ON_DAY drd;

/* inform e’s parents that e is open */
e->gathered = false;
HaArrayForEach(e->parents, prnt, i)

KheDrsExprChildHasOpened(prnt.expr, e, prnt.index, drs);

/* what to do now depends on whether e is external or internal */
if( e->tag <= KHE_DRS_EXPR_WORK_DAY_TAG )
{

/* external expression; clear its value */
KheDrsExprLeafClear(e, drs);

}
else
{

/* internal expression; build open_child_indexes */
HaArrayClear(e->open_child_indexes);
di = e->open_day_range.first - 1;
HaArrayForEach(e->open_children, child_e, i)
{

while( child_e->open_day_range.last > di )
{

di++;
HaArrayAddLast(e->open_child_indexes, i);

}
}
HaArrayAddLast(e->open_child_indexes, i); /* no. of open children */

/* inform e’s days that e is open */
... for this code, see below ...

}
}

By the timeKheDrsExprOpen(e, drs) is called, all ofe’s open children have made their calls
to KheDrsExprChildHasOpened. So e->open_day_range is finalized (for this solve). Also,
e->open_children containse’s open children, sorted by non-decreasing last open day.

At the momentKheDrsExprOpen(e, drs) begins,e is considered to open. So the first
step is to sete->gathered tofalse (‘gathered’means ‘gathered but not opened’) and informe’s
parents by callingKheDrsExprChildHasOpened on each of them.

What happens after that depends on whethere is external or internal. Ife is external,
searching assumes thate’s initial value is correct for when there are no assignments of open tasks
to open resources. SoKheDrsExprOpen callsKheDrsExprLeafClear to give this value toe.

If e is internal, searching makes no assumptions about its initial value. But it needs fast
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access to its open children with a given last open day, to retrieve their values, which become
available that day. It would be simplest to define anEXPR_ON_DAY type, likeRESOURCE_ON_DAY
and TASK_ON_DAY, and have oneEXPR_ON_DAY object for each day ofe’s open day range,
containing the open child expressions whose last open day is that day. But the author was
concerned (very possibly needlessly) about the many small objects and arrays that that would
lead to. So the open children are held in one array,open_children. To gain fast access to the
open children whose last open day is theith day of the open day range ofe (counting from 0),
we visit the positions ine->open_children from e->open_child_indexes[i] inclusive to
e->open_child_indexes[i+1] exclusive. The reader can verify that the code above initializes
open_child_indexes correctly.

Before we examine the rest ofKheDrsExprOpen, we’ll skip ahead slightly to look at the four
functions and one macro that make use ofopen_day_range andopen_child_indexes:

bool KheDrsExprOpenDayIsFirst(KHE_DRS_EXPR e, int open_day_index)
{
return open_day_index == e->open_day_range.first;

}

bool KheDrsExprOpenDayIsLast(KHE_DRS_EXPR e, int open_day_index)
{
return open_day_index == e->open_day_range.last;

}

int KheDrsExprOpenChildrenBefore(KHE_DRS_EXPR e, int di)
{
return HaArray(e->open_child_indexes, di - e->open_day_range.first);

}

int KheDrsExprOpenChildrenAtOrAfter(KHE_DRS_EXPR e, int di)
{
return HaArrayCount(e->open_children) - KheDrsExprOpenChildrenBefore(e, di);

}

#define KheDrsExprForEachOpenDayChild(e, di, x, i) \
i1 = KheDrsExprOpenChildrenBefore((KHE_DRS_EXPR) (e), (di)); \
i2 = KheDrsExprOpenChildrenBefore((KHE_DRS_EXPR) (e), (di) + 1); \
for( (i) = i1; \

(i) < i2 ? ((x) = HaArray((e)->open_children, (i)), true) : false; \
(i)++ )

KheDrsExprOpenDayIsFirst andKheDrsExprOpenDayIsLast say whetheropen_day_index
is the index of the first or last day ine’s open range.KheDrsExprOpenChildrenBefore returns
the number ofe’s open children whose last open day comes strictly before the open day with
open day indexdi. This is easy: it is exactly whatopen_child_indexes is designed to produce.
ThenKheDrsExprOpenChildrenAtOrAfter returns the number of open children whose last
open day equals or exceeds the open day with open day indexdi. This too is easy. Finally,macro
KheDrsExprForEachOpenDayChild expands to afor loop that setsx to each open child ofe
whose last open day has open day indexdi.
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Let’s return now toKheDrsExprOpen and follow through the last part of what it does when
e is an internal expression. Here is that code, which was omitted before:

HaArrayClear(e->sig_indexes);
for( i = e->open_day_range.first; i <= e->open_day_range.last; i++ )
{

/* add e to either its day or its resource on day */
day = HaArray(drs->open_days, i);
if( e->resource == NULL )

KheDrsDayAddOpenExpr(day, e);
else
{

drd = KheDrsResourceOnDay(e->resource, day);
KheDrsResourceOnDayAddOpenExpr(drd, e);

}

/* signatures and dom tests (needed on each day except the last) */
if( i < e->open_day_range.last )
{

dom_test = KheDrsExprDomTest(e, i);
HaArrayAddLast(e->sig_indexes, KheDrsDayAddDomTest(day, dom_test));

}
}

The outer loop setsday successively to each ofe’s open days. Thene is added to one list of
internal expressions: either the one for that day (ife is derived from an event resource constraint)
or the one for its resource on that day (ife is derived from a resource constraint). Either way, this
is the right place fore to be to be included when signatures are being constructed. Expressions
are added to these lists in postorder, because they are opened in postorder.

The last part callsKheDrsDayAddDomTest once for each open day except the last. This adds
e’s dominance test to the day’sdom_tests array and returns the index it was added at, whiche

records in its ownsig_indexes array. This way, whene wants to retrieve one of its values stored
in a signature, it can consult its ownsig_indexes array to work out where to look.

Once again, we’ll skip ahead to look at the functions that make use ofsig_indexes:

int KheDrsExprSigVal(KHE_DRS_EXPR e, int open_day_index, KHE_DRS_SOLN soln)
{

int pos;
pos = HaArray(e->sig_indexes, open_day_index - e->open_day_range.first);
return HaArray(soln->sig, pos);

}

void KheDrsExprPutSigVal(KHE_DRS_EXPR e, int open_day_index,
KHE_DRS_SIGNATURE sig, int sig_val)

{
HaArrayAddLast(sig->sig, sig_val);

}
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KheDrsExprSigVal returns the stored value ofe in the signature ofsoln,usinge->sig_indexes
to find its index in the signature.KheDrsExprPutSigVal addssig_val to the signature. It adds
it to the end of the growing signature, because the signature is built while visiting the relevant
expressions in postorder.

It is lucky that KheDrsExprPutSigVal does not have to consultsig_indexes to find
out where to put its value, because whene is derived from a resource constraint, the index for
inserting the value is different from the index for retrieving it, because of the way resource
constraint signatures are concatenated when building a solution. Thesig_indexes array is
correct for retrieving, not for inserting.

So much for opening expressions. After solving, the open expressions need to be closed.
Theopen_exprs array is used to visit each open expression and close it:

HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprClose(e, drs);

Again, this closes children before parents. To close one expression, the code is

void KheDrsExprClose(KHE_DRS_EXPR e, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
KHE_DRS_PARENT prnt; int i;

/* set e’s closed value */
KheDrsExprSetClosedValue(e, drs);

/* clear fields that are used only when e is open */
e->open_day_range = KheDrsDayRangeMake(1, 0); /* empty range */
HaArrayClear(e->open_children);
HaArrayClear(e->open_child_indexes);
HaArrayClear(e->sig_indexes);

/* inform e’s parents that e has closed */
HaArrayForEach(e->parents, prnt, i)
KheDrsExprChildHasClosed(prnt.expr, e, prnt.index, drs);

}

The first step is to sete’s value to whatever it is to be in the closed state, assuming for external
expressions that all assignments are expressed in theclosed_asst fields of tasks and resources
(as we can do because expressions are closed after all assignments are made), and for internal
expressions thate’s children are now all closed (as we can do because of the expression sorting).
KheDrsExprSetClosedValue is the usual large switch:
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void KheDrsExprSetClosedValue(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
switch( e->tag )
{
case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrSetClosedValue((KHE_DRS_EXPR_OR) e, drs);
break;

...
}

}

This is different for each concrete expression type; here is one example:

void KheDrsExprOrSetClosedValue(KHE_DRS_EXPR_OR eo,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
eo->u.int_val = (eo->closed_state > 0 ? 1 : 0);

}

In OR expressions, the value is 1 if there is at least one child with value 1, and, since all the
children are now closed, theclosed_state field can tell us how many such children there are.

KheDrsExprClose ends by clearinge’s fields and informinge’s parents thate has closed:

void KheDrsExprChildHasClosed(KHE_DRS_EXPR e,
KHE_DRS_EXPR child_e, int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
switch( e->tag )
{

case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrChildHasClosed((KHE_DRS_EXPR_OR) e,
child_e, child_index, drs);

break;

...
}

}

KheDrsExprChildHasClosed does not removechild_e from e’s list of children, even though
KheDrsExprChildHasOpened addschild_e to e’s list of children. Once again the other details
depend on the expression type. Here they are forORexpressions:
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void KheDrsExprOrChildHasClosed(KHE_DRS_EXPR_OR eo,
KHE_DRS_EXPR child_e, int child_index)

{
if( child_e->u.int_val == 1 )
eo->closed_state += 1;

}

If the child’s value is 1, that makes one more closed child with value 1.

C.15.5. Searching

During searching,external and internal expressionsare handled differently. External expressions
are evaluated by these functions:

void KheDrsExprLeafSet(KHE_DRS_EXPR e, KHE_DRS_TASK_ON_DAY dtd,
KHE_DRS_RESOURCE_ON_DAY drd, KHE_DYNAMIC_RESOURCE_SOLVER drs);

void KheDrsExprLeafClear(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs);

KheDrsExprLeafSet is called by functionKheDrsPushAsst when it assignsdrd to dtd, and
KheDrsExprLeafClear is called byKheDrsPopAsst when that assignment is removed. (For
KheDrsPushAsst andKheDrsPopAsst, see Section C.10.) Both functions contain a switch with
one branch for each external expression type. Here is an example of one of the branches:

void KheDrsExprBusyTimeLeafSet(KHE_DRS_EXPR_BUSY_TIME ebt,
KHE_DRS_TASK_ON_DAY dtd, KHE_DRS_RESOURCE_ON_DAY drd)

{
ebt->u.int_val = (dtd->time == ebt->time ? 1 : 0);

}

If drd is assigned todtd, thenebt has value 1 ifdtd’s time isebt’s time, and 0 otherwise (no
resource is busy twice on one day).KheDrsExprBusyTimeLeafClear sets the value to 0.

For internal nodes evaluation is more complicated. It is done by calls on this function:

void KheDrsExprEvalSignature(KHE_DRS_EXPR e, KHE_DRS_SOLN prev_soln,
int next_di, KHE_DRS_SIGNATURE sig, KHE_DYNAMIC_RESOURCE_SOLVER drs);

This evaluatese on the day with open day indexnext_di (the open day afterprev_soln’s
day), and updatessig, by adding a value to the end of its signature, or changing its cost, or
both. We have already seen the calls on this function, inKheDrsMakeEvaluateAndAddSoln

(Section C.10). Again, its body is just a large switch, this time with one branch for each internal
expression type. Here is an example of one of the branches:
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void KheDrsExprOrEvalSignature(KHE_DRS_EXPR_OR eo,
KHE_DRS_SOLN prev_soln, int next_di, KHE_DRS_SIGNATURE sig,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i, i1, i2, val; KHE_DRS_EXPR child_e;

if( KheDrsExprOpenDayIsFirst((KHE_DRS_EXPR) eo, next_di) )
{
/* first day, so we have a 0 (false) value here */
val = 0;

}
else
{
/* not first day, so retrieve a previous value */
val = KheDrsExprSigVal((KHE_DRS_EXPR) eo, next_di - 1, prev_soln);

}

/* accumulate the values of the children of eo that finalized today */
KheDrsExprForEachOpenDayChild(eo, next_di, child_e, i)
if( child_e->u.int_val == 1 )
val = 1;

if( KheDrsExprOpenDayIsLast((KHE_DRS_EXPR) eo, next_di) )
{
/* last day; incorporate closed state and set value */
if( eo->closed_state > 0 )
val = 1;

eo->u.int_val = val;
}
else
{
/* not last day; store val in sig */
KheDrsExprPutSigVal((KHE_DRS_EXPR) eo, next_di, sig, val);

}
}

The details depend on the particular expression type, but the structure is common to all types.

First, find the value of the expression before this day. This will be an initial value (here 0)
if this is the expression’s first open day, and will depend on a value retrieved from the signature
of prev_soln otherwise.

Second, use iterator macroKheDrsExprForEachOpenDayChild (Section C.15.4) to visit
the children for whichnext_di is the last open day, retrieve their values, and incorporate those
values into the value of this expression. Here, to implement theOR function, any child whose
value is 1 causesval to be set to 1. The children have their final values, because the postorder
sorting ensures thatKheDrsExprEvalSignature is called on the children before the parent.

Third, save the value. If this is the expression’s last open day, the value simply remains in
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the expression (here, ineo->u.int_val) where it will be picked up by the expression’s parents
during theirKheDrsExprEvalSignature calls. If this is not the expression’s last open day, the
value (or whatever state needs to be stored) is added tosig.

When the value is a cost, the signature handling is the same but value handling is different.
No value is stored in the expression; instead,a cost is added tosig on every day. This is explained
in detail in Section C.15.8.

C.15.6. Types of expressions

In this section we present the types of expressions needed for the XESTT constraints.

First we have the types of external expressions in expression trees for event resource
constraints. There is just one of these:

ASSIGNED_TASK(t,g)
An expression whose value is 1 whent, a task on day object, is assigned a resource from
resource groupg, and 0 otherwise.

Next we have the types of external expressions in expression trees for resource constraints:

BUSY_TIME(r, t)
An expression whose value is 1 when resourcer is busy at timet, otherwise 0.

FREE_TIME(r, t)
An expression whose value is 1 when resourcer is free at timet, otherwise 0.

WORK_TIME(r, t)
An expression whose value is the workload of resourcer at timet (a float value). This
will be 0.0 whenr is free at timet.

BUSY_DAY(r,d)
An expression whose value is 1 when resourcer is busy on dayd, otherwise 0.

FREE_DAY(r,d)
An expression whose value is 1 when resourcer is free on dayd, otherwise 0.

WORK_DAY(r,d)
An expression whose value is the workload of resourcer on dayd (a float value). This
will be 0.0 whenr is free on dayd.

The last three of these are redundant; they are included because they speed up some common
cases. And here are the types of internal expressions:

OR
An expression whose value is 1 when at least one of its children has value 1, else 0.

AND
An expression whose value is 1 when all of its children have value 1, else 0.
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INT_SUM
An expression with anint value which is the sum of its children’sint values.

FLOAT_SUM
An expression with afloat value which is the sum of its children’sfloat values.

INT_DEV(a,b,z)
Hereaandbare integers,andz is a Boolean. This expression has a single child whose value
is an integer. Its value is the amount by which its child’s value falls short ofa or exceedsb.
If z is true, then as a special case its result is 0 if the child’s value is 0.

FLOAT_DEV(a,b,z)
Hereaandbare integers,andz is a Boolean. This expression has a single child whose value
is afloat. Its value is the amount by which its child’s value falls short ofa or exceedsb,
rounded up to the nearest integer. Ifz is true, then its result is 0 if the child’s value is 0.0.

COST(f ,w)
Heref is a cost function andw is a weight. This expression has a single integer valued child.
Its value is the result of applying cost functionf with weightw to the child’s value.

COSTexpressions appear frequently in the expression trees of Appendix C.15.7, but in
fact this type is not implemented. AllCOSTexpressions are replaced byINT_SUM_COST
expressions with no history, and usually with maximum limit zero. AnyINT_SUM or
INT_DEV children are also replaced. This is equivalent, and significantly reduces the
implementation burden while only slightly increasing running time and memory usage.

INT_SUM_COST(f ,w,a,b,z,hb,ha)
This expression is used when there is aCOSTexpression whose only child is anINT_DEV
expression whose only child is anINT_SUMexpression. It replaces those expressions and
does what they do. It also handles history before (hb) and history after (ha) values. A full
description of the implementation is given in Section C.15.9.

INT_SEQ_COST(f ,w,a,b,hb,ha)
Like INT_SUM_COST, except that its value is the total cost of sequences of children with
value 1. There is noz(AllowZero) parameter.INT_SEQ_COSTis easily the most complex
expression type. A full description of its implementation is given in Section C.15.10.

The author has considered adding aCOST_SUMexpression type. However, this has not been
done, mainly because cost expressions report their cost every day, not just on their last open day,
making aCOST_SUMexpression too different from other expressions to be worth having.

C.15.7. Expression trees for monitors

In this section we present expression trees for the XESTT event resource and resource monitors.
These trees are built when the solver is created. Only parts of them will be open on any particular
solve. We start with event resource monitors.

Assign resource monitors. Let the atomic tasks monitored bet1,… ,tk after breaking them
into single-day pieces of duration 1; their total duration isk. The expression tree is
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INT_SUM_COST

ASSIGNED_TASK(t1,R)

…

ASSIGNED_TASK(tk,R)

where theINT_SUM_COSTexpression has minimum limitk andR is the resource type. Each
leaf contributes 1when its task is assigned, and the deviation is the amount by which the sum of
these values falls short of the total duration,k.

When the cost function is linear, this tree may be divided into one tree per task on day:

INT_SUM_COST ASSIGNED_TASK(t1,R)

and so on, where theINT_SUM_COSTexpression has minimum limit 1. AnASSIGNED_TASK
expression has only a single open day, the day that its task on day is running, so these smaller
trees never contribute to the signature.

Prefer resources monitors. We use the same terminology as for assign resource monitors,
plus we letg be the set of preferred resources. In general the expression tree is

COST INT_SUM

ASSIGNED_TASK(t1,R− g)

…

ASSIGNED_TASK(tk,R− g)

Eachti assigned a resource not ing contributes 1 to the deviation. Once again, when the cost
function is linear this can be divided into one tree per task on day:

COST ASSIGNED_TASK(t1,R− g)

and so on. Again, these smaller treesnever contribute to the signature. TheCOSTandINT_SUM
expressions are replaced in the implementation byINT_SUM_COSTexpressions.

Avoid split assignments monitors. These do not occur in nurse rostering, and they are
ignored. What needs to be remembered on any day is the set of distinct resources assigned to the
monitored tasks. Without this, one cannot tell whether a later assignment increases the number
of distinct resources or not. There are various ways to encode this into the signature, although
none seem to be ideal. A bit set packed into integers leads to very large arrays in a trie structure.
An unpacked bit set leads to a large number of signature entries. A set of resource indexes varies
in length, although there is an upper limit: the number of tasks monitored that are running at
or before the current day. Perhaps a sequence of resource indexes, sorted and uniqueified, and
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padded out to the upper limit on length, would be best. One signature dominates another when
its resources are a subset of the other’s.

Limit resources monitors. Let g be the set of resources of interest. The tree is

INT_SUM_COST

ASSIGNED_TASK(t1,g)

…

ASSIGNED_TASK(tk,g)

This only divides into separate trees when the cost function is linear and both limits are 0, a case
that probably never arises in practice.

We turn now to the resource monitors for resourcer.

Avoid clashes monitors. No clashes can occur, because tasks with clashes are excluded,
and each resource is assigned to at most one task on each day. So these monitors are ignored.

Avoid unavailable times monitors. If the unavailable times aret1, t2,… ,tk, the tree is

COST INT_SUM

BUSY_TIME(r, t1)

BUSY_TIME(r, t2)

…

BUSY_TIME(r, tk)

There is an implicit maximum limit of 0. If the cost function is linear, or there is only one
unavailable time, each time contributes an independent value to the total cost, and we use
multiple trees instead:

COST BUSY_TIME(r, t1)

and so on. We prefer this because these expressions do not store a value in the signature. As
explained earlier, theCOST expressions and theINT_SUM expression are replaced in the
implementation byINT_SUM_COSTexpressions.

Limit idle times monitors . These are not used in nurse rostering. Handling them is future
work (feasible, but low priority); at present they are ignored.

Cluster busy times monitors. We have already seen a cluster busy times tree, for limiting
busy weekends, assuming a four-week instance with two shifts per day. Here it is again:



524 Appendix C. Resource Reassignment Using Dynamic Programming

INT_SUM_COST

OR

BUSY_TIME(r,1Sat1)

BUSY_TIME(r,1Sat2)

BUSY_TIME(r,1Sun1)

BUSY_TIME(r,1Sun2)

…

OR

BUSY_TIME(r,4Sat1)

BUSY_TIME(r,4Sat2)

BUSY_TIME(r,4Sun1)

BUSY_TIME(r,4Sun2)

Within each time group, if some day’s times are all present, theirBUSY_TIMEexpressions are
replaced by aBUSY_DAYexpression, to save time. Negative time groups become

AND

FREE_TIME(r,1Sat1)

FREE_TIME(r,1Sat2)

FREE_TIME(r,1Sun1)

FREE_TIME(r,1Sun2)

Again, FREE_DAYexpressions may replaceFREE_TIMEexpressions. And when anOR or
ANDexpression has exactly one child, theORor ANDexpression is omitted.

Limit busy times monitors. A limit busy times monitor may monitor several time groups,
like a cluster busy times monitor, but a deviation is calculated for each time group separately:
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COST INT_SUM

INT_DEV INT_SUM

BUSY_TIME(r,1Mon1)

…

BUSY_TIME(r,1Mon3)

…

INT_DEV INT_SUM

BUSY_TIME(r,4Mon1)

…

BUSY_TIME(r,4Mon3)

As before, a day’s worth ofBUSY_TIMEexpressions are replaced by aBUSY_DAYexpression,
and theCOSTexpression and the higherINT_SUMare replaced in the implementation by an
INT_SUM_COSTexpression.

If the cost function is linear, each child of the higherINT_SUMis made into its own tree,
andINT_SUM_COSTexpressions are used:

INT_SUM_COST

BUSY_TIME(r,1Mon1)

…

BUSY_TIME(r,1Mon3)

and so on. AnINT_SUM_COSTexpression is also used when there is only one time group.

Limit workload monitors . These are like limit busy times monitors, except that they keep
track of afloat workload rather than anint number of busy times:
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COST INT_SUM

FLOAT_DEV FLOAT_SUM

WORK_TIME(r,1Mon1)

…

WORK_TIME(r,1Mon3)

…

FLOAT_DEV FLOAT_SUM

WORK_TIME(r,4Mon1)

…

WORK_TIME(r,4Mon3)

Again, when the cost function is linear, this may be broken into one tree for each time group, and
a FLOAT_SUM_COSTexpression used, likeINT_SUM_COST(not currently implemented);
instead, theCOSTexpression and theINT_SUMexpression are replaced in the implementation
by anINT_SUM_COSTexpression.

Limit active intervals monitors . These have the same data as cluster busy times monitors,
without allow zero. Only the root expression is different:
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INT_SEQ_COST

OR

BUSY_TIME(r,1Sat1)

BUSY_TIME(r,1Sat2)

BUSY_TIME(r,1Sun1)

BUSY_TIME(r,1Sun2)

…

OR

BUSY_TIME(r,4Sat1)

BUSY_TIME(r,4Sat2)

BUSY_TIME(r,4Sun1)

BUSY_TIME(r,4Sun2)

As for cluster busy times monitors, negative time groups produceANDandFREE_TIMEexpres-
sions, and times making up complete days becomeBUSY_DAYandFREE_DAYexpressions.
However, when anORor ANDexpression has exactly one child, we do not omit it as we do for
cluster busy times monitors. The two reasons for this are explained in Section C.15.10.

C.15.8. The cost expression types

Two expression types,INT_SUM_COSTand INT_SEQ_COST, produce a cost. This section
presents what is common to thesecost expressions. Later sections treat the specifics of each.

Both types have a sequence of children, each of which may beactive or inactive.
INT_SUM_COSTconstrains the number of active children;INT_SEQ_COSTconstrains the
length of each non-empty maximal sequence of consecutive active children.INT_SUM_COST
was designed to handle the cluster busy times constraint, although for convenience it is also used
elsewhere.INT_SEQ_COSTwas designed to handle the limit active intervals constraint.

Defining and maintaining cost.Let C be a cost expression. We follow Section B.6, using
‘unassigned’ instead of ‘open’. At any moment, each child ofC is in one of three states:

1. It is inactiveif it has a known value, and that value is 0;

2. It isactiveif it has a known value, and that value is 1;
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3. It isunassignedif its value is unknown at this moment.

It will be unassigned if its value is affected by what happens on one of the selected days, and the
search is not up to that day yet. As the search progresses, along any one path children change
their state from unassigned to inactive or active.

In anycompletesolutionS(any solution in which all children are inactive or active), the cost
c(C,S) of C in Smust be equal to the cost of the constraint thatC models. But this leavesc(C,S)
undefined inincompletesolutions (in which one or more of the children are unassigned). A key
step is to definec(C,S) in incomplete solutions, ensuring that it has these two properties:

• In any complete solutionS, c(C,S) is equal to the cost of the constraint thatC models.

• As a search progresses (as children change their state from unassigned to inactive or active),
c(C,S) does not decrease.

The second condition ensures that it is safe for a search to prune incomplete solutions whose cost
equals or exceeds the cost of some known complete solution.

The largerc(C,S) is, the more likely it is thatScan be pruned, which is desirable. Ideally,
c(C,S) would be the largest value satisfying the two conditions. We will achieve that ideal for
INT_SUM_COSTexpressions, but not forINT_SEQ_COSTexpressions.

With cost defined for all constraint types in incomplete as well as complete solutions,
it becomes possible for the solver to maintain a well-defined current solution cost (the sum
of all constraint costs) at all times. Between solves, and during opening, this cost is stored in
variabledrs->solve_start_cost. Its initial value is taken from the KHE platform. Then as the
selected days are opened, children ofC change their state from inactive or active to unassigned,
c(C,S) changes (it cannot increase, by the second property), and the changes are accumulated in
drs->solve_start_cost by ChildHasOpened functions.

When solving begins, the cost of the root solution is set todrs->solve_start_cost. As
the search progresses and assignments are made, the cost changes are accumulated in the cost
fields of the search tree’s solutions. At the end of the solve, if one solution is chosen to be made
permanent, the assignments that produce it are made by the closing phase, and the cost changes
are accumulated indrs->solve_start_cost by ChildHasClosed functions. So the correct
cost is maintained continuously by the solver, for incomplete as well as complete solutions.

Cost expressions behave differently from other expressions in two respects. First, other
expressions have no value until their last open day is reached. But cost expressions have an
up-to-date cost at all times,which reaches its final,maximum value on the expression’s last active
day, but is well-defined on every day. Second, other expressions wait passively for their parents
to retrieve their values. Cost expressions actively report their values by adding each change of
value, complete or incomplete, to the cost of the next solution. This ensures that the cost of each
solution is as large as possible at all times, maximizing the chances for pruning.

History. The cluster busy times and limit active intervals constraints support history, and so
there arehistory_before, history, andhistory_after fields in both theINT_SUM_COST
andINT_SEQ_COSTexpression types, corresponding to theai, xi, andci values in [10].

Both constraints include a cost adjustment which subtracts away any cost from the previous
instance that would otherwise be counted twice. In [10], formulas are given for the amount to
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subtract. But no cost adjustments are needed here, because they are already included in the start
cost taken from the KHE platform.

Apart from cost adjustment, supporting history is equivalent to addingxi active children at
the front of the sequence of children, andci unassigned children at the end. A careful reading of
the appendix of [10] will justify this statement. Thesehistory childrennever change their state.
A solution is considered to be complete even ifci unassigned history children are present. Our
implementation does not explicitly add history children,becausexi andci could be large. Instead,
when counting children it adjusts the counts to include them. For simplicity of presentation, our
formulas assume that these children are present.

Determinants,deviations,and optimizing signature values.Cluster busy times constraints
have anAllowZero flag, which whentrue causes zero active time groups to produce cost 0,
whatever the limits. To express this in algebra, introduce the low-precedence operator

a :: b

Its value is 0 whenAllowZero is true anda = 0, andb otherwise. For constraints without an
AllowZero flag, its value is alwaysb.

Our two constraints contain a lower limitL and an upper limitU, such that0 ≤ L ≤ U.
These constrain the number of active children, either in total or consecutively. Call this number
of active children thedeterminant. If the determinant isp, then thedeviationis

p :: max(0,L − p,p − U)

If AllowZero is true andp = 0, the deviation is 0. Otherwise it is the amount by whichp falls
short ofL or exceedsU, or 0 if it does neither. At most one ofL − p andp − U can be positive,
because their sum,L − U, is at most zero owing toL ≤ U.

If in addition to thep active children there areq unassigned children, we are free to invent
a different formula, provided it leads to costs which satisfy the two conditions onc(C,S) given
above. That is, the formula must equal the one just given whenq = 0, and it must not decrease
when an unassigned child becomes inactive or active. We choose

g(p,q) = p :: max(0,L − p − q,p − U)

Clearly this equals the previous formula whenq = 0. When an unassigned child becomes active,
q decreases by 1andp increases by 1, and the value cannot decrease. When an unassigned child
becomes inactive,q decreases by 1 andp does not change, and again the value cannot decrease.
A similar formula arises, naturally enough, when analysing history.

Given the deviationg(p,q), we calculate the cost by applying a monotone non-decreasing
cost functionf , which could be linear (f (x) = wx for some non-negativeweight w), quadratic
(f (x) = 2wx ), or step (f (x) = w whenx > 0and 0 otherwise). That is, the cost isf (g(p,q)).

Now suppose that the value stored in the signature is the number of active children (either in
total or consecutive) to the left of the point that the solve has reached. Call this valuep, because
it is just the determinant, or that part of the determinant that we know about up to this point.

The running time of the solve depends on how many distinct signatures there can be, which
in turn depends on how many distinct values ofp there can be. So we now look for optimizations
that reduce this number without compromising correctness.
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Suppose that solutionS1with determinantp1 is changed into solutionS2 with determinantp2,
in a way that leaves all inactive and active children untouched but makes zero or more unassigned
children inactive or active. The change in cost reported byC is

c(C,S2) − c(C,S1) = f (g(p2,q2)) − f (g(p1,q1))

We know from how we have defined cost that this is non-negative.

When calculating thisreported costwe retrieve the valuep1stored inS1’s signature. Is there
some value−p such that if we store min(−p,p1) in S1’s signature instead ofp1, the reported cost is
the same? If so, we have reduced the stored value to at most−p without corrupting the cost.

Suppose there is no upper limitU. Informally, we should not need to store any value larger
thanL, since all costs are 0 once we reachL. More precisely,we can let−p = max(0,L − qc), where
qc is any lower bound on the number of unassigned children on any day, for exampleci.

To prove this result formally, we first observe that ifp1 < L − qc, then the value stored is just
p1. So supposep1 ≥ L − qc, or equivalentlyL − p1 − qc ≤ 0. From this we get

c(C,S1) = f (g(p1,q1))

= f (p1 :: max(0,L − p1 − q1))

≤ f (p1 :: max(0,L − p1 − qc))

= 0

The number of active children cannot decrease, sop2 ≥ p1, from which we getL − p2 − qc ≤ 0
andc(C,S2) = 0. So the reported cost is 0 for any value ofp1 greater than or equal toL − qc, and
accordingly we can choose for−pany value which is at leastL − qc. We choose−p = max(0,L − qc),
because we do not want negative values in signatures.

We should also ensure thatp2 does not go wrong: reporting the correct cost is not enough,
we also need to store away the correct new signature value. But this is trivial becausep2 ≥ p1.

Now suppose there is an upper limitU, with or without anL, and that the cost functionf is
linear. Informally, we should not need to store any value larger thanU, since beyond that point
thechangein cost,which is what we report,does not vary. So let−p = U. To prove that this works,
we first observe that ifp1 < U, then the value stored is justp1. So supposep1 ≥ U. Then

g(p1,q1) = p1 :: max(0,L − p1 − q1,p1 − U)

= p1 − U

To see this, first consider thatp1 − U ≥ 0 impliesL − p1 − q1 ≤ 0, simplifying the max expression
to max(0,p1 − U), which is justp1 − U sincep1 − U ≥ 0. Sog(p1,q1) is just

p1 :: p1 − U

But thenp1 = 0 impliesp1 − U ≤ 0, which combined withp1 − U ≥ 0 gives usp1 − U = 0, so we
can simplify again to justp1 − U. We also havep2 ≥ p1 ≥ U, and so the same argument proves
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thatg(p2,q2) = p2 − U. So by the linearity off ,

c(C,S2) − c(C,S1) = f (g(p2,q2)) − f (g(p1,q1))

= f (g(p2,q2) − g(p1,q1))

= f ((p2 − U) − (p1 − U))

= f (p2 − p1)

Now p2 − p1 is the number of children who changed from unassigned to active, and this is
independent of the signature value. Accordingly we can choose for−p any value which is at least
U. We choose−p = U.

Finally, suppose there is an upper limitU, with or without anL, and that the cost function
f is Step. Then we may take−p = U + 1. This is because when the number of active children is
U + 1or more,f is linear (with gradient 0), so the previous analysis applies.

These optimizations are calledsignature value adjustmentsin the implementation. There
is a constant of type

typedef enum {
KHE_DRS_ADJUST_ORDINARY,
KHE_DRS_ADJUST_NO_MAX,
KHE_DRS_ADJUST_LINEAR,
KHE_DRS_ADJUST_STEP

} KHE_DRS_ADJUST_TYPE;

in each cost expression, which is set when the expression is created, and records whether the
expression is ordinary (no adjustment available), has noU, hasU and a linear cost function,
or hasU and a step cost function. FunctionKheDrsAdjustedSigVal receives the unadjusted
signature value and returns the adjusted one. It switches on the adjust type:
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int KheDrsAdjustedSigVal(int val, KHE_DRS_ADJUST_TYPE adjust_type,
int min_limit, int max_limit, int qc)

{
int pbar;
switch( adjust_type )
{
case KHE_DRS_ADJUST_ORDINARY:

return val;

case KHE_DRS_ADJUST_NO_MAX:

pbar = max(0, min_limit - qc);
return min(pbar, val);

case KHE_DRS_ADJUST_LINEAR:

pbar = max_limit;
return min(pbar, val);

case KHE_DRS_ADJUST_STEP:

pbar = max_limit + 1;
return min(pbar, val);

default:

HnAbort("KheDrsAdjustedSigVal internal error (adjust_type)");
return val; /* keep compiler happy */

}
}

This follows the algebra above.

Dominance tests.As each expression opens, it is required to supply each of its open
days except its last open day with a dominance test saying how two signature values for that
expression are to be compared during dominance testing. This test is a small record with three
fields. We now investigate what the values of these fields should be.

The first field,Z, is just the allow zero flag of the corresponding constraint. Its value should
be true when the expression represents a constraint with an allow zero flag, and false otherwise.

The second field,a, is required by Section C.8 to be an integer satisfyinga ≤ U which is so
small that if the determinant of the constraint has any valuev ≤ a, then the constraint cannot ever
violate the maximum limit, either now or on subsequent days. If there is no such valuev, a must
be negative. If there is no maximum limit, then everyv satisfies the condition, soa should be∞
(represented byINT_MAX).

The appropriate value here isa = ∞ when there is no maximum limit, and otherwise
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a = U − q, whereq is the number of unassigned children on days following the current day. Even
if all of these turn out to be active, ifv ≤ a we still getv ≤ a = (U − q) + q = U and the number
of active children cannot exceed the maximum limit.

The third field,b, is required by Section C.8 to be an integer satisfyingb ≤ L which is so
large that if the determinant of the constraint has a valuev ≥ b, then the constraint cannot ever
violate its minimum limit, either now or on subsequent days. If there is no minimum limit,
then everyv satisfies the condition, sob should be− ∞, although0 is used in practice, since all
signature values are at least 0.

The appropriate value here isb = L when there is a minimum limit, andb = 0when there is
no minimum limit.

C.15.9. TheINT_SUM_COSTexpression type

The INT_SUM_COSTexpression type is a straightforward application of the ideas from the
previous section. Apart from the initial cost adjustment, which we don’t need to worry about,
the cost ofINT_SUM_COSTexpressionC in solutionS is just

c(C,S) = f (g(p,q))

wherep is the number of active children ofC in S, including history children,andq is the number
of unassigned children ofC in S, also including history children.

Functiong(p,q) is implemented by function

int KheDrsExprIntSumCostDev(KHE_DRS_EXPR_INT_SUM_COST eisc,
int children_with_value_1, int children_with_unknown_value)

{
int val;
if( children_with_value_1 == 0 && eisc->allow_zero )
return 0;

if( children_with_value_1 > eisc->max_limit )
return children_with_value_1 - eisc->max_limit;

val = children_with_value_1 + children_with_unknown_value;
return (val < eisc->min_limit ? eisc->min_limit - val : 0);

}

wherechildren_with_value_1 is p andchildren_with_unknown_value is q.

When a child opens, its state changes from active or inactive to unassigned, and the cost
changes accordingly and is reported todrs->solve_start_cost:
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void KheDrsExprIntSumCostChildHasOpened(KHE_DRS_EXPR_INT_SUM_COST eisc,
KHE_DRS_EXPR child_e, int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int old_dev, new_dev, i; KHE_DRS_EXPR e; KHE_COST old_cost, new_cost;
old_dev = KheDrsExprIntSumCostDev(eisc, eisc->history + eisc->closed_state,

HaArrayCount(eisc->open_children) - 1 + eisc->history_after);
eisc->closed_state -= child_e->u.int_val;
new_dev = KheDrsExprIntSumCostDev(eisc, eisc->history + eisc->closed_state,

HaArrayCount(eisc->open_children) + eisc->history_after);
if( old_dev != new_dev )
{

old_cost = KheDrsCost(eisc->cost_fn, eisc->combined_weight, old_dev);
new_cost = KheDrsCost(eisc->cost_fn, eisc->combined_weight, new_dev);
drs->solve_start_cost += new_cost - old_cost;

}
}

The newly opened child,child_e, is added toeisc->open_children before this function is
called. SoHaArrayCount(eisc->open_children) - 1 is the number of open children before
this child is added, and it is clear thatold_dev, the deviation before the child is added, is being
calculated with the correct values ofp andq.

HaArrayCount(eisc->open_children) is the number of open children after the child is
added, and the closed state, which is the number of closed children which are active, has reduced
by child_e->u.int_val (that is, by 1 if the child was active, and by 0 otherwise). Sonew_dev,
the deviation after the child is added, is also calculated with the correct values ofp andq.

We’ll omit KheDrsExprIntSumCostChildHasClosed. It is very similar, only increasing
eisc->closed_state rather than decreasing it.KheDrsExprIntSumCostSetClosedValue
does nothing, because no value is stored in the expression.

Last comesKheDrsExprIntSumCostEvalSignature, the most complexINT_SUM_COST
function. It has the same structure asKheDrsExprOrEvalSignature (Section C.15.5), and the
idea of calculating old and new deviations, seen above, appears here too. The variables have
similar names to the algebra variables from Section C.15.8. Here it is:
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void KheDrsExprIntSumCostEvalSignature(KHE_DRS_EXPR_INT_SUM_COST eisc,
KHE_DRS_SOLN prev_soln, int next_di, KHE_DRS_SIGNATURE sig,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int p1, p2, qc, q1, q2, i, i1, i2, dev1, dev2, adjusted_val;
KHE_DRS_EXPR child_e; KHE_COST old_cost, new_cost;

/* get p1, qc, q1, and dev1 */
if( KheDrsExprOpenDayIsFirst((KHE_DRS_EXPR) eisc, next_di) )

p1 = eisc->history + eisc->closed_state;
else

p1 = KheDrsExprSigVal((KHE_DRS_EXPR) eisc, next_di - 1, prev_soln);
qc = eisc->history_after;
q1 = qc + KheDrsExprOpenChildrenAtOrAfter((KHE_DRS_EXPR) eisc, next_di);
dev1 = KheDrsExprIntSumCostDev(eisc, p1, q1);

/* get p2, q2, and dev2 */
p2 = p1;
KheDrsExprForEachOpenDayChild(eisc, next_di, child_e, i)

p2 += child_e->u.int_val;
q2 = qc + KheDrsExprOpenChildrenAtOrAfter((KHE_DRS_EXPR) eisc, next_di + 1);
dev2 = KheDrsExprIntSumCostDev(eisc, p2, q2);

/* report the change in cost, if any */
if( dev2 != dev1 )
{

new_cost = KheDrsCost(eisc->cost_fn, eisc->combined_weight, dev2);
old_cost = KheDrsCost(eisc->cost_fn, eisc->combined_weight, dev1);
sig->cost += new_cost - old_cost;

}

/* if not eisc’s last day, store p2 (adjusted) in next_soln */
if( !KheDrsExprOpenDayIsLast((KHE_DRS_EXPR) eisc, next_di) )
{

adjusted_val = KheDrsAdjustedSigVal(p2, eisc->adjust_type,
eisc->min_limit, eisc->max_limit, qc);

KheDrsExprPutSigVal((KHE_DRS_EXPR) eisc, next_di, sig, adjusted_val);
}

}

The number of children whose value is unassigned iseisc->history_after (that is,ci) plus the
number of open children at or after the relevant day. The change in cost is reported immediately
to sig->cost, not held ineisc for parents to retrieve. The value stored in the signature isp2,
adjusted byKheDrsAdjustedSigVal as described in Section C.15.8.
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C.15.10. TheINT_SEQ_COSTexpression type

The INT_SEQ_COSTexpression type is very similar to theINT_SUM_COSTexpression type:
it has a lower limitL and an upper limitU such that0 ≤ L ≤ U, and a sequence of children, each
of which may be active, inactive, or (in incomplete solutions) unassigned. However, there is no
AllowZero option, and what is constrained is the length of each non-empty maximal sequence
of consecutive active children, not the total number of active children.

Child order. In an INT_SEQ_COSTexpression, the order of the children matters. This is
a major complication, not found in other expressions. Our first major task is to look into it.

Although it never happens in practice, the last open days of the open children (taken in
order) could be out of chronological order. For other kinds of expressions, where the children’s
order does not matter, the open children are sorted by functionKheDrsExprChildHasOpened

(Section C.15.4) so that their last open days are in chronological order. But doing that to an
INT_SEQ_COSTexpression would change its meaning.

Instead of sorting the children, we change their open day ranges. For each open childyi
after the first, if the last open day ofyi precedes the last open day ofyi−1, then the last open day
of yi is increased to the last open day ofyi−1. This does not break anything, it merely causesyi to
contribute a value to the signature on more days than it otherwise would have done. It is done
as each child is opened, so the last open day ofyi+1 is affected by any previous adjustment to the
last open day ofyi, and so on. Thankfully, after doing this we can forget about it.

The need to change open day ranges is one of the two reasons why, as mentioned previously
(Section C.15.7), we do not allow a child of anINT_SEQ_COSTexpression to be a leaf. A leaf
may be shared with other expressions,and increasing its open day range might well disrupt them.
But non-leaf expressions are not shared, so their open day ranges can be increased safely.

The other reason is that theINT_SEQ_COSTexpression type is much easier to implement
if it can be assumed that the children of anINT_SEQ_COSTexpression are opened in increasing
child index order. This will happen if the postorder indexes of the children are increasing,
which is easily ensured if the children are all newly created, simply by visiting the time groups
of the monitor in the natural order during construction. But it cannot be guaranteed for shared
expressions, since they may be created at arbitrary points during the initialization.

These redundant expressions slow down the evaluation of some constraints slightly, for
example constraints on consecutive night shifts. But, importantly, they do not make signatures
any longer (except when open day ranges are extended), as a moment’s thought will show.

In practice, the number of children with a given last open day is always at most 1. However,
to cover all cases we allow any number of children to have the same last open day.

Cost. We need to define the cost of anINT_SEQ_COSTexpressionC whose children
may be unassigned as well as active or inactive, such that when there are no unassigned children
(except history children) the cost is that of the limit active intervalsconstraint,and as assignments
are made the cost is non-decreasing. This is harder than forINT_SUM_COSTexpressions.

An interval is a sequence of adjacent children. Anactive interval, or a-interval, is a
maximal non-empty sequence of consecutive active children. Anau-interval is a maximal
non-empty sequence of consecutive children which are either active or unassigned. History
children are included in both kinds of intervals.

Two a-intervals cannot overlap or abut, and two au-intervals cannot overlap or abut. Every
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a-interval is contained within an au-interval, but despite this intimate connection, we handle
a-intervals and au-intervals separately.

As a search proceeds,unassigned children become inactive or active. These changes cannot
make an a-interval shorter. Accordingly, and because (in the absence of theAllowZero flag) all
cost functionsf are monotone non-decreasing, if we assign cost

f (max(0,l (∆) − U))

to a-interval∆ with lengthl (∆), this will be non-decreasing as the search progresses, and at the
end it will be the cost contributed by∆ if it violates the upper limitU. Similarly, making an
unassigned child inactive or active cannot make an au-interval longer, so if we assign cost

f (max(0,L − l (∆)))

to au-interval∆ with lengthl (∆), this will be non-decreasing as the search progresses, and at the
end it will be the cost contributed by∆ if it violates the lower limitL.

So then, in any solutionS, let A be the set of a-intervals inS, and letAU be the set of
au-intervals inS. The cost ofC in Smay be defined to be

c(C,S) = ∑
∆∈ A

f (max(0,l (∆) − U)) + ∑
∆∈ AU

f (max(0,L − l (∆)))

and this will be non-decreasing as assignments are made, and equal to the true cost ofC after
all assignments are made, as required. This second point follows because at the end there are no
unassigned children (ignoring history children for the moment), soA = AU and

c(C) = ∑
∆∈ A

[f (max(0,l (∆) − U)) + f (max(0,L − l (∆)))]

= ∑
∆∈ A

f (max(0,l (∆) − U,L − l (∆)))

which is the cost of the limit active intervals constraint. The second line follows because at most
one of l (∆) − U andL − l (∆) can be positive, andf (0) = 0for all cost functionsf .

There are however three points of detail to consider. First, we have to take account of
history, in the form of the ‘history’valuexi and the ‘history after’valueci. As explained in [10],
there are three things to do to convert an implementation that does not support history (as we
have here) into one that does. First, whenxi > 0we have to subtract cost

f (max(0,L − xi − bi − ci,xi − U))

wherebi is the number of children ofC. This happens automatically when we set the start cost to
the cost of the solution as reported by KHE, since KHE performs this subtraction. Then, we have
to include the equivalent ofxi active children at the start of the sequence of children. We do this
by ensuring that any a-interval or au-interval at the start is extendedxi places to the left. Finally,
we have to include the equivalent ofci unassigned children at the end. We do this by ensuring
that any au-interval at the end is extendedci places to the right.
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Our second point of detail is that if an au-interval has no active children at all, it might never
lead to any active interval (Section B.6). Sof (max(0,L − l (∆))) is only correct when∆ contains
at least one active child. We handle this by changing the function that finds the deviation of an
au-interval (KheDrsAUIntervalDev below) so that when there are no active children, it returns
0 instead of max(0,L − l (∆)).

Our third point concerns what happens when a-intervals and au-intervals are created and
destroyed as the search proceeds. We have shown that a given∆ cannot decrease in cost, but
what if it is created or destroyed?

Making an unassigned child inactive has no effect on the set of a-intervals. It splits the
au-interval containing that child into two pieces. If the unsplit au-interval has no active children,
it has cost 0 so there can be no cost decrease. If it has at least one active child, then at least one of
the pieces has that child and is shorter than the original, so again there can be no cost decrease.

Making an unassigned child active has no effect on the set of au-intervals. If this is the
first active child in au-interval∆ it changes the deviation from 0 to max(0,L − l (∆)), which
cannot decrease cost. If it creates an a-interval of length 1, or increases the length of an existing
a-interval by 1, that too cannot decrease cost. This leaves one case, when two a-intervals∆1 and
∆2 are merged into one a-interval∆ whose lengthl (∆) is l (∆1) + l (∆2) + 1. The change in cost is

f (max(0,l (∆) − U)) − f (max(0,l (∆1) − U)) − f (max(0,l (∆2) − U))

This is non-negative whenf is linear or quadratic, but it may be negative iff is a step function,
for example whenU = 1andl (∆1) = l (∆2) = 2. The step function counts the number of over-long
intervals, and that number has decreased. We handle this by changing the function that finds the
deviation of an a-interval (KheDrsAIntervalDev below) so that when the cost function isStep
and there is an unassigned child adjacent on the left, it returns 0 instead of max(0,l (∆) − U).
Then∆2 contributes cost 0 before the assignment, and the problem is solved.

To see that our formula falls short of the ideal even whenf is not a step function, consider
this example, which could arise in practice when reassigning weekends:

 0 
W

Wed

 1 
Thu

Thu

 1 
Fri

Fri

 ? 
Sat

Sat

 ? 
Sun

Sun

 1 
Mon

Mon

 1 
T

Tue

 0 
W

Wed

writing ‘0’ for inactive, ‘1’ for active, and ‘?’ for unassigned. SupposeL = 3andU = 5. As the
search proceeds, if both unassigned children become active we have one active interval of length
6 and deviation 1; if both become inactive we have two active intervals, each of length 2 and
deviation 1;and if one becomes active we have two active intervals,one of length 2 and deviation
1, the other of length 3 and deviation 0. The total deviation is at least 1, and ideally our formula
would give this, but in fact it gives 0: there are two a-intervals, both under the maximum limit,
and one au-interval, over the minimum limit. There seems to be no easy way to calculate the
ideal deviation in such cases, so we don’t try to.

Sequences.In this section, asequencemeans a sequence of adjacent children of an
INT_SEQ_COSTexpression. The implementation makes use of three kinds of sequences:
closed sequences (defined below), a-intervals, and au-intervals. We represent a sequence by a
pair of indexes[a,b] such thata ≤ b. Consider this sequence of four children:
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0 1 2 3

We’ve shown their indexes inside, starting from 0 as is usual in C. But actually, the indexes that
define a sequence are indexes into the sequence of gaps that precede and follow the children:

0
0

0

1
1

1

2
2

2

3
3

3
4

4

So the pair of indexes[1,3] for example specifies the children with indexes 1and 2, because gap 1
precedes child 1and gap 3 follows child 2. We call the first index thestart index; as well as being
the index of a gap, it also happens to be the index of the first specified child. We call the second
index thestop index; it is one greater than the index of the last specified child.

These details are important because they make an empty sequence be more than an empty
sequence of children; it has a definite location in the enclosing sequence. For example,[1,1] is
the empty sequence starting at index 1. It is different from, say,[4,4]. We do it this way with
good reason. For example, there is an operation which extends a sequencek places to the right.
Applied to[a,b], the result is[a,b + k]. This makes sense even when[a,b] is empty.

Closed sequences.A closed sequence, denotedZi, is the sequence of closed children lying
between two open children, or between an open child and one end of the sequence of children.
EachINT_SEQ_COSTobject contains a sequence of closed sequences. They summarise the
closed children, allowing them to be skipped over quickly while solving.

Consider the sequencey0,… ,yk−1of all open children ofC. We index them starting from 0
to agree with the C implementation. They appear inC’s list of open children in the same order
that they appear inC’s list of all children, thanks to the work done above on the order that the
children are opened. This order is the one used when naming themy0,… ,yk−1. Now consider the
list of all children. Within this list, assumingk > 0, letZ0 be the closed sequence of zero or more
closed children precedingy0; for i in the range0 < i < k let Zi be the closed sequence of zero or
more closed children followingyi−1 and precedingyi; and letZk be the closed sequence of zero
or more closed children followingyk−1. The full sequence of all children thus looks like this:

Z0 y0 Z1 y1 Z2 … Zk−1 yk−1 Zk

If k = 0 the whole sequence is a closed sequence; letZ0 be that sequence. Although we prefer
to think of history values as sequences of children, they are not included here, because there is
no efficient way here to representci, which could be very large.

This way of defining theZi can be confusing,because it has little connection with open days.
The open day ranges of the open children may be adjusted, as explained above, and the closed
children have no open day ranges at all. Instead, the definition relies on the order of the children,
which is after all what matters, and on the fact that the open children are not reordered.

EachZi is represented in the implementation by an object of typeKHE_DRS_CLOSED_SEQ:
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typedef struct {
int start_index;
int stop_index;
int active_at_left;
int active_at_right;

} *KHE_DRS_CLOSED_SEQ;

Fieldsstart_index andstop_index are the start index and stop index of the closed sequence.
Field active_at_left is the number of active children withinZi adjacent to its left end, and
active_at_right is the number of active children withinZi adjacent to its right end. If every
child in Zi is active,active_at_left andactive_at_right are equal to each other and to the
length ofZi. This will be the case, for example, whenZi is empty.

Before a solve, theyi are opened in increasing order, as we know. Initially onlyZ0 is present,
representing all the children. As eachyi is opened, it is appended to the list of open children, and
the last closed sequence,Zi, is split into two,a shortenedZi and a newZi+1. The reverse procedure
is followed as open children are closed at the end of the solve. Splitting a closed sequence into
two and merging two closed sequences into one are the only non-trivial operations on this type.

A-intervals. Here is the type representing an a-interval:

typedef struct {
int start_index;
int stop_index;
bool unassigned_precedes;

} KHE_DRS_A_INTERVAL;

It is a non-pointer type, to avoid memory allocation. In addition to the start index and stop
index, it containsunassigned_precedes, which istrue when an unassigned child immediately
precedes this interval. This is needed when calculating deviations:

int KheDrsAIntervalDev(KHE_DRS_A_INTERVAL ai,
KHE_DRS_EXPR_INT_SEQ_COST eisc)

{
int len;
if( ai.unassigned_precedes && eisc->cost_fn == KHE_STEP_COST_FUNCTION )

return 0;
len = ai.stop_index - ai.start_index;
return len > eisc->max_limit ? len - eisc->max_limit : 0;

}

If an unassigned child immediately precedes this interval and the cost function isStep, the
deviation is 0. Otherwise the deviation is the amount by which the interval’s length exceedsU.

There are also straightforward functions for creating a-intervals, finding the a-interval
adjacent to a given point, merging two a-intervals, and so on. An example appears below. They
optimize by not searching the children directly; instead they assume that the closed sequences
are up to date and search those, where most of the work has already been done.

Unlike a closed sequence, an a-interval at the extreme left includes theeisc->history

active children from history. It does this by setting its start index to-eisc->history. Because



C.15. Expressions 541

of this,KheDrsAIntervalDev does not need to pay any special attention to history.

An example of this treatment of history occurs in the following function, which finds the
(possibly empty) a-interval just to the left of the open child with a givenopen_index:

KHE_DRS_A_INTERVAL KheDrsAIntervalFindLeft(
KHE_DRS_EXPR_INT_SEQ_COST eisc, int open_index)

{
KHE_DRS_CLOSED_SEQ dcs;
dcs = HaArray(eisc->closed_seqs, open_index);
if( !KheDrsClosedSeqAllActive(dcs) )
{

/* an inactive child precedes the active_at_right active children */
return KheDrsAIntervalMake(dcs->stop_index - dcs->active_at_right,

dcs->stop_index, false);
}
else if( open_index > 0 )
{

/* an unassigned child precedes the active_at_right active children */
return KheDrsAIntervalMake(dcs->stop_index - dcs->active_at_right,

dcs->stop_index, true);
}
else
{

/* nothing but history precedes the active_at_right active children */
return KheDrsAIntervalMake(dcs->stop_index - dcs->active_at_right

- eisc->history, dcs->stop_index, false);
}

}

The stop index of this a-interval is the stop index of the closed sequence just to the left. Its start
index isdcs->active_at_right places left of there, pluseisc->history more places to the
left if we are at the start. The function also finds a suitable value forunassigned_precedes, the
third parameter ofKheDrsAIntervalMake.

In the discussion earlier, a-intervals were said to be maximal and non-empty. There is
nothing about theKHE_DRS_A_INTERVAL type which guarantees these conditions. The functions
that use a-intervals never create non-maximal ones, but they may create empty ones. This is
done to reduce the number of cases. For example, if one of the children of an a-interval becomes
unassigned or inactive, the a-interval splits into two pieces,one on each side of the changed child.
Either or both could be empty, but by allowing a-intervals to be empty the implementation has
just one case to handle. Empty a-intervals have deviation 0, so they cause no problems.

AU-intervals. Here is the type representing an au-interval:
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typedef struct {
int start_index;
int stop_index;
bool has_active_child;

} KHE_DRS_AU_INTERVAL;

Once again it is a non-pointer type. In addition to the start index and stop index, it contains
has_active_child, which istrue when the interval contains at least one active child. This is
needed when calculating deviations:

int KheDrsAUIntervalDev(KHE_DRS_AU_INTERVAL aui,
KHE_DRS_EXPR_INT_SEQ_COST eisc)

{
int len;
if( !aui.has_active_child )
return 0;

len = aui.stop_index - aui.start_index;
return len < eisc->min_limit ? eisc->min_limit - len : 0;

}

If the interval contains no active children, the deviation is 0. Otherwise the deviation is the
amount by which the interval’s length falls short ofL. As for a-intervals, there are functions for
creating, finding, merging, and splitting au-intervals, which assume that closed sequences are
up to date and search them rather than the children. Examples of these functions appear below.
Once again, the code that creates au-intervals never creates non-maximal ones, and although it
does create empty ones, those have deviation 0, becausehas_active_child is necessarily 0.

An au-interval at the extreme left includes the active children from history, by setting its
start index to-eisc->history. An au-interval at the extreme right includes the unassigned
children from history,by increasing its stop index byeisc->history_after. When there are no
inactive children (unlikely,but possible), both of these adjustments apply to the same au-interval.
Because of this,KheDrsAUIntervalDev does not need to pay any special attention to history.

Here is an example of an au-interval function. It finds the (possibly empty) au-interval just
to the left of the open child with the givenopen_index:
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KHE_DRS_AU_INTERVAL KheDrsAUIntervalFindLeft(
KHE_DRS_EXPR_INT_SEQ_COST eisc, int open_index)

{
KHE_DRS_CLOSED_SEQ dcs; KHE_DRS_AU_INTERVAL res; int i;

/* initialize res to the active children at the right of dcs */
dcs = HaArray(eisc->closed_seqs, open_index);
res = KheDrsAUIntervalMake(dcs->stop_index - dcs->active_at_right,
dcs->stop_index, true);

if( !KheDrsClosedSeqAllActive(dcs) )
return res;

/* now keep looking to the left of there */
for( i = open_index - 1; i >= 0; i-- )
{
/* return early if eisc->min_limit reached */
if( KheDrsAUIntervalLength(res) >= eisc->min_limit )
return res;

/* res includes the open unassigned child before the previous dcs */
KheDrsAUIntervalExtendToLeft(&res, 1, false);

/* res includes the active children at the right of the next dcs */
dcs = HaArray(eisc->closed_seqs, i);
KheDrsAUIntervalExtendToLeft(&res, dcs->active_at_right, true);
if( !KheDrsClosedSeqAllActive(dcs) )
return res;

}

/* at the start, so res includes history */
KheDrsAUIntervalExtendToLeft(&res, eisc->history, true);
return res;

}

It starts with the closed sequence objectdcs immediately to the left of the open child. The
active_at_right active children at the right ofdcs are part of the au-interval, but if they are
preceded by an inactive child (ifdcs is not entirely active) it’s time to stop. Otherwise the open
child precedingdcs is included, as are theactive_at_right active children of the preceding
closed sequence, and so on.

The loop in this function could cause it to run for longer than a constant amount of time.
However, it returns early if the interval length reacheseisc->min_limit. This is safe because
the cost at that point is 0, so there is no need to make the interval any longer. It keeps the running
time constant, assuming (as is true in practice) that the minimum limit is a small constant.

KheDrsAUIntervalExtendToLeft extends an au-interval to the left:
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void KheDrsAUIntervalExtendToLeft(KHE_DRS_AU_INTERVAL *aui,
int extra_len, bool has_active_child)

{
if( extra_len > 0 )
{
aui->start_index -= extra_len;
if( has_active_child )
aui->has_active_child = true;

}
}

This is done by reducing its start index byextra_len, and updating itshas_active_child if
new children are actually added.

Opening and closing.Each of the four changes to the state of a child (inactive or active
to unassigned when opening, and unassigned to inactive or active when closing) takes away old
intervals (both a-intervals and au-intervals) and adds in new ones. We treat any change to any
interval as taking away one interval and adding another. We need to find the old intervals and
subtract their costs, and find the new intervals and add their costs.

This is straightforward in principle, although to explain all the code in detail would be
tedious. As an example, here is what happens when the child whose index in the sequence of
open children isopen_index is opened and changes its state from inactive to unassigned. First,
it is added to the list of open children and itsZi is split intoZi andZi+1. Then comes this:

/* the au-intervals on each side merge */
aui_left = KheDrsAUIntervalFindLeft(eisc, open_index);
aui_right = KheDrsAUIntervalFindRight(eisc, open_index);
aui_merged = KheDrsAUIntervalMerge(aui_left, aui_right, false);
drs->solve_start_cost += KheDrsAUIntervalCost(aui_merged, eisc)

- KheDrsAUIntervalCost(aui_left, eisc)
- KheDrsAUIntervalCost(aui_right, eisc);

/* the a-interval to the right changes its unassigned_precedes */
ai_before = KheDrsAIntervalFindRight(eisc, open_index, false);
ai_after = KheDrsAIntervalFindRight(eisc, open_index, true);
drs->solve_start_cost += KheDrsAIntervalCost(ai_after, eisc)

- KheDrsAIntervalCost(ai_before, eisc);

The au-intervals on each side of the changed child become merged, so we add in the cost of the
new merged interval and subtract away the costs of the two old unmerged intervals (possibly
empty). And the a-interval to the right changes itsunassigned_precedes from false to true,
which could change its cost, so again we add the new and subtract the old.

No au-intervals or a-intervals are preserved in any data structure. As in the example above,
they are all calculated on the fly as required.

Searching.Searching is basically functionKheDrsExprIntSeqCostEvalSignature:
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void KheDrsExprIntSeqCostEvalSignature(KHE_DRS_EXPR_INT_SEQ_COST eisc,
KHE_DRS_SOLN prev_soln, int next_di, KHE_DRS_SIGNATURE sig,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int open_index, i1, i2, active_len, adjusted_len; KHE_DRS_EXPR child_e;
KHE_DRS_AU_INTERVAL aui_left, aui_right, aui_merged, aui_before, aui_after;
KHE_DRS_A_INTERVAL ai_right_before, ai_right_after;
KHE_DRS_A_INTERVAL ai_left, ai_right, ai_merged; KHE_DRS_CLOSED_SEQ dcs;

/* initialize active_len */
if( KheDrsExprOpenDayIsFirst((KHE_DRS_EXPR) eisc, next_di) )
{

dcs = HaArrayFirst(eisc->closed_seqs);
active_len = dcs->active_at_right;
if( KheDrsClosedSeqAllActive(dcs) )

active_len += eisc->history;
}
else

active_len = KheDrsExprSigVal((KHE_DRS_EXPR) eisc, next_di-1, prev_soln);

/* handle each child_e whose last open day is next_di */
KheDrsExprForEachOpenDayChild(eisc, next_di, child_e, open_index)
{

if( child_e->u.int_val == 0 )
{

/* child_e moves from unassigned to inactive: update cost */
... see below ...

/* set active_len for next iteration (child_e is now inactive) */
dcs = HaArray(eisc->closed_seqs, open_index + 1);
active_len = dcs->active_at_right;

}
else
{

/* child_e moves from unassigned to active: update cost */
... see below ...

/* set active_len for next iteration (child_e is now active) */
dcs = HaArray(eisc->closed_seqs, open_index + 1);
if( KheDrsClosedSeqAllActive(dcs) )

active_len += 1 + dcs->active_at_right;
else

active_len = dcs->active_at_right;
}

}

/* if not last day, store adjusted active_len in sig */
... see below ...

}
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It iterates over the open children whose value is being finalized on some day, and over the
adjacent closed sequences, and makes the same cost changes as closing a child makes, only
adding the changes tonext_soln->cost, rather than todrs->solve_start_cost. We’ve
omitted for the moment the parts that updatenext_soln->cost.

The signature value is the number of active children immediately to the left of the start point
of the iteration,calledactive_len in the code. Any unassigned children there were given values
earlier in the search path leading to the current solution, so this is the length of both the a-interval
and the au-interval immediately to the left. There is no need to search for these intervals.

The main focus of what we’ve shown here is to initializeactive_len and keep it up to date
as the children are processed. If this is the first day, there is no signature to retreiveactive_len

from. Instead, it is equal to theactive_at_right field of the (only) closed sequence just to the
left of the current day, increased byeisc->history if all the children to the left are active. On
other days,active_len is stored in the signature and retrieved from there.

The code then visits each open childchild_e whose last open day is the current day, and
examines its value. If it has changed from unassigned to inactive, the cost is updated as explained
below, thenactive_len is updated to the correct value for the following child. Becausechild_e

is now inactive, that value is theactive_at_right field of the next closed sequence.

If child_e has changed from unassigned to active, the newactive_len will still be the
active_at_right value if there is an inactive child within the next closed sequence. But if
the next closed sequence consists entirely of active children,active_len will have its previous
value plus 1 forchild_e plus theactive_at_right value.

After the last child has been handled, the remainingactive_len value has to be stored in
the signature ofnext_soln for retrieval on the next day. Here is the code omitted above:

/* if not last day, store adjusted active_len in sig */
if( !KheDrsExprOpenDayIsLast((KHE_DRS_EXPR) eisc, next_di) )
{
adjusted_len = KheDrsAdjustedSigVal(active_len,
eisc->adjust_type, eisc->min_limit, eisc->max_limit, 0);

KheDrsExprPutSigVal((KHE_DRS_EXPR) eisc, next_di, sig, adjusted_len);
}

As usual an adjusted value is stored.

We turn now to the two other parts of the function that were omitted, that update solution
cost. Whenchild_e changes from unassigned to inactive, the enclosing au-interval splits, and
the a-interval to the right changes itsunassigned_precedes flag fromfalse to true:
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/* child_e moves from unassigned to inactive: update cost */
/* the enclosing au-interval splits */
aui_left = KheDrsAUIntervalMakeLeft(eisc, open_index, active_len);
aui_right = KheDrsAUIntervalFindRight(eisc, open_index, drs);
aui_merged = KheDrsAUIntervalMerge(aui_left, aui_right, false);
sig->cost += KheDrsAUIntervalCost(aui_left, eisc)
+ KheDrsAUIntervalCost(aui_right, eisc)
- KheDrsAUIntervalCost(aui_merged, eisc);

/* the a-interval to the right changes its unassigned_precedes */
ai_right_before = KheDrsAIntervalFindRight(eisc, open_index, true);
ai_right_after = KheDrsAIntervalFindRight(eisc, open_index, false);
sig->cost += KheDrsAIntervalCost(ai_right_after, eisc)
- KheDrsAIntervalCost(ai_right_before, eisc);

FunctionKheDrsAUIntervalMakeLeft makes an au-interval ending just beforeopen_index
with lengthactive_len; no searching is required for this.

Whenchild_e changes from unassigned to active, the enclosing au-interval is unchanged,
but it may gain an active child for the first time, which could change its cost; and the a-intervals
on each side merge:

/* child_e moves from unassigned to active: update cost */
/* the enclosing au-interval is unchanged, but its cost may change */
aui_left = KheDrsAUIntervalMakeLeft(eisc, open_index, active_len);
aui_right = KheDrsAUIntervalFindRight(eisc, open_index, drs);
aui_before = KheDrsAUIntervalMerge(aui_left, aui_right, false);
aui_after = KheDrsAUIntervalMerge(aui_left, aui_right, true);
sig->cost += KheDrsAUIntervalCost(aui_after, eisc)
- KheDrsAUIntervalCost(aui_before, eisc);

/* the a-intervals on each side merge */
ai_left = KheDrsAIntervalMakeLeft(eisc, open_index, active_len);
ai_right = KheDrsAIntervalFindRight(eisc, open_index, true);
ai_merged = KheDrsAIntervalMerge(ai_left, ai_right);
sig->cost += KheDrsAIntervalCost(ai_merged, eisc)
- KheDrsAIntervalCost(ai_left, eisc)
- KheDrsAIntervalCost(ai_right, eisc);

FunctionKheDrsAIntervalMakeLeft makes an a-interval ending just beforeopen_index with
lengthactive_len; no searching is required for this.

C.16. Testing

In general it is not possible to compare the cost of a solver solution with a KHE cost, because
incomplete solutions have no KHE cost. But when a new best solution is found, it is complete.
If it is installed into the KHE platform its cost can be compared with the KHE cost and should
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be equal to it. This comparison is made by the solver and is an important correctness check.

If the check fails, the solver has calculated the cost of one or more constraints incorrectly.
But working out which constraints are wrong is not easy. The solver offers aRERUN compiler flag
and arerun field in the solver holding a packed solution, which help with this, as follows.

To begin with,KheDrsSolnDoExtend (Section C.10) behaves differently when rerunning:

if( RERUN && drs->rerun != NULL )
{

/* this is a rerun, take sole dtd (possibly NULL) from drs->rerun */
dtd = KheDrsPackedSolnTaskOnDay(drs->rerun, next_day, dr);
KheDrsSolnTryAsst(prev_soln, next_day, dtd, drd,

dr->extend_fixed_signature, drs);
}

If RERUN is true anddrs->rerun contains a packed solution,KheDrsSolnExtend considers this
search to be a rerun,and instead of trying a variety of assignments it tries just one, the one present
in packed solutiondrs->rerun. The effect is that instead of building a large search tree, the
search follows exactly one path, reproducing the solution stored indrs->rerun.

Each cost expression contains two fields, used only by reruns:

KHE_COST rerun_open_and_search_cost;
KHE_COST rerun_open_and_close_cost;

During a rerun, both fields are initialized to the cost of the expression’s monitor. Each change
of cost found during opening and searching (along the single path to the new best solution) is
applied torerun_open_and_search_cost as well as to the total cost. Each change of cost found
during opening and closing is applied torerun_open_and_close_cost as well as to the total
cost. At the end, both fields should be equal to the cost of the expression’s monitor. So these
checks are made, and any discrepancies are printed for the programmer to inspect. Of course,
this only works when the search follows a single path, which it does during a rerun.

The costs calculated during closing are not actually used. We could omit those calculations,
and omitrerun_open_and_close_cost too. They are included as an extra check.

KheDynamicResourceSolverSolve (Section C.14) has a special section whenRERUN is set
and a new best solutionnew_best_soln is found byKheDrsSolveSearch:
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if( RERUN )
{
/* close using init_soln */
KheDrsSolveClose(drs, init_soln, false);

/* rerun new_best_soln */
KheDrsRerun(drs, soln_limit, main_dom_kind, use_cache,
cache_dom_kind, new_best_soln);

/* if test only, return to init_soln */
if( test_only )
{
KheDrsSolveOpen(drs, false, soln_limit, main_dom_kind,
use_cache, cache_dom_kind, &junk);

KheDrsPackedSolnDelete(junk, drs);
KheDrsSolveClose(drs, init_soln, false);

}
}

It reruns the new best solution and checks that the costs come out right. After that, if we are
testing and don’t want to change the solution, we return toinit_soln. Here isKheDrsRerun:
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void KheDrsRerun(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int soln_limit, KHE_DRS_DOM_KIND main_dom_kind, bool use_cache,
KHE_DRS_DOM_KIND cache_dom_kind, KHE_DRS_PACKED_SOLN soln)

{
KHE_DRS_PACKED_SOLN init_soln2, new_best_soln2;
KHE_DRS_EXPR_COST e; int i;

/* initialize the rerun cost fields in all cost expressions */
HaArrayForEach(drs->all_cost_exprs, e, i)
KheDrsExprCostInitRerunCost(e);

/* carry out the open, search, and close of the rerun */
drs->rerun = soln;
KheDrsSolveOpen(drs, false, soln_limit, main_dom_kind, use_cache,
cache_dom_kind, &init_soln2);

if( !KheDrsSolveSearch(drs, false, &new_best_soln2) )
HnAbort("KheDrsRerun internal error (failed to find new best)");

HnAssert(soln->cost == new_best_soln2->cost,
"KheDrsRerun internal error (new best has different cost)");

KheDrsSolveClose(drs, new_best_soln2, true);
drs->rerun = NULL;

/* delete the packed solutions made by this function */
KheDrsPackedSolnDelete(init_soln2, drs);
KheDrsPackedSolnDelete(new_best_soln2, drs);

}

It first initializes the rerun fields in all cost expressions to the current cost of the corresponding
monitors. After that comes the actual rerun. It begins by settingdrs->rerun to soln, the new
best solution found previously. As explained above, this will cause a search to follow a single
path, leading that solution. It then opens and searches,producingnew_best_soln2 which should
be identical tosoln. It checks that anew_best_soln2 was found and that its cost is equal to the
cost ofsoln, then closes usingnew_best_soln2. The function ends by settingdrs->rerun back
to NULL, turning off rerunning, and deleting the packed solutions it created.

The solver also offers debug code to help with working out what is going wrong. We won’t
detail it here, but one can name a particular cost expression (one previously found to be going
wrong) by setting theRERUN_MONITOR_ID compiler flag, and this will produce debug output
during the rerun which shows how the cost of that expression is calculated during opening,
closing, and evaluating on each day. On a regular run this would be incomprehensible, but on a
rerun there is just the one search path to follow.
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