A User’s Guide to the
NRConv
Nurse Rostering Converter

Jeffrey H. Kingston
jeff@it.usyd.edu.au

Version 2.5 (February 2020)

Contents

Chapter 1.

Chapter 2.
2.1.
2.2.
2.3.

Chapter 3.
3.1
3.2.
3.3.

3.4.

3.5.
3.6.

3.7.

3.8.

Introduction
Part A: TheNRC NurseRostering Model

NRC Archivesand Solution Groups
Archives

Solution groups

Writing archives

NRC Instancesand Solutions
Overview
Debug functions
Instance objects .
3.3.1. Creation, metadata and archlves
3.3.2. Day names, days, day-sets, and day-set sets
3.3.3. The cycle and the days of the week
3.3.4. Shift types and shift-type sets
3.3.5. Shifts, shift-sets, and shift-set sets
3.3.6. Workers, worker-sets, and worker-set sets
3.3.7. Contracts and skills C e e e
3.3.8. Demands, demand-sets, patterns, and constraints
Days Cee e e e e e e e
3.4.1. The cycle and the days of the week
3.4.2. Days
3.4.3. Day-sets
3.4.4. Day-set sets
Time intervals
Shift types
3.6.1. Shift types
3.6.2. Shift-type sets
Shifts
3.7.1. Shifts
3.7.2. Shift-sets
3.7.3. Shift-set sets
Workers
3.8.1. Workers

3.8.2. Worker-sets
3.8.3. Worker-set sets
3.8.4. Worker-set trees

3.9. Constraints

3.9.1. Penalties and costs

3.9.2. Bounds

3.9.3. Demands

3.9.4. Demand-sets

3.9.5. Demand constraints

3.9.6. Patterns

3.9.7. Pattern sets

3.9.8. Worker constraints :
3.9.9. Examples of worker constraints
3.9.10. Adding history to worker constraints

3.10. Solutions

Chapter 4.
4.1.
4.2.

4.3.

Chapter 5.
5.1
5.2.
5.3.
5.4.
5.5.
5.6.

I mplementation Notes

Optimizing worker constraints :
Converting demands into XESTT constraints
Optimizing demand constraints

Part B: The NRConv Executable

NRConv and itsConverters .

Instance models and solution models

The Curtois original instances C e e e e

The First International Nurse Rostering Competltlon model

The Second International Nurse Rostering Competition model

The Second International Nurse Rostering Competition static model
The Curtois-Qu 2014 model

28
30
30
31

31

33
37
40
41
43
44
45
48
51

52

53
53
55
55

60
60
61
64
65
66
67

Chapter 1. Introduction

This document describes NRConv, a program for converting instances of nurse rostering
problems from various existing formats into a common XML format called XESTT.

In NRConv’s view of the world, there are three kinds of models. They all model instances
of nurse rostering problems, and solutions to those instances, but they do it in different ways.

A source modeis one of the models (concretely, file formats) that NRConv converts. At
present NRConv can convert four source models: the Curtois ‘original instances’ model, the
first international nurse rostering competition model, the second international nurse rostering
competition model, and the Curtois-Qu 2014 model. However, NRConv is designed to minimize
the work needed to add new source models.

Theintermediate modehlso called theNRC modehkfter the software platform that im-
plements it, represents the concepts underlying source models, including metadata, days, shifts,
cover, patterns, and so on. If something in some source model is not in the intermediate model,
then either the intermediate model needs to be extended, or else the source model is beyond the
scope of NRConv. The intermediate model alsoincludesits own versions of the XESTT concepts
of archive (a set of instances and solution groups) and solution group (a set of solutions). There
is no file format for the intermediate model; its values are held only in memory.

Finally, there is théarget modelXESTT. Its main concepts are archives, instances, times,
resources, events, constraints, solution groups, and solutions. Itliesin memory, in objects defined
by the KHE platform which implements XESTT, and it also has a file format version. The user
of NRConv does not need to be a KHE expert, because NRConv uses it only behind the scenes.

There are two parts to NRConvpdatformcalled NRC and theonverters NRC defines
many types and functions, culminating in tyfiRC_ARCHIVErepresenting a set of instancesand a
set of solution groups in the intermediate model, and fundtiofrchiveWrite , which converts
anNRC_ARCHIVEobject into a target model archive and writes it by callihgArchiveWrite

Each converter is a function which reads instance and solution files in one source model and
convertswhat it reads into intermediate model objects. Since the intermediate model understands
all the source model concepts, this conversion should be straightforward, a matter of reading
the source model file and generating calls to the NRC platform. After this is done, the converter
completes the conversion to the target model by caMirgrchiveWrite

NRConv is written in C, and is packaged with the author's KHE distribution, which is
a gzipped tar file. To install it you need to get that file, unzip it, untar it, modigefile
slightly to say where you want the finalconv binary to be copied to, and runake. After
compiling, execute therconv binary with no command line options to get a comprehensive
usage message.

Part A

The NRC Nurse Rostering Model

Chapter 2. NRC Archivesand Solution
Groups

The subject of this part is the NRC nurse rostering model. As explained in the introduction, the
NRC model is an intermediate model, lying between the source models, which are existing nurse
rostering models such as the First International Timetabling Competition model, and the target
model, XESTT. By calling the functions defined in this part, a converter can convert instances
and solutions in its model into the intermediate model; and then one cHltcarchiveWrite

converts that into XESTT and writes it as an XESTT archive.

This chapter describes typ&&C_ARCHIVEand NRC_SOLN_GROURepresenting archives
(sets of instances and solution groups) and solution groups (sets of solutions) in the intermediate
model. Nurse rostering data formats do not seem to have features for grouping instances and
solutions, beyond, say, the use of a zip file containing several instances. So these features of NRC
are copied directly from the corresponding XESTT features.

2.1. Archives

An archive is a collection of instances together with groups of solutionsto those instances. There
may be any number of instances and solution groups. To create a new, empty archive, call

NRC_ARCHIVE NrcArchiveMake(char *id, HA_ARENA_SET as);

Hereid isan identifier for the archive, ared is an arena set, used to gain efficient access to heap
memory. You can safely paS$/LL for arena set; to find out how to pass a nii-L value, and
why you might want to do that, read the KHE User’s Guide. Function

char = NrcArchiveld(NRC_ARCHIVE archive);

returns the Id attribute.
Archive metadata may be set and retrieved by calling

void NrcArchiveSetMetaData(NRC_ARCHIVE archive, char *name,

char =*contributor, char =date, char *description, char *remarks);
void NrcArchiveMetaData(NRC_ARCHIVE archive, char ** name,

char *x contributor, char = date, char * description, char ** remarks);

whereremarks , being optional, may bBULL

Initially an archive contains no instances and no solution groups. Solution groups are added
automatically as they are created, because every solution group lies in exactly one archive. An
instance may be added to an archive by calling

bool NrcArchiveAddinstance(NRC_ARCHIVE archive, NRC_INSTANCE ins);

4 Chapter 2. NRC Archives and Solution Groups

NrcArchiveAddInstance returnstrue if it succeeds in addingns to archive , andfalse
otherwise, which can only be becawsehive already contains an instance with the same Id as

ins . The instance will appear after any instances already present. An instance may be deleted
from an archive (but not destroyed) by calling

void NrcArchiveDeletelnstance(NRC_ARCHIVE archive, NRC_INSTANCE ins);

NrcArchiveDeletelnstance aborts ifins is not inarchive . If there are any solutions for
ins in archive ,they are deleted too. The gap left by deleting the instance is filled by shuffling
subsequent instances up one place.

To visit the instances of an archive, call

int NrcArchivelnstanceCount(NRC_ARCHIVE archive);
NRC_INSTANCE NrcArchivelnstance(NRC_ARCHIVE archive, int i);

The first returns the number of instancesichive , and the second returns thih of those
instances, counting from 0 as usual in C. There is also

bool NrcArchiveRetrievelnstance(NRC_ARCHIVE archive, char *id,
NRC_INSTANCE=ins);

If archive contains an instance with the given, this function setés to that instance and
returngrue ; otherwise it leavesins untouched and returifdse . In the same way,

int NrcArchiveSolnGroupCount(NRC_ARCHIVE archive);

NRC_SOLN_GROUP NrcArchiveSolnGroup(NRC_ARCHIVE archive, int i);

bool NrcArchiveRetrieveSolnGroup(NRC_ARCHIVE archive, char *id,
NRC_SOLN_GROU#PsoIn_group);

visit the solution groups of an archive, and retrieve a solution groug by

2.2. Solution groups
A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool NrcSolnGroupMake(NRC_ARCHIVE archive, char *id,
NRC_SOLN_GROUPsoIn_group);

Parametearchive is compulsory. The solution group will be added to the archive. Parameter
id is an identifier for the solution group. If the operation is successful tthenis returned with
*soln_group set to the new solution group; if it is unsuccessful (which can only be be@huse

is already the Id of a solution group efchive), thenfalse is returned withrsoln_group set
toNULL To retrieve these attributes, call

NRC_ARCHIVE NrcSolnGroupArchive(NRC_SOLN_GROUP soln_group);
char *NrcSolnGroupld(NRC_SOLN_GROUP soln_group);

Solution group metadata may be set and retrieved by calling

2.2. Solution groups 5

void NrcSolnGroupSetMetaData(NRC_SOLN_GROUP soln_group,
char =contributor, char »date, char xdescription, char = publication,
char *remarks);
void NrcSolnGroupMetaData(NRC_SOLN_GROUP soln_group,
char =+ contributor, char = date, char * description, char
= publication,
char = remarks);

wherepublication andremarks , being optional, may bsULL
Initially a solution group has no solutions. These are added and deleted by calling
void NrcSolnGroupAddSoIn(NRC_SOLN_GROUP soln_group, NRC_SOLN soln);
void NrcSolnGroupDeleteSoIn(NRC_SOLN_GROUP soln_group, NRC_SOLN soln);
A solution can only be added when its instance lies in the solution group’s archive.
To visit the solutions of a solution group, call

int NrcSolnGroupSolnCount(NRC_SOLN_GROUP soln_group);
NRC_SOLN NrcSoInGroupSoIn(NRC_SOLN_GROUP soln_group, int i);

Solutions have no lds, so there iskreSolnGroupRetrieveSoln function. When solution is
deletedNrcSolnGroupSolnCount decreases by 1, solutiovri becomes solution, and so on.

2.3. Writing archives
To convert an archive to XESTT format and write it to a file, call
void NrcArchiveWrite(NRC_ARCHIVE archive, bool with_reports, FILE *p);

File fp must be open for writing UTF-8 characters, and it remains open after the call returns. If
with_reports istrue , each written solution containsReport section evaluating the solution.
The initial tag will be<EmployeeScheduleArchive>

NrcArchiveWrite converts the NRC archive into a KHE archive and writes that archive
usingKheArchiveWrite

At present, NRC does not check that the names of its entities are distinct. If two entities with
conflicting names are given to NRC, they will be accepted at the tim&lybrchiveWrite will
exit with an error message when the KHE conversion reports the problem.

Chapter 3. NRC Instancesand Solutions

An instanceis a particular case of the nurse rostering problem, for a particular ward and a
particular period of time. Aolutionis a solution to a particular instance, saying which workers
to assign to which shifts. This chapter describesNRE_INSTANCEandNRC_SOLNdata types,
which represents instances and solutions as defined by the NRC model.

3.1. Overview

NRC instances contain days, shifts, workers, and constraints (unlike KHE instances, which
contain times, resources, events, and constraints). These data types are strongly interconnected,
so we begin by giving informal definitions of most of them, as an overview.

NRC_INSTANCHepresents oniastanceof the nurse rostering problem: one case of it, for a
particular hospital ward and a particular interval of time.

NRC_DAYepresentsongay. not a generic day like ‘Friday’, but a particular day like ‘Friday
18 November 2016’, although its calendar date need not be known to the instance.

NRC_DAY_SETrepresents onday-set which is a set (actually a sequence) of days. An
example of a day-set is thoycle containing all the days of the instance.

NRC_DAY_SET_SETepresents ongay-set seta set (again, actually a sequence) of day-sets.
An example of a day-set set is the one containing one day-set for each day of the week. Its first
day-set contains all the Sundays, its second contains all the Mondays, and so on.

NRC_SHIFT_TYPErepresents ahift type a generic shift like the day shift or night shift.
NRC_SHIFT_TYPE_SETrepresents ahift-type seta set of shift types.

NRC_SHIFT represents &hift, which is a particular shift such as the night shift on 18
November 2016. Each shift is characterised by a day plus a shift type.

NRC_SHIFT_SETrepresents ahift-set a set of shifts. For example, the shifts whose day is
18 November 2016 form a shift-set, as do the shifts whose shift type is the night shift.

NRC_SHIFT_SET_SETrepresents ahift-set setwhich is a set of shift-sets.
NRC_WORKEHERpresents oneorker, NRC’s term for a nurse or employee.

NRC_WORKER_SHE&presents oneorker-set a set of workers. The leading examples of
worker-sets are the sets of workers that share a particular contract, and the sets of workers that
share a particular skill. Indeed, contracts and skills are represented in NRC by worker-sets.

NRC_WORKER_SET_SE&presents oneorker-set seta set of worker-sets. For example,
the set of all contracts is a worker-set set.

NRC_WORKER_SET_TRi&a tree of worker-sets, where children are subsets of their parents,
and siblings are disjoint. It is used when analysing overlapping cover requirements.

NRC_DEMANEepresents ongemanddescribing a demand for one worker made by a shift,
including the penalty for when a worker is not assigned, and the default penalty to apply when a
worker without the appropriate skill is assigned. One shift may have any number of demands.

3.1. Overview 7

NRC_DEMAND_SHEpresents ongemand-set set of demands. One can add a demand-set
to a shift, which is the same as adding each of its demands separately, only more convenient.

NRC_POLARITYis used by patterns and constraints to say that what counts about a shift-set
is whether a worker is busy for at least one of its shifts, or free for all of them.

NRC_PATTERMepresents pattern a sequence of shift-sets, each with a polarity. A pattern
may be used to define a worker constraint which, for example, applies a penalty when the pattern
appears within a worker’s timetable.

NRC_CONSTRAINTepresents oneorker constrairt a rule about what a worker may do,
which if broken in some solution adds a penalty to that solution’s cost.

NRC_SOLNepresents ongolution a collection of assignments to the demands of the shifts
of one instance.

3.2. Debug functions

Many of NRC'’s entities have functions included to help with debugging. These functions all
work in the same way. Their interface has this form:

void NrcEntityDebug(NRC_ENTITY e, int indent, FILE *fp);

whereNRC_ENTITY stands for an NRC type likBRC_SHIFT, NRC_WORKERNd so on. This
produces a debug print efonto filefp , which must be open for writing 8-bit characters.

If indent >= 0 ,the printwillbe indentethdent spacesand occupy one or more complete
lines (that is, it will end with a newline). One debug function often calls another, in which case
it adds 2 to the indent, producing a neatly formatted result.

If indent < 0 , the print will not be indented and will contain no newlines. It will usually
be abbreviated, perhaps by printing just the object’s name rather than its contents.

3.3. Instance objects

This section describes instance objects: how to create them, and how to visit their components.
(Whenever NRC makes an object that is part of an instance, that object is not only created and
returned to the user, it is also added to the instance. So one can visit every object via functions
on the instance.) Operations for creating components appear in later sections.

3.3.1. Creation, metadata, and archives

To make a new, empty instance, start by calling

NRC_INSTANCE NrcInstanceMakeBegin(char *id, char =worker_word,
HA_ARENA_SET as);

Parameteid is an identifier identifying the instance, returned by
char *Nrcinstanceld(NRC_INSTANCE ins);

Parameteworker_word is the name to give to the single XESTT resource type. Good choices

8 Chapter 3. NRC Instances and Solutions

are"Worker" ,"Nurse" ,"Employee” , and so on. This value is also used when NRC decides to
assign its own names to the workers (Section 3.8). Paramsetaay beNULL or it may be an
arena set, as fofrcArchiveMake ; indeed, it would almost certainly be the same arena set.

After adding all the elements of the instance, but before adding any of its solutions, call
void NrclnstanceMakeEnd(NRC_INSTANCE ins);

NRC will abort if this is omitted.
Functions

HA_ARENA NrcInstanceArenaBegin(NRC_INSTANCE ins);
void NrcinstanceArenaEnd(NRC_INSTANCE ins, HA_ARENA a);

provide a convenient interface for obtaining and releasing a memory arena, recycled through
the arena set passed\tminstanceMake . Consult the KHE User’s Guide for more information
about memory arenas, arena sets, and memory management generally.

NRC needs to know what penalty is wanted when a worker is assigned twice to the same
shift. The default value is

NrcPenalty(true, 1, NRC_COST_FUNCTION_LINEAR, ins)

which, as Section 3.9.1 explains, makes avoiding clashes a hard constraint with wefghtsl .
IS not correct for some reason, it can be changed, and the value retrieved, by

void NrclnstanceSetAvoidClashesPenalty(NRC _INSTANCE ins, NRC_PENALTY p);
NRC_PENALTY NrclnstanceAvoidClashesPenalty(NRC_INSTANCE ins);

Thereis also

NRC_PENALTY NrclnstanceZeroPenalty(NRC_INSTANCE ins);

which is a convenient way to obtain a penalty with weight 0.
Instance metadata may be set and retrieved by calling

void NrcInstanceSetMetaData(NRC_INSTANCE ins, char * name,
char =contributor, char xdate, char *country, char * description,
char *remarks);

void NrcInstanceMetaData(NRC_INSTANCE ins, char ** name,
char =+ contributor, char = (ate, char = country, char = description,
char + remarks);

whereremarks , being optional, may bsULL

For the convenience of functions that reorganize archives, an instance may lie in any
number of archives. To add an instance to an archive and delete it from an archive, call functions
NrcArchiveAddInstance and NrcArchiveDeletelnstance from Section 2.1. To visit the

When a constraint which limits a worker to a most one shift per day is added, what it actually does is limit the number

of times during that day when the worker may be busy to one. A worker who is assigned twice to the same shift is still
only busy for one time, so NRC must generate a separate constraint, called an avoid clashes constraint, which prevents
this. It does this without being asked, using this penalty for the constraint’s penalty.

3.3. Instance objects 9

archives containing a given instance, call

int NrclnstanceArchiveCount(NRC_INSTANCE ins);
NRC_ARCHIVE NrclnstanceArchive(NRC_INSTANCE ins, int i);

in the usual way.

3.3.2. Day names, days, day-sets, and day-set sets
By default, the seven days of the week have their usual English names. To change this, call

void NrcinstanceSetDayNames(NRC_INSTANCE ins, char *short_names,
char =*long_names);

The first parameter contains the short names of the seven days, separated by colons, and
beginning with the name of Sunday (which is how the Unkime function doesit). The second
parameter is the same except that it contains long names. For example, the call

NrcinstanceSetDayNames(ins, "Sun:Mon:Tue:Wed:Thu:Fri:Sat",
"Sunday:Monday: Tuesday:Wednesday:Thursday:Friday:Saturday");

does not need to be made, because it sets the day names to their default values.

Do not try to useNrcinstanceResetDayNames to begin the cycle on a day of the week other
than Sunday. Setting parametiest_day_index of NrcCycleMake (Section 3.4) to a value
other than O is the right way to do that.

To retrieve the day names, use
int NrcinstanceDayNameCount(NRC_INSTANCE ins);

char = NrcinstanceShortDayName(NRC_INSTANCE ins, int i);
char =NrcinstanceLongDayName(NRC_INSTANCE ins, int i);

The first day name (the one for Sunday) has index 0, the second (for Monday) has index 1, and
so on. NrclnstanceDayNameCount always returns 7.

The day objects created make up a day-set calledyttle For visiting them, see Section
3.3.3 below. To visit all the day-sets created within an instance, including the cycle, use

int NrcInstanceDaySetCount(NRC_INSTANCE ins);
NRC _DAY_SET NrcinstanceDaySet(NRC_INSTANCE ins, int i);

The day-sets are numbered from 0, so the code for visiting them all is

for(i = 0; i < NrcInstanceDaySetCount(ins); i++)
{

ds = NrclnstanceDaySet(ins, i);

.. visit ds ...
}

This is a standard arrangement throughout NRC. Similarly, call

10 Chapter 3. NRC Instances and Solutions

int NrcInstanceDaySetSetCount(NRC_INSTANCE ins);
NRC_DAY_SET_SET NrcInstanceDaySetSet(NRC_INSTANCE ins, int i);

to visit all the day-set sets created witims .

3.3.3. Thecycleand thedays of the week

Thecycle(the sequence of all the days of the instance) is a day-set stored in the instance. Once
a cycle has been added, by calliigCycleMake or NrcCalendarCycleMake (Section 3.4.2),
the following operations become available. To retrieve the entire cycle as a day-set, call

NRC_DAY_SET NrcinstanceCycle(NRC_INSTANCE ins);
To visit the days in chronological order, call

int NrcinstanceCycleDayCount(NRC_INSTANCE ins);
NRC_DAY NrcinstanceCycleDay(NRC_INSTANCE ins, int i);

NrcInstanceCycleDayCount returns the number of days, aNdtInstanceCycleDay returns
thei 'th day. As usual in NRC, counting starts from 0, so the code to visit each day is

for(i = 0; i < NrcInstanceCycleDayCount(ins); i++)

{
day = NrclnstanceCycleDay(ins, i);
.. visit day ...

}

There is also

bool NrcinstanceCycleRetrieveDay(NRC_INSTANCE ins, char *ymd,

NRC_DAY+d);

which retrieves a day from the cycle by its calendar date. If the cycle contains a day whose
year-month-day name isnd, this function setsd to one such day and returtige ; if not, it

setsxd to NULL and returndalse . The date string must contain three non-negative integers
separated by hyphens; a copy, normalized to a four-digit year and two-digit month and day, is
used when retrieving.

At the sametime a cycle isadded to an instance, day-sets representing the 7 days of the week
are also added. These are stored in a day-set set, and may be retrieved in that form by

NRC_DAY_SET SET NrcinstanceDaysOfWeek(NRC_INSTANCE ins);
They may also be visited individually by calling

int NrclnstanceDaysOfWeekDaySetCount(NRC_INSTANCE ins);
NRC_DAY_SET NrclnstanceDaysOfWeekDaySet(NRC_INSTANCE ins, int i);

NrcInstanceDaysOfWeekDaySetCount returns the number of day-sets representing days of
the week (always 7), anlrcinstanceDaysOfWeekDaySet returns the 'th of these day-sets,
counting from 0 as usual. There is also

3.3. Instance objects 11

bool NrcinstanceDaysOfWeekRetrieveDaySet(NRC_INSTANCE ins,
char +long_name, NRC_DAY_SET =ds);

which retrieves one of these day sets by long name. Irrespective of how the cycle was created,
the first of these day-sets holds the Sunday days, the second holds the Monday days, and so on.
3.3.4. Shift typesand shift-type sets

Functions for creating and querying shift types and shift-type sets are given in Section 3.6. To
retrieve all the shift types of the instance as a shift-type set, call

NRC_SHIFT_TYPE_SET NrcinstanceAllShiftTypes(NRC_INSTANCE ins);
To visit the shift types of an instance one by one, call

int NrcinstanceShiftTypeCount(NRC_INSTANCE ins);
NRC_SHIFT_TYPE NrcinstanceShiftType(NRC_INSTANCE ins, int i);

counting from 0 in the usual way. To retrieve a shift type by name, call

bool NrcinstanceRetrieveShiftType(NRC_INSTANCE ins, char *name,
NRC_SHIFT_TYPE *st);

As usual, if there is a shift type with the given name, this settsto that shift type and returns
true , otherwise it setsst to NULLand returngalse . Function

bool NrcinstanceRetrieveShiftTypeByLabel(NRC _INSTANCE ins, char *|abel,
NRC_SHIFT_TYPE = st);

is the same, except that it searches for a shift type with aNuthh{abel equal tdabel
To visit the shift-type sets of an instance, call

int NrcInstanceShiftTypeSetCount(NRC_INSTANCE ins);
NRC_SHIFT_TYPE_SET NrcinstanceShiftTypeSet(NRC_INSTANCE ins, int i);

in the usual way. If a shift-type set has a ndgkL name, it may be retrieved by calling

bool NrcinstanceRetrieveShiftTypeSet(NRC_INSTANCE ins, char *name,
NRC_SHIFT_TYPE_SET+sts);

in the usual way.

3.3.5. Shifts, shift-sets, and shift-set sets

The shifts of an instance are stored in the instance as a shift-set. To retrieve this shift-set call

NRC_SHIFT_SET NrclnstanceAllShifts(NRC_INSTANCE ins);
To visit the shifts one by one, call

int NrclnstanceShiftCount(NRC_INSTANCE ins);
NRC_SHIFT NrcinstanceShift(NRC_INSTANCE ins, int i);

12 Chapter 3. NRC Instances and Solutions
as usual. (In many cases, however, a better way to visit each shift is to visit each day, and then
visit each shift on that day.) Also, functions

NRC_SHIFT_SET NrcinstanceDailyStartingShiftSet(NRC_INSTANCE ins);
NRC_SHIFT_SET NrclnstanceWeeklyStartingShiftSet(NRC_INSTANCE ins);

return the set of shifts which are first in each day, and first in each week. These are useful
values for thestarting_ss parameter ofNrcConstraintMake (Section 3.9.8). To visit all
shift-sets, call

int NrclnstanceShiftSetCount(NRC_INSTANCE ins);
NRC_SHIFT_SET NrclnstanceShiftSet(NRC_INSTANCE ins, int i);

and to visit all shift-set sets, call

int NrcinstanceShiftSetSetCount(NRC_INSTANCE ins);
NRC_SHIFT_SET_SET NrcinstanceShiftSetSet(NRC_INSTANCE ins, int i);

in the usual way. There are also
NRC_SHIFT_SET SET NrcInstanceDaysShiftSetSet(NRC_INSTANCE ins);

which returns a shift-set set containing one shift-set for each day of the cycle, holding the shifts
of that day, and

NRC_SHIFT_SET_SET NrclnstanceShiftsShiftSetSet(NRC_INSTANCE ins);

which returns a shift-set set containing one shift-set for each shift, holding that shift.

3.3.6. Workers, worker-sets, and wor ker-set sets

Functions for creating and querying workers, worker-sets, and worker-set sets are given in
Section 3.8. The workers of an instance are held in a worker-set in the instance catladfihg
It may be retrieved by calling

NRC_WORKER_SET NrclnstanceStaffing(NRC_INSTANCE ins);
For convenience, its elements may be visited directly by

int NrcInstanceStaffingWorkerCount(NRC_INSTANCE ins);
NRC_WORKER NrcinstanceStaffingWorker(NRC_INSTANCE ins, int i);

There is also

bool NrcinstanceStaffingRetrieveWorker(NRC_INSTANCE ins,
char *name, NRC_WORKER w);

which retrieves a worker with the given name from the staffing, settmtp that worker and
returningtrue if successful, and settingvto NULLand returnindalse otherwise.

It can be convenient sometimes to have access to an empty worker set:

NRC_WORKER_SET NrcInstanceEmptyWorkerSet(NRC_INSTANCE ins);

3.3. Instance objects 13

Adding a worker to the result of this function will cause strange errors.
To visit all the worker-sets of an instance (including the staffing), call

int NrcinstanceWorkerSetCount(NRC_INSTANCE ins);
NRC_WORKER_SET NrcInstanceWorkerSet(NRC_INSTANCE ins, int i);

in the usual way. There is also

bool NrcinstanceRetrieveWorkerSet(NRC_INSTANCE ins, char * name,
NRC_WORKER_SEAws);

which retrieves a worker-set with the given name from the instance, settsrtg that worker-set
and returningrue if successful, and settingvs to NULL and returnindgalse otherwise.

To visit all the worker-set sets of an instance, call

int NrcinstanceWorkerSetSetCount(NRC_INSTANCE ins);
NRC_WORKER_SET_SET NrclnstanceWorkerSetSet(NRC_INSTANCE ins, int i);

in the usual way.

3.3.7. Contractsand skills

Several nurse rostering models oftemtracts which are sets of constraints. A worker can be
made subject to a contract, which means that the contract’s constraints apply to that worker. At
least one model allows a worker to be subject to more than one contract.

In NRC, a worker-set is used to model each contract. Its name is the name of the contract,
perhaps withContract-* prepended, and its members are the workers subject to the contract.
The contract’s constraints are not stored in the worker-set. Instead, each constraint has a
worker-set attribute saying which workers it applies to. When there are contracts, this would
be the worker-set for the contract that the constraint lies within. When there are no contracts,
it would be something else—the set of all workers returnedlifoinstanceStaffing above,
perhaps, oNrcWorkerSingletonWorkerSet(w) , the worker-set containing just worker

Each NRC instance holds a worker-set set callecctmractsintended to hold the set of
all contracts, although what it actually holds is up to the user. This worker-set set is not consulted
when generating an instance; it is there only for the convenience of the user. (Exception: for
documentation, a KHE resource group is generated for each contract, even if it is not used.)

To add a contract to the contracts, call

void NrcInstanceContractsAddContract(NRC_INSTANCE ins,
NRC_WORKER_SET contract_ws);

To retrieve the contracts as a worker-set set, call
NRC_WORKER_SET_SET NrcinstanceContracts(NRC_INSTANCE ins);
To visit the contracts one by one, call

int NrclnstanceContractsContractCount(NRC_INSTANCE ins);
NRC_WORKER_SET NrcInstanceContractsContract(NRC_INSTANCE ins, int i);

14 Chapter 3. NRC Instances and Solutions

To retrieve a contract by name, call

bool NrcinstanceContractsRetrieveContract(NRC_INSTANCE ins,
char *name, NRC_WORKER_SE¥contract_ws);

If the contracts contain a contract with the given name, thisseisract_ws to a contract with
that name and returtise , otherwise it setscontract_ ws to NULL and returngalse

It is acceptable to define the contract at one time and add workers to it later. Indeed, this is
what usually happens, given that contracts are defined at one point in the source file and workers
declare their adherence to a contract at another.

Most nurse rostering models offgkills. A skill is some capability that a worker has, such
as being a senior nurse, or a CPR expert. Aworker may have any number of skills. Ademand for
a worker may require that a worker with a particular skill be assigned. If a worker without that
skill is assigned, there is a penalty, which may vary depending on which worker is assigned.

Again, in NRC a worker-set is used to model each skill. Its name is the name of the skill,
and its elements are the workers who have that skill. Each demand has an optional worker-set
attribute specifying the skill that workers satisfying that demand should have.

Each NRC instance holds a worker-set set calledskilts, intended to hold the set of
all skills, although what it actually holds is up to the user. This worker-set set is not consulted
when generating an instance; it is there only for the convenience of the user. (Exception: for
documentation, a KHE resource group is generated for each skill, even if it is not used.)

Operations entirely analogous to those for the contracts are offered for the skills:

void NrclnstanceSkillsAddSkill(NRC_INSTANCE ins,
NRC_WORKER_SET skill_ws);
NRC_WORKER_SET_SET NrclnstanceSkills(NRC_INSTANCE ins);
int NrcinstanceSkillsSkillCount(NRC_INSTANCE ins);
NRC_WORKER_SET NrcInstanceSkillsSkil(NRC _INSTANCE ins, int i);
bool NrcinstanceSkillsRetrieveSkill[(NRC_INSTANCE ins,
char *name, NRC_WORKER_SE¥skill_ws);

The contracts and skills may well be the only worker-sets the user needs. There is nothing to
prevent a worker from lying within two or more contracts, or two or more skills. Indeed, this is
quite normal, at least for skills.

3.3.8. Demands, demand-sets, patterns, and constraints

Functions for creating and querying demands, demand-sets, patterns, pattern sets, and constraints
are given in Section 3.9. All these objects are stored in the instance. Demands may be visit-
ed by

int NrcinstanceDemandCount(NRC_INSTANCE ins);
NRC_DEMAND NrcInstanceDemand(NRC_INSTANCE ins, int i);

and demand-sets may be visited by

3.3. Instance objects 15

int NrcinstanceDemandSetCount(NRC_INSTANCE ins);
NRC _DEMAND_SET NrcinstanceDemandSet(NRC_INSTANCE ins, int i);
in the usual way. Patterns may be visited by

int NrcinstancePatternCount(NRC_INSTANCE ins);
NRC_PATTERN NrcinstancePattern(NRC_INSTANCE ins, int i);

in the usual way, and patterns with a NgdkL name may be retrieved by calling

bool NrcinstanceRetrievePattern(NRC_INSTANCE ins, char * name,
NRC_PATTERNkp);

The stored patterns are not used privately by NRC; in particular, they do not become unwanted
unless they are added to worker constraints. Pattern sets are may be visited by

int NrcinstancePatternSetCount(NRC_INSTANCE ins);
NRC_PATTERN_SET NrcinstancePatternSet(NRC_INSTANCE ins, int i);

Pattern sets have no names so there is no retrieve operation.

Demand constraints and worker constraints are stored in the instance, and may be
visited by

int NrcinstanceDemandConstraintCount(NRC_INSTANCE ins);
NRC_DEMAND_CONSTRAINT NrcinstanceDemandConstraint(NRC_INSTANCE ins,
int i);
and

int NrcInstanceConstraintCount(NRC_INSTANCE ins);
NRC_CONSTRAINT NrcinstanceConstraint(NRC_INSTANCE ins, int i);

in the usual way.

3.4. Days

In informal discourse, a day could be a specific day, such as 23 July 2016, or it could be a day of
the week, such as Friday. In NRC and this documentation, thedayadways refers to a specific
day, represented by an object of tyygRC_DAY

3.4.1. Thecycleand thedays of the week

There is no NRC function for creating one day. Instead, there is a function for creatitygthe
the set of all days of an instance:

void NrcCycleMake(NRC _INSTANCE ins, int day_count, int first_day index);

NrcCycleMake addstons acycle ofday_count days. Parametérst_day_index sayswhich
day of the week the first day is on: 0 means that the first day is a Sunday, 1 means that the first
day is a Monday, and so on.

16 Chapter 3. NRC Instances and Solutions

Although the days created biycCycleMake are specific days, they are not associated with
calendar dates. To get days with calendar datesicalhlendarCycleMake instead:

bool NrcCalendarCycleMake(NRC_INSTANCE ins,
char =*start_ymd, char »end_ymd, char = err_str);

NrcCalendarCycleMake creates a cycle with first dasgart_ymd and last daynd_ymd, where

the two strings are given viYYY-MM-DDformat. (Actually, the format is just three non-negative
integers separated by hyphens; but the dates actually stored are normalized to the format shown.)
The Unixmktime function is used to find out which day of the wes&t_ymd is on, and other
important facts such as the number of days in each month. The two days are arbitrary except
that there must be at least one day in the cycle. Vailge is returned if successful; otherwise

false isreturned andrr_str issetto an error message explaining what went wrong. This will

be some problem witktart_ymd or end_ymd, such as being formatted wrongly or specifying a
non-existent date.

NrcCycleMake and NrcCalendarCycleMake may only be called after the last call to
NrcShiftTypeMake (Section 3.6.1). A call tdrcShiftTypeMake after the cycle is made will
cause NRConv to exit with an error message.

3.4.2. Days

A dayin NRC is an object of typ&RC_DAYrepresenting a specific day, such as Monday 21
November 2016, although the calendar date of the day need not be known.

There is no function for creating an individual day. Instead, functigr€ycleMake
andNrcCalendarCycleMake (Section 3.4.1) are called, to make all the days at once. The days
created by these functions can be accessed using fundtidnstanceCycleDayCount and
NrcinstanceCycleDay (Section 3.3.3).

The basic attributes of a day may be found by calling

NRC_INSTANCE NrcDaylnstance(NRC_DAY d);
char *NrcDayYMD(NRC_DAY d);

char *NrcDayShortName(NRC_DAY d);

char *NrcDayLongName(NRC_DAY d);

NrcDaylnstance returns the enclosing instancélrcDayYMD returns the date of dag in
YYYY-MM-DDformat if the day was created byrcCalendarCycleMake , or "-" otherwise.
NrcDayShortName and NrcDayLongName return the name of the day in either short and
long form, consisting of a week number followed by a short or long day name as defined by
NrcinstanceSetDayNames ~ (Section 3.3.2). For exampléMon is the short name of the day
which represents the Monday of the first week of the cycle.

Several functions return integer indexes defining the position of the day in the cycle:

int NrcDaylndexInCycle(NRC_DAY d);
int NrcDayWeekInCycle(NRC_DAY d);
int NrcDaylndexInWeek(NRC_DAY d);

NrcDaylndexIinCycle returns the index ofl in the cycle: 0 for the first day, 1 for the second,

3.4. Days 17

and so on.NrcDayWeekinCycle returns the number of the week thilies in. The first 7 days

of the cycle have week number 1, the second 7 days have week number 2, and so on, irrespective
of the day of the week the cycle begins dvicDayindexinWeek returns the index od’s day of

the week: 0O for Sunday, 1 for Monday, and so on (which is how the Wikixne function does

it). NRC does not have aMRC_WEEKata type.

Functions

NRC_DAY NrcDayPrev(NRC_DAY d);
NRC_DAY NrcDayNext(NRC_DAY d);

return the day precedingin the cycle, oNULLwhend is the first day, and the day following
in the cycle, oNULLwhend is the last day.

A surprisingly useful function is
NRC_DAY_SET NrcDayDayOfWeek(NRC_DAY d);

which returnsl’s day of the week. NRC does not have a data type for day of the week. Instead,
a day of the week is represented byNRC_DAY_SEDbject holding a set of days—all the days
that fall on the same day of the week. The day set objects return8ccbgyDayOfWeek are
created byNrcCycleMake andNrcCalendarCycleMake — while they are creating the days; the user
does not need to create them. Another function that returns a day-set is

NRC_DAY_SET NrcDaySingletonDaySet(NRC_DAY d);

The result is a a day-set containing just
Function

NRC_SHIFT_SET NrcDayShiftSet(NRC_DAY d);

returns a shift-set containing the shiftslofThere is one of these for each shift type, in the order
that the shift types were added to the instance. For convenience,

int NrcDayShiftCount(NRC_DAY d);
NRC_SHIFT NrcDayShift(NRC_DAY d, int i);

can be used to visit this shift-set’s shifts directly. Function
NRC_SHIFT NrcDayShiftFromShiftType(NRC_DAY d, NRC_SHIFT_TYPE st);
returns the shift with dagt and typest , i.e. NrcDayShift(d, NrcShiftTypelndex(st)) ,and

NRC_SHIFT_SET NrcDayShiftSetFromShiftTypeSet(NRC_DAY d,
NRC_SHIFT_TYPE_SET sts);

does this for each element stf , producing a shift-set. There is also
NRC_SHIFT_SET_SET NrcDayShiftSetSet(NRC_DAY d);

which returns a shift-set set containing one shift-set for each shift od, deynely the singleton
shift-set holding that shift.

18 Chapter 3. NRC Instances and Solutions

To produce a debug print of daycall
void NrcDayDebug(NRC_DAY d, int indent, FILE *fp);

This works as explained in Section 3.2.

3.4.3. Day-sets

A day-seis a set (more precisely, a sequence) of days. Although any days can make up a day-set,
the most likely combinations are adjacent days (for example, the days of a weekend) and days
that share the same day of the week (for example, the set of all Mondays in the cycle).

NrcCycleMake and NrcCalendarCycleMake = make day-sets: one holding the cycle as a
whole, and one for each of the seven days of the week (the day-set of all Mondays, the day-set
of all Tuesdays, and so on). Day-sets can also be created by the user, by calling

NRC_DAY_SET NrcDaySetMake(NRC_INSTANCE ins, char *short_name,
char +*long_name);
void NrcDaySetAddDay(NRC_DAY_SET ds, NRC_DAY d);

in the usual way. Both names must be mi#-L. Functions

NRC_INSTANCE NrcDaySetinstance(NRC_DAY_SET ds);
char *NrcDaySetShortName(NRC_DAY_SET ds);
char *NrcDaySetLongName(NRC_DAY_SET ds);

return the attributes of day-ség, functions

int NrcDaySetDayCount(NRC_DAY_SET ds);
NRC_DAY NrcDaySetDay(NRC_DAY_SET ds, int i);

visit the days in the order they were inserted,
bool NrcDaySetContainsDay(NRC_DAY_SET ds, NRC_DAY d);
returnsrue whends containgl, and
bool NrcDaySetRetrieveDay(NRC_DAY_SET ds, char »ymd, NRC_DAY *d);

retrieves a day frords by itsymd value. The date string must contain three non-negative integers
separated by hyphens; a copy, normalized to a four-digit year and two-digit month and day, is
used when retrieving. Function

bool NrcDaySetsOverlap(NRC_DAY_SET dsl, NRC_DAY_SET ds2);
returngrue whendsl andds2 have a non-empty intersection. And
NRC_DAY_SET NrcDaySetDifference(NRC_DAY_SET dsl, NRC_DAY_SET ds2);

returns a new day-set containing the daygsif that are not irds2 .
Function

3.4. Days 19

NRC_SHIFT_SET NrcDaySetShiftSet(NRC_DAY_SET ds);
returns a shift-set containing all the shifts on all the daygsofvhile
NRC_SHIFT_SET NrcDaySetStartingShiftSet(NRC_DAY_SET ds);

returns a shift-set containing the first shift on each daysof This helps when constructing
suitable values for thetarting_ss ~ parameter of\rcConstraintMake (Section 3.9.8). If any
of the shift-sets of the days df is emptyNrcDaySetStartingShiftSet aborts. Also,

NRC_SHIFT_SET_SET NrcDaySetShiftSetSet(NRC_DAY_SET ds);
returns a shift-set set containing one shift-set for each ddy dfolding that day’s shifts. And

NRC_SHIFT_SET NrcDaySetShiftSetFromShiftTypeSet(NRC_DAY_SET ds,
NRC_SHIFT_TYPE_SET sts);

returns a shift-set containing all shifts whose day igsirand whose shift type is ists .
Function

void NrcDaySetDebug(NRC_DAY_SET ds, int indent, FILE *fp);

produces a debug print dé ontofp , as explained in Section 3.2.

3.4.4. Day-set sets

A day-set sefs a set (more precisely, a sequence) of day-sets. For exabSptejs a day,
{1sat, 1Sun} is a day-set representing one weekend, and

{{1Sat, 1Sun}, {2Sat, 2Sun}, {3Sat, 3Sun}, {4Sat, 4Sun}}

is a day-set set representing (possibly) the set of all weekends in the cycle.
To create a day-set set and add day-sets to it, the functions are
NRC_DAY_SET_SET NrcDaySetSetMake(NRC_INSTANCE ins, char *short_name,

char =*long_name);
void NrcDaySetSetAddDaySet(NRC_DAY_SET SET dss, NRC_DAY_SET ds);

Functions

NRC_INSTANCE NrcDaySetSetinstance(NRC_DAY_SET_SET dss);
char *NrcDaySetSetShortName(NRC_DAY_SET SET dss);
char *NrcDaySetSetLongName(NRC_DAY_SET_SET dss);

return the attributes of a day-set set, and

int NrcDaySetSetDaySetCount(NRC_DAY_SET_SET dss);
NRC_DAY_SET NrcDaySetSetDaySet(NRC_DAY_SET_SET dss, int i);
bool NrcDaySetSetRetrieveDaySet(NRC_DAY_SET_SET dss,

char =*long_name, NRC_DAY_SET =ds);

are used to visit the day-sets of a day-set set in the order they were inserted, and to retrieve a

20 Chapter 3. NRC Instances and Solutions

day-set from a day-set set by long name. And
void NrcDaySetSetDebug(NRC_DAY _SET _SET dss, int indent, FILE *fp);

produces a debug print dbs ontofp , as explained in Section 3.2.

3.5. Timeintervals

A time intervalis an interval of time, consisting of a start time and an end time, measured in
seconds since midnight. These are not absolute intervals like ‘10am to 11am on 7 April 2007,
but rather generic ones, like ‘10am to 11am’.

As is common in nurse rostering, an end time may be smaller than a start time, meaning that
the interval spans midnight. Strictly speaking, then, what is representable is a time interval that
starts at any time of day and ends less than 24 hours later, on the same day or the following day.

Before considering operations on time intervals proper, here are two more basic functions.
The first converts a string iAH:MM:SS or HH:MMformat into an integer number of seconds:

bool NrcHMSToSecs(char *hms, int xres);

It returnstrue and setsres to the number of seconds if successful, and retfatsss and sets
xres to-1 if not successful (becausens has a format problem). The second function,

char *NrcSecsToHMS(int secs, HA_ARENA a);

converts an integer number of seconds to a strintgHiVMM:SSformat stored in arena
To create a time interval, call

NRC_TIME_INTERVAL NrcTimelntervalMake(int start_secs, int end_secs,
NRC_INSTANCE ins);

The new object will be stored in the arenarsf and deleted when the instance is deleted. There
are24 = 60 » 60 secondsin aday, Start_secs andend_secs must satisfy

0 <= start_secs < 24 * 60 * 60
0 < end_secs <= 24 = 60 » 60

Disallowingstart_secs == 24 » 60 * 60 andend_secs == 0 ensures thatthereisonly one
way to represent any non-empty interval, including intervals that start or end at midnight.
Function

bool NrcTimelntervalMakeFromHMS(char *start_hms, char *end_hms,
NRC_TIME_INTERVAL *res, NRC_INSTANCE ins);

convertsstart_hms andend_hms usingNrcHMSToSecs above, and makes a time interval from
them, returningrue and settingres to it if successful, and returnirfglse and setting res

to NULLif unsuccessful, becausert_hms orend_hms has a format problem or is out of range.
As occurs in instancesnd_hms may be00:00:00 , which is taken to mea?%:00:00

The two basic queries are

3.5. Time intervals 21

int NrcTimelntervalStartSecs(NRC_TIME_INTERVAL ti);
int NrcTimelntervalEndSecs(NRC_TIME_INTERVAL ti);

There are also set operations on time intervals:

bool NrcTimelntervalEqual(NRC_TIME_INTERVAL til, NRC_TIME_INTERVAL ti2);
bool NrcTimelntervalDisjoint(NRC_TIME_INTERVAL ti1, NRC_TIME_INTERVAL ti2);
bool NrcTimelntervalSubset(NRC_TIME_INTERVAL til, NRC_TIME_INTERVAL ti2);

Thesereturtrue whentil andti2 are equal, or disjoint,or wheid isasubsetof2 . These
operations consider intervals to bpen that is, to not include their endpoints. So when one
interval’s end time equals another’s start time, the two intervals are disjoint. They also understand
what it means wheend_secs < start_ secs , and act accordingly. Function

NRC_SHIFT_SET NrcTimelntervalShiftSet(NRC_TIME_INTERVAL ti, NRC_DAY d);

returns a shift-set containing those shifts which have time intervals which intersect with (are not
disjoint with) time intervati on dayd. The shifts of the result do not necessarily all come from
dayd; some may come from the previous day if they span midnight and there is a previous day,
while others may come from the next dayiif spans midnight and there is a next day. Finally,

char *NrcTimelntervalShow(NRC_TIME_INTERVAL ti, HA_ARENA a);

returns a string, stored in areaarepresenting time interval .

3.6. Shift types

In informal discourse, a shift could be a specific shift, such as the night shift on 23 July 2016, or
it could be a generic shift, such as the night shift. In NRC, a generic shift is cafibitaype
and a specific shift is calledshift There is one shift of each shift type on each day.

3.6.1. Shift types

A shift typeis a generic shift, such as ‘the day shift’ or ‘the night shift’. To make one, call

NRC_SHIFT_TYPE NrcShiftTypeMake(NRC_INSTANCE ins, char *Name,
int workload);

This creates a new shift type object with the given name and workload, addsit, @nd returns

it. The workload is a value in arbitrary units (for example, in minutes), describing how much
work a shift of this type is. It is only needed when there are worker constraints that limit total
workload. When it is not neededRC_NO_WORKLOA® synonym forl) should be passed.

Some shift types have a label as well as a name. Function
void NrcShiftTypeUseLabellnEventName(NRC_SHIFT_TYPE st, char * [abel);

adds a label tet and ensures that it is used in event names.
To retrieve the attributes of a shift type, call

22 Chapter 3. NRC Instances and Solutions

NRC_INSTANCE NrcShiftTypelnstance(NRC_SHIFT _TYPE st);
char = NrcShiftTypeName(NRC_SHIFT_TYPE st);

char = NrcShiftTypeLabel(NRC_SHIFT_TYPE st);

int NrcShiftTypeWorkload(NRC_SHIFT_TYPE st);

int NrcShiftTypelndex(NRC_SHIFT_TYPE st);

NrcShiftTypeLabel returnsNULL if NrcShiftTypeUseLabellnEventName has not been called
onst . NrcShiftTypelndex returnsst s index in the instance (O for the first shift type added, 1
for the second, and so on). There is also

NRC_SHIFT _TYPE_SET NrcShiftTypeSingletonShiftTypeSet(NRC_SHIFT _TYPE st);

which returns a shift-type set containing jgst
Two functions give access to the shifts of tyge

NRC_SHIFT_SET NrcShiftTypeShiftSet(NRC_SHIFT _TYPE st);
NRC_SHIFT_SET SET NrcShiftTypeShiftSetSet(NRC_SHIFT _TYPE st);

NrcShiftTypeShiftSet returns a shift-set containing all shifts which hatefor their shift
type, in increasing day ordeNrcShiftTypeShiftSetSet is similar, except that each shift lies
in its own singleton shift set.

There is nd\rcShiftTypeDebug ~ function, because a shift type is essentially just its name.
UseNrcShiftTypeName instead.

There is one shift for each shift type on each day. Shift types must be added before days.
Later, when days are added, BycCycleMake or NrcCalendarCycleMake (Section 3.4), one
shift of each type is added to each day.

A shift type may optionally contain a time interval. It is not used by NRC, but it may be
useful to the user. The operations for setting and retrieving it are

void NrcShiftTypeAddTimelnterval(NRC_SHIFT_TYPE st, NRC_TIME_INTERVAL ti);
NRC_TIME_INTERVAL NrcShiftTypeTimelnterval(NRC_SHIFT_TYPE st);

NrcShiftTypeTimelnterval returnsNULLwhenst ’s time interval has not been set.

The author hesitated over whether to include shift types, since a shift-set with the name of
the shift type does most of what a shift type does. However, to construct that shift-set one needs
some way to identify what is common to its shifts—a name, presumably; but then that is the name
of a shift type, not of a shift. More importantly, with shift types available, NRC can make the
individual shifts itself, and guarantee a uniform structure of one shift of each type on each day.
This uniformity matters, for example, when implementing patterns. If some of these shifts do
not need to be covered on some days (for example, if the early shift does not need to be staffed
on Sundays), one can just add no demands to those shifts.

3.6.2. Shift-type sets

A shift-type seis a set of shift types. Itis created in the usual way:

3.6. Shift types 23

NRC_SHIFT_TYPE_SET NrcShiftTypeSetMake(NRC_INSTANCE ins, char *name);
void NrcShiftTypeSetAddShiftType(NRC_SHIFT_TYPE_SET sts, NRC_SHIFT_TYPE st);

The name is optional (may B&JLL). Its attributes are returned by

NRC_INSTANCE NrcShiftTypeSetinstance(NRC_SHIFT _TYPE_SET sts);
char *NrcShiftTypeSetName(NRC_SHIFT_TYPE_SET sts);

and its shift types are visited by

int NrcShiftTypeSetShiftTypeCount(NRC_SHIFT_TYPE_SET sts);
NRC_SHIFT_TYPE NrcShiftTypeSetShiftType(NRC_SHIFT_TYPE_SET sts, int i);

There are also

bool NrcShiftTypeSetContainsShiftType(NRC_SHIFT_TYPE_SET sts,
NRC_SHIFT_TYPE st);

which returngrue whensts containsst

bool NrcShiftTypeSetEqual(NRC_SHIFT _TYPE_SET stsl,
NRC_SHIFT_TYPE_SET sts2);

which returngrue whenstsl andsts2 contain the same shift types, and

bool NrcShiftTypeSetDisjointf(NRC_SHIFT_TYPE_SET stsl,
NRC_SHIFT_TYPE_SET sts2);

which returngrue when they are disjoint. Finally,

NRC_SHIFT_TYPE_SET NrcShiftTypeSetMerge(NRC_SHIFT_TYPE_SET sts1,
NRC_SHIFT_TYPE_SET sts2);

returns a new shift-type set containing the set uniosisdf andsts2 . Shift-type sets are mainly
used when constructing patterns (Section 3.9.6).

3.7. Shifts

3.7.1. Shifts

There are no functions for creating individual shifts. Instead, NRC automatically creates one
shift, of type NRC_SHIFT, for each shift type on each day. These shifts can be accessed as
elements of the shift-sets returned XrgShiftTypeShiftSet andNrcDayShiftSet , or using
NrcInstanceShiftCount andNrclnstanceShift

To retrieve the basic attributes of a shift, call

NRC_INSTANCE NrcShiftinstance(NRC_SHIFT s);
NRC_DAY NrcShiftDay(NRC_SHIFT s);
NRC_SHIFT_TYPE NrcShiftType(NRC_SHIFT s);

The shift's index in the list of all shifts held by the instance is

24 Chapter 3. NRC Instances and Solutions

int NrcShiftindex(NRC_SHIFT s);

This is equal to the shift's day’s index multiplied by the number of shift types, plus the shift's
shift type’s index. In other words, as indexes increase we run through the shifts of the first day
in shift type order, then the shifts of the second day, and so on.

Function

char *NrcShiftName(NRC_SHIFT s);

returns the name thatwill have in the converted instance, based on the day and shift type.
There is also

NRC_SHIFT_SET NrcShiftSingletonShiftSet(NRC_SHIFT s);

which returns a shift-set containing just
A shift has an optional workload, measured in arbitrary units, for example minutes:

int NrcShiftWorkload(NRC_SHIFT s);

The workload of a shift is the workload of its shift type, and this cannot be changed.

To add a demand (Section 3.9.3) to a shift, specifying that a worker, optionally with a certain
skill, needs to be assigned to that shift, call

void NrcShiftAddDemand(NRC_SHIFT s, NRC_DEMAND d);

Any number of demands may be added in this way; their total number is the total number of
workers demanded by the shift. There are also the convenience functions

void NrcShiftAddDemandMultiNRC_SHIFT s, NRC_DEMAND d, int multiplicity);
void NrcShiftAddDemandSet(NRC_SHIFT s, NRC_DEMAND_SET ds);

NrcShiftAddDemandMulti addsd to s multiplicity times, whileNrcShiftAddDemandSet
adds the demands d$ individually tos. The fact that these demands arrived in a group is not
remembered. To visit the demands of shiftall

int NrcShiftDemandCount(NRC_SHIFT s);
NRC_DEMAND NrcShiftDemand(NRC_SHIFT s, int i);

as usual. Demands are immutable objects and may be shared by several shifts, and added to
the same shift several times, when several workers with the same characteristics are wanted.
In fact, behind the scenes NRC forces you to share demands: the demand object returned by
NrcDemandMake is only new when there is no existing demand with the same attributes. This
helps to reduce the size of the generated XESTT file, as it turns out.

Workers can be preassigned to shifts by calling
void NrcShiftAddPreassignment(NRC_SHIFT s, NRC_WORKER w);

To visit these preassignments, call

3.7. Shifts 25

int NrcShiftPreassignmentCount(NRC_SHIFT s);
NRC_WORKER NrcShiftPreassignment(NRC_SHIFT s, int i);

as usual. This works in simple cases, but be warned that the implementation is rough and ready.
At present there is no way to indicate that the preassigned worker should fill a particular role or
satisfy the demand for a particular skill. And if the preassignments cannot all be included in the
XESTT event which is the result of converting the shift, NRC aborts with an error message.

Function

void NrcShiftDebug(NRC_SHIFT s, int indent, FILE *fp);

produces a debug print efontofp , as explained in Section 3.2.

3.7.2. Shift-sets

A shift-set is a set of shifts. To make a shift-set, use

NRC_SHIFT_SET NrcShiftSetMake(NRC_INSTANCE ins, char *Nname);
void NrcShiftSetAddShift(NRC_SHIFT_SET ss, NRC_SHIFT s);

as usual; or to add the shifts of another shiftss@tto shift-setss all at once, call
void NrcShiftSetAddShiftSet(NRC_SHIFT _SET ss, NRC_SHIFT_SET ss2);
To retrieve the attributes, call

NRC_INSTANCE NrcShiftSetinstance(NRC_SHIFT_SET ss);
char *NrcShiftSetName(NRC_SHIFT_SET ss);

int NrcShiftSetShiftCount(NRC_SHIFT_SET ss);
NRC_SHIFT NrcShiftSetShift(NRC_SHIFT_SET ss, int i);

There is also
bool NrcShiftSetContainsShift(NRC_SHIFT_SET ss, NRC_SHIFT s);

which returngrue whenss containss.
Function

bool NrcShiftSetUniform(NRC_SHIFT_SET ss, int * offset);

returndrue whenss is uniform: when successive shifts are the same distance apart. A shift set
containing the shifts of one day is uniform, but so is a shift set containing the first shift on each
day. If the shift set is uniformoffset is set to the gap between successive shifts.

A different kind of uniformity is tested by
bool NrcShiftSetsUniform(NRC_SHIFT_SET ss1, NRC_SHIFT_SET ss2, int * offset);

Heressl andss2 do not have to be uniform in the previous sense. Instsadhas to be equal
tossl except shifted byoffset . Finally,

bool NrcShiftSetsEqual(NRC_SHIFT_SET ss1, NRC_SHIFT_SET ss2);

26 Chapter 3. NRC Instances and Solutions

IS a conventional equality test, equivalent to uniformity with an offset of 0.

The shifts of a shift-set may be arbitrary, but often they will be all the shifts of a particular
day, or all the shifts with a particular shift type. These shift-sets are constructed automatically
by NRC, and are obtained by callihgcDayShiftSet andNrcShiftTypeShiftSet

Function

void NrcShiftSetDebug(NRC_SHIFT_SET ss, int indent, FILE *fp);

produces a debug print @6 ontofp with the given indent, as described in Section 3.2.

3.7.3. Shift-set sets

A shift-set set is a set of shift-sets. To make a shift-set set, call

NRC_SHIFT_SET_SET NrcShiftSetSetMake(char *Nname);
void NrcShiftSetSetAddShiftSet(NRC_SHIFT_SET_SET sss, NRC_SHIFT_SET ss);

To retrieve the name and the shift-sets, call

char *NrcShiftSetSetName(NRC_SHIFT _SET SET sss);
int NrcShiftSetSetShiftSetCount(NRC_SHIFT_SET_SET sss);
NRC_SHIFT_SET NrcShiftSetSetShiftSet(NRC_SHIFT_SET_SET sss, int i);

in the usual way.
Function

NRC_SHIFT_SET NrcShiftSetSetStartingShiftSet(NRC_SHIFT_SET_SET sss);

returns a shift-set containing the first shift from each shift-sesssf. This helps when
constructing values for thetarting_ss ~ parameter ofNNrcConstraintMake (Section 3.9.8). If
any of the shift-sets ofss is emptyNrcShiftSetSetStartingShiftSet aborts. Function

void NrcShiftSetSetDebug(NRC_SHIFT_SET_SET sss, int indent, FILE *fp);

produces a debug print @és ontofp , as explained in Section 3.2.

3.8. Workers

A workeris one person capable of filling shifts. The term ‘worker’ has been preferred to ‘nurse
because it is more general, and to ‘employee’ because it is shorter.

3.8.1. Workers

To create a worker with a given name, call
NRC_WORKER NrcWorkerMake(NRC_INSTANCE ins, char *name);

The new object is added tis and returned. The basic attributes may be retrieved by

3.8. Workers 27

NRC_INSTANCE NrcWorkerinstance(NRC_WORKER w);
char *NrcWorkerName(NRC_WORKER w);

as usual. Thereis also
char *NrcWorkerConvertedName(NRC_WORKER w);

This returns the name that will be used to identifg the converted instances and solutions. This
could be justNrcWorkerName(w) , but it could also be the value of therker_word parameter

of NrcinstanceMake followed by a number, if NRC decides thidtcWorkerName(w) is not
suitable as it stands (if it begins with a digit, or is very long).

The author would have preferred to omit this function. But sometimes one wants to create
an entity with the name of workeras part of its name, and th&ircWorkerConvertedName(w)
is best, notNrcWorkerName(w) , since NRC does not convert the names of other entities.

Function

int NrcWorkerindex(NRC_WORKER w);
which returns the index af in the instance (the number of previously created workers), and
NRC_WORKER_SET NrcWorkerSingletonWorkerSet(NRC_WORKER w);

which returns a worker-set (Section 3.8.2) containingyust
To say that a worker wants a particular shift, shift-set, or day off, call

extern void NrcWorkerAddShiftOff(NRC_WORKER w, NRC_SHIFT s, NRC_PENALTY p);

extern void NrcWorkerAddShiftSetOff(NRC_WORKER w, NRC_SHIFT_SET ss,
NRC_PENALTY p);

extern void NrcWorkerAddDayOff(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);

Requesting a shift-set or day off means requesting that no shift of that shift-set or day be
assigned. The parameters give the penalty for failing to satisfy the request. These penalties
may differ from one request to another, even for the same worker. Similarly, to say that a worker
wants a particular shift, shift-set, or day on, call

void NrcWorkerAddShiftOn(NRC_WORKER w, NRC_SHIFT s, NRC_PENALTY p);
void NrcWorkerAddShiftSetOn(NRC_WORKER w, NRC_SHIFT_SET ss, NRC_PENALTY p);
void NrcWorkerAddDayOn(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);

Requesting a shift-set or day on means requesting that some shift of that shift-set or day be
assigned, without caring which. By callirngcShiftAddPreassignment (Section 3.7.1), a
resource may also be preassigned to a shift—essentially an unbreakable shift-on request. Also,

void NrcWorkerAddStartDay(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);
void NrcWorkerAddEndDay(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);

say thatvis only available starting at dayor ending at dag. The given penalties apply to every
assignment before the start day or after the end day.

Some models includbistory. information about what a worker did before the current
instance began. NRC offers these two functions for handling a worker’s history:

28 Chapter 3. NRC Instances and Solutions

void NrcWorkerAddHistory(NRC_WORKER w, char *name, int value);
bool NrcWorkerRetrieveHistory(NRC_WORKER w, char *name, int xvalue);

NrcWorkerAddHistory associategalue with name within w, andNrcWorkerRetrieveHistory
setsrvalue to the value associated wittame within w, or returndfalse if there is no value
associated withame. For example,

NrcWorkerAddHistory(w, "WeekendsWorked", 10);

says thatv has worked 10 weekends before the current instance begins.

NRC does not understand what the names mean or use history itself; it simply stores it so
that the user can retrieve it later when generating constraints (Section 3.9.10).

Although only integer values may be stored, it is easy to get around this. For example, the
leading model which includes history mainly uses integers, but it does include one shift type.
This may be stored as the index of the shift type in the instance.

Function

void NrcWorkerDebug(NRC_WORKER w, int indent, FILE *fp);

produces a debug print @fontofp , as explained in Section 3.2.

3.8.2. Worker-sets

A worker-set is a set of workers. To create a new, empty worker-set, call
NRC_WORKER_SET NrcWorkerSetMake(NRC_INSTANCE ins, char *name);

wherename is a unique name for the worker-set (it may notNd4LL). To retrieve these two
attributes, call

NRC_INSTANCE NrcWorkerSetinstance(NRC_WORKER_SET ws);
char *NrcWorkerSetName(NRC_WORKER_SET ws);

To add a worker to a worker-set, call
void NrcWorkerSetAddWorker(NRC_WORKER_SET ws, NRC_WORKER w);

A worker-set may contain any number of workers, and a worker may lie in any number of
worker-sets. There is also

void NrcWorkerSetAddWorkerSet(NRC_WORKER_SET wsl, NRC_WORKER_SET ws2);

which adds the workers ofs2 tows1.
To visit the workers of a worker-set, call

int NrcWorkerSetWorkerCount(NRC_WORKER_SET ws);
NRC_WORKER NrcWorkerSetWorker(NRC_WORKER_SET ws, int i);

with the first worker having index 0 as usual. However, the workers are not stored in the order
they are added; they are stored in order of incredsiciyorkerindex . Thisis done to facilitate
comparisons between worker sets to see whether they have the same workers. There is also

3.8. Workers 29

bool NrcWorkerSetContainsWorker(NRC_WORKER_SET ws, NRC_WORKER w);

This returngrue whenws containsv. And there is also

bool NrcWorkerSetRetrieveWorker(NRC_WORKER_SET ws, char *name,
NRC_WORKERW);

If ws contains a worker with the given name, it setsto one such worker and returtige .
Otherwise it setswto NULL and returngalse
There is nothing to prevent the same worker from being added twice. Function

bool NrcWorkerSetHasNoDuplicates(NRC_WORKER_SET ws);

returngrue when this has not occurred Wws.
Functions

bool NrcWorkerSetEqual(NRC_WORKER_SET wsl1l, NRC_WORKER_SET ws2);
bool NrcWorkerSetDisjoint(NRC_WORKER_SET wsl, NRC_WORKER_SET ws2);
bool NrcWorkerSetSubset(NRC_WORKER_SET wsl, NRC_WORKER_SET ws2);

returntrue whenwsl’'s set of workers is equal tes2’s (the name, and the order in which the
workers were added, may differ), whesil andws2 have no workers in common, and when every
worker inwsl is also inws2.

In principle, NRC should offer the usual set operations on worker sets. At present, only one
IS implemented:

NRC_WORKER_SET NrcWorkerSetComplement(NRC_WORKER_SET ws);

It returns a worker set containing the workers nowin Care is needed because this function
uses a particular convention for naming these worker sets, which is to adxd the start of the
name of the uncomplemented set (the ‘complement name’). Here are the detalils.

If ws contains all workers, the resultNscinstanceEmptyWorkerSet(ins) . And if wsis
empty, then the result MrcinstanceStaffing(ins) . In these cases names do not matter.

If the name ofws does not begin with °, thenNrcWorkerSetComplement tries to retrieve
a worker set with the complement name from the instance. If it succeeds, it assumes that this is
the complement and returns it. If it fails, it builds the complement worker-set worker by worker
and adds it, with the complement name, to the instance.

If the name ofws begins with!’, thenNrcWorkerSetComplement tries to retrieve a worker
set with the same name minus thdrom the instance. If it fails, it aborts. Otherwise it assumes
that this is the complement and returnsiit.

Function

void NrcWorkerSetDebug(NRC_WORKER_SET ws, int indent, FILE *fp);

produces a debug print @f ontofp , as explained in Section 3.2.

NRC will abort if an attempt is made to create two worker-sets with the same name. Most
worker-sets represent skills and contracts (Section 3.3.6), and name clashes are easily avoided
there. The result ofircWorkerSingletonWorkerSet(w) is created the first time it is called for;

30 Chapter 3. NRC Instances and Solutions

its name isvs name. NRC also creates its own worker-sets, one with n&®@ll" holding

all workers, and others to do with penalizing the assignment of workers to shifts they are not
qualified for. These last have obscure names that do not clash with each other and are unlikely
to clash with others. In short, you can forget about worker-set name clashes until you get one.

Worker-sets have a useful property: they can be used (passed to worker constraints, for ex-
ample) before workers are added to them. This applies to all worker-sets: the staffing worker-set
(holding all workers), contract and skill worker-sets, whatever. Aslong as the workers are added
eventually, befor&lrcArchiveWrite , everything works; but see Section 5.4 for a caveat.

3.8.3. Worker-set sets

A worker-set sefs a set of worker-sets. To define one, call functions

NRC_WORKER_SET_SET NrcWorkerSetSetMake(NRC_INSTANCE ins);
NRC_INSTANCE NrcWorkerSetSetinstance(NRC_WORKER_SET_SET wss);
void NrcWorkerSetSetAddWorkerSet(NRC_WORKER_SET_SET wss, NRC_WORKER_SET ws);

in the usual way. To visit the elements of a worker-set set, call functions

int NrcWorkerSetSetWorkerSetCount(NRC_WORKER_SET_SET wss);
NRC_WORKER_SET NrcWorkerSetSetWorkerSet(NRC_WORKER_SET_SET wss, int i);

The first element has index 0 as usual. There is also

bool NrcWorkerSetSetRetrieveWorkerSet(NRC_WORKER_SET_SET wss,
char *name, NRC_WORKER_SE¥ws);

If wss contains a worker-set with the given name, this functionse¢do that worker-set and
returngrue . Otherwise it setsws to NULLand returngalse . Function

void NrcWorkerSetSetDebug(NRC_WORKER_SET_SET wss, int indent, FILE *1p);

produces a debug print @fss ontofp , as explained in Section 3.2.

3.8.4. Worker-set trees

A worker-set treas a tree whose nodes are sets of worker-sets from a common ingtance
subject to the following conditions:

* The worker-sets that share any given node contain the same workers;

* Theroot of the tree contaimgclnstanceStaffing(ins) , the set of all workers;
» The worker-sets of a node are subsets of the worker-sets of its parent, if any;
* The worker-sets of sibling nodes are disjoint.

This structure turns out to be useful when disentangling cover requirements for overlapping
skills, although the preferred approach at present is to leave them entangled and use limit
resources constraints. To create a worker-set tree, call

3.8. Workers 31

NRC_WORKER_SET _TREE NrcWorkerSetTreeMake(NRC_INSTANCE ins);

The result has one node, containing one worker-SetnstanceStaffing(ins) . To add a
worker-set to a tree, call

bool NrcWorkerSetTreeAddWorkerSet(NRC_WORKER_SET_TREE wst,
NRC_WORKER_SET ws, NRC_WORKER_S$kitompatible_ws);

This will searchwst for the unique appropriate place to insest returningtrue and inserting

ws there if that place exists, and returnifagge and not insertingvs otherwise. In the latter
casexincompatible_ws is set to an incompatible worker-set, one which prevents insertion of
ws becausas and+incompatible_ws are not disjoint, and nor is either a subset of the other.

To visit the worker-sets stored in the root of worker-set tvgte call
int NrcWorkerSetTreeRootWorkerSetCount(NRC_WORKER_SET_TREE wst);

NRC_WORKER_SET NrcWorkerSetTreeRootWorkerSet(NRC_WORKER_SET_TREE wst,
int i);
as usual. To visit the children aefst , call
int NrcWorkerSetTreeChildCount(NRC_WORKER_SET _TREE wst);

NRC_WORKER_SET TREE NrcWorkerSetTreeChild(NRC_WORKER_SET_TREE wst,
int i);
in the usual way. The tree lies in its instance’s arena and will be freed when its instance is
freed. Finally,
void NrcWorkerSetTreeDebug(NRC_WORKER_SET_TREE wst, int indent, FILE +fp);

produces a debug print efst ontofp with the given indent.

3.9. Constraints

A constraintis a rule which constrains a solution. If the rule is violated by some solution, a costis
added to the solution’s cost. The cost of a solution is the total cost of all constraint violations.

A constraint may béard, meaning that any cost is added to a total callechérel costor
soft, meaning that it is added to a total called Hudt cost So the cost of a solution is actually
this pair of values. A solution with non-zero hard cost is often considered infeasible.

In nurse rostering there are two kinds of constraimemand constraintéoften called
cover constrainfs which specify the numbers and skills of workers needed by shiftsyarker
constraintswhich give rules that the timetables of individual workers must follow: a limit on the
number of shifts worked, no morning shift on the day after a night shift, and so on. Both kinds
are described in this section, although in the NRC model they are not closely related.

3.9.1. Penaltiesand costs

The cost of a violation of a constraint is a function of two things: dbgree of violatiorof the
constraint, also called thaeviation and thepenaltyassociated with the constraint.

32 Chapter 3. NRC Instances and Solutions

Most constraints are not simply violated or not; rather, they are violated to some degree.
For example, if some constraint requires worBeith to work at most 18 shifts, the degree of
violation is the amount by which the number of shBtsith works exceeds 18, or O if it does
not. The degree of violation is always a non-negative integer.

Thepenaltyis a triple of valueshard , a Boolean value which isuie when the constraint
Is hard, andalse when it is soft (in NRC, every constraint can be hard or sef¢jght , a
non-negative integer; ardst_fn , a value of type

typedef enum {
NRC_COST_FUNCTION_STEP,
NRC_COST_FUNCTION_LINEAR,
NRC_COST_FUNCTION_QUADRATIC
} NRC_COST_FUNCTION;

Let the degree of violation (a non-negative numbenj.o&/henx = 0O, the cost i$. Whenx > 0,
the cost depends on the cost function. Wbest fn isNRC_COST_FUNCTION_STHPis w, the
penalty weight. Whepost_fn isNRC_COST_FUNCTION_LINEARhOe usual value) the costusx.
Whencost fn is NRC_COST_FUNCTION_QUADRATtBe cost isvx?. This cost is added to the
total hard cost or soft cost, depending on whettaet istrue or false

A penalty is represented by a nditi.L value of typeNRC_PENALTY It would ordinarily be
created by a function calledtcPenaltyMake , but a briefer name has been chosen in this case:

NRC_PENALTY NrcPenalty(bool hard, int weight,
NRC_COST_FUNCTION cost_fn, NRC_INSTANCE ins);

A negativeweight causesircPenalty to abort, while ifweight > 1000 ,itis silently reduced to
1000 (the largest legal XESTT weight). Also,weight == 0 ,hard is silently set tdalse and
cost_fn toNRC_COST_FUNCTION_LINEARTO create a penalty with weight zero, it may be easier
to callNrcInstanceZeroPenalty (Section 3.3.1) than to make a fresh one udirgenalty

The attributes of a penalty may be retrieved by calls to

bool NrcPenaltyHard(NRC_PENALTY p);
int NrcPenaltyWeight(NRC_PENALTY p);
NRC_COST_FUNCTION NrcPenaltyCostFn(NRC_PENALTY p);

as usual. Thereis also

bool NrcPenaltyEqual(NRC_PENALTY pl, NRC_PENALTY p2);
which returngrue whenpl andp2 have equal attributes, and

bool NrcPenaltyLessThan(NRC_PENALTY pl, NRC_PENALTY p2);

which returngrue whenpl is less tharp2. NrcPenaltyLessThan is somewhat complicated.
It aborts if p1 andp2 have different cost functions. It returlmge when their hardnesses differ
andpl’sis soft, and when their hardnesses are equapaisdveight is less thap2’s.

The sum of two penalties is returned by

3.9. Constraints 33

NRC_PENALTY NrcPenaltyAdd(NRC_PENALTY pl1, NRC_PENALTY p2,
NRC_INSTANCE ins);

If eitherpl orp2 has weight ONrcPenaltyAdd returns the other. Otherwise, if onemdf andp2

Is hard and the other is soft, thertPenaltyAdd returnsthe hard one. Thisis arguably not exact,
but the inexactness does not matter. Otherwise, if the cost functions diBenaltyAdd
aborts. Otherwise, the result is a new penalty object, storid i's arena, whose hardness and
cost function are those ¢f. andp2, and whose weight is the sum of the weightebfandp2,
reduced as usual to 1000 if necessary.

To help with debugging, functions

char *NrcCostFnShow(NRC_COST_FUNCTION cost_fn);
char *NrcPenaltyShow(NRC_PENALTY p);

display a cost function or penalty as a string, for exarfgsée" and'h10g" . NrcPenaltyShow
begins with*h" or"s" , follows with the weight, and ends witk" , "q" , or nothing, the latter
meaningNRC_COST_FUNCTION_LINEAR

3.9.2. Bounds

A boundis a set of integer minimum or maximum limits, together with penalties which are to
be applied when the value of some quantity (not specified by the bound itself) falls short of a
minimum limit or exceeds a maximum limit. Together, these define a function which maps each
non-negative value of the quantity to a non-negative cost.

For several good reasons, bounds are not as general as they could be. For example, they
do not implement arbitrary piecewise linear functions. Instead, they focus on things needed in
practice. To create a bound which initially limits nothing (defining the zero function), call

NRC_BOUND NrcBoundMake(NRC_INSTANCE ins);
The instance may be retrieved by
NRC_INSTANCE NrcBoundinstance(NRC_BOUND b);
To add a minimum, maximum, or preferred limit to a bound, call

bool NrcBoundAddMin(NRC_BOUND b, int min_value, bool allow_zero,
NRC_PENALTY below_min_penalty);

bool NrcBoundAddMax(NRC_BOUND b, int max_value,
NRC_PENALTY above_max_penalty);

bool NrcBoundAddPreferred(NRC_BOUND b, int preferred_value,
NRC_PENALTY below_preferred_penalty,
NRC_PENALTY above_preferred_penalty);

Each of these functions can be called at most once on a given boufath returngue when
the limit is consistent with all other limits previously addedto

NrcBoundAddMin says that if the value of the quantity being limited is belowin_value
then penaltypelow_min_penalty applies tamin_value - x . Whenallow_zero istrue , if x
is 0, then, as a special case, no penalty applies.

34 Chapter 3. NRC Instances and Solutions

NrcBoundAddMax says that if the value of the quantity being limited is aboweax_value ,
then penaltybove_max_penalty applies tox - max_value

NrcBoundAddPreferred says that if the valuex is below preferred_value |, then
penalty below_preferred_penalty applies topreferred_value - x , While if it is above
preferred_value , thenabove_preferred_penalty appliestox - preferred_value

When there is both a minimum value and a maximum vahlse is returned if the
maximum value is less than the minimum value.

When there is both a minimum and a preferred vafalss is returned if the preferred
value is smaller than the minimum value. The preferred penalty applies from the preferred value
exclusive down to the minimum value inclusive. This interval is empty when the preferred value
equals the minimum value. Below the minimum value, only the minimum penalty applies.

When there is both a maximum and a preferred vahige is returned if the preferred
value is larger than the maximum value. The preferred penalty applies from the preferred value
exclusive up to the maximum value inclusive. This interval is empty when the preferred value
equals the maximum value. Above the maximum value, only the maximum penalty applies.

A preferred limit is not just a minimum limit plus a maximum limit; it applies with lower
priority than a minimum or maximum limit, as can be seen when its value is equal to a minimum
or maximum limit. This is one of the good reasons why the bound type is hot more general.

There is one last rule. When there is both a preferred limit and a maximum limit, both
penalties must be linear, and the weight of the maximum penalty must be substantially larger
than the weight of the preferred penalty (for how much larger, see below.) As taseal,is
returned when these conditions do not hold. A corresponding rule applies when there is both a
preferred limit and a minimum limit.

This rule is made because, above the maximum limit, both constraints will be violated in
XESTT, whereas in a bound, only the maximum penalty applies. (This is to agree with the
Curtois original instances.) Accordingly, the weight of the maximum penalty must be reduced
by the weight of the preferred penalty, and a constant adjustment must be added, using a
constraint with a step cost function. The Appendix to this section has the details.

For convenience, there are also functions that make a bound object and add one limit to it:

NRC_BOUND NrcBoundMakeMin(int min_value, bool allow_zero,
NRC_PENALTY below_min_penalty, NRC_INSTANCE ins);
NRC_BOUND NrcBoundMakeMax(int max_value,
NRC_PENALTY above_max_penalty, NRC_INSTANCE ins);
NRC_BOUND NrcBoundMakePreferred(int preferred_value,
NRC_PENALTY below_preferred_penalty,
NRC_PENALTY above_preferred_penalty, NRC_INSTANCE ins);

The first limit cannot be inconsistent, so these functions do not need to return a Boolean result.
Further limits may be added as usual. And functions

3.9. Constraints 35

bool NrcBoundMin(NRC_BOUND b, int *min_value, bool *allow_zero,
NRC_PENALTY=below_min_penalty);

bool NrcBoundMax(NRC_BOUND b, int *max_value,
NRC_PENALTY=above_max_penalty);

bool NrcBoundPreferred(NRC_BOUND b, int = preferred_value,
NRC_PENALTY+ below_preferred_penalty,
NRC_PENALTY=above_preferred_penalty);

returntrue when a minimum, maximum, or preferred limit has been addéddetting the other
parameters to its attributes if so. Finally, to display a bound for debugging there is

char *NrcBoundShow(NRC_BOUND b);

The result is stored in static memory and will be overwritten by the next chilc&bundShow .

Appendix. Here is what needs to be done when there is both a preferred limit and a
maximum limit. We assume that both penalties are linear, and that either both are hard or both
are soft. The desired penalty function is

f(x)=0 X< X
= W(X=X) X <X <X,
= Wy (X —X5) X, < X

wherex; is the preferred limitw; is the penalty weight for exceeding X, is the maximum limit,
w, is the penalty weight for exceeding andx, x;, andx, are integers.

We can'’t just use the obvious two constraints, because the cost wil{¥e X,) + W,(X — X,)
for x, < x, notw,(x — X,). Our first attempt at a fix is to reduwg by w; to compensate, giving

g,(x)=0 X< X
=wW(X—X) X; <X X,
=Wy(X = Xp) + (W, — W) (X —X,) X, <X

This is implementable with two constraints. The first two parts are correct, but the third is

Wi (X = Xp) + (W = Wo) (X — X)) = WX — WiXy + Wh(X — X5) — WiX + WX,

= W, (X = X5) + Wy (X, — Xy)

which differs from the needed,(x — x,) by the constant value;(x, — X,).

A constant can be compensated for using a constraint with a step cost function; but
W, (X, — X,) is positive, so the weight would need to be negative, which is not allowed. To fix this
problem, we start the second constraint freys 1rather tharx:

g,(x) =0 X< X,
= W(X=X,) X <XSX+1

= W (X=X + (W, —w)(X = (X, + 1)) X, +1<X

36 Chapter 3. NRC Instances and Solutions

Now the third part is

Wi (X = Xp) + (W, = W) (X — (X, + 1)) =WiX = WiX; + WX = WoX, — W, — WiX + WiX,, + Wy

= Wo(X = X5) + Wy (X, — X, + 1) — W,

which gives a negative constant as desired, prowdgs sufficiently large. This leads to

(X)) =0 X< X
= W(X—Xyp) X <X<X+1
= Wy(X = X)) + (W, — W) (X — (% + 1)) + (W, —wy (X, — X + 1)) X, +1<X

However, there is now a problemyat x, + L we havef (x, + 1) =w,(X, + 1 —X,) = W,, whereas
g,(X, + 1) =wy(X, + 1-X,). Butthis can be fixed by including, + 1in the step, giving

g,(x) =0 X< X
=W(X—Xy) X; < XX,
= Wy (X = X)) + (W, —wy(X, — X, + 1)) X <X<X+1
= Wy(X = Xg) + (W, = Wy(X, = Xy + 1)) + (A, — W) (X = (X, + 1)) Xp+ 1<X

This is implementable by three constraints: a linear constraint with maximum tinaind
weightw;; a step constraint with maximum limit, and weightw, — w;(x, — X, + 1) and a linear
constraint with maximum limik, + 1and weightw, — w,.

As a final check, we verify thag,(x) = f(x). For x<x, both functions are 0. For
X; <X < X,, both functions arev,(X - x,). For x, <x<x,+1, that is, forx =X, + 1, we have
f(X) = (% + 1) =Wy (X, + 1 -X,) = W, While g,(X) = Wy(X, + 1 =X;) + (W, — Wy (X, — X + 1)) =W,
Finally, for x, + 1 <x, we havef (x) = w,(x — X,), while
9,(X) =Wy (X = Xp) + (V5 = Wy (%, = X + 1)) + (W, — W) (X = (X, + 1))
= WX = WiXg + W = WiX, + WoXg — W + W (X = X,) = W, — WX + WX, + W,

= Wy(X = X5)

So there we are.
There are a few obvious special cases. Wkenx,, replacingx, by x, in f (X) gives

f(x)=0 X< X,
=wW(X—X,) Xy <X <X
= Wy (X —X,) X, < X

The second case is empty, so this reduces to a single constraint; the preferred limit can be ignored.
This is true for all penalty functions. When the weight given above for the step constraint is
negative, that constraint cannot be implemented and this conversion fails. When it is O the step
constraint can be omitted as usual.

3.9. Constraints 37

Essentially the same analysis applies when there is both a minimum limit and a preferred
limit. Assume for now thasllow_zero is not requested. The desired penalty function is

f(x)=0 X2 X,
=Wy (X, — X) X; > X2 X,
= Wy(X, = X) X, > X

wherex; is the preferred limity, is the penalty weight for falling short of;, X, is the minimum
limit, w, is the penalty weight for falling short of,, andx, x,, andx, are integers. Function

h,(x) =0 X=X
=W (X, = X) X > X=X,
= Wy(X; = X) + (W, = Wy (X, = X, + 1)) X, > X2 %=1
= Wy (X = X) + (W, = Wy (X = X, + 1)) + (W, — W) ((X, — 1) —X) X, —1>X

does the trick. It is implementable by three constraints: a linear constraint with minimum limit
X, and weightw;; a step constraint with minimum limk, and weightw, — w,(x; — X, + 1)y and a
linear constraint with minimum limix, — 1and weightw, — w,.

Constraints with 0 limits are dropped before applying this formula. Even et = Ois
possible, in which case the third constraint does nothing and is omitted.

It does not matter whether or not the preferred limit requaiis_zero , because it is
overridden by the minimum limit. If the minimum limit requestiow_zero , that is easily
handled by requestirajlow_zero in each generated constraint.

A different approach to the general problem of multiple limits would be to extend XESTT to
allow cost functions which are arbitrary piecewise step, linear and quadratic functions. However,
that would substantially increase the complexity of XESTT for the sake of an uncommon case
which adds very little, considered from the point of view of the institution being modelled.

In instance fileMusa.ros |, lines 306 and 453 form a case where there is a minimum value
and a preferred value, with = 3 w; = 5, X, = 1, andw, = 7. This fails the formula given above,
but it is somewhat illogical, because it gives val@i€3) = 0, f(2) =5 f(1) = 10 andf(0) = 7.
Rather than reject the instance, NRConv chooses to ignore the minimum limit (with a warning
message) and carry oMusa.ros contains 14 essentially identical instances of this problem.

3.9.3. Demands

A demands an object of typ&lRC_DEMANDIefining a request for one worker to be assigned to
an unspecified shift, and the penalties to apply when the assignment is defective.

In this section, the terrworker assignmemntill denote the assignment, or non-assignment,
of aworker to fulfill the request represented by a demand object. If theYe enarkers, there are
W + 1distinct worker assignments: one for each worker, and one representing non-assignment.
A demand object represents a function that associates a penalty with each worker assignment.

Adding a demand to a shift is done separatelyisghiftAddDemand (Section3.7.1). One
demand may be added any number of times to one shift, or several shifts. Demand objects are
immutable after creation, so doing it this way is safe. It helps the implementation to reduce the

38 Chapter 3. NRC Instances and Solutions

length of the generated file. The penalties apply independently to each occurrence of the demand
object. To apply penalties across sets of demands, use demand constraints (Section 3.9.5).

Some models specify an optimum number of workers but no maximum. For them, one must
decide on some maximum (twice the optimum, perhaps), and add that many demands. This is
because XESTT requires each event to contain a definite fixed number of event resources.

Creation of a demand object begins with a call to
NRC_DEMAND NrcDemandMakeBegin(NRC_INSTANCE ins);

Initially, every worker assignment has a penalty with weight 0; no distinction is made between
this and having no penalty at all. Then comes a sequence of cadsdizer functionsvhich
associate penalties with worker assignments; we’ll return to them in a moment. After they are
done, creation is ended, including markihgs immutable, by a compulsory call to

void NrcDemandMakeEnd(NRC_DEMAND d);

Any subsequent calls tis penalizer functions, or trcDemandMakeEnd, will abort.
We turn now to the penalizer functions. There are three of them:

void NrcDemandPenalizeNonAssignment(NRC_DEMAND d,
NRC_PENALTY_TYPE ptype, NRC_PENALTY p);

void NrcDemandPenalizeWorkerSet(NRC_DEMAND d, NRC_WORKER_SET ws,
NRC_PENALTY_TYPE ptype, NRC_PENALTY p);

void NrcDemandPenalizeNotWorkerSet(NRC_DEMAND d, NRC_WORKER_SET ws,
NRC_PENALTY_TYPE ptype, NRC_PENALTY p);

NrcDemandPenalizeNonAssignment associatep with non-assignment, so thatis incurred if

no assignment is made to the demaNd:DemandPenalizeWorkerSet ~ associatep with each
worker assignment of a worker frows, so thap is incurred if an assignment of a worker from

ws is made to the demandNrcDemandPenalizeNotWorkerSet associatep with each worker
assignment of a worker not froms (but not with non-assignment), so thats incurred if an
assignment of a worker not frows is made to the demand. As usual, worker sets whose workers
will be added later may be passed to these functions.

In all three functions, parametgtype has type

typedef enum {
NRC_PENALTY_REPLACE,
NRC_PENALTY_ADD,
NRC_PENALTY_UNIQUE
} NRC_PENALTY_TYPE;

and says how to combine the new penalty with the existing penalty for each affected worker
assignment. Iptype is NRC_PENALTY_REPLAGEhe new penalty replaces the existing one; if
ptype is NRC_PENALTY_ADDthe new and existing penalties are added usirgenaltyAdd

(Section 3.9.1); and iftype is NRC_PENALTY_UNIQURhe existing penalty must have weight 0
(otherwise the program aborts) and is repladefC_PENALTY_UNIQUEBoes not mean that the
new penalty cannot be replaced later.

3.9. Constraints 39

For example, suppose that the penalty for non-assignmeransl the penalty for assigning
a worker from outside worker set1 ispl. Then the appropriate calls are

NrcDemandPenalizeNonAssignment(d, NRC_PENALTY_UNIQUE, p);
NrcDemandPenalizeNotWorkerSet(d, wsl, NRC_PENALTY_UNIQUE, pl);

Or suppose we prefer that the demand not be assigned at all. The call is

NrcDemandPenalizeWorkerSet(d, NrclnstanceStaffing(ins),
NRC_PENALTY_UNIQUE, p);

This says that any assignment of an actual worker attracts penalty

The First International Nurse Rostering Competition associates a penalty with each contract.
This is to be applied whenever any nurse subject to that contract is unpreferred. Suppose there
are two contracts, one for nursesl with penaltypl, the other for nursess2 with penaltyp2.

Then if the preferred worker set for some demanasighe appropriate calls are

NrcDemandPenalizeNonAssignment(d, NRC_PENALTY_UNIQUE, hard_p);
NrcDemandPenalizeWorkerSet(d, wsl, NRC_PENALTY_UNIQUE, p1l);
NrcDemandPenalizeWorkerSet(d, ws2, NRC_PENALTY_UNIQUE, p2);
NrcDemandPenalizeWorkerSet(d, ws, NRC_PENALTY_REPLACE, p0);

This first installs penaltyiard_p for non-assignment (in INRC1thisis a hard cost of 1). It then
adds a penalty for each worker in each contract, after which all worker assignments should have
a penalty. But then it replaces the penalties for the preferred workex® byzero penalty.

Calling NrcDemandPenalizeWorkerSet with an empty worker set does nothing (unless
workers are added to the worker set later). CalMngpemandPenalizeNotWorkerSet with a
worker set containing every worker also does nothing.

Calling NrcDemandPenalizeWorkerSet with a worker set containing every worker is the
same as callingrcDemandPenalizeNotWorkerSet with an empty worker set. both penalize
the assignment of any worker. When this is wanted, it is best to pass the sets provided by NRC:
NrcInstanceStaffing(ins) and NrclnstanceEmptyWorkerSet(ins) from Section 3.3.6.
Doing that will make the generated XESTT file easier to read.

Behind the scenes, a unique name is created for each demand, and used in the generated
XESTT file as part of the names of roles and event groups. The name is based on the calls made
when constructing the demand. For example,

NA=h1+NWO0=s100

Is the name of a demand in which non-assignment has hard cbi$t=bY) and assigning a
worker not from worker se has soft cost 100NW0=s100). This name is returned by

char *NrcDemandName(NRC_DEMAND d);

but this only works afteNrcDemandMakeEnd(d) has been called.
The instance that a demand is for may be retrieved by

NRC_INSTANCE NrcDemandIinstance(NRC_DEMAND d);

40 Chapter 3. NRC Instances and Solutions

Its penalizers may be retrieved by

int NrcDemandPenalizerCount(NRC_DEMAND d);
void NrcDemandPenalizer(NRC_DEMAND d, int i, NRC_PENALIZER TYPE *pt,
NRC_WORKER_SEfws, NRC_PENALTY_TYPE=x ptype, NRC_PENALTY *p);

whereNRC_PENALIZER_TYPHS

typedef enum {
NRC_PENALIZER_NON_ASSIGNMENT,
NRC_PENALIZER_WORKER_SET,
NRC_PENALIZER_NOT_WORKER_SET
} NRC_PENALIZER_TYPE;

Its members correspond to the three functions given abB®emandPenalizer setstws to
NULL when#pt is NRC_PENALIZER_NON_ASSIGNMENT
As we knowgd holds one penalty for each worker, and one for non-assignment. Function

NRC_PENALTY NrcDemandWorkerPenalty(NRC_DEMAND d, NRC_WORKER w);

returns the penalty associated with workeior NrcinstanceZeroPenalty if no penalty has
been associated withh PassinglULL for wreturns the penalty for non-assignment. It may only
be called afteNrcDemandMakeEnd(d) has been called and before conversion to XESTT.

Finally, function
void NrcDemandDebug(NRC_DEMAND d, int multiplicity, int indent, FILE *fp);

produces a debug print af ontofp with the given indent, as explained in Section 3.2. As a
convenience to some callerspifiltiplicity is at least 2 it is included in the print.

3.9.4. Demand-sets

Demand-sets are sets of demands, defined in the usual way:

NRC_DEMAND_SET NrcDemandSetMake(NRC_INSTANCE ins);
void NrcDemandSetAddDemand(NRC_DEMAND_SET ds, NRC_DEMAND d);

There is also the trivial helper function

void NrcDemandSetAddDemandMultiNRC_DEMAND _SET ds, NRC_DEMAND d,
int multiplicity);

which callsNrcDemandSetAddDemand(ds, d) multiplicity times. Itis quite normal for one
demand object to be added to a demand set multiple times, this way or otherwise; it just means
that that many identical demands are being made.

Demand-sets make it easy to build up the total requirements for one shift into a single object.
There might be a minimum, preferred, and maximum number of workers required, similarly to
what is represented by a bound. This function develops this idea:

3.9. Constraints 41

NRC_DEMAND_SET NrcDemandSetMakeFromBound(NRC_INSTANCE ins,
NRC_BOUND b, int count, NRC_WORKER_SET preferred_ws,
NRC_PENALTY not_preferred_penalty);

It returns a new demand-set containmognt demands. It would be too tedious to describe all
the cases, but suppose the bound contaimnavalue , preferred_value , andmax_value .

Then the firstmin_value demands penalize non-assignment by the penalty for being below
min_value ; the nextpreferred_value - min_value demands also penalize non-assignment,
but by the penalty for being belgweferred_value ;the neximax_value - preferred_value

demands penalize assignment of a worker, by the penalty for beingpibfeved_value ;and

the lastcount - max_value demands also penalize assignment of a worker, but by the penalty
for being abovenax_value . In addition, ifpreferred_ws is nonNULL, all the demands penalize
the assignment of a worker not preferred_ws by not_preferred_penalty . The penalties
must all be linear, and adllow_zero attributes must béalse

For example, the following handles the Second International Nurse Rostering Competition,
whose shifts have a hard minimum cover and a soft optimum (preferred) cover:

pl = NrcPenalty(true, 1, NRC_COST_FUNCTION_LINEAR, ins);
p2 = NrcPenalty(false, 30, NRC_COST_FUNCTION_LINEAR, ins);
p3 = NrcPenalty(false, 0, NRC_COST_FUNCTION_LINEAR, ins);

b = NrcBoundMakeMin(min_cover, false, pl);
NrcBoundAddPreferred(b, opt_cover, p2, p3);
dms = NrcDemandSetMakeFromBound(ins, b, opt _cover * 2, Ws, pl);

This is much easier and clearer than adding the demands individually. To add a maximum cover,
for example, just add a maximum value to the bound.

The instance that a demand-set is for is returned by
NRC_INSTANCE NrcDemandSetinstance(NRC_DEMAND_SET ds);
To visit the demands of a demand-set, in the order they were added, call

int NrcDemandSetDemandCount(NRC_DEMAND_SET ds);
NRC_DEMAND NrcDemandSetDemand(NRC_DEMAND_SET ds, int i);

The same demand may be returned multiple times; there is no memory in the demand-set of how
its demands were added. Function

void NrcDemandSetDebug(NRC_DEMAND_SET ds, int indent, FILE *fp);

produces a debug print dé ontofp , as explained in Section 3.2.

3.9.5. Demand constraints

The usual way to specify the workers required by shifts is to add demands to the shifts, as just
explained. However, some constraints (notably in the Curtois original instances) apply to the
whole set of workers that attend some shift, or even to the set of workers that attend a set of shifts
(when the constraint is on the workers that attend during some time period). In some cases these
constraints can be decomposed into constraints on individual demands, but not always.

42 Chapter 3. NRC Instances and Solutions

For these awkward cases an alternative approach is offered. First, specify a maximum
number of workers that may be assigned to each shift, using unconstrained demands like this:

NrcInstanceDemandBegin(ins);

dm = NrclnstanceDemandEnd(ins);

dms = NrcDemandSetMake(ins);
NrcDemandSetAddDemandMulti(dms, dm, total cover);
NrcShiftAddDemandSet(s, dms);

or equivalently like this:

dms = NrcDemandSetMakeFromBound(ins, NrcBoundMake(ins), total cover,
NULL, NULL);
NrcShiftAddDemandSet(s, dms);

This ensures that shistcan be assigned up taal_cover workers, without any constraint on
how many assignments there should be, or on the assigned workers’skills. Second, call

NRC_DEMAND_CONSTRAINT NrcDemandConstraintMake(NRC_BOUND b,
NRC_SHIFT_SET ss, NRC_WORKER_SET ws, char*name);

This adds a constraint tgs’s instance which limits the total number of demands from an
arbitrary set of shifts that may be assigned workers from a given set. Functions

NRC_BOUND NrcDemandConstraintBound(NRC_DEMAND_CONSTRAINT dc);
NRC_SHIFT_SET NrcDemandConstraintShiftSet(NRC_DEMAND_CONSTRAINT dc);
NRC_WORKER_SET NrcDemandConstraintWorkerSet(NRC_DEMAND CONSTRAINT dc);
char *NrcDemandConstraintName(NRC_DEMAND_CONSTRAINT dc);

retrieve the four attributes of demand constrdint

Parametel is a bound object (Section 3.9.2) which specifies any combination of minimum,
maximum, or preferred limits on the number of assignments. It may be a freshly created object
with no limits when passed tércDemandConstraintMake ; the limits may be added to it later.

Parametess is the set of shifts whose assignments are being constrained. For example, if
the constraint is on a single shsftthenss would beNrcShiftSingletonShiftSet(s)

Parametews is the set of workers. The constraintis only interested in assignments of these
workers; assignments of other workers do not influence it. If the constraintis on the total number
of assignments irrespective of skill, theswould beNrcinstanceStaffing(ins)

Parametename does not influence the meaning of the constraint; rather, it helps to identify
the constraint in evaluation prints. It does not have to be unique. It should indicate what is being
constrained but not the actual limits, because NRC adds that information to the name.

There is also the usual debug function,

void NrcDemandConstraintDebug(NRC_DEMAND CONSTRAINT dc,
int indent, FILE *fp);

which produces a debug print d¢ ontofp with the given indent.
NRC demand constraints are converted to XESTT limit resources constraints, or in some

3.9. Constraints 43

cases to assign resource and prefer resources constraints, which are preferable because they
constrain each event resource independently—a fact which can have practical consequences, for
example for time sweep assignment algorithms. For the details, consult Section 4.3.

3.9.6. Patterns

Patternsare used in several nurse rostering models to say that some sequences of shift types—a
morning shift following a night shift, for example—should be forbidden, or penalized.

Given that a worker takes at most one shift per day, the choices on each day are one of its
shifts or nothing. Denote the shift types by2, and3, and denote the absence of a shift (a free
day) by0. Using regular expression notation, an arbitrary subset of these choices is represented
by enclosing them in brackets. For examffl2] means ‘a shift of type 2 or nothing.’In source
models, gatternis a sequence of thessms representing the choices on consecutive days. For
example[3][1]] means ‘an early shift following a night shift’.

A patternmatchesa worker’s timetable at any day where the worker has a sequence of
shifts or days off, each of which matches the corresponding term of the pattern. For example,
if a worker’s timetable contains a shift of tyBeon daylWedand a shift of typd on daylThu,
then patterii3][12] matches that timetable &tved

The empty ternf] is allowed, but it never matches, which makes it useless in practice. On
the other hand0123] says that we don’t care what happens on that day, which can be useful.

NRC supports patterns. A pattern is created by
NRC_PATTERN NrcPatternMake(NRC_INSTANCE ins, char *name);
wherename is optional (may b&lULL). To retrieve the attributes, call

NRC_INSTANCE NrcPatterninstance(NRC_PATTERN p);
char *NrcPatternName(NRC_PATTERN p);

To add a term to a pattern, call

void NrcPatternAddTerm(NRC_PATTERN p, NRC_SHIFT_TYPE_SET sts,
NRC_POLARITY po);

As shown, a term consists of a shift-type set apakarity, of type

typedef enum {
NRC_NEGATIVE,
NRC_POSITIVE

} NRC_POLARITY;

These attributes will be explained shortly. To visit the terms of a pattern, call

int NrcPatternTermCount(NRC_PATTERN p);
void NrcPatternTerm(NRC_PATTERN p, int i, NRC_SHIFT _TYPE_SET * Sts,
NRC_POLARITY * po);

in the usual way. There is also

44 Chapter 3. NRC Instances and Solutions

bool NrcPatternisUniform(NRC_PATTERN p);

which returngrue whenp isuniform when all its terms contain equal shift-type sets and equal
polarities. Unwanted patterns can be implemented more efficiently when they are uniform.

TypeNRC_POLARITYhas just one operation:
NRC_POLARITY NrcPolarityNegate(NRC_POLARITY po);

which returns negative for positive and positive for negative.

Atermt matches the timetable of workewon dayd if eithert ’s polarity iSNRC_POSITIVE
andwworks a shift on day whose type is one of the typestds shift-type set, or els€'s polarity
is NRC_NEGATIVEandw does not work a shift on day whose type is one of the types 0k
shift-type set. This second case includes not working at all. A pattern matstigsetable on
dayd if its first term matches on daj; its second term matches on the day afteand so on.

A term which does not contaif is represented by a shift-type set containing its shift
types, with polarityNRC_POSITIVE. A term which contain$ is represented by a shift-type set
containing the complement of the term’s noshift types, with polarityNRC_NEGATIVE The
reader can easily verify that this does what is wanted. In particular, the don’t-car@1@8mn
is represented by an empty shift-type set with negative polarity. This term always matches.

Creating a pattern does not make it unwanted: it has to be added to a worker constraint,
using functionNrcConstraintAddPattern (Section 3.9.8). The constraint holds information
about the cost of violations, and which days the pattern is allowed to match with.

All patterns are stored in the instance, and are accessiblectmgtancePatternCount
NrcInstancePattern , andNrcInstanceRetrievePattern (Section 3.3.8). Function

void NrcPatternDebug(NRC_PATTERN p, int indent, FILE *fp);

produces a debug print pfontofp , as explained in Section 3.2.

3.9.7. Pattern sets
A pattern seis a set of patterns. To make an initially empty pattern set, call
NRC_PATTERN_SET NrcPatternSetMake(NRC_INSTANCE ins);

Functions

NRC_INSTANCE NrcPatternSetinstance(NRC_PATTERN_SET ps);
int NrcPatternSetindexIninstance(NRC_PATTERN_SET ps);

return the pattern set’s instance, and its index in the instance.
To add a pattern to a pattern set, call

void NrcPatternSetAddPattern(NRC_PATTERN_SET ps, NRC_PATTERN p);
This may be done any number of times. To visit the patterns of a pattern set, call

int NrcPatternSetPatternCount(NRC_PATTERN_SET ps);
NRC_PATTERN NrcPatternSetPattern(NRC_PATTERN_SET ps, int i);

3.9. Constraints 45

in the usual way.
The function that makes pattern sets non-trivial is

NRC_PATTERN_SET NrcPatternSetReduce(NRC_PATTERN_SET ps);

This returns a new pattern set whose patterns match at the same pesits@sterns do, but
usually using fewer patterns. To see the use for this, consider this excerpt from one of the recent
Curtois and Qu instances:

a4,720,alla2|a3|a4|d1|d2|d3|d4|d5
d1,480,alla2|a3

d2,480,alla2|a3
d3,600,al|a2|a3|a4
d4,720,alla2|a3|a4|d1|d2|d3|d4|d5

Ignoring the workload limits, this gives for each shift type (not all are shown here) a list of other
shift types that may not follow it, so it defines a set of patterns. The reduced set is

a4|d4,720,al|a2|a3|a4|d1|d2|d3|d4|d5
d1]|d2,480,alla2|a3
d3,600,alja2|a3|a4

These patterns match at the same points as the originals, but there are fewer of them, leading
to smaller generated instances. The function merges pairs of patterns with the same length and
equal elements and polarities except at one place, where the elements must be disjoint and the
polarities must be equal.

Instead of building then reducing, it may be simpler to reduce while building, by calling
void NrcPatternSetMergePattern(NRC_PATTERN_SET ps, NRC_PATTERN p);

It is like NrcPatternSetAddPattern except that it first tries to mergeinto an existing pattern
of ps, only adding it as a separate pattern as a last resort. Finally,

void NrcPatternSetDebug(NRC_PATTERN_SET ps, int indent, FILE *fp);

produces a debug print p§ in the usual way.

3.9.8. Worker constraints

A worker constrainis a constraint on the timetables of individual workers. Worker constraints

all seem to have a similar form: they contain a set of shift-sets, and for each worker they
determine whether the worker is busy or free during each shift-set, calculate totals of busy and
free shift-sets, and assign a penalty proportional to the amount by which the totals fall short of

a given minimum limit or exceed a given maximum limit. There are variations: when there is

a non-zero minimum limit, in some cases a total of O is nevertheless not penalized; sometimes
the total workload (measured in minutes, say) is limited rather than the number of shifts; some
constraints are repeated along the cycle (every weekend, for example); some apply to sequences
of consecutive shift-sets, others are just concerned with totals, not with ordering; and so on.
Nevertheless NRC offers a single interface for all worker constraints.

46 Chapter 3. NRC Instances and Solutions

A shift is busyfor a worker when the worker works that shift. A shiftfisefor a worker
when it is not busy for the worker. A shift-set is busy for a worker when at least one of its shifts
is busy for the worker. A shift-set is free for a worker when it is not busy for the worker.

When a shift-set is added to a constraint, a polarity (Section 3.9.6) is added with it, saying
whether the shift-set is to be treatgakitivelyor negatively Informally, we say that a shift-set is
positivewhen its associated polarity is positive, aretjativeotherwise. However, it is the usage
of the shift-set within the constraint which is positive or negative, not the shift-set itself.

When a constraint is applied to a particular worker, a shift-set withinaicisvewhen it is
positive and busy for the worker, or negative and free for the worker. Otherwisegdtisve The
constraint calculates the total number of active shift-sets, and compares it with the limits. If all
shift-sets are positive, this constrains busy shift-sets; if all are negative, it constrains free shift-sets.
Mixtures of positive and negative are legal, and useful for implementing unwanted patterns.

To create a worker constraint, initially with no shift-sets, call

NRC_CONSTRAINT NrcConstraintMake(NRC_INSTANCE ins, char *name,
NRC_WORKER_SET ws, NRC_CONSTRAINT_TYPE type, NRC_BOUND bound,
NRC_SHIFT_SET starting_ss);

This returns a new constraint and also adds iinto. The type should really be called
NRC_WORKER_CONSTRA|NUt NRC_CONSTRAINTS shorter. To retrieve the attributes, call

NRC_INSTANCE NrcConstraintinstance(NRC_CONSTRAINT c);

char *NrcConstraintName(NRC_CONSTRAINT c);
NRC_WORKER_SET NrcConstraintWorkerSet(NRC_CONSTRAINT c);
NRC_CONSTRAINT_TYPE NrcConstraintType(NRC_CONSTRAINT c);
NRC_BOUND NrcConstraintBound(NRC_CONSTRAINT c);
NRC_SHIFT_SET NrcConstraintStartingShiftSet(NRC_CONSTRAINT c);

Parametename is the name given to XESTT constraints derived from this constraint. A good
choice here is an informal source model description, expressed positively, that is, as what is
wanted rather than what is to be avoidedt most 4 busy weekends" and so on. Names
mainly appear as entries in tables of defects, where there are other entries giving the details, so
a short, informal phrase is best. There is no need for names to be distinct. NRC will ensure that
the XESTT constraints it generates have distinct Ids, which is a different thing.

Parametews says which workers the constraint applies to. For examplepuld hold the
workers who share a contract containing this constraint. If the constraint is for a single worker
w, thenws is NrcWorkerSingletonWorkerSet(w) (Section 3.8.1). Worker constraints which are
equal apart fronws are merged brcArchiveWrite into a single XESTT constraint.

Parametetype determines what is constrained, and has type

typedef enum {
NRC_CONSTRAINT_ACTIVE,
NRC_CONSTRAINT_CONSECUTIVE,
NRC_CONSTRAINT _WORKLOAD

} NRC_CONSTRAINT_TYPE;

NRC_CONSTRAINT_ACTIVEMmeans that the constraint is on the number of active shift-sets;

3.9. Constraints 47

NRC_CONSTRAINT_CONSECUTIVReans that the constraint is on the number of consecutive active
shift-sets;tandNRC_CONSTRAINT_WORKLO#ARans that the constraint is on the total workload of
the shifts of one shift-set.

Parametebound says whether the constraintis a minimum limit, a minimum limit in which
zero is allowed, or a maximum limit, or a combination, and includes penalties for when the limit
is violated (Section 3.9.2).

Lastly,starting_ss repeatsthe constraint along the cycle. If NidL, the constraintis ap-
plied only once. If itis norNULL, the distance from its first shift to each of its other shifts defines
a distance along the cycle to repeat the constraint. For examplatfifg_ss holds the first
shift of each day, the constraint repeats on every dégginstanceDailyStartingShiftSet
and NrcinstanceWeeklyStartingShiftSet (Section 3.3.5)NrcDaySetStartingShiftSet
(Section 3.4.3), andlircShiftSetSetStartingShiftSet (Section 3.7.3) return most of the
starting shift-sets needed in practice.

When starting_ss is used, the shift-sets added to the constraint must define only the
earliest occurrence of the constraint. Somstafing_ss s shifts may place the constraint at
points of the cycle where some parts of it go off the end. Such shifts are legal but are ignored.

One may usetarting_ss with the consecutive limit types, to get constraints such as a
limit on the number of consecutive days worked within each four-week interval. But these never
seem to occur in source models, perhaps because they are very artificial at the boundaries.

After creating the constraint, add shift-sets to it by calling
void NrcConstraintAddShiftSet(NRC_CONSTRAINT c,
NRC_SHIFT_SET ss, NRC_POLARITY po);

void NrcConstraintAddShiftSetSet(NRC_CONSTRAINT c,
NRC_SHIFT_SET_SET sss, NRC_POLARITY po);

any number of times, arbitrarily intermixed. This adds the shift-sets, each accompanied by a
polarity, either one at a time or many at once. There is also

void NrcConstraintAddPattern(NRC_CONSTRAINT ¢, NRC_PATTERN p, NRC_DAY d);

A patternis a sequence of shift-type sets with polaritiesNae@bnstraintAddPattern simply
makes the corresponding sequence of callsré€onstraintAddShiftSet , converting each
shift type sests into a shift set, by callindrcDayShiftSetFromShiftTypeSet(d, sts) for

the shift type set of the first term, and similarly using successive days for successive terms.
To visit the shift-sets and polarities added to a const@ioall
int NrcConstraintShiftSetCount(NRC_CONSTRAINT c);

void NrcConstraintShiftSet(NRC_CONSTRAINT c, int i,
NRC_SHIFT_SET *ss, NRC_POLARITY *po);

as usual. The constraint does not remember whether the shift-sets and polarities were added
individually, or using shift-set sets, or using patterns.

One common form of constraint, the unwanted pattern, is already implemented:

The author learned of this approach to constraining consecutive subsequences from Gerhard Post.

48 Chapter 3. NRC Instances and Solutions

NRC_CONSTRAINT NrcUnwantedPatternConstraintMake(NRC_INSTANCE ins,
char *name, NRC_WORKER_SET ws, NRC_PENALTY penalty, NRC_PATTERN p,
NRC_DAY_SET starting_ds);

The first three parameters and the return value are afliri@onstraintMake . Parameter
penalty is the penalty to apply when the pattern is violated. The last two parameters give the
unwanted pattern and the set of days on which it may begin (pelsstanceCycle(ins) if

it may begin on any day). Hepemust contain at least one term, astatting_ds ~ must contain

at least one day.

Function

void NrcConstraintDebug(NRC_CONSTRAINT c, int indent, FILE *fp);

produces a debug print ofontofp , as explained in Section 3.2.

Behind the scenes, NRConv implements an important optimization catledensing
which converts sets of constraints of ty§BC_CONSTRAINT_ACTIVENto constraints of type
NRC_CONSTRAINT_CONSECUTIMENhen the shift-sets are uniform (when they repeat regularly
along the cycle). When source files implement minimum and maximum limits on the number of
busy days using patterns, condensing changes them back into constraints which limit the numbers
directly. The implementation has been done with care and produces an exact result whenever it
is applied. The new constraints have the old names'wijthndensed)" appended.

3.9.9. Examplesof worker constraints

this section is out of date, it needs a makeover

This section presents some examples of worker constraints. Many more may be found in the
source code. For reference, here is the interfadéasfonstraintMake from Section 3.9.8:

NRC_CONSTRAINT NrcConstraintMake(NRC_INSTANCE ins, char *name,
NRC_WORKER_SET ws, NRC_CONSTRAINT_TYPE type, NRC_BOUND bound,
NRC_SHIFT _SET starting_ss);

Letins be an NRC instance. To say that all staff should work at most one shift per day:

¢ = NrcConstraintMake(ins, "Single assignment per day",
NrcInstanceStaffing(ins), p, NRC_LIMIT_MAX, 1,
NrcInstanceDailyStartingShiftSet(ins));

NrcConstraintAddShiftSetSet(c,
NrcDayShiftSetSet(NrcInstanceCycleDay(ins, 0), NRC_POSITIVE);

Looking along the arguments oficConstraintMake , ¢ applies to all workers, has penatfty
maximum limit 1 (not consecutive), and repeats each day. The second statement defines the first
point where it applies: to the shifts of the first day of the cycle. The shift-set set ensuresthat each
shift is added in its own shift-set, so that the usual limit on the number of busy shift-sets becomes
a limit on the number of busy shifts. It would be wrong to pass in a single shift-set containing all
the shifts of the day, but NRConv works out that this is a simple case and generates a limit busy
times constraint rather than a cluster busy times constraint.

To impose a maximum workload limit of 28 shifts:

3.9. Constraints 49

¢ = NrcConstraintMake(ins, "At most 28 shifts",
NrcinstanceStaffing(ins), p, NRC_LIMIT_MAX, 28, NULL);

NrcConstraintAddShiftSetSet(c, NrclnstanceShiftsShiftSetSet(ins),
NRC_POSITIVE);

Herec applies to all workers, has penajtyis not consecutive, and does not repeat. The second
statement adds each shift, again in its own shift-set.

Making a pattermp unwanted is very easy:

¢ = NrcConstraintMake(ins, "Unwanted pattern”, NrclnstanceStaffing(ins),
p, NRC_LIMIT_MAX, NrcPatternTermCount(p) - 1,
NrcInstanceDailyStartingShiftSet(ins));

NrcConstraintAddPattern(c, p, NrcinstanceCycleDay(ins, 0));

The constraint applies to all workers, has pengltilas a maximum limit of one less than the
pattern length (not consecutive), and starts afresh each day. The last line adds shift-sets defining
the first occurrence of the pattern, beginning on the first day of the cycle.

NRConv offers NrcUnwantedPatternConstraintMake , its own implementation of
unwanted patterns, documented near the end of Section 3.9.8. Itisrather more complex than the
code above, mainly because, if the pattern is uniform (has the same shift-set and the same polarity
at every term) and may begin on any day, it optimizes by generating a limit active intervals
constraint rather than a cluster busy times constraint which repeats on each day:

50 Chapter 3. NRC Instances and Solutions

NRC_CONSTRAINT NrcUnwantedPatternConstraintMake(NRC_INSTANCE ins,
char +*name, NRC_WORKER_SET ws, NRC_PENALTY penalty, NRC_PATTERN p,
NRC_DAY_SET starting_ds)

NRC_CONSTRAINT res; NRC_SHIFT_TYPE_SET sts; NRC_POLARITY po; int i;
NRC_DAY d; NRC_SHIFT_SET ss;

MAssert(NrcPatternTermCount(p) > 0,
"NrcUnwantedPatternConstraintMake: empty pattern™);
MAssert(NrcDaySetDayCount(starting_ds) > 0,
"NrcUnwantedPatternConstraintMake: empty starting_ds");
if(NrcDaySetDayCount(starting_ds) == NrcInstanceCycleDayCount(ins)
&& NrcPatternlsUniform(p))
{
/* uniform pattern, single limit active intervals constraint */
res = NrcConstraintMake(ins, name, ws, penalty,
NRC_LIMIT_MAX_ CONSECUTIVE, NrcPatternTermCount(p)-1, NULL);
NrcPatternTerm(p, 0, &sts, &po);
for(i = 0; i < NrclnstanceCycleDayCount(ins); i++)
{
d = NrcInstanceCycleDay(ins, i);
ss = NrcDayShiftSetFromShiftTypeSet(d, sts);
NrcConstraintAddShiftSet(res, ss, po);
}
}
else
{
/* non-uniform pattern, repeating cluster busy times constraint */
res = NrcConstraintMake(ins, name, ws, penalty, NRC_LIMIT_MAX,
NrcPatternTermCount(p)-1, NrcDaySetStartingShiftSet(starting_ds));
NrcConstraintAddPattern(res, p, NrcDaySetDay(starting_ds, 0));
}

return res;

}

This function could be written by an NRC user; it does not use any behind-the-scenes features.

Constraints involving weekends need to know when the weekends are. One way to express
this is as a day-set set, each day-set of which contains the days of one weekend, in chronological
order. Such a day-set set can be built using NRC's functions for building day-sets and day-set
sets, following whatever rule the format uses to define weekends, and shared by all constraints
concerning weekends. Assuming thaekends_dss is such a day-set set, the following code
places a maximum limit of 3 on the number of consecutive weekends that wockerwork:

3.9. Constraints 51

NRC_CONSTRAINT c¢; int i; NRC_DAY_SET ds;

¢ = NrcConstraintMake(ins, "At most 3 consecutive weekends",
NrcWorkerSingletonWorkerSet(w), p, NRC_LIMIT_MAX_CONSECUTIVE, 3, NULL);

for(i = 0; i < NrcDaySetSetDaySetCount(weekends_dss); i++)

{
ds = NrcDaySetSetDaySet(weekends_dss, i);

NrcConstraintAddShiftSet(c, NrcDaySetShiftSet(ds), NRC_POSITIVE);
}

The constraint applies toonly, has penaltg, has maximum limit 3, and is consecutive. There
Is one shift-set for each weekend, containing the shifts of that weekend.
3.9.10. Adding history toworker constraints

Some constraints need to be influenced by the history of the workers whose timetables they
constrain. This can be done by first calling

void NrcConstraintAddHistory(NRC_CONSTRAINT c, int history_before,
int history_after);

once, then

void NrcConstraintAddHistoryWorker(NRC_CONSTRAINT ¢, NRC_WORKER w,

int value);
at most once for each workerin c's worker-set. Thenistory_before , history_after , and
value values are the, ¢, andx; values from Jeff Kingston’s paper on history.
FunctionsNrcWorkerAddHistory and NrcWorkerRetrieveHistory from Section 3.8.1

make it easy to store history values in workers. However, they do not automatically pass these
values on to constraints. Code like this is needed for that:

¢ = NrcConstraintMake(..., ws, ...);
NrcConstraintAddHistory(c, ...);
for(i = 0; i < NrcWorkerSetWorkerCount(ws); i++)
{
w = NrcWorkerSetWorker(ws, i);
if(NrcWorkerRetrieveHistory(w, "WeekendsWorked", &v) && v > 0)
NrcConstraintAddHistoryWorker(c, w, V);

}
Accordingly, NRC offers helper function

void NrcConstraintAddHistoryAllWorkers(NRC_CONSTRAINT c,
int history_before, int history_after, char *name);

whose body is the call tdNrcConstraintAddHistory plus the loop, withname for
"WeekendsWorked" andNrcConstraintWorkerSet(c) for ws. Most cases are best handled by
NrcConstraintAddHistoryAllWorkers , but when its simple approach is not sufficient, one can
fall back onNrcConstraintAddHistory andNrcConstraintAddHistoryWorker

52 Chapter 3. NRC Instances and Solutions

History may not be added to a constraint with a starting shift-set. Itisjusttoo hard to assign
a reasonable meaning to it.

3.10. Solutions

This section describes solutions. A solution is a collection of assignments to the demands of the
shifts of one instance. It is a very simple thing, making this a very short section.

To create a new solution for a given instance, call
NRC_SOLN NrcSolnMake(NRC_INSTANCE ins, HA_ARENA_SET as);
whereas is as forNrcinstanceMake . To retrieve the instance, call
NRC_INSTANCE NrcSolninstance(NRC_SOLN soln);
A solution contains an optional description, giving its provenance. To set and retrieve it, call

void NrcSolnSetDescription(NRC_SOLN soln, char * description);

char *NrcSolnDescription(NRC_SOLN soln);
NrcSolnDescription returnsNULL when there is no description.

A solution also contains an optional running time, giving the time in seconds that it took to
find. To set this value and retrieve it, call

void NrcSolnSetRunningTime(NRC_SOLN soln, float running_time);
float NrcSolnRunningTime(NRC_SOLN soln);
NrcSolnRunningTime returns1.0 when no running time has been passed, meaning ‘absent’.

A newly created solution does not lie in any archives. To add it to an archive, the user must
first ensure that that archive has a solution group, by callim§oinGroupMake (Section 2.2).
Then the solution may be added to the solution group, by callic@pinGroupAddSoln

Internally, a solution is just a collection of assignments of workers to the demands of shifts.
Each demand accepts at most one assignment. To add an assignment, call

void NrcSolnAddAssignment(NRC_SOLN soln, NRC_SHIFT s, int i,
NRC_WORKER w);

This assigns/to demand of s, whered <= i < NrcShiftbemandCount(s) . The assignment
isinsoln , not in the instance; the instance does not chahigesolnAddAssignment aborts if
an attempt is made to assign a second worker to the same demand.

To inspect an existing assignment, call
NRC_WORKER NrcSolnAssignment(NRC_SOLN soln, NRC_SHIFT s, int i);

This returnsNULL when no assignment has been made. Unassigned demands are acceptable
within solutions, although they usually incur a penalty, depending on the demand’s penalties.

Chapter 4. Implementation Notes

This chapter contains notes on the more complicated parts of the NRC implementation. Itishere
mainly for the author’s benefit; users of NRC do not have to read it.

4.1. Optimizingworker constraints

The worker constraints created by callsNhwConstraintMake , called justconstraintshere,

are not mapped to XESTT constraints in a simple one-to-one manner. Instead, a sequence of
optimizations is applied, aiming to reduce the size of the generated XESTT file by combining
constraints where possible, and to reduce the density of constraints by replacing whole sets of
NRC_CONSTRAINT_ACTIVEonstraints that combine to limit the number of consecutive busy or
free days (etc.) bNRC_CONSTRAINT_CONSECUTI\@®nstraints that apply these limits directly.

These optimizations are carried out biycinstanceConvertWorkerConstraints , a
private function which calls on various functions in fites_instance.c ~ , nrc_constraint.c ,
andnrc_condensed.c . The remainder of this section is basically a step-by-step account of what
NrcInstanceConvertWorkerConstraints does.

Theattributesof a constraint are its worker set, its type (active, consecutive, or workload),
its bound, its starting shift-set, its shift-sets (including their polarities), and its history. It also has
a name, but that does not affect optimization and is not an attribute for present purposes. When
two constraints are merged into one, their names are merged in a way that preserves everything
in both names but eliminates most repetition.

NrcInstanceConvertWorkerConstraints has three phases. In order of execution they
arecondensingbound mergingandworker set mergingAfter these phases are complete, the
surviving constraints are mapped to XESTT constraints in a simple one-to-one manner, the only
complication being that constraints of type active are generated as limit busy times constraints
where possible, and as cluster busy times constraints otherwise.

Bound merging and worker set merging are easy. When two constraints have equal
attributes except that one has a maximum limit and the other has a minimum limit, they are
merged by bound merging. When two or more constraints have equal attributes except that they
apply to different worker sets, they are merged by worker set merging.

Actually there is one wrinkle here. A constraint’s history after value is only referenced
when there is a minimum limit, as Jeff Kingston’s paper on history makes clear. So ‘equal
attributes’ may be refined to mean that if one of the constraints has no minimum limit, then the
history after attributes need not be compared. If the constraints are merged, the history after
attribute of the result should come from a constraint with a minimum limit, if there is one.

It remains to explain condensing. In the Curtois original instances, constraints which limit
the number of consecutive busy or free days do not do so directly. Instead, they use patterns to
specify limits on the number of busy or free days, not necessarily consecutive, that may occur
in certain time windows. This ‘encoding’ of the constraints is a bad thing, because it leads to
many overlapping constraints where just one would do, slowing down constraint evaluation and

53

54 Chapter 4. Implementation Notes

confusing solvers that attempt to understand a solution’s defects, as opposed to merely observing
its cost. Condensing detects such constraints and ‘decodes’them back to the unencoded form.

Condensing applies only to constraints of type active which have a maximum limit (only)
whose value is one less than the number of shift-sets. Each shift-set must be a copy of the
previous one, only shifted a certain offset along the cycle (typically one day, but any offset is
acceptable), and these offsets must be all equal. Any starting shift-set must have its times equally
spaced along the cycle with this same offset. It does not have to cover the whole cycle. The
shift-sets’ polarities must either be all equal, or all equal except the last, or all equal except the
firstand last. Respectively, these polarities are what one finds in patterns thatimpose a maximum
limit, an exact limit at the start of the cycle, and an exact limit not at the start of the cycle.

The constraints satisfying these conditions are partitionediags Two constraints lie in
the same bag when they have the same hardness, the same worker set, the same polarity (ignoring
the ends), and the same first shift-set and offset. Also, constraints whose polarities impose
maximum limits go into different bags from constraints whose polarities impose exact limits.

Bags of constraints whose polarities impose maximum limits are easy to handle. One
consecutive constraint is made for each constraint, with the shift-sets implied by the original
shift-sets and starting shift-set. For example, if the original shift-sets are the first four days, and
the starting shift-set contains the first shift on each day (possibly minus the last three), then the
shift-sets are the whole set of days. No history is needed.

Bags of constraints whose polarities impose exact limits are harder to handle. Some of the
constraints may apply at the start of the cycle, others not at the start of the cycle. The exactlength
penalized may also vary.

The first stepis to pair each constraint which applies at the start of the cycle with a constraint
which does not apply at the start but otherwise gives the same penalty to sequences of the same
length. Any constraint which applies only at the start of the cycle but cannot be paired in this
way is left untouched and ultimately generates the usual uncondensed XESTT constraint.

The pairs are then sorted into decreasing order of the exact length penalized. If there is one
pair for each length from some number down to 1, and the penalty costs are non-decreasing as
the length decreases, then these constraints are replaced by one or more consecutive constraints
that generate the same costs.

Rather than giving a tedious general explanation, consider this example from Curtois
original instanceGPost. Sequences of length 3 have penalty 1, sequences of length 2 have
penalty 4, and sequences of length 1 have penalty 100. These are mapped into two consective
constraints, one with minimum limit 4 and penalty 1 with a quadratic cost function, the other
with minimum limit 2 and penalty 91 with a linear cost function. Starting at the largest exact
length, the algorithm is to try quadratic first, then linear, then step, and see how much penalty is
left after applying this cost function. If these residues are non-negative and non-decreasing, the
function is accepted and the algorithm moves on to the next pair with positive residue. Otherwise
the function is rejected and the next function is tried. The algorithm cannot reject all functions,
because, since the penalties are non-decreasing, step at least must work. As a special case, when
there is only one pair left, all three functions work, and linear is chosen.

Finally, consider history in the condensed constraint. Let its minimum limit. be
Suppose there is an interval of length less thaat the start. If there were patterns that

4.1. Optimizing worker constraints 55

match with this interval, then the history before value is 0. If not, the history before value is

for each resource. It was not mentioned above, but condensing is only applied if, within a given
bag, either each pair contains two constraints (one for the start and one for the rest), or else each
pair contains one constraint (for the rest, not for the start).

Suppose that there is an interval of length less that the end. No penalty should be
applied in this case, because none of the original patterns match with this interval. So history
after valuel is assigned to each resource. If instances appear with patterns that do match at the
end, then the algorithm will have to be revised, analogously to what happens at the start now.

4.2. Convertingdemandsinto XESTT constraints

This section explains how demand objects are converted into XESTT assign resource and prefer
resources constraints.

When a demand is added to a shift, the demand records that fact as well as the shift. When
converting the demand, this makes it easy to determine which events, and which event resources
within those events, are derived from the demand, and hence which event groups and roles the
constraints are to apply to. The main issue, then, is working out which constraints are needed.

In certain special cases, basically those which can be modelled by at most one assign
resource constraint plus at most one prefer resources constraint, the needed XESTT constraints
are generated directly. Otherwise, the conversion uses the following fully general algorithm.

A demand records the calls on penalizer functions it receives. The first step is to break each
call into a set of requests to associate one penalty with one worker assignment (including non-
assignment). The penalty type says how to combine penalties for one worker assignment: sum,
replace, or abort. At the end there is one penalty, possibly zero, for each worker assignment.

As explained earlier, the sum of a hard penalty and a soft penalty is the hard penalty. This
may be inexact, but in nurse rostering at least the inexactness does not matter. We can'tadd them.
Even if NRC used combined costs like KHE does, there would still be no way to represent the
combined costin an XESTT file.

Partition the worker assignments into groups, where the assignments in@ralihave
the same penaltp. Place non-assignment into its own group. Then,

* For each group of workerG; whose penalty is non-zero, generate one prefer resources
constraint whose set of preferred resourc&® isG;, whereW is the set of all workers, and
whose penalty ip. Thisis correct: it penalizes assignment$but nothing else.

* For the grougs, representing non-assignment, if its penalty is non-zero, generate an assign
resource constraint with that penalty. This penalizes non-assignment and nothing else.

Whatever assignment or non-assignment is made, at most one constraint is violated.

4.3. Optimizing demand constraints

NRC offers two ways to define cover constraints (constraints on how many nurses should attend
each shift, and what skills they need):

56 Chapter 4. Implementation Notes

» Demand objects, which constrain each request for one nurse independently of the others.
They are converted into XESTT assign resource and prefer resources constraints.

» Demand constraints, which constrain multiple requests simultaneously. They are converted
into XESTT limit resources constraints, except as explained below.

There is an argument for using demand constraints only: one method is better than two, and
demand constraints can do everything that demand objects do. The counter-argument is that it
is better for solving if demands are constrained independently. For example, it allows a solver
to decide, for each task separately, whether not assigning that task would incur a cost.

NRConv helps to resolve this dilemma by detecting cases where demand constraints can
be replaced by equivalent demand objects, and performing those replacements just before the
conversion to XESTT. So the user can use demand constraints where convenient, avoiding an
error-prone manual replacement by demand objects while still gaining their advantages.

For example, the following appears in Curtois original instadwaez.xml

<DayOfWeekCover>
<Day>Sunday</Day>
<Cover><Shift>1</Shift><Min>3</Min></Cover>
<Cover><Skill>0</Skill><Shift>1</Shift><Min>1</Min></Cover>
</DayOfWeekCover>

The user of NRC will express this with two demand constraints, which NRC will convert into
demand objects: one requesting a nurse with skill 0, and at least two requesting any nurse.

There must be nothing approximate about any replacements done here: the result must be
strictly equivalent to the original. However, defining equivalence is an issue. A solution to an
instance made with demand constraints merely needs to assign workers to shifts; by the way the
constraints work, it does not matter which tasks within the shifts are assigned. But it does matter
when the solution is to an instance with demand objects.

For example, consider a shift that prefers four nurses, but will accept three or five, with a
penalty. When this shift is converted without using demand objects, all five tasks are subject to
the same limit resources constraint, and it does not matter which tasks receive the assignments.
But when the shift is converted using demand objects, the first four tasks have penalties for
non-assignment, and the fifth task has a penalty for assignment, and solutions that assign four
workers need to nominate the first four tasks as the ones receiving the assignments.

So is the converted instance really equivalent to the original? Our answer is that when
converting a solution, we are given the workers to assign and the shift to assign them to, but not
the tasks, and we need to find the best assignment. If we do that, then the converted instance is
equivalent, but solvers for the converted instance have an extra job to do: find the best tasks to
assign workers to within each shift.

A conversion which converts demand constraints into demand objects will be considered
correct when the best assignment of workers to tasks in each shift attracts the same cost as when
demand constraints are used.

The question is whether, for a particular sisifthe demand constraintsthat refer tcs can
be replaced by demand objects. If any of ¢halso refer to other shifts, the case seems hopeless

4.3. Optimizing demand constraints 57

and we fail to convert. So we assume now thatglemnstrain onlys. Eachc; constrains all the
demands o8, not just some, since that is all thétcDemandConstraintMake offers.

Each demand constraintplaces a bound on the number of demands sthat may be
assigned workers from a given worker sgtwhich could be all workers but need not be. So we
may consider the constraints sto be a set of pairh, w) for 1 <i < k. We assume also that the
total number of demandhl, is given. This is needed because XESTT requires that a particular,
fixed number of event resources appear in each edem;that number. We might offer a
function which deduces a reasonable valull &fom a shift's demand constraints; but ultimately
the user is best placed to determihgbased on what existing solutions need, perhaps.

The algorithm for converting the andN into demand objects is as follows. It may fail at
several points, in which case we fail to conv&tdemand constraints into demands; they remain
as demand constraints and are subsequently converted into XESTT limit resources constraints.

The first step is to transform the to simplify their structure. Each bourtgl contains
optional minimum, maximum, and preferred limits, with associated penalties. A preferred limit
is two limits, a minimum and a maximum, whose values are equal. So we replag®yeset
of triples of the formmin(v, w,c,) andmaxV,, W, ¢;), wherev is the limit valuew is the worker
set, and; is the penalty to apply for each worker over or under the limit.

LetW be the set of all workers, and b be a set of workers containing just one element, a
special worker representing non-assignment. Transform each maximurmbogit, w, ¢;) into
the equivalent minimum limimin(N —v, W O w, —w, c). Saying that at most Workers from
w are wanted is equivalent to saying that at léisty; workers fromW O w, — w are wanted.

So the first step yields a set of minimum limisn(v, w, ¢,), wherew may includew,. The
second step makes these limits, plus the artificial lrmif(N, W [0 w,, 0), into nodes in a treg,,
T, is like the tree KHE builds when converting workload requirements into workload demand
nodes, although that tree limits times, not workers. The nodé&gsxtisfy these conditions:

1. If noden = min(v,w, c) is the parent of nodg = min(v,w,), thenw O w andv, < v.
2. If nodesny = min(v, w, ¢) andn, = min(y, W, ¢,) are siblings, them n w = 0.

The algorithm for buildingTy is as follows. Sort the minimum limits into non-increasijag
order; break ties using non-increasingrder. Take each limitin order, make it into a node, and
insert it intoT,. The artificial limitmin(N, W O w,, 0) comes first in this order, and its insertion
is a special case: it becomes the root. Subsequent insertions of a new assleane that the
insertion is to take place below a given nqadnitially, p is the root. Then,

» If the first condition holds between one g§ childrenqg andy, inserty belowq.
* Otherwise, ify’'s set of workers is disjoint from all gb's children’s, makey a child of p.
* Otherwise, fail to convert.

It is easy to see that if this algorithm does not fail, then the tree it builds must satisfy the two
conditions. By sorting the limits, we ensure tlyatould never be the parent of a previously
inserted node, showing that if a tree exists at all, this algorithm will not fail.

The third and final step travers&gin postorder, generating demand objects along the way.

58 Chapter 4. Implementation Notes

At each noden, = min(v,w, ¢;), generatet — V, demand objects, wheké is the total number of
demand objects generated at proper descendamts ®he point here is that all the demands
generated below are demands for workers which are elementsg cdo they count towards what
n, is demanding. If -V, is negative, fail to convert.

It remains to associate penalties with worker assignments in the generated demand objects.
Take any nod@ and consider the demand objects generated at or befpw(These are easy to
find during the postorder traversal, since immediately after generatingthldemand objects
atn, they are thes most recently generated demand objects.) Each of these demand objects is
supposed to incur penaltyif its assignment is not an elementwf Accordingly we call

NrcDemandPenalizeNotWorkerSet(d, W —Ww, NRC_PENALTY_ADD,c);

on each of these demand objettbeing careful to do so only once per distinct objectuifloes
not includew,, then we also need to call
NrcDemandPenalizeNonAssignment(d, NRC_PENALTY_ADD, c);

After all demands are created and all penalties are added, all the demand objects are made
immutable by calls tdircDemandMakeEnd, so that no further changes are possible.

Consider the example froAraiez.xml given earlier, and suppo$é= 5andw is the set
of workers with skill 0. TherThas root nodenin(5,W, 0), that node has one chitdin(3,W, c)),
and that node has one chitlin(1,w,c,), wherec, andc, are given elsewhere in the file. The
postorder traversal will generate one demand, with cpfir a nurse outside andc, + ¢, for
non-assignment, then two demands, with agdbr non-assignment, and finally another two
demands, with no costs.

Part B

The NRConv Executable

59

Chapter 5. NRConv and itsConverters

This chapter describes NRConv and its converters, passing silently over routine things. The
material on each converter assumes that the reader has a detailed knowledge of the source model
being converted. For NRConv usage information, tyymenv with no arguments.

As a rough guide to the complexity of the code, here are line counts for the C source files:

Lines Files

5092 coi.c ,coi_cover.c ,andcoi_limit.c
1669 inrcl.c

1464 inrc2.c

1836 cqld.c

The format of the Curtois original instances is considerably more complex than the others.

5.1. Instance models and solution models

NRConv hasnstance modelandsolution modelswhich define the format of source instances
and solutions. Whenever it reads a source instance or solution file, it has already been informed
(viathe-i and-s command-line flags) which model the file follows.

An instance model is defined by a text file calledm@stance model fileFor example:

InstanceSourceFormat: inrc1.xml

Contributor: The organizers of INRC1

Date:

Country:

Description:

Remarks: converted from INRC1 format by NRConv

Each line consists of an identifier followed by a colon followed by any number of spaces
followed by an optional value. The lines must appear in the order shown.

InstanceSourceFormat gives the name of the format in which the source instances
which follow this model are expressed. There is a fixed set of valid names, which at present is

coi.xml inrcl.xml inrc2.xml cql4.txt
but which is easy to expand (see the top of iike model.c). There is nothing to prevent

different instance models from using the same source format.

The remaining lines give values for the metadata fields of each instance. If there is no date,
as above, then the date that NRConv runs is substituted. All these fields are to be taken as default
values. If an instance contains more informative metadata values, they may replace these ones.

A solution model is defined by a text file called@lution model file For example:

60

5.1. Instance models and solution models 61

SolnSourceFormat: inrc1-soln.xml
LinkageTolnstance: internal

LinkageToSolnGroup: first

Keep: best

SolnGroup: GOAL

Contributor: The GOAL team

Date:

Description:

Publication: http://www.goal.ufop.br/nrp/

Remarks: converted from INRC1 format by NRConv

As before, each line consists of an identifier followed by a colon followed by any number of
spaces followed by an optional value, and the lines must appear in the order shown.

TheSolnSourceFormat line gives the name of the format in which the source solutions are
expressed. There is a fixed set of valid names, which at present is

coi-soln.xml inrcl-soln.xml inrc2-soln.xml cql4-soln.xml

but which is easy to expand (see the top of §idn_model.c). There is nothing to prevent
different solution models from using the same source format.

The LinkageTolnstance line defines how to determine which instance a solution is
for. Its value may benternal , meaning that the solution file contains this information, or
external , meaning that it doesn’t. In the latter case, the longer form ofsheommand line
flag must be used to supply this information.

The LinkageToSoInGroups line defines how to determine which solution group a
solution should go into. There is a fixed set of values for this, which at present is

first cqld

but which could expand in the future. Valfisst places each solution into the first solution
group defined in this file (which would usually be the only one), wtij®4 uses a complex rule
based on the values of tkélgorithm> and<CpuTime> elements of the solution files.

TheKeep line says how many solutions to keep for each instance in each solution group.
Acceptable values addl to keep all solutions, anlgest to keep only one solution, the best.

The SolnGroup line defines a solution group with the given name, which will be added
to the archive. The following lines define its metadata fields. They must all be present, in the
order shown. If there is already a solution group with the given name, it is not added again, but
NRConv checks that it has the same metadata values as the ones given here, and aborts if not.

To include multiple solution groups, start again afe@marks with anotherSolnGroup
line, and so on. Every solution goes into exactly one solution group, so if there are any solutions
at all, there must be at least one solution group.

5.2. TheCurtoisoriginal instances

Curtois pioneered the assembly of instances from around the world, and their expression in a
common format. Published at

62 Chapter 5. NRConv and its Converters

http://lwww.cs.nott.ac.uk/~psztc/NRP/

under the heading ‘Original instances’, there are 28 of these instances, with 66 solutions. Follow-
ing Curtois, we omit instandgEDO1b (it is very similar to instancélEDO1) and its solution, so

the converter converts 27 instances and 65 solutions, to alC@ii@ising instance source format
coi.xml and solution source formabi-soln.xml , which are implemented by functions in
NRConv source filesoi.c , coi_limit.c , andcoi_cover.c

Instances£RMGH.ros, CHILD.ros , ERRVH.ros, andMER.ros use the<TimePeriod>
feature, which gives cover requirements for periods of the day rather than for each shift type.
Several other instances contain multiple cover requirements (for particular skills) which apply to
the same shifts. Accordingly, for all the Curtois original instances generally, NRConv produces
a generous number of extra event resources (the exact number is documeoitetbirer.c),
and constrains them using limit resources constraints.

The exception is shifts for which thkéutoAllocate> attribute idalse , meaning that the
shift can only be preassigned, not assigned by a solver. Each such shift is given the exact number
of eventresources required to hold the preassignments, and these event resources are preassigned
in the generated instance.

All instances usepattern constraintelement<Match>), which place minimum and
maximum limits on the number of occurrences of the elements of an arbitrary set of patterns.
These are not convertible in general. NRConv analyses them into three convertible cases, and
omits instances with constraints outside these cases (none of the 27 instances is omitted).

Case 1 The pattern constraint has maximum limit O but is otherwise arbitrary. Then the
patterns within this constraint are unwanted patterns and are handled as such.

Case 2 Each pattern of the constraint either contains a single term, or a sequence of terms
all containingQ, or it is one of the last three patterns, and these together match busy weekends,
as inSat:[123][123] , Sat:[0][123] , andSat:[123][0] , assuming three shifts per day.

The constraint is otherwise arbitrary. It is converted to a resource contraint whose minimum and
maximum limits are those of the pattern constraint, and whose time groups express its terms.

A pattern containing a single term is easily expressible using one time group for each
starting day. For examplg,2] is converted to

{IMonl1, 1Mon2}
{1Tuel, 1Tue2}
{1wedl, 1Wed2}

and these time groups are added to the resource constraint.

A pattern whose terms all contéins converted to one negative time group for each starting
day. Consider limiting the number of free weekends, counting a Friday night shift §3laig
part of the following weekend. The patterrfis:[012][0][0] . The time groups are

{1Fri3, 1Satl, 1Sat2, 1Sat3, 1Sunl, 1Sun2, 1Sun3}*
{2Fri3, 2Satl, 2Sat2, 2Sat3, 2Sunl, 2Sun2, 2Sun3}*

Each time group contains the complement of each term, on successive days.

5.2. The Curtois original instances 63

Patterns which match busy weekends are easily represented by positive time groups

{1Satl, 1Sat2, 1Sat3, 1Sunl, 1Sun2, 1Sun3}
{2Satl, 2Sat2, 2Sat3, 2Sunl, 2Sun2, 2Sun3}

and so on. NRConv looks for this exact case; it does not attempt to generalize it in any way.

Case 3 NRConv is hard-wired to generate certain XESTT constraints when it reaches
certain file positions. This allows it to handle source constraints that fall outside the cases above
but which are nevertheless convertible. For example, the pattern constraints at lines 107—148 of
ERMGH.ros penalize cases of two consecutive busy weekends. The instance begins on a Sunday
and ends on a Saturday, and the constraint for the last two weekends does not fit the cases given
above, so NRConv generates a hard-wired limit active intervals constraint for the whole set.
As it turns out, every hard-wired case except the one for insted&&®1.ros described below
concerns limiting the number of consecutive busy weekends, to one, two, or three.

An awkward pattern constraint occurs at line 95 of instaDBEECO02.ros . The problem
patternsSat:[NEDL][NEDL] , Sat:[0][NEDL] , andSat:[NEDL][0] , aim to match busy
weekends, but they omit the ‘on vacation’ shiftso they leave some busy weekensistDV
for example) unmatched. They should Bat:[NEDL][NEDL] , Sat:[OV][NEDL] , and
Sat:[NEDL][OV] , which are convertible, and in fact they are equivalent to them because the
vacation shift can only be preassigned to a nurse, not assigned by the solver, and a hand check
shows that cases likgéat:DV cannot arise. So the conversion is hard-wired here.

InstanceHEDOL.ros (and also the omittedEDO1b.ros) utilizesconditional constraints
which require one pattern to match if another does. These cannot be converted in general, but
those in these instances can be. For example, some require all the shifts taken by a nurse in Week
1to have the same type, which is expressible by a cluster busy times constraint with maximum
limit 1 and time groups

{IMonl, 1Tuel, 1Wedl, 1Thul, 1Fril, 1Satl, 1Sunl}
{IMon2, 1Tue2, 1Wed2, 1Thu2, 1Fri2, 1Sat2, 1Sun2}
{IMon3, 1Tue3, 1Wed3, 1Thu3, 1Fri3, 1Sat3, 1Sun3}

Again, NRConv is hard-wired to generate suitable constraints at these file positions.

The Ikegami instances contain constraints that require sequences of night shifts to be
separated by at least 6 days, expressed by unwanted patterns penalizing each occurrence of two
night shifts separated by 5, 4, 3, 2, or 1 days (of anything). NRConv could express them in the
same way, but to reduce the constraint density it makes them a special case and expresses them
by a single limit active intervals constraint with, for each day, one negative time group containing
the night shift on that day, and minimum limit 6, with history to ensure that a sequence at the
start of the cycle is not penalized. This penalizes the same cases as the unwanted patterns, but
with a different cost in general. However, good solutions do not violate these constraints (each
has weight 100, which is more than the total cost of good solutions), so in practice the amount
by which violations are penalized does not matter. Itis true that sequences of, say, 7 consecutive
night shifts are penalized by the original formulation but not by the converted one, but there are
other constraints, again with weight 100, which limit resources to at most 6 night shifts.

The Curtois original instances have undocumented features (syuéhederred> limits
alongside<Min> and<Max>, <CoverWeights> , and the format of theCpuTime> attribute

64 Chapter 5. NRConv and its Converters

of solutions) and undocumented interactions (such as{iwateSpecificCover> overrides
<DayOfWeekCover>). Explaining them all is beyond our scope. There are also documented
features which do not appear in the instances. For the most part these are not implemented; NRC
will print warning messages and omit instances that contain them.

5.3. TheFirst International Nurse Rostering Competition model
The First International Nurse Rostering Competition has a simple XML format, documented at
http://www.kuleuven-kortrijk.be/nrpcompetition

NRConv converts it using modelgcl.xml andinrcl-soln.xml

Cover constraints appear as numbers of nurses wanted for each shift, for each skill. NRC
demand constraints are not needed. There is along list of resource constraints. It all maps easily
into NRC, except as described now.

<AlternativeSkillCategory> defines the penalty to apply when a nurse is assigned
to a shift without having the required skill. This allows each nurse to have a different penalty,
which is a problem for XESTT, since its prefer resources constraint (the obvious target when
converting) associates the penalty with the shift, giving all unqualified nurses the same penalty.

This problem is solved as follows. For each siliand each distinct non-zero weight
W for <AlternativeSkillCategory> , let (s, W) be the set of all nursassuch that the
assignment ofi to a place requiring skiff should attract penalty. LetN be the set of all nurses.
For each place requiring skdl, define one prefer resources constraint for each non-zero weight
w such thaty(s, w) is non-empty, with weightv and set of nurseld — (s, w). In practice this
produces just one or two prefer resources constraints per skill.

There are instance files (for examgtg01l.xml), which assign skills to nurses whose
<AlternativeSkillCategory> constraintis turned off. We interpret this to mean that skills
defects are to be ignored for those nurses.

<CompleteWeekends> requires a nurse to work on each day of the weekend, or none.
This isimplemented for the first weekend by a cluster busy times constraint with one time group
for each day of the weekend, containing the times of that day, and minimum limit equal to the
number of days or else 0. For example, if there are two days in the weekend, with five times each
day, the constraint has time groups

{1Satl, 1Sat2, 1Sat3, 1Sat4, 1Sat5}
{1Sunl, 1Sun2, 1Sun3, 1Sun4, 1Sun5}

and minimum limit 2 or else 0. This is then repeated for each weekend.

When weekends have three or more days, it is possible to work on the first and last days
and be free in between them. The competition assigns a higher cost for such cases than for
other cases of incomplete weekends. Although several instances do have three-day weekends,
NRConv does not implement this refinement. It can be done using unwanted patterns.

<ldenticalShiftTypesDuringWeekend> requires a nurse to either work the same
shift on each day of the weekend, or to be free on all days. This is expressed for the first
weekend by a cluster busy times constraint with one time group for each time of day, containing

5.3. The First International Nurse Rostering Competition model 65

the weekend’s times of that time of day, and maximum limit 1. For example, for the two-day
weekend with five times per day, the time groups would be

{1Sat1, 1Sunl}
{1Sat2, 1Sun2}
{1Sat3, 1Sun3}
{1Sat4, 1Sun4}
{1Sat5, 1Sun5}

This is then repeated for each weekend. Clearly, if shifts of two types are busy during one
weekend, two time groups will be active and there will be a violation.

Although this is logically correct, the competition evaluator does more: it treats violations
of <CompleteWeekends> as violations of this constraint as well. The cluster busy times
constraint just given does not do this.

One possible alternative is a limit busy times constraint with the same time groups as the
cluster busy times constraint, but with a minimum limit of 2 or else 0 applied to each. This
will penalize the case where (for exampl®gatl is busy butlSunl is not, and vice versa. The
problem here isthat ifSatl and2Sun4 are both busy, there will be two violations, not one.

The XESTTStep cost function could be used to solve this problem, but unfortunately the
intermediate model treats the time groups of limit busy times constraints as independent of one
another, which they are not when thtep cost function is used.

So NRConv generates two constraints for each identical shift types constraint: the cluster
busy times constraint, plus the equivalent of a complete weekends constraint. When there
is already a complete weekends constraint it merges the two, adding their weights together,
provided they have the same hardness and cost function.

<TwoFreeDaysAfterNightShifts> requires that on the two days after a night shift, a
nurse should either have the day off or else work another night shift. Assuming three shifts per
day, with3 being the night shift, our solution makes pattei3igL2][12] , [3][12][03] ,
and[3][0][12] unwanted. On the second-last day of the cycle, @j[%2] is unwanted.

Aviolation on both days should cost more than a violation on ong]d@][12] should
get double weight. However, the competition evaluator does not do this, so we assign the same
weight to all patterns. We can then merge the first two, producing unwanted p&3igials
and[3][0][12]

5.4. The Second International Nurse Rostering Competition model
The Second International Nurse Rostering Competition, which is documented at
http://mobiz.vives.be/inrc2/

has a similar format to the first, although with fewer resource constraints. NRConv converts it
using modelsrc2.xml andinrc2-soln.xml

The main innovation here is that the competition reflects the way nurse rosters are often
made in reality: week by week, not all at once.w&ekly instancés an instance covering one
week; aglobal instanceovers several weeks. A global instance is solved by solving a sequence

66 Chapter 5. NRConv and its Converters

of weekly instances for consecutive weeks. Each is hidden from the solver until it has solved
the previous weekly instances.

XESTT has no representation of a sequence of instances connected by history. NRConv
produces an XESTT representation of one weekly instance, based on files giving the general
scenario, the week in question, and history. It could generate global instances, but one would
have to trust the solve for each week to not look ahead. History can be handled by adjusting
the limits of the constraints affected, using one constraint per resource. NRConv uses XESTT'’s
history features to generate a single constraint with a history adjustment for each resource, which
Is clearer and less verbose.

One complication with history concerns the order in which the parts of the source instance
are added to the NRC instance. It can be convenient to add constraints before nurses, when
they precede nurses in the source model file. This is done by defining, say, a worker-set for all
the nurses of one contract, passing that worker-set to that contract’s constraints, and adding the
nurses to the worker-set later. But that will not work for constraints affected by history, because
they accept history information for individual nurses. Adding the constraints early, then adding
their history later would work, but that is painful to organize.

Here is the order used by NRConv:

add days (one week’s worth), and the one weekend

add shift types

add skills

add contracts

add nurses, including their skills and contracts

add nurse histories to nurses

add worker constraints (shift type, pattern, contract), including history
add cover constraints

add shift-off requests

The week file is used only at the end, for cover constraints and shift-off requests. But the scenario
file is used out of order, partly to bring everything related to nurses together, but mainly to ensure
that nurses are added before constraints, as explained above; and the history file is used in the
middle of the scenario file. All this is easy to do because the converter reads all three files and
stores them in memory &L_ELT objects before starting the conversion. What is not so easy,
however, is to recognize the dependencies and build the NRC instance in a correct order.

One would think that a Week 0 history file would have zero values for history, but in fact the
supplied Week 0 files have many non-zero values. So NRConv fudges and assumes that a Week
0 history file has one week of history.

5.5. The Second International Nur se Rostering Competition static model

Some time after the second international timetabling competition ended, some papers appeared
which tested a particular set of ‘static’ (multi-week) instances. So NRConv has been enhanced
to convert these kinds of instances as well.

5.6. The Curtois-Qu 2014 model 67

5.6. TheCurtois-Qu 2014 model
Curtois and Qu have recently produced a new set of 24 plain text instances, documented at
http://lwww.cs.nott.ac.uk/~psztc/NRP/

These, and solutions posted by Curtois at the same place, have been converted using source
modelscqld.txt andcgl4-soln.txt

Again, much is familiar. Minimum limits on consecutive busy or free days do not apply to
sequences that include the first or last day. Thisis modelled using XESTT’s history mechanism
in a somewhat artificial manner.

Many resources have a hard limit of 0 on the number of shifts they can take of a given
shift type. Although this could be implemented like other workload limits, by a limit workload
constraint, we choose instead to build, for each shift tstpethe set of all workers with a
non-zero workload limit for shifts of typg , and generate a prefer resources constraint for each
shift of typest which has this set of workers for its preferred set.

The two approaches are formally equivalent, but the prefer resources constraints allow
solvers to reduce the domains of shifts to just those workers who have a non-zero workload for
that kind of shift, and so to avoid attempting assignments which are doomed to fail because of
the zero workload limit. This has saved running time in the author’s tests of his KHE18 solver.

The solutions to these instances available at the web site above are not the full set reported
in Curtois’paper. Accordingly we requested and received a larger set from Curtois.

As in the Curtois original instances, more nurses may be assigned to a shift than the
specified optimum, and NRConv creates extra event resources to allow for this. Some of the
solutions received from Curtois, especially for the larger instances, overload shifts this way to
an unreasonable degree. The worst cases octatamce22.Solution.516686.roster
andInstance22.Solution.516686_1.roster , Which assign 25 nurses to shift on day
140, when the instance specifies an optimum cover of 1.

We have chosen to generate shifts with maximum c@ee¥ 5, wherec is the optimum
cover, making solutions that overload shifts beyond that point invalid. Of the 372 solutions
received from Curtois, 42 were rejected for this reason. The rest were classified using metadata
in the solution files into four solution groups, one for each algorithm in Table 2 of Curtois’ paper.
The best solution for each instance in each solution group was included in a@sivie(66
solutions altogether).

