
Nonpareil - A Strongly Typed Obje
t Oriented

Fun
tional Programming Language

Honours Thesis

Bradley Baetz, <bbaetz�
s.usyd.edu.au>

November 2002

Abstra
t

Nonpareil is a strongly typed, obje
t oriented fun
tional programming language.

It allows fun
tion overriding, Whilst it is intended to be a general purpose

language, its main target is in the area of do
ument formatting.

Contents

1 Introdu
tion 4

1.1 Motivation . 4

1.2 Nonpareil language . 4

1.3 Nonpareil
ompiler . 5

1.4 Other do
ument formatting systems 5

1.4.1 T

E

X . 5

1.4.2 L

A

T

E

X . 5

1.4.3 Lout . 6

1.4.4 WYSIWYG formatters 6

1.5 Programming languages . 7

1.5.1 C++ . 7

1.5.2 O
aml . 8

2 Nonpareil Language Features 10

2.1 Identi�ers . 10

2.2 Literals . 10

2.3 Classes . 11

2.4 Pa
kages . 11

2.5 Expressions . 12

2.5.1 if expressions . 12

2.5.2 let expressions . 13

2.6 Variables . 13

2.7 Features . 13

2.8 Fun
tions . 14

2.9 Inheritan
e . 14

2.10 Generi
s . 15

2.11 Currying . 16

2.12 Constru
tion . 17

2.13 Program exe
ution . 17

2.14 Builtins . 17

1

2.14.1 Fun
tion type . 18

2.14.2 Obje
t . 18

2.14.3 Comparable . 18

2.14.4 Integer . 19

2.14.5 Boolean . 19

2.14.6 String . 19

3 Type system 20

3.1 Compatible types . 20

3.2 The self variable . 21

3.3 Type resolution . 21

3.4 Generi
 parameters . 22

3.4.1 Type inferen
e . 22

3.4.2 Currying . 22

3.5 Polymorphi
 null . 24

3.6 Builtin types . 24

4 Appli
ation Binary Interfa
e 25

4.1 Overview . 25

4.2 Name mangling . 25

4.3 Class layout . 26

4.4 Virtual table . 27

4.5 Calling
onvention . 30

4.6 Fun
tion parameters . 31

4.7 type_info stru
ture . 31

4.8 Constru
tors . 32

5 Implementation 33

5.1 Parser . 33

5.1.1 Pretty Printer . 34

5.2 Symbol table . 34

5.2.1 Data stru
ture . 34

5.2.2 Constru
tion . 35

5.3 Type
he
ker . 35

5.3.1 Overview . 35

5.3.2 TYPE_RECORD data stru
ture 36

5.3.3 Generi
 type resolution 37

5.3.4 Helper fun
tions . 38

5.4 Code generation . 40

5.4.1 Features . 41

5.4.2 Expressions . 41

2

5.4.3 Calling Fun
tions . 42

5.4.4 Features . 43

5.5 Runtime library . 44

5.5.1 Builtins . 44

5.5.2 Method
alling routines 44

5.5.3 Dynami

asting . 44

6 Evaluation 45

6.1 Future enhan
ements . 45

6.2 Known issues . 46

A Nonpareil grammar 50

B Builtin
lasses 54

B.1 FUN[T,U℄ . 54

B.2 Obje
t . 54

B.3 Boolean . 54

B.4 String . 54

B.5 Comparable . 55

B.6 Integer . 55

C Type
he
king fun
tionality 56

C.1 Type inferen
e . 56

C.2 Fun
tion types as parameters . 56

D Example
lasses 58

D.1 Binary Tree . 58

D.2 Sequen
e . 60

D.2.1 seq[X℄ . 60

D.2.2 eseq[X℄ . 60

D.2.3 nseq[X℄ . 60

3

Chapter 1

Introdu
tion

1.1 Motivation

The goal of this proje
t is to produ
e a
ompiler for Nonpareil, whi
h
an then

be used as a
ompiler for a do
ument formatting language.

Nonpareil is intended to be the language behind a dynami
ally updating

do
ument editor. The immutability of obje
ts will allow for fast undo/redo

fun
tionality, whilst the pa
kage fun
tionality and dynami

lass loading makes

the language easily extendable. It is intended for use by non programmers, who

will use the existing features to
reate and edit
omplex do
uments.

One of the major reasons why Nonpareil is a strongly typed language is that

it is intended for use by non programmers, it is better for errors to o

ur at

ompile time, rather than mysteriously o

ur at runtime when trying to modify

an existing do
ument,
rashing the program in the middle.

1.2 Nonpareil language

Nonpareil is an obje
t-oriented fun
tional programming language. It is strongly

typed, and features multiple inheritan
e, generi

lasses and fun
tions (
alled

features in Nonpareil). It also allows overriding of features in
hild
lasses.

As a fun
tional programming language, Nonpareil allows for variables of

fun
tion types, and supports
urrying. Classes are loaded on demand, when

referen
ed in sour
e
ode.

Nonpareil obje
ts are stri
tly immutable; on
e
reated an obje
t
annot be

modi�ed.

4

1.3 Nonpareil
ompiler

The Nonpareil
ompiler is written in ANSI C, using lex and ya

 for parsing.

The
ompiler takes Nonpareil
ode, and generates
orresponding C
ode, whi
h

an then be
ompiled by a C
ompiler in order to generate a runnable program.

1.4 Other do
ument formatting systems

Do
ument formatting programs su
h as T

E

X [11℄ and lout [15℄ are bat
h do
u-

ment formatters. They involve a writer using the appropriate language features

in order to produ
e their do
ument. This sour
e do
ument is then
ompiled

(sometimes with multiple runs of the program) into an output format su
h as

DVI (a DeVi
e Independent �le format) or PostS
ript.

1.4.1 T

E

X

T

E

X (and L

A

T

E

X) are probably the most
ommonly used do
ument formatting

languages.

T

E

X [11℄ was originally
reated by Professor Donald Knuth in 1978 for the

preparation of his book series �The Art of Computer Programming� in order to

provide �beautiful� typesetting. The
ode was then subsequently released freely

to the publi
 in 1982.

T

E

X is primarily a ma
ro pro
essor; it
ontains several primitive operators

whi
h allow for pre
ise layout of the do
ument right down to the pixel level,

whilst providing the ability to de�ne ma
ros to build up
omplex operation.

Although this does give the user an immense amount of
ontrol over their do
-

ument, this very detail makes it somewhat unwieldy to use generally.

It has spawned users groups [12℄, books [11℄ and a
omprehensive ar
hive

of support material [14℄, whi
h in
ludes do
umentation, sample
ode, and fully

fun
tional pa
kages intended for use by the publi
. The most popular of these

pa
kages is L

A

T

E

X.

1.4.2 L

A

T

E

X

L

A

T

E

X (and its
urrent version, L

A

T

E

X2

"

[13℄) is probably the most widely used

ma
ro pa
kage for T

E

X. It allows markup to des
ribe the stru
ture of a do
u-

ment, rather than the presentation. In this way, authors
an avoid `reinventing

the wheel' for ea
h do
ument, and instead
on
entrate on the
ontent of the

do
ument. To take a modi�ed example from the L

A

T

E

X proje
t [13℄, the user

an say:

5

\do
ument
lass{arti
le}

\title{Nonpareil, LaTeX, and the pri
e of eggs}

\author{Jane Doe}

\date{September 1994}

\begin{do
ument}

\maketitle

Hello world!

\end{do
ument}

and then the existing prede�ned style for an arti
le will be applied, with head-

ers for the author, title, and date applied to the pla
es in the do
ument where

they would be appropriate. The underlying ma
ro pa
kages take
are of how this

text is translated into the end do
ument without the expli
it intervention of the

do
ument author. L

A

T

E

X ma
ro pa
kages also tend to provide options for users

to
ustomise the underlying style of a do
ument, allowing the in-depth
ontrol

if required. In addition, sin
e L

A

T

E

X is built upon T

E

X, the basi
 T

E

X primitives

may still be used in a L

A

T

E

X do
ument if �ne grained
ontrol is required.

Be
ause of L

A

T

E

X's higher level overview of the do
ument, a large number of

ma
ro pa
kages are themselves based on L

A

T

E

X. For example, the syntax dia-

grams in appendix A were produ
ed using the rail pa
kage (based on L

A

T

E

X2

"

)

provided on CTAN [14℄.

1.4.3 Lout

Lout is a high level language for do
ument formatting [15℄. It was designed and

implemented by Dr Je�rey Kingston of the University of Sydney.

Lout is based around four key
on
epts - obje
ts, de�nitions, galleys, and

ross referen
es. Obje
ts are abstra
tions whi
h may be
ombined and linked in

order to produ
e a Lout expression, whi
h
an then be rendered to the printed

page. De�nitions are simply routines whi
h may be used in the do
ument to

add fun
tionality to the
ore language. Galleys and
ross referen
es are part of

the typesetting part of Lout, and so they need not
on
ern us here.

In Lout, most of the fun
tionality is provided by additional pa
kages of

de�nitions, rather than being built into the
ore language. This provides for

added �exibility, a well as less `spe
ial-
asing' in the language. This philosophy

has been followed in Nonpareil's design.

1.4.4 WYSIWYG formatters

One
ommon feature of all of the above languages is that the editing environment

is separate to the �nal do
ument layout. The author must write his or her

6

do
ument, and then run a separate program in order to see the result.

WSYIWYG (or �What You See Is What You Get�) formatting systems allow

this updating to happen dynami
ally, with the underlying formatting system

operating transparently to the user. Some WYSIWYG viewers simply provide

a rough overview of the resulting output, using the provided input to generate

another format.

For example, L

Y

X is a GUI front end to L

A

T

E

X. Its GUI does not show

pagination, or
olumns, but does show basi
 styling su
h as bold, underline,

and so on, and allows the user to set these options via the graphi
al interfa
e.

Heading styles are also shown, and it does keep an up to date table of
ontents.

T

E

X
ommands may be inserted dire
tly into the do
ument. These are passed

onto T

E

X when generating the �nal do
ument, although they are obviously not

rendered in the L

Y

X user interfa
e. This allows a user to use the powerful

features of T

E

X when required without having to learn or use the T

E

X syntax

for simple do
uments.

Other WYSIWYG formatters (su
h as Mi
rosoft Word) are not designed as a

programming language. Whilst some
ontain ma
ro languages, these are usually

�ta
ked on�, rather than being an integral part of the design of the software.

Also, the ma
ros are not generally usable dire
tly for dynami
ally produ
ing

do
ument output, but rather provide short
uts for the initial generation of the

do
ument's
ontent. This means that the majority of features must be built

into the software pa
kage, whi
h is then not dire
tly extensible or
ustomisable.

1.5 Programming languages

Inspiration for Nonpareil's programming language features
ame from several

sour
es.

1.5.1 C++

C++ [4℄ was originally designed by Bjarne Stroustrup as an obje
t oriented

version of C

1

. In its
urrent iteration, C++ is an ANSI/ISO standard, with

many implementations [2℄. Whilst C++ is a fundamentally di�erent language to

Nonpareil, it nevertheless
ontains several
on
epts whi
h have been
onsidered

in the Nonpareil design.

Nonpareil
ontains support for generi
 parameters (see se
tion 2.10). C++

provides mu
h of the same fun
tionality with templates. In C++, a
lass (or

feature) may have some of its values parameterised. Similarly to Nonpareil, this

1

The original implementation was in fa
t
alled �C with
lasses�, and operated as a prepro-

essor for a sour
e program whi
h was then transformed into C for
ompilation by a standard

C
ompiler.

7

provides type safety whilst still allowing �exibility. However, there are several

important di�eren
es in the implementation.

In C++, a
opy of the templated obje
t is
reated every time it is used (or,

in C++ terms, instantiated) with a value for these template parameters. This

is be
ause rather than restri
ting generi
 parameters like Nonpareil does, when

a template is instantiated the
ompiler
he
ks that all of the required attributes

are present. For example,

template<typename T>

int fun
(T p) {

return p.x;

}

fun
(myVal);

will
ompile if and only if myVal has a member variable
alled x whi
h
an be

onverted to int.

2

In fa
t, if this fun
tion were part of a templated
lass, then

T would not ne
essarily have to
ontain a member variable
alled x at all! Only

if the fun
tion were used would this be required.

Be
ause of this, ea
h use of the template results in a a similar, but slightly

di�erent, version in the resulting binary. The requirements on generi
 param-

eters must also form part of the do
umentation of the
lass, rather than being

expli
itly listed in the sour
e
ode.

Whilst this does allow the designer of a templated
lass some �exibility,

in that a stri
t inheritan
e hierar
hy is not required, this
an be seen as a

disadvantage, due to the la
k of stri
t type
he
king and the
orresponding

rypti
 error messages.

As well, due to the separate output for ea
h template fun
tion instantiation,

C++ does not permit member template fun
tions to be overridden in a
hild

lass; one would need a virtual table of in�nite size to output lo
ations for every

possible instantiation) Nonpareil does not have this restri
tion, be
ause it only

outputs one version of the fun
tion.

For these reasons, Nonpareil's implementation of generi
 parameters di�ers

signi�
antly to that of C++.

1.5.2 O
aml

O
aml is �a fast modern type-inferring fun
tional programming language de-

s
ended from the ML (Meta Language) family� [17℄. It is probably the language

whi
h has had the greatest in�uen
e on the development of Nonpareil.

2

In this example, C++ will infer that T has the type of myVal. However, this inferen
e

is not as involved as that in Nonpareil - if the fun
tion took two parameters of type T, the

inferen
e would only work if both parameters had exa
tly the same dynami
 type - C++ does

not traverse the inheritan
e
hain (or look for
onversion operators) to �nd a
ommon parent.

8

Similarly to Nonpareil, O
aml is an obje
t oriented strongly typed program-

ming language. However, unlike Nonpareil, O
aml allows for an imperative style

of programming, whilst Nonpareil is stri
tly a fun
tional language.

O
aml's use of type inferen
e has also a�e
ted Nonpareil development. Non-

pareil also infers types as part if its expressions (see se
tion 3.4.1), using mu
h

the same logi
 as O
aml. Generi
 types are also a feature of O
aml.

One major di�eren
e is that O
aml does type resolution globally, over the

entire program. This often leads to unexpe
ted results, and bugs whi
h are

hard to tra
k down. Nonpareil only does su
h resolution lo
ally, giving the

programmer the opportunity to spe
ify a less spe
i�
 type in
ases where this

would make sense.

9

Chapter 2

Nonpareil Language Features

This
hapter introdu
es the Nonpareil language. As previously dis
ussed,

The Nonpareil
ore language is deliberately simple. Rather than embedding

spe
i�
 fun
tionality into the language, it is anti
ipated that alternate pa
kages

will provided, allowing for the spe
i�
 needs of do
ument formatting.

1

This se
tion provides only an overview of the Nonpareil fun
tionality. A full

syntax diagram for Nonpareil's grammar appears in appendix A.

2.1 Identi�ers

Identi�ers
onsist of a letter, followed by zero or more ASCII

2

letters, under-

s
ores, or integers.

Nonpareil identi�ers are
ase sensitive - ident and IdEnT are two distin
t

(and unrelated) identi�ers.

2.2 Literals

Integer, String, and Boolean literals are automati
ally
onverted by the
om-

piler into obje
ts of the appropriate type (see se
tion 2.14). This is the only

way to
onstru
t obje
ts of those built-in types.

The automati

onversion means that the expression 1.add(2) is synta
ti-

ally valid, be
ause 1 is an instan
e of
lass Integer, and Integers
ontain an

add feature.

1

For example, an equation pa
kage would allow mathemati
al equations to be represented,

a data stru
tures pa
kage may provide more advan
ed data stru
tures, and so on.

2

Whilst C99 does support non-ASCII
hara
ters, this support is not widespread enough to

rely on (g

 does not support this feature, for example) Its also a pain to support portably in

the
ompiler itself.

10

2.3 Classes

Nonpareil programs
onsist of
lasses. A
lass is a set of zero or more variables

(2.6), and zero or more features (2.7). Classes may inherit (2.9) from zero or

more
lasses. They may also have generi
 parameters (2.10).

A
lass may be de
lared as builtin, in whi
h
ase the
ompiler will not gen-

erate data for the variables during the
ode generation phase. This is used

for
lasses su
h as Integer, where the value of the
lass
annot be represented

in Nonpareil. A user spe
i�ed
lass may not inherit from a builtin
lass, and

similarly a builtin
lass may not expli
itly be
onstru
ted.

Classes are dynami
ally loaded from �les by the
ompiler when required.

When en
ountering an unknown type, the
ompiler sear
hes all of the de
lared

pa
kages for a �le with the same name as the
lass.

3

The following is a simple example of a
lass.

lass
 is

var : Integer

features:

getVar := var

end

It has the name
, and
ontains a single variable, var, and a single feature,

getVar, whi
h returns that variable as its result.

4

2.4 Pa
kages

A pa
kage is simply a group of
lasses. This allows
lasses to be grouped,

redu
ing the
han
es of naming
on�i
ts between
lasses in di�erent modules of

fun
tionality.

Nonpareil
omes with several
lasses, whi
h are part of the _builtin pa
k-

age. These are des
ribed in se
tion 2.14.

Other pa
kages may be available for
lass lookup through the use of an

import statement at
lass s
ope. When loading a type, the
ompiler �rst tries

the path for the dire
tory of the
lass requiring the type, then any import

statements from that
lass, and �nally the _builtin pa
kage is tried.

For simpli
ity, examples in this paper omit the import dire
tive when ex-

ample
lasses su
h as seq are used.

3

All Nonpareil
lasses must have the same name as their �le they are
ontained in, minus

a `.n' extension whi
h must be present on the �lename.

4

This is just for demonstration purposes - any user of this
lass
an of
ourse a

ess the

variable dire
tly.

11

2.5 Expressions

Nonpareil in
ludes support for several di�erent types of expressions. At its

simplest level, it permits the use of literals for Boolean, Integer, and String

values. It also allows expressions to be bra
keted, to allow the user to override

pre
eden
e. Expressions whi
h result in a fun
tion being returned may be
alled

- see se
tion 2.8.

These features operate in a similar manner to most programming languages.

However, Nonpareil also in
ludes support for expressions whi
h di�er.

2.5.1 if expressions

Like other languages, Nonpareil provides support for
onditional evaluation us-

ing if statements. This formulation, spe
i�ed in appendix A has several di�er-

en
es from
onventional languages.

Firstly, the
onditions may themselves be expressions. Whilst this behaviour

is
ommon to most fun
tional languages, this allows nested
onditional state-

ments in a manner not dire
tly permitted by `regular' languages su
h as C or

C++.

5

For example

if if <trueExpression> then false else true end then

1

elsif 2.gt(1) then

2

else

3

end

will produ
e the result 2, sin
e the nested if expression ends up returning false

(and the number 2 is of
ourse greater than the number 1).

In addition, the if operation allows the programmer to attempt to down-

ast a variable to a di�erent type. This is useful if the programmer wants to

determine the real type of a variable, and base behaviour on this result. Whilst

the need for this may indi
ate a problem with the obje
t hierar
hy of
lasses in

the program, Nonpareil still permits the programmer to do this if they want.

Consider

if var is i : Integer then

i

5

It is possible to approximate this behaviour through the use of the ?: ternary operator;

this is in fa
t how Nonpareil generates the
ode. Nevertheless, this requires large amounts of

bra
keting, and tends to produ
e ugly
ode whi
h is hard to follow.

12

else

0

end

If var is an instan
e of Integer, then within the expression, i has the type of

Integer, with the value var. (The �i :� portion of this is optional, for
ases

where the program does not wish to use the variable, only
he
k its type)

2.5.2 let expressions

Nonpareil also supports let expressions. This binds the result of an expression

to an identi�er temporarily, for use within a nested expression. As well, the

values set in the binding expressions are a

essible to subsequent binding ex-

pressions in the same let expression, whi
h allows
omplex expressions to be

built up in a legible manner. As an example, given

let x := 1,

y := 2,

z := x.add(y)

in

x.add(z)

end

z is set to 1 + 2 = 3, and the
ompiler then adds x to z in the body of the

expression, returning the Integer value 4.

2.6 Variables

Classes may
ontain variables. A variable has a type, whi
h is either given in

the de
laration, or inferred from the expression (see 3.4.1).

The variable may be given an expression. If it is, then that serves as the

default value for the variable when the
lass is
onstru
ted. If an expression is

not given, then one must be given at
onstru
tion time.

In the
lass example in se
tion 2.3, sin
e a value is not provided for var, it

must be in
luded in a
onstru
tor for this
lass.

2.7 Features

A
lass may also have features. Features are fun
tions (see se
tion 2.8) whi
h

an be
alled on a variable of the
lass' type. That variable is then passed into

the feature as a hidden �rst parameter, with a name of self. They may in
lude

generi
s (see se
tion 2.10), and may require zero or more parameters.

13

A feature may have a return type de
lared, or it may be inferred from the

provided expression. If an expression is not provided, then the
lass is
onsidered

to be abstra
t, and
annot be instantiated. Instead, another
lass may inherit

from the
lass, de�ning an implementation for the feature, and then that
lass

may be
onstru
ted.

Additionally, a feature may be de
lared as not having a Nonpareil imple-

mentation, but instead being implemented by the
ompiler. This is done by

using the keyword builtin in pla
e of an expression, in the de
laration.

2.8 Fun
tions

Fun
tions are �rst
lass obje
ts in Nonpareil. A fun
tion is de�ned internally

as an instan
e of an obje
t FUN[A,B℄, whi
h takes an instan
e of
lass A and

onverts it into an instan
e of
lass B through the appli
ation of the fun
tion.

To allow
urrying, fun
tions whi
h take more than one variable as a parameter

are de�ned as FUN[A,FUN[B,C℄℄

6

, and so on.

Synta
ti
ally, the above may also be spe
i�ed as A->B->C. This notation is

simply synta
ti
 sugar for the alternate, more verbose form, and is translated

to the more pre
ise form by the parser.

For example, in the feature:

feat(f : Integer->String, i : Integer) : String

:= f(i)

the feature feat takes a fun
tion f whi
h has type FUN[Integer, String℄ (in

other words, it maps an Integer to a String), and then applies that fun
tion

to the provided variable.

2.9 Inheritan
e

A
lass may de
lare itself as inheriting from zero or more other
lasses. If

it
laims to inherit from no other
lasses, then it impli
itly inherits from the

Obje
t
lass.

There are several restri
tions on inheritan
e:

� A
lass may not inherit (dire
tly or indire
tly) from itself. In other words,

inheritan
e loops are not permitted in Nonpareil.

� Any overridden fun
tions must have exa
tly the same signature as the

original fun
tion.

7

6

This e�e
tively de�nes a fun
tion taking two variables, one of type A and the other of

type B, returning a variable of type C.

7

Adding support for
ovariant return types may be a future enhan
ement; see se
tion 6.1.

14

� Any feature must be unambiguously resolvable. That is, if a
lass has a

feature f a

essible to it, then, from all the parents whi
h also have that

feature, the implementation must eventually end up at a
ommon base

lass. This requirement is needed to ensure that the result of
allig su
h

a method is well de�ned.

� Variables
annot be overridden; a variable de
lared in a
lass
annot be

de
lared in any of its parent
lasses. Allowing this to o

ur would pro-

vide ambiguity problems when the
lass was
onverted to the parent
lass

de�ning the original variable, where the variables have di�erent types.

Whilst the
hild
lass
ould allow the parent variable to be `hidden', this

is
ounter-intuitive and would lead to
onfusion.

� A
lass may not inherit from a builtin
lass. Sin
e builtin
lasses will

ontain elements not representable in Nonpareil, there would be no way

for the
hild
lass to
onstru
t its parent, thus the resulting
lass would

be unusable.

These requirements ensure that a
lass
an be
orre
tly used in any fun
tion

without ambiguity as to what fun
tion or variable to use when a

ess is re-

quested.

2.10 Generi
s

A generi
 type is one whi
h is not
on
retely spe
i�ed on the signature for a

lass or a feature. Instead, the type itself is a parameter to the
lass (or feature).

Generi
 parameters are permitted for both fun
tion parameters and return

types, as well as parameters to
lasses.

A generi
 parameter may be given
onstraints, in whi
h
ase only
lasses

whi
h are instan
es (or inherit from instan
es) of all of the
onstraints may

be used in pla
e of that parameter. Within a
lass or feature, values (either

variables or parameters) of a generi
 type may only be used in
ases where any

of the
onstraint types may be used

For example, an instan
e of generi
 type X may have the toString method

alled on it, sin
e that method is
ommon to all Obje
ts. However, it may not,

for example, have the toInt feature applied to it unless X is
onstrained to be

of type String (or another fun
tion whi
h implements a toInt feature).

At
ompile time, a generi
 type may be being used in a situation where the

a
tual type
an be inferred. For example:

lass
[T℄ is

15

var : x[T℄

end

In this example, an entity having a type of
[Integer℄ has a var variable with

a type x[Integer℄. For more details, see se
tion 3.4.1.

In addition, a generi
 type may be
onstrained to inherit from one of more

other
lasses. For example:

lass x[T is Integer℄ is

var : X

features:

add1 := var.add(1)

end

Sin
e X must be an Integer, opreations from the Integer
lass may be applied

to the variable var. The BTree
lass (se
tion D.1) uses this me
hanism to ensure

that its keys are Comparable.

The use of a variable with a generi
 type is type
he
ked at
ompile time to

ensure that it is restri
ted to those uses valid for the type(s) given to it in the

de
laration. This di�ers from 4 [4℄, whi
h instantiates an fun
tion with
ompile

time, and then performs its type
he
ks with respe
t to the instantiated type of

the generi
 parameter.

2.11 Currying

Nonpareil supports fun
tion
urrying. This means that a fun
tion may be
alled

with fewer than the required variables.

For example:

lass test is

features:

f(a : Integer, b : Integer) : Integer

f2(
urried : Integer->Integer, val : Integer)

:=
urried(val)

a := f(1,2)

b := f(1)(2)

 := f2(fun
(1), 2)

end

In this example, the expressions generated for a, b, and
 will all produ
e an

indistinguishable result.

16

2.12 Constru
tion

In order for a program to be useful, it must be possible to
onstru
t a
lass, and

provide values for the variables in that
lass.

A variable (de�ned at the beginning of a
lass de�nition) may be given a

default value. However, a user of a
lass may wish to modify these default values.

As obje
ts are immutable after
reation,
onstru
tion is the only opportunity

for this to take pla
e.

For a
lass C, setting variable v to 1 and w to 2, the syntax is:

C(v := 1, w := 2)

The order of the variables within this statement is unimportant.

In order for
onstru
tion to su

eed, the
onstru
tion statement must satisfy

several requirements:

� The
lass being
onstru
ted must have implementations for all de�ned

features;

� All the variables in the
onstru
tion statement must exist in the
lass, and

the expression used to initialise them must be the
orre
t type; and

� All variables not mentioned in the
onstru
tion statement must have a

default expression in the
lass where they were de
lared.

2.13 Program exe
ution

The Nonpareil
ompiler is given the name of the
lass on the
ommand line.

It
ompiles that
lass and its dependan
ies, and then runs the main method in

that
lass. In order to be used as the initial
lass, the
lass must
ontain a main

method whi
h takes no parameters, and it must additionally be a
on
rete
lass,

as de�ned in
hapter 3.

2.14 Builtins

Nonpareil in
ludes several builtin types whi
h are part of the language's
ore.

8

Ea
h of these types is present in the _builtin pa
kage. With the ex
eption

of the FUN type des
ribed below, the
ompiler reads these de�nitions at run-

time. This provides added �exibility, and also avoids having to hard
ode the

knowledge of these library fun
tions into the
ompiler's
ore.

8

The Nonpareil
ode for these
lasses is given in Appendix B.

17

2.14.1 Fun
tion type

The fun
tion type FUN represents Nonpareil fun
tions. It is a builtin type,

expressed internally in C (sin
e it
annot be written dire
tly in Nonpareil).

This
lass a
ts as des
ribed in se
tion 2.8.

2.14.2 Obje
t

The Obje
t type is the base
lass for all Nonpareil
lasses. A
lass whi
h does

not expli
itly mention extending from any
lass is
onsidered to impli
itly extend

from Obje
t.

This
lass has no variables, but does have several features:

null[NULL_T℄ : NULL_T

This method is for the polymorphi
 null type, whi
h is des
ribed in more detail

in se
tion 3.5.

toString : String

This method returns a string representation of the obje
t. The default (builtin)

implementation prints the stati
 type of the
lass (by traversing the type_info

data; see se
tion 4.7). However,
lasses may override this to provide a more

a

urate stringi�
ation for the
lass.

equals(o : Obje
t) : Boolean

This method determines if two obje
ts are equal. The default implementation

omputes whether two obje
ts are the same.

isNull(o : Obje
t) : Boolean

This method determines whether the Obje
t o is null. For more details on the

need for this method, see se
tion 3.5.

2.14.3 Comparable

This
lass is simply an interfa
e for allowing
omparisons. Sin
e this implemen-

tation of Nonpareil does not support operators, a
lass whi
h inherits from this

lass
an be used where
omparisons are required. For example, the KEY for the

binary tree example given in appendix D.1 must be of a type implementing this

lass, so that the keys may be
ompared.

This
lass
onsists of two features, with no default implementation for either

feature.

18

lt(o : Obje
t) : Boolean

Returns true if self is less than o.

gt(o : Obje
t) : Boolean

Returns true if self is greater than o.

2.14.4 Integer

This
lass is used to represent integers. It inherits from the Comparable
lass,

and also overrides the equals and toString methods from the Obje
t
lass.

As well, it
ontains an additional feature:

add(o : Integer) : Integer

Returns the result of adding self and o.

2.14.5 Boolean

This
lass is used to represent the boolean values true and false. There are

no extra features provided, but toString is overridden.

2.14.6 String

String
onstants are represented using this
lass. As well as overriding equals

and toString, this
lass provides one extra feature:

on
at(o : String) : String

This feature
on
atenates self with o, returning the result.

19

Chapter 3

Type system

This
hapter explains the logi
 behind Nonpareil's typing rules. Nonpareil is a

strongly typed language, and the typing rules are designed logi
ally to produ
e

a �exible language whi
h still restri
ts potentially questionable type
onversion

operations.

The type
he
ker ensures that all of the below type requirements are met by

all the
omponents of a Nonpareil program.

3.1 Compatible types

Type B is able to be used in a situation where type A is required if and only if:

� A and B are the same type; or

� A is an an
estor
lass for B

The de�nition of `same type' used in Nonpareil means that all generi
 pa-

rameters must be identi
al. For example, seq[Integer℄ is not
onvertible to

seq[Obje
t℄, even though Integer is
onvertible to Obje
t.

This restri
tion on parameterised types applies to other languages su
h as

C++. The reasoning behind this is that whilst any program requiring an Obje
t

would be happy with an Integer, the same logi
 does not follow for sequen
es of

these obje
t. For example, appending an Obje
t to a seq[Obje
t℄ by
reating

a new seq[Obje
t℄ with an extra element has well de�ned results, but the

same does not apply to a seq[Integer℄, sin
e that gives the opportunity for

someone to try to obtain an Integer from the sequen
e and only get an Obje
t,

an a
tion whi
h does not make sense.

1

1

It
ould be argued that, sin
e the
aller whi
h
onverts the sequen
e in this manner will

then end up returning a seq[Obje
t℄, and the original obje
t is immutable (thus
ausing no

20

3.2 The self variable

All features are passed an impli
it �rst parameter, with the identi�er self. For

a feature de�ned on a
lass
, this variable has a type of
.

2

. This variable may

be used to a

ess variables or features on that parti
ular instan
e of the
lass,

or it may be passed as a parameter to another fun
tion.

It is worth noting that sin
e self always refers to the
urrent
lass, it is

impossible for self to ever be null.

3.3 Type resolution

Nonpareil allows the programmer to leave the type of a feature (or a type bound

within a let expression) unspe
i�ed. In this
ase, the
ompiler will attempt to

ompute the type of the expression, and then use that type.

However, this is not possible in some
ases, for example:

re
ursive := self.re
ursive()

The
ompiler
annot determine the type of the feature in this
ase. Whilst it

ould assume a type of Obje
t, this is likely to lead to unexpe
ted and undesired

behaviour.

For this spe
i�

ase, we
ould use a dummy generi
 type for the return

value, but that would not work all the time:

lass re
ursive is

features:

a := self.b()

b := self.a()

end

For this example, a and b would need to be given the same generi
 parameter.

This would then have to be dynami
ally added as a generi
 parameter to the

lass, whi
h would mean that the return types of these features would be �xed

when the
lass is
onstru
ted

3

, whi
h is unlikely to be what was intended.

For this reason, Nonpareil will not infer the type here, but instead require

the programmer to spe
ify a type in su
h a situation.

problems to any other user of this original obje
t) this operation is safe.

Whilst this may be something for a future language extension to
onsider, it must be noted

that this up
asting may require additional obje
t manipulation by the
ompiler in the
ase of

multiple inheritan
e (see se
tion 4.3), whi
h may not be possible to do in a generi

ase.

2

In the
ase of an inherited method, this may not be the same type as the method was

alled on. Similarly to other parameters, self may be
onverted via the if operation to an

instan
e of the a
tual
lass.

3

It would also require a generi
 type whi
h is not de
lared on the
lass to be spe
i�ed in

ases (su
h as inheritan
e), whi
h is even more
onfusing.

21

3.4 Generi
 parameters

Nonpareilpermits the use generi
 type parameters, for both
lasses and methods.

3.4.1 Type inferen
e

In some
ases, Nonpareil allows the programmer to leave the type of a vari-

able unspe
i�ed. The
ompiler then determines the type based on the given

expression.

For example,
onsider the feature:

test[U℄ (param : U) : U

Within an implementation for test, param may only be used as a variable of

type Obje
t, sin
e nothing further is known about U. However, a
aller whi
h

passes an Integer into test as the parameter
an be assured that the return

value of the feature will also be an Integer. This means that

foo : Integer := self.test(1)

and

bar : String := self.test(�A�)

are both
orre
tly typed, whilst

baz : String := self.test(1)

does not.

More examples
an be found in appendix C.1.

3.4.2 Currying

Given the parameterised representation for fun
tions, the type
he
king for
ur-

ried fun
tions be
omes trivial. A
lass whi
h has had one parameter �xed simply

loses the �outer� FUN for the parameter, by applying a variable of the �rst FUN

generi
 parameter, and produ
ing a value with the type of the se
ond generi

parameter.

When
urrying o

urs, any generi
 types used in the expression are imme-

diately �lled in; type resolution is not deferred until all of the parameters have

been �lled in.

For example:

22

lass test is:

features:

x[U℄ (a : U, b : U) : String

...

y := x(1) // y has return type Integer->String

wrong := y()(�S�)

// invalid, sin
e �S� is not

// an Integer

orre
t := y(2) // 2 is an Integer

alsoRight := x(1, �S�)

// U is inferred to be the

//
ommon parent of Integer

// and String, and thus alsoRight

// has return type Obje
t. See se
tion

// 3.4.1 for more information

end

As another example,
onsider the following
lass, whi
h tests the fun
tionality

of the sequen
e
lass (Appendix D.2).

lass seqtest is

s : seq[Integer℄

features:

sum(a: Integer, b: Integer) : Integer := a.add(b)

total : s.redu
e(self.sum(), 0)

altTotal : s.redu
e(self.sum())(0)

end

In this example, the feature sum is
alled on an instan
e of seqtest, takes

two Integer parameters, and returns a value of type Integer. It thus has

a type of FUN[seqtest, FUN[Integer, FUN[Integer, Integer℄℄℄

4

. When

alling self.sum(), this binds the type of the
lass, leaving a variable of type

FUN[Integer, FUN[Integer, Integer℄℄℄.

The feature redu
e (de
lared in the seq
lass) takes an initial parameter of

X->X->X, where X is the generi
 name for the type held in the sequen
e. Sin
e s

is a sequen
e of Integers, this means that for this fun
tion
all X is an Integer.

This thus means that the types of the variables are the same, so this expression

orre
tly type
he
ks.

Had sum taken a di�erent type as a parameter (or return value), then the

4

This is perhaps
learer to follow when the feature's type is written in the alternate form

seqtest->Integer->Integer->Integer.

23

types would not have mat
hed, and
ompilation of the
lass would have failed

at the type
he
king stage.

3.5 Polymorphi
 null

Nonpareil
onsists of a type whi
h is polymorphi
 in that it
an be
onverted to

a value of any other
lass.

This variable may be a

essed via the nullmethod on the Obje
t
lass. The

de�nition of this method (null[NULL_T℄ : NULL_T := builtin) uses generi

parameters, whi
h means that it may be used in pla
e of any other
lass, due

to inferen
e form the generi
 type, as dis
ussed in se
tion 5.3.3. This is done

without requiring the type
he
ker to have spe
ial knowledge of this null type,

due to this type inferen
e.

Note that it is impossible to
all a method (or obtain a variable) using a null

value for the
lass, whi
h implies that the self variable
an never be equal to this

polymorphi
 value. The rationale for this is simple - even if the method being

alled will not a

ess the self variable dire
tly (it may just return a
onstant,

for example), the
ompiler has no way of knowing this. Be
ause of inheritan
e,

the
omplier must use the variable to obtain the
orre
t method to be
alled,

and if the variable has no spe
i�ed type, this a

ess is impossible.

5

This is the rationale behind the isNull method - for a given variable var,

one
annot
all var.equals(null()), sin
e if var is null (whi
h is the point of

the exer
ise) then that statement would be erroneous.

3.6 Builtin types

Nonpareil has several builtin types, whi
h are present as part of the _builtin

pa
kage. Their spe
i�
ations is given in Appendix B and they are also dis
ussed

in se
tion 2.14.

5

Additionally, this error must be a runtime error, sin
e a null value
an be used as a

parameter without problems.

24

Chapter 4

Appli
ation Binary Interfa
e

4.1 Overview

Nonpareil's Appli
ation Binary Interfa
e

1

has been designed to
ope with the

requirements of the language. As Nonpareil obje
ts have both variables and

methods, a need to a

essing these at runtime is required. The dynami
 typing

present in Nonpareil means that an ABI
apable of handling inheritan
e in su
h

ases is needed. The resulting ABI is a subset of the existing C++ ABI for

Itanium [1℄, as used by G++ [2℄ in its latest release.

The s
heme used by the nonpareil
ompiler is simpler than that ABI, due

to the simpler feature set. For example, virtual inheritan
e is not supported in

nonpareil, and an entire
lass must be des
ribed in a single �le.

Other issues, su
h as alignment of data, is handled by the underlying C

ompiler, and Nonpareil defers to its ABI for those issues.

4.2 Name mangling

For a
lass in pa
kage p, with
lass name
,
ontaining a feature f, a unique way

of representing this feature is required.

2

The solution used is name mangling,

ie the various names are mangled into an identi�er whi
h will be unique for the

given triple.

For Nonpareil, the name
onsists of:

1

This term in
ludes the
alling
onventions,
lass layout, handling of method overloading,

and so on.

2

Sin
e all fun
tion
alls o

ur via the virtual table method des
ribed below, stri
tly speak-

ing the only requirement is that the names be unique - no
alling
ode will ever use them

dire
tly. Nevertheless, providing a
onsistent reversible mapping between the feature name

and the mangled name makes both implementation and
ross referen
ing between the various

generated items easier.

25

1. The pre�x np_. This pre�x avoids
on�i
t with existing identi�ers from

the standard C library.

2. The pa
kage name (if any), en
oded as the length of the name, followed

by the name itself.

3. The
lass name for the
lass the feature is de�ned in, en
oded as the length

of the name, followed by the name itself.

4. The feature name, en
oded as the length of the name, followed by the

name itself.

Sin
e Nonpareil does not support fun
tion overloading based on parameters,

this information severs to uniquely identify the feature.

Given this en
oding, the above example is mangled as np_1p1
1f. Sin
e

identi�ers
annot begin with a number, this avoids ambiguities. This s
heme is

similar in
on
ept to that used in [1℄.

Some items, su
h as virtual tables and
lass stru
tures, are also generated by

the
ompiler. The naming for those follows the above steps, ex
ept that there

is no feature
omponent, and after the np_ pre�x an additional
omponent is

adding, representing the type of item being
reated. This additional
omponent

is
lass for a
lass layout, vt for a virtual table,
onstru
t for a
onstru
tor,

and so on.

4.3 Class layout

Every instan
e of a
lass is a C stru
t whi
h
onsists of a virtual table pointer

(see 4.4), as well as the data members for both itself and its parents. The

algorithm used to determine the values of C, (again based loosely on [1℄) is

re
ursive:

1. For ea
h base
lass B of C, apply this algorithm to B. For the multiple

inheritan
e
ase, sele
t B in de
laration order (ie left-to-right)

2. Pla
e a virtual table pointer (see below) if C has no base
lass

3

.

3. For ea
h
lass variable (in de
laration order) pla
e a pointer to that vari-

able.

Step 2 (in
ombination with the virtual table layout optimisation des
ribed

below) allows for only one virtual table pointer to be required for the single

inheritan
e
ase, whi
h saves spa
e.

3

For Nonpareil, this implies that C must be the Obje
t
lass, sin
e all
lasses impli
itly

inherit from that.

26

4.4 Virtual table

A virtual table is a lookup me
hanism whi
h allows for polymorphism at runtime.

The goal here is to provide a me
hanism to ensure that:

� The
orre
t (overloaded) method is
alled, regardless of the stati
 type of

the
lass at the pla
e of invo
ation;

� It is possible to �nd out the dynami
 type of any given
lass; and

� A
lass
an be passed to a fun
tion expe
ting any of its an
estors
lasses,

and that fun
tion
an then use the
lass without needing to know its

dynami
 type.

The �rst goal is a
hieved through the use of fun
tion pointers, where every

fun
tion
allable from any
lass maps to a pointer, whi
h ends up
alling the

orre
t instan
e of the fun
tion, with the
orre
t type of the self pointer.

4

The se
ond method involves ea
h virtual table
ontaining a pointer to a

stru
ture des
ribing the run time type of the
lass. As the virtual table depends

on the stati
 type of the obje
t, not the dynami
 type, this ensures that the if

expression
an determine the
orre
t result.

Single inheritan
e

First we
onsider the single inheritan
e
ase, and then extend the solution to

handle multiple inheritan
e.

For the single inheritan
e
ase, the virtual table is simple. We pla
e:

1. 0, the o�set from this virtual table in the
lass layout to the virtual table

at the `top' of the obje
t's
lass layout

5

(see 4.3). This �eld is required to

handle multiple inheritan
e, and is des
ribed in more detail below.

2. A pointer to the type_info stru
ture, de�ned below.

3. Then, for ea
h method de�ned, we start with the an
estor
lass, and for

ea
h fun
tion whi
h has not already been pla
ed

6

, pla
e a fun
tion pointer

pointing to the
orre
t (ie most-derived) implementation.

For example,
onsider the nonpareil program

7

:

4

From an implementation point of view, however, to support
urrying this fun
tion pointer

is wrapped in a wrapper obje
t �rst. See se
tion 5.4.3 for details.

5

This di�ers from [1℄, where the vtable o�set is at this[-1℄ and the o�set is the distan
e

from the vtable to the �rst data member.

6

This means that where a fun
tion in
lass B overrides a fun
tion de
lared in
lass A, the

fun
tion pointer is only pla
ed for the A
ase, where it points to B's implementation.

7

These examples ignore the fa
t that the
lasses will be inheriting from Obje
t. The theory

is the same, but the addition of this to these examples just makes them harder to follow.

27

lass A is

features:

f := ...

g := ...

end

lass B inherit A is

features:

f := ...

h := ...

end

The virtual table for
lass A is then:

� 0

� Pointer to type_info for A

� Pointer to A::f

� Pointer to A::g

whilst the virtual table for
lass B is:

� 0

� Pointer to type_info for B

� Pointer to B::f

� Pointer to A::g

� Pointer to B::h

Whilst detailed dis
ussion of the
alling
onvention is dis
ussed in 4.5, it should

be immediately
lear that a B obje
t
an be used whenever an A obje
t is ex-

pe
ted without any problems, sin
e a user of the B-as-A obje
t will ignore the

remaining �elds present in the vtable.

8

Multiple inheritan
e

The multiple inheritan
e
ase is slightly more
ompli
ated.

We need to ensure that we have a way of moving from any
lass to any other

lass in the hierar
hy, in a way that the data for the
lass
an be su

essfully

used as required.

8

This also explains the advantages of the
lass layout me
hanism des
ribed in 4.3.

28

Firstly, we
hoose the �rst base
lass listed, and lay it out as for the single

inheritan
e
ase.

9

Then, for ea
h subsequent base
lass, that
lass is laid out following the

above instru
tions, ex
ept that:

� The offset �eld
ontains the number of bytes required to move from the

data for the obje
t of this base
lass to that of the
hild
lass. This is used

to
onvert a value of type Base to one of type
hild;

� The type_info pointer points to the
orre
t
lass; and

� Pointers to fun
tions in the base
lass whi
h are overridden by the
hild

lass must instead go via an intermediate thunk fun
tion. This allows the

self pointer to be adjusted. This me
hanism is dis
ussed in more detail

in 4.5.

For example, in the following program:

lass A is

a: Integer

features:

f := ...

g := ...

end

lass B is

b: Integer

features:

h := ...

i := ...

end

lass C inherit A+B is

: Integer

features:

f := ...

h := ...

end

Using the rules given in 4.3,
lass C has a layout of:

9

This is an optimisation, both in terms of the spa
e required for ea
h obje
t (here and in

the data layout), and also in terms of runtime overhead, dis
ussed earlier.

29

O�set Value

0 Virtual Table for A and C

4 a: Integer

8
: Integer

12 Virtual Table for B-in-C

16 b: Integer

There are then two virtual tables, one for A/C:

� 0

� Pointer to type_info for C

� C::f

� A::g

� C::h

and one for B-in-C:

� 12� 0 = 12

� Pointer to type_info for C

� B::h

� C::thunk_to_C::i

Note that it is possible to
ombine these two virtual tables into one stru
ture,

by inserting the o�set and type_info pointer before the h
all, and the having

the addition entries at the end. This has the advantage of saving spa
e, but

when generating C
ode it is simpler to use two separate tables, rather than

having to refer to the se
ondary table as the �rst table plus an o�set,
ast to

the appropriate type.

4.5 Calling
onvention

Given the above layout, determining the
orre
t implementation of a fun
tion

requires two steps:

1. Work out whi
h fun
tion to
all

2. Convert the self pointer to the
orre
t type

30

For step 1, any
lass whi
h has an implementation of that fun
tion will do.

This is be
ause the virtual table, as de�ned above, will ensure that the
all is

forwarded to the
orre
t fun
tion.

Step 2 is ne
essary so that the data �elds are at the o�set expe
ted by

the end fun
tion. This simply involves adding the number in the o�set �eld

of the virtual table, as des
ribed above. Due to the optimisation for the single

inheritan
e
ase (dis
ussed above), no
onversion will be required when multiple

inheritan
e is not present in the
lass' hierar
hy.

For the multiple inheritan
e
ase, this explains the earlier need for the for-

warding thunk. Sin
e the destination fun
tion is expe
ting a value of type C,

the
alling fun
tion's B value must be
onverted. However, this
annot be done

at the
alling site, be
ause this
an only happen at runtime due to the poly-

morphism.

The internals of the thunk are simple - it only needs to subtra
t the required

value from the self pointer, and then
all the �nal destination fun
tion.

4.6 Fun
tion parameters

Fun
tion parameters must also be
onverted to the expe
ted type. For
on
rete

types, this is simply a matter of applying the
onversions des
ribed earlier.

However, for generi
 types, there is an addition
ompli
ation.

At the time of the
all, the
ompiler knows the exa
t type of all generi

parameters being passed into the fun
tion. However, the fun
tion itself does

not - all it knows is a set of
onstraints for the generi
 type. At runtime, it

needs to know how to obtain the required generi
 types (and their parents).

The ABI
hosen is for these parameters to be passed in with the
aller

having
onverted them to the �rst
onstraint listed. The
allee
an then use the

type_info information des
ribed below to
onvert the parameter to any other

required type.

This s
heme has the advantage that in most
ases the potentially expensive

dynami
 type resolution will not be required, sin
e the majority of generi
 types

in programs will probably only have at most one
onstraint.

4.7 type_info stru
ture

Nonpareil only requires type_info data for the purposes of the if operator

(where a type is spe
i�ed). Sin
e the virtual table layout allows a

ess to the

real
lass's type_info stru
ture, regardless of the dynami
 type of the variable,

the following stru
ture
an be used:

31

1. A
har*, pointing to the type's name

2. An int, n, representing the number of parent
lasses

3. n pointers to the type_info stru
tures for the parent
lasses.

The algorithm for if then simply needs to traverse this tree, looking for the

required
lass name.

10

4.8 Constru
tors

A
onstru
tor for a
lass is responsible for setting up all the variables. Ea
h

possible variable is a parameter to the
onstru
tion fun
tion, ordered in a depth

�rst, post order traversal of the
lass graph. Values passed in as the C NULL

type represent those values not spe
i�ed in the
onstru
tion statement. These

use the default values given in the
lass de�nition (the type
he
ker ensures that

these exist).

The virtual table pointers in the
lass are also set up to point to the appro-

priate virtual table implementations, so that the method dispat
h previously

dis
ussed may o

ur.

10

A possible enhan
ement would be to
ompare the address of the type_info stru
t with

that of the required
lass, rather than using the name.

32

Chapter 5

Implementation

This
hapter des
ribes the implementation of the Nonpareil
ompiler, following

the above rules, and generating to the previously dis
ussed ABI. The
ompiler

is written in ANSI C [3℄, additionally using lex [9℄ and ya

 [10℄.

This proje
t is the �rst implementation of Nonpareil. It di�ers from previ-

ous designs [8℄ in several ways. As well as minor synta
ti
al
hanges (for ex-

ample, using [℄ instead of <> for generi
 parameters), and provides additional

fun
tionality (su
h as multiple inheritan
e, and overriding of
lass fun
tions) is

supported.

It
onsists of several passes, des
ribed below. Ea
h pass adds to various data

stru
tures, but the passes themselves are generally independent.

5.1 Parser

The parser is written using ya

 [10℄, with lex [9℄ for the lexer. The translation

from the grammar in appendix A to the ya

 syntax is straightforward, with

one ex
eption.

The syntax for method
alls and
onstru
tors are identi
al when no param-

eters are being passed. For example,
onsider the expression f().

Is this a
onstru
tor for a
lass with the name f, with no variables, or is it a

method
all for a feature (or variable of type FUN) whi
h takes no arguments?

The parser does not have enough information to resolve this
on�i
t. Instead,

this is tentatively identi�ed as a method
all, and then the symbol table pass

onverts this to a
onstru
tor
all if the `feature' does not exist.

The parser builds up a tree stru
ture, with ea
h type of Nonpareil element

being represented with a separate stru
t. For example, stru
t CLASS
ontains

an element for the name of the
lass, a pointer to any types it inherits from, a

pointer to its features, and so on.

33

Ea
h item is
reated via a helper makeFOO routine, whi
h takes as argu-

ments the various options, and returns a new stru
t FOO* with the elements

appropriately �lled out. For example, the ya

 rule for a variable is:

variable : name optional_type optional_expr

{ $$ = makeVAR($1, $2, $3); }

;

This allows for the
lass tree to be built in a `bottom-up' fashion, whi
h mat
hes

the
onstru
tions used by ya

.

Items su
h as stru
t FEATURE whi
h usually o

ur as part of a list also have

a next pointer, allowing for easy traversal of the data stru
ture.

5.1.1 Pretty Printer

The Nonpareil
ompiler also in
ludes a pretty printer. This was mainly useful

when debugging the parser. It is only run on the
lass spe
i�ed on the
ommand

line, not any of the dependent
lasses found during the pro
essing of that �le.

5.2 Symbol table

The
ompiler uses a symbol table in order to
ontain a re
ord of the available

variables and types.

5.2.1 Data stru
ture

After parsing, the
ompiler then builds up a symbol table. In the Nonpareil

ompiler, the symbol table is a hash table, indexed by an identi�er and a type

argument. The key for the hash table is internally a void *, with the exa
t

type being dependent on the type of the obje
t being stored.

While the identi�er is simply the name of the element being used, the type

argument may take several di�erent values:

SYM_CLASS The value is a
lass in the program. This value has type

stru
t CLASS*.

SYM_FEATURE The value is a feature, with type stru
t FEATURE*.

SYM_TYPE This value is a
onstant, indi
ating whether the given name for

the type is a
lass or a generi
 parameter. This is required to support

variables whi
h may have a
on
rete type or a generi
 type.

1

1

In retrospe
t, a new type (as a union for stru
t CLASS* and stru
t GENERIC* with an

additional tag �eld) would probably have been more appropriate.

34

SYM_VAR This value represents a variable, either on the
lass, or a param-

eter to the
urrent feature.

SYM_GENERIC This value represents a generi
 type.

Ea
h symbol table may have a parent. The symbol tables are thus used in

order to enfor
e s
ope. The
ompiler uses a fun
tion
alled sym_get, whi
h �rst

attempts to look up data in the
urrent symbol table, then re
ursively traverses

the parent symbol table. For example,
alling this fun
tion from within an

expression will a type argument of SYM_VAR will �rst look for the variable on

that expression, then any
ontaining expressions, then as arguments to the

feature, as so on. This is useful for the let and if
onstru
ts in Nonpareil,

whi
h may end up de
laring a new variable whi
h is valid for the s
ope of their

appropriate expressions.

5.2.2 Constru
tion

The tree built up by the parser is re
ursively traversed using two passes. In

the �rst pass, inheritan
e is
he
ked, and
lasses are s
anned for variables and

features. Erroneous
onstru
tions su
h as reuse of variables and types are re-

je
ted at this stage. Any new types whi
h are seen are then loaded by the parser

(following the pa
kage lookup rules given in se
tion 2.4), in order to provide the

programmer with dynami
 loading of required �les. During this step, the paths

of all the pa
kages are sear
hed, attempting to �nd the requested �le. If the �le

annot be found, an error is produ
ed. Ea
h of these new
lasses has this �rst

pass applied to it.

In the se
ond pass, ea
h expression is traversed, and the data stru
tures

de�ned above are built. Identi�ers are
he
ked for validity, and referen
es to

unde�ned entities generate errors whi
h then stop the
ompilation at this stage.

This is largely a me
hani
al pro
ess. This stage also handles
reating a self

variable for features, as previously dis
ussed.

5.3 Type
he
ker

5.3.1 Overview

The type
he
king pass is probably the most
omplex part of the
ompiler.

It needs to deal with all of the fun
tionality des
ribed in
hapter 3, in
luding

inferred types, generi
 parameters and fun
tion
urrying, as well as the more

typi
al task of
he
king type
orre
tness of the expressions.

35

Similarly to the other passes, this pass re
ursively traverses the
lass's tree.

It annotates appropriate items (su
h as features and expressions) with informa-

tion stored in a TYPE_RECORD stru
ture, whi
h des
ribes the resulting type.

5.3.2 TYPE_RECORD data stru
ture

Every type whi
h the type
he
ker dis
overs is stored in a stru
t TYPE_RECORD

data stru
ture. This stru
t has a de�nition of:

typedef stru
t TYPE_RECORD {

int isGeneri
;

har* id;

union {

stru
t CLASS*
lass;

stru
t {

stru
t GENERIC* generi
;

stru
t TYPE_RECORD* resolved;

} gen;

} val;

stru
t TYPE_RECORD* generi
s;

stru
t TYPE_RECORD* next;

int numParent;

stru
t TYPE_RECORD* parent[1℄;

} TYPE_RECORD;

The �rst item, isGeneri
 is set to true if this type represents a generi
 type,

rather than a
on
rete type. This is used as a �ag for the other parts of the

type
he
ker, notifying them that they may need to behave di�erently. It also

serves as a toggle, identifying whi
h part of the val union should be used.

The se
ond item, id, is simply the name of the type.

For
on
rete types, the val union
ontains a pointer ba
k to the
lass whi
h

it is representing. This allows a

ess ba
k to the original
lass, for example in

determining whether or not the type is a
on
rete
lass.

For generi
 types, this union provides two members. The �rst, generi
, is

a simple pointer ba
k to the generi
 type's de�nition.

2

The se
ond provides

a pointer to another TYPE_RECORD stru
ture, whi
h is used in resolving types.

This use of this �eld is dis
ussed in se
tion 5.3.3.

A type may, of
ourse, have generi
 parameters, whi
h are themselves may

be generi
. The generi
s member of the TYPE_RECORD stru
ture is used to

2

This data is not required by the
urrent version of the type
he
ker, although an earlier

version of it did use this information.

36

a

ess those parameters. These
an then be resolved individually, if required.

The next member is used in order to
hain the type data into a list. This is

mainly useful for
lasses with multiple generi
 parameters, where the generi
s

member then points to a list, with the end of the list signi�ed by a NULL next

value.

In addition, type
he
king for the parents of a
lass is a requirement of

Nonpareil. The numParent variable indi
ates the number of parents for the

lass, whilst the parent array points to those variables

3

. In the
ase of a generi

parameter, these variables instead refer to the
onstraints pla
ed upon the
lass.

This representation allows the type
omparison routines to a
t independently

of whether or not the re
ord is referring to a generi
 type.

5.3.3 Generi
 type resolution

The type
he
ker must resolve the types of generi
 parameters in a

ordan
e

with the rules des
ribed in se
tion 3.4.1. To support this, as a type be
omes

onstrained, the TYPE_RECORD member resolved is made to point to the addi-

tional type. This
reates a
hain of types, whi
h eventually rea
hes a
on
rete

type. Consider the following
lass:

lass resolve[X℄ is

var : X

end

The type of var must be the same as the generi
 type X. The type
he
ker takes

the TYPE used for X for var, and makes its TYPE_RECORD point to that of the

lass' X. Later on, when X is resolved to a spe
i�
 type, a new type re
ord is

added to the end of its
hain, and anyone following the
hain from var will also

end up at this resolved type.

4

There are two
ases in whi
h this resolution
an o

ur.

Generi
s given by a
onstru
tor

Constru
tors may in
lude types whi
h are used to �ll in the generi
 types. The

ompiler then uses those in order to infer the
onstru
ted
lasses type, and the

type of any variables or features whi
h use that generi
 parameter. This is

3

The array has a size of 1 be
ause zero sized arrays are not legal ANSI C; they are a GCC

extension. C99 provides for �exible array types, whi
h is exa
tly what is required here - an

array at the end of a stru
ture whi
h has indeterminate size. This feature is, however, fairly

re
ent, and so not supported by most
ompilers, although it is supported by g

.

4

A
tually, the
haining o

urs from a TYPE_RECORD referen
ed from the TYPE stru
t. This is

an implementation detail whi
h is only important as it intera
ts with the
loning des
ribed in

a subsequent se
tion, ensuring that the same TYPE instan
e
an be resolved to di�erent values

in di�erent
ontexts, without interferen
e.

37

trivially a

omplished by �lling in the types on the
lass, and then letting the

haining des
ribed above take
are of the var. This happens re
ursively - were

var to have the type BTree[X, X℄, then the X in the BTree would be resolved

to the type of X. Similarly, if the type used for X was itself a generi
 parameter

used in the
alling
lass, there would merely be an extra link in the
hain to go

from X to the true �nal type.

Generi
s inferred from a parameter

As previously dis
ussed, the type of a generi
 parameter may also be inferred

from a parameter to a fun
tion. In this
ase, however, there is an additional

ompli
ation.

For a fun
tion taking two parameters, ea
h having the same generi
 type, we

want to resolve that parameter to the
ommon parent of the two values passed

in, following the rules dis
ussed earlier. In other words, given:

lass
ommon is

features:

f[T℄ (a : T, b : T) := ...

end

Given f(1,1), T is Integer, but for f(1,true), T is Obje
t.

5

This transformation takes pla
e by, for every generi
 parameter, s
anning all

subsequent parameters (in
luding the required re
ursion into types
ontaining

generi
 parameters, as dis
ussed above) for types of the same name, and then

alling the helper fun
tion find_
ommon_parent (dis
ussed below) on ea
h pair

in order to �nd the end type. After this has been a

omplished, the type re
ord

of the generi
 parameter is �lled in with the �nal type.

5.3.4 Helper fun
tions

The type
he
ker
ontains several helper fun
tions used during the traversal of

the
lass tree. In general, these helper fun
tions simply follow rules previously

dis
ussed, and thus their implementation is obvious.

makeTYPE_RECORD*

TYPE_RECORDs need to be
onstru
ted in several
ontexts, and several
onstru
-

tion routines are provided for those purposes. Ea
h of makeTYPE_RECORD{type,

generi
,
lass} re
ursively traverses the data of the appropriate value to

5

Sin
e all
lasses eventually inherit from Obje
t, it is always possible to eventually �nd a

ommon parent.

38

build up the TYPE_RECORD, in
luding all the required parent links, and the en-

tries for nested generi
 parameters.

In addition, makeTYPE_RECORD
lone and makeTYPE_RECORD
loneDeep re-

spe
tively produ
e a shallow and deep
opy of a sour
e TYPE_RECORD. This is

required in order to ensure that resolving one generi
 parameter does not pre-

lude it being resolved to another type in a separate
ir
umstan
e. By
loning

the stru
ture, the modi�ed version
an then be `
hained' without a�e
ting other

users.

get_resolved

Due to the
haining dis
ussed above, it is ne
essary to obtain the end result

of this me
hanism. This routine simply traverses the list until it rea
hes the

end. Sin
e the majority of the other routines are only interested in this �nal

resolution, they are frequent
allers.

type_is_equal

This takes two TYPE_RECORDs, and determines if they are the same type, a
-

ording to the rules given in se
tion 3.1.

type_is_assignable

This routine takes two parameters, dst and sr
, and determines, using the

rules given in se
tion 3.1, whether a variable of type sr
 may be assigned to a

variable of type dst.

find_
ommon_parent

Using the previously dis
ussed rules, this routine �nds a
ommon parent between

two types passed in as parameters. It is also used for �nding a
ommon type

for the bran
hes of an if expression.

lass_is_
on
rete

This method determines if a
lass is
on
rete, and thus may be used in a
on-

stru
tion statement to
reate an instan
e of that
lass.

type_
he
k_
onstraints

This is used to determine if a type mat
hes the
onstraints for a generi
 variable.

Before resolving a generi
 to a type, this method is
alled to ensure that it is

valid to do so.

39

fill_generi
s

This routine takes two TYPE_RECORDs, dst and sr
, and resolves all the generi

parameters whi
h are in sr
 and also appear in dst. This is mainly used for

onstru
tor
alls, as dis
ussed above.

resolve_generi
s

The type
he
ker uses this routine primarily for method
alls. Attempts are

made to resolve all the generi
s from one TYPE_RECORD to those in another. The

main di�eren
e between this routine and the above fill_generi
s method

is that whilst this method may potentially have partially resolved types on

either side, fill_generi
s blindly �lls in the data without
he
king for
on�i
ts

between two partially resolved types.

getTypeName

When an error o

urs, this routine is used to stringify the TYPE_RECORD into a

readable form. This method in
ludes all the steps in the
haining; it represents a

type su
h as seq[X (as T (as Integer))℄ to mean a seq[X℄ whi
h eventually

has a generi
 type of Integer. This hopefully allows the programmer to see

what generi
s were involved in the end error messages.

6

5.4 Code generation

Code generation is obviously an important part of a
ompiler. The Nonpareil

ompiler takes a single sour
e
lass, and
ompiles it (and any
lasses it brings

in by referen
e, as dis
ussed earlier) into a single C program,
alled a.in.
.

This �le must be linked with the Nonpareil library, whi
h
ontains the builtin

lasses' implementations, as well as the runtime fun
tions de�ned in se
tion 5.5.

A wrapper s
ript, build.sh, is provided to
ompile the program with Nonpareil,

then with the C
ompiler, produ
ing a resulting program.

C requires that the programmer have de
lared types and data before using

them. For this reason, the
ode generator traverse the list of
lasses three times

in order to produ
e the �nal program.

De
larations Firstly, forward de
larations for all
lasses,
lass features, and

type of data in the vtable, using the rules des
ribed in
hapter 4.

Data Layout Se
ond, the data layout for non-builtin
lasses is given, and the

onstru
tor is forward de
lared. By having this after the �rst pass, a

6

It's also really useful for
alling from gdb when debugging!

40

lass may
ontain variables of any other
lass. This allows for
ir
ular

referen
ing within
lass variables.

Code Finally, the
ode for the
lasses are generated, as des
ribed in subsequent

se
tions. Having this pass last allows features to
all
onstru
tors and a
-

ess
lass data from within any other
lass. This stage involves the a
tual

generation of the vtable,
ontaining pointers to the previously de
lared

features. After this, any features whi
h have asso
iated expressions are

generated.

5.4.1 Features

All features take a single void** argument, and return a void*. This method

of parameter passing allows parameters to be built up at runtime, as required

for
urrying (des
ribed below).

Firstly, the `real' parameters (in
luding self) are removed from this array

and assigned to the appropriate variables. Then, any `extra' variables are de-

lared.

7

These are used for temporaries, su
h as in if and let expressions.

Sin
e, as des
ribed below, the
ompiler does not generate any blo
ks in the C

ode, all of these must be de
lared at this point.

Finally, the
ode generator returns the result of evaluating the feature's

expression.

5.4.2 Expressions

Like the previous passes, the
ode generator traverses the tree stru
ture in order

to generate
ode for expressions. The
ode generated naturally depends on the

type of the expression.

Literals

String, Integer, and Boolean
onstants are translated into
alls to the appropri-

ate builtin
onstru
tor, using their values as the argument. For example, a
on-

stant string �S� be
omes the C
ode np_
onstru
t8_builtin6String(�S�),

using the mangling previously dis
ussed in se
tion 4.2.

If expressions

Unlike C, Nonpareil allows for nested if (and let) expressions. Be
ause of this,

the
ode generator
annot use the if
onstru
t provided by C. Instead, we are

required to use the ternary ?: operator. This is used in a nested fashion - the

statement

7

The list of extra variables is generated by the type
he
ker as it traverses the tree.

41

if if <A> then <A1> else <a2> then

else

<C>

end

is generated as

((<A> ? <A1> : <A2>) ? : <C>)

The additional feature of the if statement, whi
h allows for run time type

he
king to o

ur, simply wraps the
ondition in a
all to the run time np_
ast

fun
tion de�ned later. It is also possible for a variable to be assigned to this

value; this is done by preallo
ating the variable as des
ribed above.

Let expressions

Let expressions are handled using the C
omma operator.

Given the C statement (a, b,
), a C
ompiler �rst evaluates the expression

a, then the expression b, and then the expression
. Finally, the entire bra
keted

expression evaluates to
. Using this, the Nonpareil
ode

let a := <x>, b := <y> in <expr> end

be
omes

(a = <x>, b = <y>, <expr>)

Sin
e the order of evaluation of this expression is well de�ned in C

8

, it is guar-

anteed that <expr> will be able to use a and b after they have been bound to

the
orre
t values. In addition, this gives the evaluation of <y> a

ess to the

value of a, as required by the Nonpareil spe
i�
ations.

5.4.3 Calling Fun
tions

In order to support
urrying, the implementation of the FUN type must allow

for parameters to be added in bits, rather than all at on
e.

At �rst glan
e, it may appear that ea
h parameter of the FUN[T,U℄
ould

have its own representation, with the destination fun
tion being
alled when

U is not a FUN. However, this method does not support the
ase of fun
tions

returning another fun
tion. Consider:

8

The
omma operator is a C sequen
e point.

42

lass funRet is

features:

f(a : Integer, b : Integer) : Integer

getCurried(i : Integer) : Integer->Integer := f(i)

...

a := f(1)(2)

b := getCurried(1)(2)

end

From the type
he
ker's perspe
tive, there is no di�eren
e between a and b. How-

ever, the
ode generator must ensure that a
alls f, whilst b
alls getCurried

and then
alls the fun
tion returned by getCurried. For this reason, the im-

plementation of
alls keeps tra
k of how many parameters have been used, and

how many are left; when there are no parameters left, the C fun
tion is
alled.

Nonpareil fun
tions are represented using the following C stru
ture:

typedef void* (*np_
all_t)(void** args);

stru
t np_
lass8_builtin3FUN {

stru
t np_vt8_builtin3FUN *_vt;

np_
all_t
all;

int numParam;

int
urPos;

void* params[1℄;

};

When
reated, the size of the params array is made large enough to hold all the

parameters; ANSI C does not permit �exible array members.

This stru
ture has a virtual table pointer so that it may be
asted to and

from its parent Obje
t
lass identi
ally to how other
lasses work.

This stru
ture is
reated using the np_buildCall runtime fun
tion, and is

alled using the np_
all routine. Both of these methods are des
ribed below.

5.4.4 Features

One additional issue regards
alling a feature. The expression

a.b()

must
onvert the feature b to the stru
ture previously de�ned, but then pass a

in as the �rst parameter. In other words, this statement must be
onverted to

np_
all(np_buildCall(a->_vt->b, 1), 1, a))

9

9

The numbers refer to the number of parameters; for more detail, see se
tion 5.5.

43

with a de�ned twi
e. Sin
e this may be a
omplex expression, the
ompiler uses

a ma
ro to do this generation, pasting tokens to generate a->_vt->b from a and

b.

5.5 Runtime library

Nonpareil programs require several support fa
ilities at runtime.

5.5.1 Builtins

Features and
lasses previously de
lared as builtin are not emitted in the
ode

generation phase des
ribed above. Instead, the Nonpareil library provides def-

initions for these. These methods are obvious in design, but, as previously

dis
ussed, they
annot be written in Nonpareil due to the need to a

ess in-

ternal variables. The
lasses whi
h are marked as builtin
an be seen in the

spe
i�
ations in appendix B.

5.5.2 Method
alling routines

stru
t np_
lass8_builtin3FUN* np_buildCall(np_
all_t
all, int numParam)

This method is basi
ally a
onstru
tor for FUN obje
ts. It
reates a new stru
ture

for a feature whi
h will eventually have numParam parameters applied to it.

void* np_
all(stru
t np_
lass8_builtin3FUN* fun, int numVals, ...)

This varadi
 fun
tion applies numVals values to the parameter list. As dis
ussed

earlier, this then
alls the fun
tion if enough parameters end up being passed.

5.5.3 Dynami

asting

The np_
ast routine takes an obje
t, and the name of a type whi
h we wish to

ast to. This method traverses the type_info stru
ture as dis
ussed in se
tion

4.7, returning either an obje
t (appropriately adjusted) or NULL if the obje
t

was not of the provided type.

44

Chapter 6

Evaluation

Whilst the implemented Nonpareil
ompiler works as des
ribed, several possible

enhan
ements may be worth
onsidering in a future version. In addition, there

are a few known issues with some minor implementation details of the
ompilers.

6.1 Future enhan
ements

Due to time
onstraints, not all possible features have been implemented. Some

additional possible enhan
ements in
lude:

Enhan
ed error
he
king Nonpareil's
urrent error
he
king and diagnosti
s

are not very informative. Additional state would need to be passed to other

fun
tions in order for additional
ontext to be given.

A

ess restri
tions It should be possible for a Nonpareil
lass to de�ne fea-

tures and variables as publi
, private, or prote
ted. This would allow

implementation details to be hidden from a
lass' user.

Extend
onstru
tor me
hanism Inferen
e of generi
 types should be possi-

ble for
onstru
tors, too, using the variables passed into the
onstru
tor.

Whilst this is obviously not possible in all
ases, it should be permitted

when the set of variables
ontains all of the
lass' generi
 types.

Fun
tion
a
hing Sin
e Nonpareil types are immutable,
alling a fun
tion

multiple times with the same parameters must produ
e two obje
ts whi
h

are the same. The results of these fun
tions
ould be
a
hed to return

the identi
al obje
ts. This would provide for added speed when repeated

a
tions take pla
es, su
h as undo/redo in a do
ument. Care would have to

be taken not to run out of memory, possibly involving garbage
olle
tion

of some sort.

45

6.2 Known issues

No program is perfe
t, and Nonpareil is not without its bugs. The majority of

these issues are minor, but are do
umented for the sake of
ompleteness. They

do not indi
ate design �aws in the software, but rather issues whi
h were not

dis
overed until it was too late for them to be su�
iently
orre
ted.

Passing the null type as a parameter has in
orre
t intera
tions with

multiple inheritan
e

When
onverting a type whi
h uses multiple inheritan
e, an o�set must be

added or subtra
ted to
onvert the
lass to the layout expe
ted by the re
ipient

of the variable (see se
tion 4.3). If this is done to the null type, whi
h does

not have any de�ned variables, the o�set will
ause the pointer to be pointing

to an invalid memory lo
ation, and it will thus not be dete
ted as the null type

in the future. In this
ase, isNull will return the wrong results, and may even

rash.

Expression Nesting Limitations

The ma
ro method dis
ussed in se
tion 5.4.3 has some limitation. Due to nest-

ing, it is possible that some of the arguments to the CALLONma
ro are themselves

fun
tion
alls. For the expression

a.b().
()

b must be applied to a, whilst
 must be applied to a.b(), giving

CALLON(CALLON(a, b, 1, 0),
, 1, 0)

However, ma
ro expansion in C is not re
ursive, so the inner ma
ro is not

expanded by the prepro
essor. Nonpareil thus appends a su�x to this ma
ro,

using CALLON1, CALLON2, and so on.The library only de�nes a
ertain number of

these, however, and thus an error o

urs when too many
hained fun
tion
alls

o

ur.

One solution would be to use the
omma operator in a matter similar to the

ode generated for let expressions, produ
ing

(temp = (temp = a,

np_
all(np_buildCall(temp->_vt->b, 1), 1, temp)

),

np_
all(np_buildCall(temp->_vt->
, 1), 1, temp)

)

46

However, this fails on expressions like a.b(
()), where temp would be used

twi
e in the same expression.

The full solution is to use multiple temp values, with an array of the appro-

priate size being
reated at the start of the feature.

Multiple inheritan
e has problems The
ompiler does not always
arry

out the
onversion always dis
ussed (mainly when
ombining the return values

from if statements into a
ommon parent, as dis
ussed.

As well, thunks are not generated (or used), leading to possible in
orre
t

results when
alling methods on an obje
t with variables and virtual methods.

47

Bibliography

[1℄ C++ ABI for Itanium (Draft), last viewed at 19 O
t 2002, http://www.

odesour
ery.
om/
xx-abi/abi.html

[2℄ The GNU Compiler Colle
tion, http://g

.gnu.org/

[3℄ C programming language, ISO standard ISO/IEC 9899

[4℄ C++, ISO standard ISO/IEC 14882

[5℄ Stroustrup, Bjarne, �The C++ Programming Language�, Spe
ial Edition,

Addison Wesley, 2000

[6℄ Bird, Ri
hard, and Wadler, Philip, �Introdu
tion to Fun
tional Program-

ming�, Prenti
e Hall International Series in Computer S
ien
e, 1988

[7℄ Thompson, Simon, �Haskell - The Craft of Fun
tional Programming�, Ad-

dison Wesley, 1996

[8℄ Wotton, Mark, �Nonpareil: a referentially pure obje
t oriented language for

typesetting�, November 2001

[9℄ lex (aka �ex), available from http://www.gnu.org/software/flex/

[10℄ ya

 (aka bison), available from http://www.gnu.org/software/bison/

bison.html

[11℄ Knuth, Donald E., �The T

E

Xbook�, Addison Wesley, 1984

[12℄ Tex Users Group, http://www.tug.org/

[13℄ The L

A

T

E

X proje
t, http://www.latex-proje
t.org/

[14℄ The Comprehensive T

E

X Ar
hive Network, http://www.
tan.org/ (and

mirrors)

[15℄ Kingston, Je�rey H., The Design and Implementation of the Lout Do
ument

Formatting Language, January 1993

48

[16℄ Kingston, Je�rey H., A New Approa
h to Do
ument Formatting, De
ember

1992

[17℄ The OCaml Language, http://www.o
aml.org/

49

Appendix A

Nonpareil grammar

lass

�

Æ

-

imports

�

-

lass

�

Æ

�

�

Æ

-

builtin

�

Æ

�

�

-

identi�er

�

Æ

-

formalGeneri
s

�

�

�

Æ�

Æ

-

inherit

�

Æ

�

-

type

�

Æ

+

�

Æ

�

�

�

�

-

is

�

Æ

�

�

Æ

variable

�

�

�

�

Æ�

Æ

-

features:

�

Æ

�

�

Æ

feature

�

�

�

-

end

�

Æ

�

-

imports

-

import

�

Æ

�

-

identi�er

�

Æ

�

-

50

formalGeneri
s

-

[

�

Æ

�

-

identi�er

�

Æ

-

is

�

Æ

�

-

type

�

Æ

+

�

Æ

�

�

�

�

�

Æ

,

�

Æ

�

�

�

-

℄

�

Æ

�

-

type

-

identi�er

�

Æ

-

a
tualGeneri
s

�

�

Æ

-

->

�

Æ

�

-

type

�

-

a
tualGeneri
s

-

[

�

Æ

�

�

Æ

-

type

�

Æ

,

�

Æ

�

�

�

�

-

℄

�

Æ

�

-

variable

-

name

�

Æ

-

:

�

Æ

�

-

type

�

�

Æ

-

:=

�

Æ

�

-

expr

�

-

feature

-

name

�

Æ

-

formalGeneri
s

�

�

Æ

-

parameters

�

�

Æ

-

:

�

Æ

�

-

type

�

�

�

Æ�

Æ

-

:=

�

Æ

�

-

expr

�

Æ

-

builtin

�

Æ

�

�

�

-

name

-

identi�er

-

51

parameters

-

(

�

Æ

�

�

Æ

-

identi�er

-

:

�

Æ

�

-

type

�

Æ

,

�

Æ

�

�

�

�

-

)

�

Æ

�

-

expr

-

fa
tor

�

Æ

-

.

�

Æ

�

-

identi�er

Æ

-

(

�

Æ

�

�

Æ

-

expr

�

Æ

,

�

Æ

�

�

�

�

-

)

�

Æ

�

Æ�

Æ

-

a
tualGeneri
s

�

�

�

Æ

-

(

�

Æ

�

�

Æ

-

identi�er

-

:=

�

Æ

�

-

expr

�

Æ

,

�

Æ

�

�

�

�

-

)

�

Æ

�

�

�

Æ

�

-

fa
tor

-

identi�er

�

Æ

-

literal

Æ

-

(

�

Æ

�

-

expr

-

)

�

Æ

�

Æ

-

letExpr

Æ

-

ifExpr

�

-

52

letExpr

-

let

�

Æ

�

-

identi�er

�

Æ

-

:

�

Æ

�

-

type

�

-

:=

�

Æ

�

-

expr

�

Æ

,

�

Æ

�

�

�

-

in

�

Æ

�

-

expr

-

end

�

Æ

�

-

ifExpr

-

if

�

Æ

�

-

expr

�

Æ

-

is

�

Æ

�

�

Æ

-

identi�er

-

:

�

Æ

�

�

-

type

�

-

then

�

Æ

�

-

expr

�

Æ

elsif

�

Æ

�

�

�

�

�

Æ

-

else

�

Æ

�

-

expr

-

end

�

Æ

�

-

53

Appendix B

Builtin
lasses

Nonpareil
omes with several builtin
lasses, whi
h are part of the _builtin

pa
kage.

B.1 FUN[T,U℄

The FUN type is a builtin type. For more information, see se
tion 2.8.

B.2 Obje
t

lass Obje
t is

features:

null[NULL_T℄ : NULL_T := builtin

toString : String := builtin

equals(o : Obje
t) : Boolean := builtin

end

B.3 Boolean

lass builtin Boolean is

features:

toString : String := builtin

end

B.4 String

lass builtin String is

54

features:

on
at(o: String) : String := builtin

equals(o: Obje
t) : Boolean := builtin

toInt : Integer := builtin

toString := self

end

B.5 Comparable

lass Comparable is

features:

lt(o : Obje
t) : Boolean

end

B.6 Integer

lass builtin Integer inherit Comparable is

features:

toString : String := builtin

add(o: Integer) : Integer := builtin

equals(o: Obje
t) : Boolean := builtin

lt(o : Obje
t) : Boolean := builtin

end

55

Appendix C

Type
he
king fun
tionality

One of the major parts of the Nonpareil language is its type system. The

following
lasses give some examples of what is and is not permitted. Most of

these
lasses
ontain intentional errors in order to demonstrate these rules; they

are not valid Nonpareil programs.

This is by no means an exhaustive sampling of Nonpareil's type
he
king

fun
tionality. Additional examples may be found (with dis
ussion) in earlier

se
onds of this paper.

C.1 Type inferen
e

lass f is

features:

x[U℄(a : U, b : U) : U

z(b : Boolean) : Integer := self.null()

y := self.x(1) // y has return type Integer->Integer

works := self.x(self.z(true), �X�)

// has return type of �Obje
t�, whi
h

// is the
ommon parent type of both parameters

// for U (in X)

end

C.2 Fun
tion types as parameters

This example uses the seq
lasses de�ned in appendix D.2.

lass seqtest is

56

s : seq[Integer℄

features:

sum (a : Integer, b : Integer) : Integer

:= a.add(b)

getTotal : Integer := s.redu
e(self.sum(), 0)

end

57

Appendix D

Example
lasses

The following are some sample
lasses whi
h the
ompiler su

essfully parses,

type
he
ks, and
ompiles.

D.1 Binary Tree

lass BTree[KEY is Comparable, VALUE℄ is

key : KEY

value : VALUE

left : BTree[KEY, VALUE℄

right : BTree[KEY, VALUE℄

features:

find(k: KEY) : VALUE :=

if k.equals(key) then

value

elsif k.lt(key) then

if isNull(left) then

self.null()

else

left.find(k)

end

else

if isNull(right) then

self.null()

else

right.find(k)

end

end

58

enter(k: KEY, v: VALUE) :

BTree[KEY, VALUE℄ :=

if k.equals(key) then

BTree[KEY, VALUE℄(key := k,

value := v,

left := left,

right := right

)

elsif k.lt(key) then

if isNull(left) then

BTree[KEY, VALUE℄(key := k,

value := v,

left := null(),

right := self

)

else

BTree[KEY, VALUE℄(key := k,

value := v,

left := left.enter(k,v),

right := null()

)

end

else

if isNull(right) then

BTree[KEY, VALUE℄(key := k,

value := v,

left := self,

right := null()

)

else

BTree[KEY, VALUE℄(key := k,

value := v,

left := null(),

right := right.enter(k,v)

)

end

end

end

59

D.2 Sequen
e

The sequen
e
lass
onsists of an abstra
t parent
lass, seq[X℄, and then two

on
rete
hild
lasses, eseq[X℄ and nseq[X℄, representing empty sequen
es and

non-empty sequen
es respe
tively. These
lasses are present in the seq pa
kage,

whi
h must thus be imported in order to be used.

D.2.1 seq[X℄

lass seq[X℄ is

features:

isEmpty : Boolean

length : Integer

ons(val : X) : seq[X℄

on
at(other : seq[X℄) : seq[X℄

redu
e (f: FUN[X,FUN[X,X℄℄, id:X) : X

end

D.2.2 eseq[X℄

lass eseq[X℄ inherit seq[X℄ is

features:

isEmpty := true

length := 0

ons (val : X) : seq[X℄

:= nseq[X℄(

elem := val,

tail := self

)

on
at (other : seq[X℄) : seq[X℄

:= other

redu
e(f: X->X->X, id: X) := id

end

D.2.3 nseq[X℄

lass nseq[X℄ inherit seq[X℄ is

elem : X

tail : seq[X℄

features:

isEmpty:= false

length : Integer

60

:= tail.length().add(1)

ons(val : X) : seq[X℄

:= tail.
ons(val)

on
at(other: seq[X℄) : seq[X℄

:= nseq[X℄(elem := elem,

tail := tail.
on
at(other)

)

redu
e(f: X->X->X, id: X)

:= f(elem, tail.redu
e(f,id))

end

61

