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Abstract

Nonpareil is a strongly typed, object oriented functional programming language.
It allows function overriding, Whilst it is intended to be a general purpose

language, its main target is in the area of document formatting.
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Chapter 1

Introduction

1.1 Motivation

The goal of this project is to produce a compiler for Nonpareil, which can then
be used as a compiler for a document formatting language.

Nonpareil is intended to be the language behind a dynamically updating
document editor. The immutability of objects will allow for fast undo/redo
functionality, whilst the package functionality and dynamic class loading makes
the language easily extendable. It is intended for use by non programmers, who
will use the existing features to create and edit complex documents.

One of the major reasons why Nonpareil is a strongly typed language is that
it is intended for use by non programmers, it is better for errors to occur at
compile time, rather than mysteriously occur at runtime when trying to modify
an existing document, crashing the program in the middle.

1.2 Nonpareil language

Nonpareil is an object-oriented functional programming language. It is strongly
typed, and features multiple inheritance, generic classes and functions (called
features in Nonpareil). It also allows overriding of features in child classes.

As a functional programming language, Nonpareil allows for variables of
function types, and supports currying. Classes are loaded on demand, when
referenced in source code.

Nonpareil objects are strictly immutable; once created an object cannot be
modified.



1.3 Nonpareil compiler

The Nonpareil compiler is written in ANSI C, using lex and yacc for parsing.
The compiler takes Nonpareil code, and generates corresponding C code, which

can then be compiled by a C compiler in order to generate a runnable program.

1.4 Other document formatting systems

Document formatting programs such as TgX [11] and lout [15] are batch docu-
ment formatters. They involve a writer using the appropriate language features
in order to produce their document. This source document is then compiled
(sometimes with multiple runs of the program) into an output format such as
DVTI (a DeVice Independent file format) or PostScript.

1.4.1 TgX

TEX (and IATEX) are probably the most commonly used document formatting
languages.

TEX [11] was originally created by Professor Donald Knuth in 1978 for the
preparation of his book series “The Art of Computer Programming” in order to
provide “beautiful” typesetting. The code was then subsequently released freely
to the public in 1982.

TgX is primarily a macro processor; it contains several primitive operators
which allow for precise layout of the document right down to the pixel level,
whilst providing the ability to define macros to build up complex operation.
Although this does give the user an immense amount of control over their doc-
ument, this very detail makes it somewhat unwieldy to use generally.

It has spawned users groups [12], books [11] and a comprehensive archive
of support material [14], which includes documentation, sample code, and fully
functional packages intended for use by the public. The most popular of these
packages is IATEX.

1.4.2 BTEX

BTEX (and its current version, IWTEX 2¢ [13]) is probably the most widely used
macro package for TEX. It allows markup to describe the structure of a docu-
ment, rather than the presentation. In this way, authors can avoid ‘reinventing
the wheel’ for each document, and instead concentrate on the content of the
document. To take a modified example from the BTEX project [13], the user

can say:



\documentclass{article}

\title{Nonpareil, LaTeX, and the price of eggs}
\author{Jane Doe}

\date{September 1994}

\begin{document}

\maketitle

Hello world!

\end{document}

and then the existing predefined style for an article will be applied, with head-
ers for the author, title, and date applied to the places in the document where
they would be appropriate. The underlying macro packages take care of how this
text is translated into the end document without the explicit intervention of the
document, author. IATEX macro packages also tend to provide options for users
to customise the underlying style of a document, allowing the in-depth control
if required. In addition, since I TEX is built upon TgX, the basic TEX primitives
may still be used in a KTEX document if fine grained control is required.

Because of ITEX’s higher level overview of the document, a large number of
macro packages are themselves based on WTEX. For example, the syntax dia-
grams in appendix A were produced using the rail package (based on BTEX 2¢)
provided on CTAN [14].

1.4.3 Lout

Lout is a high level language for document formatting [15]. It was designed and
implemented by Dr Jeffrey Kingston of the University of Sydney.

Lout is based around four key concepts - objects, definitions, galleys, and
cross references. Objects are abstractions which may be combined and linked in
order to produce a Lout expression, which can then be rendered to the printed
page. Definitions are simply routines which may be used in the document to
add functionality to the core language. Galleys and cross references are part of
the typesetting part of Lout, and so they need not concern us here.

In Lout, most of the functionality is provided by additional packages of
definitions, rather than being built into the core language. This provides for
added flexibility, a well as less ‘special-casing’ in the language. This philosophy
has been followed in Nonpareil’s design.

1.4.4 WYSIWYG formatters

One common feature of all of the above languages is that the editing environment

is separate to the final document layout. The author must write his or her



document, and then run a separate program in order to see the result.

WSYIWYG (or “What You See Is What You Get”) formatting systems allow
this updating to happen dynamically, with the underlying formatting system
operating transparently to the user. Some WYSIWYG viewers simply provide
a rough overview of the resulting output, using the provided input to generate
another format.

For example, IyX is a GUI front end to IXTEX. Its GUI does not show
pagination, or columns, but does show basic styling such as bold, underline,
and so on, and allows the user to set these options via the graphical interface.
Heading styles are also shown, and it does keep an up to date table of contents.
TEX commands may be inserted directly into the document. These are passed
onto TEX when generating the final document, although they are obviously not
rendered in the LyX user interface. This allows a user to use the powerful
features of TEX when required without having to learn or use the TEX syntax
for simple documents.

Other WYSIWYG formatters (such as Microsoft Word) are not designed as a
programming language. Whilst some contain macro languages, these are usually
“tacked on”, rather than being an integral part of the design of the software.
Also, the macros are not generally usable directly for dynamically producing
document, output, but rather provide shortcuts for the initial generation of the
document’s content. This means that the majority of features must be built

into the software package, which is then not directly extensible or customisable.

1.5 Programming languages

Inspiration for Nonpareil’s programming language features came from several

sources.

1.5.1 CH+

C++ [4] was originally designed by Bjarne Stroustrup as an object oriented
version of C'. In its current iteration, C++ is an ANSI/ISO standard, with
many implementations [2]. Whilst C++ is a fundamentally different language to
Nonpareil, it nevertheless contains several concepts which have been considered
in the Nonpareil design.

Nonpareil contains support for generic parameters (see section 2.10). C++
provides much of the same functionality with templates. In C++, a class (or

feature) may have some of its values parameterised. Similarly to Nonpareil, this

I The original implementation was in fact called “C with classes”, and operated as a prepro-
cessor for a source program which was then transformed into C for compilation by a standard
C compiler.



provides type safety whilst still allowing flexibility. However, there are several
important differences in the implementation.

In C++, a copy of the templated object is created every time it is used (or,
in C++ terms, instantiated) with a value for these template parameters. This
is because rather than restricting generic parameters like Nonpareil does, when
a template is instantiated the compiler checks that all of the required attributes

are present. For example,

template<typename T>

int func(T p) {
return p.x;

3

func(myVal);

will compile if and only if myVal has a member variable called x which can be
converted to int.? In fact, if this function were part of a templated class, then
T would not necessarily have to contain a member variable called x at all! Only
if the function were used would this be required.

Because of this, each use of the template results in a a similar, but slightly
different, version in the resulting binary. The requirements on generic param-
eters must also form part of the documentation of the class, rather than being
explicitly listed in the source code.

Whilst this does allow the designer of a templated class some flexibility,
in that a strict inheritance hierarchy is not required, this can be seen as a
disadvantage, due to the lack of strict type checking and the corresponding
cryptic error messages.

As well, due to the separate output for each template function instantiation,
C++ does not permit member template functions to be overridden in a child
class; one would need a virtual table of infinite size to output locations for every
possible instantiation) Nonpareil does not have this restriction, because it only
outputs one version of the function.

For these reasons, Nonpareil’s implementation of generic parameters differs
significantly to that of C++.

1.5.2 Ocaml

Ocaml is “a fast modern type-inferring functional programming language de-
scended from the ML (Meta Language) family” [17]. It is probably the language
which has had the greatest influence on the development of Nonpareil.

2In this example, C++ will infer that T has the type of myVal. However, this inference
is not as involved as that in Nonpareil - if the function took two parameters of type T, the
inference would only work if both parameters had exactly the same dynamic type - C++ does
not traverse the inheritance chain (or look for conversion operators) to find a common parent.



Similarly to Nonpareil, Ocaml is an object oriented strongly typed program-
ming language. However, unlike Nonpareil, Ocaml allows for an imperative style
of programming, whilst Nonpareil is strictly a functional language.

Ocaml’s use of type inference has also affected Nonpareil development. Non-
pareil also infers types as part if its expressions (see section 3.4.1), using much
the same logic as Ocaml. Generic types are also a feature of Ocaml.

One major difference is that Ocaml does type resolution globally, over the
entire program. This often leads to unexpected results, and bugs which are
hard to track down. Nonpareil only does such resolution locally, giving the
programmer the opportunity to specify a less specific type in cases where this

would make sense.



Chapter 2

Nonpareil Language Features

This chapter introduces the Nonpareil language. As previously discussed,

The Nonpareil core language is deliberately simple. Rather than embedding
specific functionality into the language, it is anticipated that alternate packages
will provided, allowing for the specific needs of document formatting.!

This section provides only an overview of the Nonpareil functionality. A full

syntax diagram for Nonpareil’s grammar appears in appendix A.

2.1 Identifiers

Identifiers consist of a letter, followed by zero or more ASCII? letters, under-
scores, or integers.
Nonpareil identifiers are case sensitive - ident and IdEnT are two distinct

(and unrelated) identifiers.

2.2 Literals

Integer, String, and Boolean literals are automatically converted by the com-
piler into objects of the appropriate type (see section 2.14). This is the only
way to construct objects of those built-in types.

The automatic conversion means that the expression 1.add(2) is syntacti-
cally valid, because 1 is an instance of class Integer, and Integers contain an
add feature.

I For example, an equation package would allow mathematical equations to be represented,
a data structures package may provide more advanced data structures, and so on.

2Whilst C99 does support non-ASCIT characters, this support is not widespread enough to
rely on (gee does not support this feature, for example) Its also a pain to support portably in
the compiler itself.

10



2.3 Classes

Nonpareil programs consist of classes. A class is a set of zero or more variables
(2.6), and zero or more features (2.7). Classes may inherit (2.9) from zero or
more classes. They may also have generic parameters (2.10).

A class may be declared as builtin, in which case the compiler will not gen-
erate data for the variables during the code generation phase. This is used
for classes such as Integer, where the value of the class cannot be represented
in Nonpareil. A user specified class may not inherit from a builtin class, and
similarly a builtin class may not explicitly be constructed.

Classes are dynamically loaded from files by the compiler when required.
When encountering an unknown type, the compiler searches all of the declared
packages for a file with the same name as the class.?

The following is a simple example of a class.

class c is
var : Integer
features:
getVar := var

end

It has the name ¢, and contains a single wvariable, var, and a single feature,

getVar, which returns that variable as its result.*

2.4 Packages

A package is simply a group of classes. This allows classes to be grouped,
reducing the chances of naming conflicts between classes in different modules of
functionality.

Nonpareil comes with several classes, which are part of the _builtin pack-
age. These are described in section 2.14.

Other packages may be available for class lookup through the use of an
import statement at class scope. When loading a type, the compiler first tries
the path for the directory of the class requiring the type, then any import
statements from that class, and finally the _builtin package is tried.

For simplicity, examples in this paper omit the import directive when ex-

ample classes such as seq are used.

3 All Nonpareil classes must have the same name as their file they are contained in, minus
a ‘.n’ extension which must be present on the filename.

4This is just for demonstration purposes - any user of this class can of course access the
variable directly.

11



2.5 Expressions

Nonpareil includes support for several different types of expressions. At its
simplest level, it permits the use of literals for Boolean, Integer, and String
values. It also allows expressions to be bracketed, to allow the user to override
precedence. Expressions which result in a function being returned may be called
- see section 2.8.

These features operate in a similar manner to most programming languages.

However, Nonpareil also includes support for expressions which differ.

2.5.1 if expressions

Like other languages, Nonpareil provides support for conditional evaluation us-
ing if statements. This formulation, specified in appendix A has several differ-
ences from conventional languages.

Firstly, the conditions may themselves be expressions. Whilst this behaviour
is common to most functional languages, this allows nested conditional state-
ments in a manner not directly permitted by ‘regular’ languages such as C or
C++.% For example

if if <trueExpression> then false else true end then
1

elsif 2.gt(1) then
2

else
3

end

will produce the result 2, since the nested if expression ends up returning false
(and the number 2 is of course greater than the number 1).

In addition, the if operation allows the programmer to attempt to down-
cast a variable to a different type. This is useful if the programmer wants to
determine the real type of a variable, and base behaviour on this result. Whilst
the need for this may indicate a problem with the object hierarchy of classes in
the program, Nonpareil still permits the programmer to do this if they want.
Consider

if var is i : Integer then

i

5Tt is possible to approximate this behaviour through the use of the ?: ternary operator;
this is in fact how Nonpareil generates the code. Nevertheless, this requires large amounts of
bracketing, and tends to produce ugly code which is hard to follow.

12



else
0

end

If var is an instance of Integer, then within the expression, i has the type of
Integer, with the value var. (The “i :” portion of this is optional, for cases

where the program does not wish to use the variable, only check its type)

2.5.2 let expressions

Nonpareil also supports let expressions. This binds the result of an expression
to an identifier temporarily, for use within a nested expression. As well, the
values set in the binding expressions are accessible to subsequent binding ex-
pressions in the same let expression, which allows complex expressions to be

built up in a legible manner. As an example, given

let x := 1,
y 1= 2,
z := x.add(y)
in
x.add(z)
end

z is set to 1 + 2 = 3, and the compiler then adds x to z in the body of the

expression, returning the Integer value 4.

2.6 Variables

Classes may contain variables. A variable has a type, which is either given in
the declaration, or inferred from the expression (see 3.4.1).

The variable may be given an expression. If it is, then that serves as the
default value for the variable when the class is constructed. If an expression is
not given, then one must be given at construction time.

In the class example in section 2.3, since a value is not provided for var, it

must be included in a constructor for this class.

2.7 Features

A class may also have features. Features are functions (see section 2.8) which
can be called on a variable of the class’ type. That variable is then passed into
the feature as a hidden first parameter, with a name of self. They may include

generics (see section 2.10), and may require zero or more parameters.

13



A feature may have a return type declared, or it may be inferred from the
provided expression. If an expression is not provided, then the class is considered
to be abstract, and cannot be instantiated. Instead, another class may inherit
from the class, defining an implementation for the feature, and then that class
may be constructed.

Additionally, a feature may be declared as not having a Nonpareil imple-
mentation, but instead being implemented by the compiler. This is done by

using the keyword builtin in place of an expression, in the declaration.

2.8 Functions

Functions are first class objects in Nonpareil. A function is defined internally
as an instance of an object FUN[A,B], which takes an instance of class A and
converts it into an instance of class B through the application of the function.
To allow currying, functions which take more than one variable as a parameter
are defined as FUN[A,FUN[B,C]1% and so on.

Syntactically, the above may also be specified as A->B->C. This notation is
simply syntactic sugar for the alternate, more verbose form, and is translated
to the more precise form by the parser.

For example, in the feature:

feat(f : Integer->String, i : Integer) : String
:= £(1)

the feature feat takes a function £ which has type FUN[Integer, String] (in
other words, it maps an Integer to a String), and then applies that function

to the provided variable.

2.9 Inheritance

A class may declare itself as inheriting from zero or more other classes. If
it claims to inherit from no other classes, then it implicitly inherits from the
Object class.

There are several restrictions on inheritance:

e A class may not inherit (directly or indirectly) from itself. In other words,

inheritance loops are not permitted in Nonpareil.

e Any overridden functions must have exactly the same signature as the

original function.”

6This effectively defines a function taking two variables, one of type A and the other of
type B, returning a variable of type C.
7 Adding support for covariant return types may be a future enhancement; see section 6.1.

14



e Any feature must be unambiguously resolvable. That is, if a class has a
feature f accessible to it, then, from all the parents which also have that
feature, the implementation must eventually end up at a common base
class. This requirement is needed to ensure that the result of callig such

a method is well defined.

e Variables cannot be overridden; a variable declared in a class cannot be
declared in any of its parent classes. Allowing this to occur would pro-
vide ambiguity problems when the class was converted to the parent class
defining the original variable, where the variables have different types.
Whilst the child class could allow the parent variable to be ‘hidden’, this

is counter-intuitive and would lead to confusion.

e A class may not inherit from a builtin class. Since builtin classes will
contain elements not representable in Nonpareil, there would be no way
for the child class to construct its parent, thus the resulting class would

be unusable.

These requirements ensure that a class can be correctly used in any function
without ambiguity as to what function or variable to use when access is re-

quested.

2.10 Generics

A generic type is one which is not concretely specified on the signature for a
class or a feature. Instead, the type itself is a parameter to the class (or feature).

Generic parameters are permitted for both function parameters and return
types, as well as parameters to classes.

A generic parameter may be given constraints, in which case only classes
which are instances (or inherit from instances) of all of the constraints may
be used in place of that parameter. Within a class or feature, values (either
variables or parameters) of a generic type may only be used in cases where any
of the constraint types may be used

For example, an instance of generic type X may have the toString method
called on it, since that method is common to all Objects. However, it may not,
for example, have the toInt feature applied to it unless X is constrained to be
of type String (or another function which implements a toInt feature).

At compile time, a generic type may be being used in a situation where the

actual type can be inferred. For example:

class c[T] is

15



var : x[T]

end

In this example, an entity having a type of c[Integer] has a var variable with
a type x[Integer]. For more details, see section 3.4.1.
In addition, a generic type may be constrained to inherit from one of more

other classes. For example:

class x[T is Integer] is
var : X

features:
addl := var.add(1)

end

Since X must be an Integer, opreations from the Integer class may be applied
to the variable var. The BTree class (section D.1) uses this mechanism to ensure
that its keys are Comparable.

The use of a variable with a generic type is type checked at compile time to
ensure that it is restricted to those uses valid for the type(s) given to it in the
declaration. This differs from 4 [4], which instantiates an function with compile
time, and then performs its type checks with respect to the instantiated type of

the generic parameter.

2.11 Currying

Nonpareil supports function currying. This means that a function may be called
with fewer than the required variables.

For example:

class test is
features:
f(a : Integer, b : Integer) : Integer

f2(curried : Integer->Integer, val : Integer)

:= curried(val)
a := £(1,2)
= £(1)(2)
c := f2(func(1l), 2)
end

In this example, the expressions generated for a, b, and ¢ will all produce an

indistinguishable result.

16



2.12 Construction

In order for a program to be useful, it must be possible to construct a class, and
provide values for the variables in that class.

A variable (defined at the beginning of a class definition) may be given a
default value. However, a user of a class may wish to modify these default values.
As objects are immutable after creation, construction is the only opportunity
for this to take place.

For a class C, setting variable v to 1 and w to 2, the syntax is:
C(v :=1, w := 2)

The order of the variables within this statement is unimportant.
In order for construction to succeed, the construction statement must satisfy

several requirements:

e The class being constructed must have implementations for all defined

features;

e All the variables in the construction statement must exist in the class, and

the expression used to initialise them must be the correct type; and

e All variables not mentioned in the construction statement must have a

default expression in the class where they were declared.

2.13 Program execution

The Nonpareil compiler is given the name of the class on the command line.
It compiles that class and its dependancies, and then runs the main method in
that class. In order to be used as the initial class, the class must contain a main
method which takes no parameters, and it must additionally be a concrete class,

as defined in chapter 3.

2.14 Builtins

Nonpareil includes several builtin types which are part of the language’s core.®

Each of these types is present in the _builtin package. With the exception
of the FUN type described below, the compiler reads these definitions at run-
time. This provides added flexibility, and also avoids having to hard code the

knowledge of these library functions into the compiler’s core.

8The Nonpareil code for these classes is given in Appendix B.
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2.14.1 Function type

The function type FUN represents Nonpareil functions. It is a builtin type,
expressed internally in C (since it cannot be written directly in Nonpareil).

This class acts as described in section 2.8.

2.14.2 Object

The Object type is the base class for all Nonpareil classes. A class which does
not explicitly mention extending from any class is considered to implicitly extend
from Object.

This class has no variables, but does have several features:

nul[NULL_T] : NULL_T

This method is for the polymorphic null type, which is described in more detail

in section 3.5.

toString : String

This method returns a string representation of the object. The default (builtin)
implementation prints the static type of the class (by traversing the type_info
data; see section 4.7). However, classes may override this to provide a more

accurate stringification for the class.

equals(o : Object) : Boolean

This method determines if two objects are equal. The default implementation

computes whether two objects are the same.

isNull(o : Object) : Boolean

This method determines whether the Object o is null. For more details on the

need for this method, see section 3.5.

2.14.3 Comparable

This class is simply an interface for allowing comparisons. Since this implemen-
tation of Nonpareil does not support operators, a class which inherits from this
class can be used where comparisons are required. For example, the KEY for the
binary tree example given in appendix D.1 must be of a type implementing this
class, so that the keys may be compared.

This class consists of two features, with no default implementation for either

feature.
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lt(o : Object) : Boolean

Returns true if self is less than o.

gt(o : Object) : Boolean

Returns true if self is greater than o.

2.14.4 Integer

This class is used to represent integers. It inherits from the Comparable class,
and also overrides the equals and toString methods from the Object class.

As well, it contains an additional feature:

add(o : Integer) : Integer

Returns the result of adding self and o.

2.14.5 Boolean

This class is used to represent the boolean values true and false. There are

no extra features provided, but toString is overridden.

2.14.6 String

String constants are represented using this class. As well as overriding equals

and toString, this class provides one extra feature:

concat(o : String) : String

This feature concatenates self with o, returning the result.
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Chapter 3

Type system

This chapter explains the logic behind Nonpareil’s typing rules. Nonpareil is a
strongly typed language, and the typing rules are designed logically to produce
a flexible language which still restricts potentially questionable type conversion
operations.

The type checker ensures that all of the below type requirements are met by

all the components of a Nonpareil program.

3.1 Compatible types
Type B is able to be used in a situation where type A is required if and only if:

e A and B are the same type; or

e A is an ancestor class for B

The definition of ‘same type’ used in Nonpareil means that all generic pa-
rameters must be identical. For example, seq[Integer] is not convertible to
seq[0bject], even though Integer is convertible to Object.

This restriction on parameterised types applies to other languages such as
C++. The reasoning behind this is that whilst any program requiring an Object
would be happy with an Integer, the same logic does not follow for sequences of
these object. For example, appending an Object to a seq[0bject] by creating
a new seq[0bject] with an extra element has well defined results, but the
same does not apply to a seq[Integer], since that gives the opportunity for
someone to try to obtain an Integer from the sequence and only get an Object,

an action which does not make sense.!

Tt could be argued that, since the caller which converts the sequence in this manner will
then end up returning a seq[0Object], and the original object is immutable (thus causing no
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3.2 The self variable

All features are passed an implicit first parameter, with the identifier self. For
a feature defined on a class c, this variable has a type of c.2. This variable may
be used to access variables or features on that particular instance of the class,
or it may be passed as a parameter to another function.

It is worth noting that since self always refers to the current class, it is

impossible for self to ever be null.

3.3 Type resolution

Nonpareil allows the programmer to leave the type of a feature (or a type bound
within a let expression) unspecified. In this case, the compiler will attempt to
compute the type of the expression, and then use that type.

However, this is not possible in some cases, for example:

recursive := self.recursive()

The compiler cannot determine the type of the feature in this case. Whilst it
could assume a type of Object, this is likely to lead to unexpected and undesired
behaviour.

For this specific case, we could use a dummy generic type for the return

value, but that would not work all the time:

class recursive is

features:
a := self.b()
b := self.a()
end

For this example, a and b would need to be given the same generic parameter.
This would then have to be dynamically added as a generic parameter to the
class, which would mean that the return types of these features would be fixed
when the class is constructed®, which is unlikely to be what was intended.

For this reason, Nonpareil will not infer the type here, but instead require

the programmer to specify a type in such a situation.

problems to any other user of this original object) this operation is safe.

Whilst this may be something for a future language extension to consider, it must be noted
that this upcasting may require additional object manipulation by the compiler in the case of
multiple inheritance (see section 4.3), which may not be possible to do in a generic case.

2In the case of an inherited method, this may not be the same type as the method was
called on. Similarly to other parameters, self may be converted via the if operation to an
instance of the actual class.

3Tt would also require a generic type which is not declared on the class to be specified in
cases (such as inheritance), which is even more confusing.
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3.4 Generic parameters

Nonpareilpermits the use generic type parameters, for both classes and methods.

3.4.1 Type inference

In some cases, Nonpareil allows the programmer to leave the type of a vari-
able unspecified. The compiler then determines the type based on the given
expression.

For example, consider the feature:
test[U] (param : U) : U

Within an implementation for test, param may only be used as a variable of
type Object, since nothing further is known about U. However, a caller which
passes an Integer into test as the parameter can be assured that the return

value of the feature will also be an Integer. This means that
foo : Integer := self.test(1)

and
bar : String := self.test(‘‘A”)

are both correctly typed, whilst
baz : String := self.test(1)

does not.

More examples can be found in appendix C.1.

3.4.2 Currying

Given the parameterised representation for functions, the type checking for cur-
ried functions becomes trivial. A class which has had one parameter fixed simply
loses the “outer” FUN for the parameter, by applying a variable of the first FUN
generic parameter, and producing a value with the type of the second generic
parameter.

When currying occurs, any generic types used in the expression are imme-
diately filled in; type resolution is not deferred until all of the parameters have
been filled in.

For example:
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class test is:
features:
x[U] (a : U, b : U) : String

y := x(1) // y has return type Integer->String
wrong := y() (“5*%)
// invalid, since S’ is not
// an Integer
correct := y(2) // 2 is an Integer
alsoRight := x(1, “S”)
// U is inferred to be the
// common parent of Integer
// and String, and thus alsoRight
// has return type Object. See section
// 3.4.1 for more information

end

As another example, consider the following class, which tests the functionality

of the sequence class (Appendix D.2).

class seqtest is
s : seq[Integer]
features:
sum(a: Integer, b: Integer) : Integer := a.add(b)
total : s.reduce(self.sum(), 0)
altTotal : s.reduce(self.sum()) (0)

end

In this example, the feature sum is called on an instance of seqtest, takes
two Integer parameters, and returns a value of type Integer. It thus has
a type of FUN[seqtest, FUN[Integer, FUN[Integer, Integer]]]*. When
calling self.sum(), this binds the type of the class, leaving a variable of type
FUN[Integer, FUN[Integer, Integer]]].

The feature reduce (declared in the seq class) takes an initial parameter of
X->X->X, where X is the generic name for the type held in the sequence. Since s
is a sequence of Integers, this means that for this function call X is an Integer.
This thus means that the types of the variables are the same, so this expression
correctly type checks.

Had sum taken a different type as a parameter (or return value), then the

4This is perhaps clearer to follow when the feature’s type is written in the alternate form
seqtest->Integer->Integer->Integer.
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types would not have matched, and compilation of the class would have failed

at the type checking stage.

3.5 Polymorphic null

Nonpareil consists of a type which is polymorphic in that it can be converted to
a value of any other class.

This variable may be accessed via the null method on the Object class. The
definition of this method (null[NULL_T] : NULL_T := builtin) uses generic
parameters, which means that it may be used in place of any other class, due
to inference form the generic type, as discussed in section 5.3.3. This is done
without requiring the type checker to have special knowledge of this null type,
due to this type inference.

Note that it is impossible to call a method (or obtain a variable) using a null
value for the class, which implies that the self variable can never be equal to this
polymorphic value. The rationale for this is simple - even if the method being
called will not access the self variable directly (it may just return a constant,
for example), the compiler has no way of knowing this. Because of inheritance,
the complier must use the variable to obtain the correct method to be called,
and if the variable has no specified type, this access is impossible.?

This is the rationale behind the isNull method - for a given variable var,
one cannot call var.equals(null()), since if var is null (which is the point of

the exercise) then that statement would be erroneous.

3.6 Builtin types

Nonpareil has several builtin types, which are present as part of the _builtin
package. Their specifications is given in Appendix B and they are also discussed

in section 2.14.

5 Additionally, this error must be a runtime error, since a null value can be used as a
parameter without problems.

24



Chapter 4

Application Binary Interface

4.1 Overview

Nonpareil’s Application Binary Interface! has been designed to cope with the
requirements of the language. As Nonpareil objects have both variables and
methods, a need to accessing these at runtime is required. The dynamic typing
present in Nonpareil means that an ABI capable of handling inheritance in such
cases is needed. The resulting ABI is a subset of the existing C++ ABI for
Itanium [1], as used by G++ [2] in its latest release.

The scheme used by the nonpareil compiler is simpler than that ABI, due
to the simpler feature set. For example, virtual inheritance is not supported in
nonpareil, and an entire class must be described in a single file.

Other issues, such as alignment of data, is handled by the underlying C
compiler, and Nonpareil defers to its ABI for those issues.

4.2 Name mangling

For a class in package p, with class name c, containing a feature f, a unique way
of representing this feature is required.? The solution used is name mangling,
ie the various names are mangled into an identifier which will be unique for the
given triple.

For Nonpareil, the name consists of:

IThis term includes the calling conventions, class layout, handling of method overloading,
and so on.

2Since all function calls occur via the virtual table method described below, strictly speak-
ing the only requirement is that the names be unique - no calling code will ever use them
directly. Nevertheless, providing a consistent reversible mapping between the feature name
and the mangled name makes both implementation and cross referencing between the various
generated items easier.
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1. The prefix np_. This prefix avoids conflict with existing identifiers from
the standard C library.

2. The package name (if any), encoded as the length of the name, followed
by the name itself.

3. The class name for the class the feature is defined in, encoded as the length

of the name, followed by the name itself.

4. The feature name, encoded as the length of the name, followed by the

name itself.

Since Nonpareil does not support function overloading based on parameters,
this information severs to uniquely identify the feature.

Given this encoding, the above example is mangled as np_1plcif. Since
identifiers cannot begin with a number, this avoids ambiguities. This scheme is
similar in concept to that used in [1].

Some items, such as virtual tables and class structures, are also generated by
the compiler. The naming for those follows the above steps, except that there
is no feature component, and after the np_ prefix an additional component is
adding, representing the type of item being created. This additional component
is class for a class layout, vt for a virtual table, construct for a constructor,

and so on.

4.3 Class layout

Every instance of a class is a C struct which consists of a virtual table pointer
(see 4.4), as well as the data members for both itself and its parents. The
algorithm used to determine the values of C, (again based loosely on [1]) is

recursive:

1. For each base class B of C, apply this algorithm to B. For the multiple
inheritance case, select B in declaration order (ie left-to-right)

2. Place a virtual table pointer (see below) if C has no base class®.

3. For each class variable (in declaration order) place a pointer to that vari-
able.

Step 2 (in combination with the virtual table layout optimisation described
below) allows for only one virtual table pointer to be required for the single

inheritance case, which saves space.

3For Nonpareil, this implies that ¢ must be the Object class, since all classes implicitly
inherit from that.
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4.4 Virtual table

A wvirtual table is a lookup mechanism which allows for polymorphism at runtime.

The goal here is to provide a mechanism to ensure that:

e The correct (overloaded) method is called, regardless of the static type of

the class at the place of invocation;
e It is possible to find out the dynamic type of any given class; and

e A class can be passed to a function expecting any of its ancestors classes,
and that function can then use the class without needing to know its

dynamic type.

The first goal is achieved through the use of function pointers, where every
function callable from any class maps to a pointer, which ends up calling the
correct instance of the function, with the correct type of the self pointer.*
The second method involves each virtual table containing a pointer to a
structure describing the run time type of the class. As the virtual table depends
on the static type of the object, not the dynamic type, this ensures that the if

expression can determine the correct result.

Single inheritance

First we consider the single inheritance case, and then extend the solution to
handle multiple inheritance.
For the single inheritance case, the virtual table is simple. We place:

1. 0, the offset from this virtual table in the class layout to the virtual table
at the ‘top’ of the object’s class layout® (see 4.3). This field is required to
handle multiple inheritance, and is described in more detail below.

2. A pointer to the type_info structure, defined below.

3. Then, for each method defined, we start with the ancestor class, and for
each function which has not already been placed®, place a function pointer

pointing to the correct (ie most-derived) implementation.

For example, consider the nonpareil program”:

4From an implementation point of view, however, to support currying this function pointer
is wrapped in a wrapper object first. See section 5.4.3 for details.

5This differs from [1], where the vtable offset is at this[-1] and the offset is the distance
from the vtable to the first data member.

6This means that where a function in class B overrides a function declared in class A, the
function pointer is only placed for the A case, where it points to B’s implementation.

"These examples ignore the fact that the classes will be inheriting from Object. The theory
is the same, but the addition of this to these examples just makes them harder to follow.
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class A is
features:
f = ...

g = ...
end
class B inherit A is
features:

f = ...

h := ...

end
The virtual table for class A is then:
o 0
e Pointer to type_info for A
e Pointer to A: :f
e Pointer to A::g
whilst the virtual table for class B is:
o 0
e Pointer to type_info for B
e Pointer to B: : f
e Pointer to A::g

e Pointer to B: :h

Whilst detailed discussion of the calling convention is discussed in 4.5, it should
be immediately clear that a B object can be used whenever an A object is ex-
pected without any problems, since a user of the B-as-A object will ignore the
remaining fields present in the vtable.?

Multiple inheritance

The multiple inheritance case is slightly more complicated.
We need to ensure that we have a way of moving from any class to any other
class in the hierarchy, in a way that the data for the class can be successfully

used as required.

8This also explains the advantages of the class layout mechanism described in 4.3.
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Firstly, we choose the first base class listed, and lay it out as for the single
inheritance case.’?
Then, for each subsequent base class, that class is laid out following the

above instructions, except that:

e The offset field contains the number of bytes required to move from the
data for the object of this base class to that of the child class. This is used
to convert a value of type Base to one of type child;

e The type_info pointer points to the correct class; and

e Pointers to functions in the base class which are overridden by the child
class must instead go via an intermediate thunk function. This allows the
self pointer to be adjusted. This mechanism is discussed in more detail
in 4.5.

For example, in the following program:

class A is
a: Integer
features:
f = ...
g = ...
end

class B is

b: Integer
features:

h := ...

i= ...
end

class C inherit A+B is
c: Integer
features:
f = ...
h := ...

end

Using the rules given in 4.3, class C has a layout of:

9This is an optimisation, both in terms of the space required for each object (here and in
the data layout), and also in terms of runtime overhead, discussed earlier.
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‘ Offset ‘ Value

0 Virtual Table for A and C
4 a: Integer
8 c: Integer
12 Virtual Table for B-in-C
16 b: Integer

There are then two virtual tables, one for A/C:
e 0
e Pointer to type_info for C
o C:f
o Aig
e C:h
and one for B-in-C:
e 12-0=12
e Pointer to type_info for C
e B:h
e C:uthunk to C:i

Note that it is possible to combine these two virtual tables into one structure,
by inserting the offset and type_info pointer before the h call, and the having
the addition entries at the end. This has the advantage of saving space, but
when generating C code it is simpler to use two separate tables, rather than
having to refer to the secondary table as the first table plus an offset, cast to

the appropriate type.

4.5 Calling convention

Given the above layout, determining the correct implementation of a function

requires two steps:

1. Work out which function to call

2. Convert the self pointer to the correct type
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For step 1, any class which has an implementation of that function will do.
This is because the virtual table, as defined above, will ensure that the call is
forwarded to the correct function.

Step 2 is necessary so that the data fields are at the offset expected by
the end function. This simply involves adding the number in the offset field
of the virtual table, as described above. Due to the optimisation for the single
inheritance case (discussed above), no conversion will be required when multiple
inheritance is not present in the class’ hierarchy.

For the multiple inheritance case, this explains the earlier need for the for-
warding thunk. Since the destination function is expecting a value of type C,
the calling function’s B value must, be converted. However, this cannot be done
at the calling site, because this can only happen at runtime due to the poly-
morphism.

The internals of the thunk are simple - it only needs to subtract the required

value from the self pointer, and then call the final destination function.

4.6 Function parameters

Function parameters must also be converted to the expected type. For concrete
types, this is simply a matter of applying the conversions described earlier.
However, for generic types, there is an addition complication.

At the time of the call, the compiler knows the exact type of all generic
parameters being passed into the function. However, the function itself does
not - all it knows is a set of constraints for the generic type. At runtime, it
needs to know how to obtain the required generic types (and their parents).

The ABI chosen is for these parameters to be passed in with the caller
having converted them to the first constraint listed. The callee can then use the
type_info information described below to convert the parameter to any other
required type.

This scheme has the advantage that in most cases the potentially expensive
dynamic type resolution will not be required, since the majority of generic types
in programs will probably only have at most one constraint.

4.7 type_info structure

Nonpareil only requires type_info data for the purposes of the if operator
(where a type is specified). Since the virtual table layout allows access to the
real class’s type_info structure, regardless of the dynamic type of the variable,

the following structure can be used:
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1. A charx, pointing to the type’s name
2. An int, n, representing the number of parent classes

3. n pointers to the type_info structures for the parent classes.

The algorithm for if then simply needs to traverse this tree, looking for the

required class name.'°

4.8 Constructors

A constructor for a class is responsible for setting up all the variables. Each
possible variable is a parameter to the construction function, ordered in a depth
first, post order traversal of the class graph. Values passed in as the C NULL
type represent those values not specified in the construction statement. These
use the default values given in the class definition (the type checker ensures that
these exist).

The virtual table pointers in the class are also set up to point to the appro-
priate virtual table implementations, so that the method dispatch previously

discussed may occur.

10A possible enhancement would be to compare the address of the type_info struct with
that of the required class, rather than using the name.

32



Chapter 5

Implementation

This chapter describes the implementation of the Nonpareil compiler, following
the above rules, and generating to the previously discussed ABI. The compiler
is written in ANSI C [3], additionally using lex [9] and yacc [10].

This project is the first implementation of Nonpareil. It differs from previ-
ous designs [8] in several ways. As well as minor syntactical changes (for ex-
ample, using [] instead of <> for generic parameters), and provides additional
functionality (such as multiple inheritance, and overriding of class functions) is
supported.

It consists of several passes, described below. Each pass adds to various data

structures, but the passes themselves are generally independent.

5.1 Parser

The parser is written using yacc [10], with lex [9] for the lexer. The translation
from the grammar in appendix A to the yacc syntax is straightforward, with
one exception.

The syntax for method calls and constructors are identical when no param-
eters are being passed. For example, consider the expression £ ().

Is this a constructor for a class with the name f, with no variables, or is it a
method call for a feature (or variable of type FUN) which takes no arguments?

The parser does not have enough information to resolve this conflict. Instead,
this is tentatively identified as a method call, and then the symbol table pass
converts this to a constructor call if the ‘feature’ does not exist.

The parser builds up a tree structure, with each type of Nonpareil element
being represented with a separate struct. For example, struct CLASS contains
an element for the name of the class, a pointer to any types it inherits from, a

pointer to its features, and so on.
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Each item is created via a helper makeF00 routine, which takes as argu-
ments the various options, and returns a new struct FO0* with the elements

appropriately filled out. For example, the yacc rule for a variable is:

variable : name optional_type optional_expr
{ $$ = makeVAR($1, $2, $3); }

This allows for the class tree to be built in a ‘bottom-up’ fashion, which matches
the constructions used by yacc.
Items such as struct FEATURE which usually occur as part of a list also have

a next pointer, allowing for easy traversal of the data structure.

5.1.1 Pretty Printer

The Nonpareil compiler also includes a pretty printer. This was mainly useful
when debugging the parser. It is only run on the class specified on the command

line, not any of the dependent classes found during the processing of that file.

5.2 Symbol table

The compiler uses a symbol table in order to contain a record of the available

variables and types.

5.2.1 Data structure

After parsing, the compiler then builds up a symbol table. In the Nonpareil
compiler, the symbol table is a hash table, indexed by an identifier and a type
argument. The key for the hash table is internally a void *, with the exact
type being dependent on the type of the object being stored.

While the identifier is simply the name of the element being used, the type
argument may take several different values:

SYM CLASS The value is a class in the program. This value has type
struct CLASS*.

SYM_ FEATURE The value is a feature, with type struct FEATURE*.

SYM TYPE This value is a constant, indicating whether the given name for
the type is a class or a generic parameter. This is required to support

variables which may have a concrete type or a generic type.!

Hn retrospect, a new type (as a union for struct CLASS* and struct GENERIC* with an
additional tag field) would probably have been more appropriate.
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SYM VAR This value represents a variable, either on the class, or a param-

eter to the current feature.

SYM GENERIC This value represents a generic type.

Each symbol table may have a parent. The symbol tables are thus used in
order to enforce scope. The compiler uses a function called sym_get, which first
attempts to look up data in the current symbol table, then recursively traverses
the parent symbol table. For example, calling this function from within an
expression will a type argument of SYM_VAR will first look for the variable on
that expression, then any containing expressions, then as arguments to the
feature, as so on. This is useful for the let and if constructs in Nonpareil,
which may end up declaring a new variable which is valid for the scope of their

appropriate expressions.

5.2.2 Construction

The tree built up by the parser is recursively traversed using two passes. In
the first pass, inheritance is checked, and classes are scanned for variables and
features. Erroneous constructions such as reuse of variables and types are re-
jected at this stage. Any new types which are seen are then loaded by the parser
(following the package lookup rules given in section 2.4), in order to provide the
programmer with dynamic loading of required files. During this step, the paths
of all the packages are searched, attempting to find the requested file. If the file
cannot be found, an error is produced. Each of these new classes has this first
pass applied to it.

In the second pass, each expression is traversed, and the data structures
defined above are built. Identifiers are checked for validity, and references to
undefined entities generate errors which then stop the compilation at this stage.
This is largely a mechanical process. This stage also handles creating a self

variable for features, as previously discussed.

5.3 Type checker

5.3.1 Overview

The type checking pass is probably the most complex part of the compiler.
It needs to deal with all of the functionality described in chapter 3, including
inferred types, generic parameters and function currying, as well as the more
typical task of checking type correctness of the expressions.
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Similarly to the other passes, this pass recursively traverses the class’s tree.
It annotates appropriate items (such as features and expressions) with informa-
tion stored in a TYPE_RECORD structure, which describes the resulting type.

5.3.2 TYPE_RECORD data structure

Every type which the type checker discovers is stored in a struct TYPE_RECORD

data structure. This struct has a definition of:

typedef struct TYPE_RECORD {
int isGeneric;
char* id;
union {
struct CLASS* class;
struct {
struct GENERIC* generic;
struct TYPE_RECORD* resolved;
} gen;
} val;
struct TYPE_RECORD* generics;
struct TYPE_RECORD* next;
int numParent;
struct TYPE_RECORD* parent[1];
} TYPE_RECORD;

The first item, isGeneric is set to true if this type represents a generic type,
rather than a concrete type. This is used as a flag for the other parts of the
type checker, notifying them that they may need to behave differently. It also
serves as a toggle, identifying which part of the val union should be used.

The second item, id, is simply the name of the type.

For concrete types, the val union contains a pointer back to the class which
it is representing. This allows access back to the original class, for example in
determining whether or not the type is a concrete class.

For generic types, this union provides two members. The first, generic, is

2 The second provides

a simple pointer back to the generic type’s definition.
a pointer to another TYPE_RECORD structure, which is used in resolving types.
This use of this field is discussed in section 5.3.3.

A type may, of course, have generic parameters, which are themselves may

be generic. The generics member of the TYPE_RECORD structure is used to

2This data is not required by the current version of the type checker, although an earlier
version of it did use this information.
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access those parameters. These can then be resolved individually, if required.
The next member is used in order to chain the type data into a list. This is
mainly useful for classes with multiple generic parameters, where the generics
member then points to a list, with the end of the list signified by a NULL next
value.

In addition, type checking for the parents of a class is a requirement of
Nonpareil. The numParent variable indicates the number of parents for the
class, whilst the parent array points to those variables®. In the case of a generic
parameter, these variables instead refer to the constraints placed upon the class.
This representation allows the type comparison routines to act independently

of whether or not the record is referring to a generic type.

5.3.3 Generic type resolution

The type checker must resolve the types of generic parameters in accordance
with the rules described in section 3.4.1. To support this, as a type becomes
constrained, the TYPE_RECORD member resolved is made to point to the addi-
tional type. This creates a chain of types, which eventually reaches a concrete
type. Consider the following class:

class resolve[X] is
var : X

end

The type of var must be the same as the generic type X. The type checker takes
the TYPE used for X for var, and makes its TYPE_RECORD point to that of the
class’ X. Later on, when X is resolved to a specific type, a new type record is
added to the end of its chain, and anyone following the chain from var will also
end up at this resolved type.*

There are two cases in which this resolution can occur.

Generics given by a constructor

Constructors may include types which are used to fill in the generic types. The
compiler then uses those in order to infer the constructed classes type, and the

type of any variables or features which use that generic parameter. This is

3The array has a size of 1 because zero sized arrays are not legal ANSI C; they are a GCC
extension. C99 provides for flexible array types, which is exactly what is required here - an
array at the end of a structure which has indeterminate size. This feature is, however, fairly
recent, and so not supported by most compilers, although it is supported by gcc.

4 Actually, the chaining occurs from a TYPE_RECORD referenced from the TYPE struct. This is
an implementation detail which is only important as it interacts with the cloning described in
a subsequent section, ensuring that the same TYPE instance can be resolved to different values
in different contexts, without interference.
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trivially accomplished by filling in the types on the class, and then letting the
chaining described above take care of the var. This happens recursively - were
var to have the type BTree[X, XI, then the X in the BTree would be resolved
to the type of X. Similarly, if the type used for X was itself a generic parameter
used in the calling class, there would merely be an extra link in the chain to go

from X to the true final type.

Generics inferred from a parameter

As previously discussed, the type of a generic parameter may also be inferred
from a parameter to a function. In this case, however, there is an additional
complication.

For a function taking two parameters, each having the same generic type, we
want to resolve that parameter to the common parent of the two values passed

in, following the rules discussed earlier. In other words, given:

class common is
features:
f[T] (a : T, b : T) := ...

end

Given £(1,1), T is Integer, but for £(1,true), T is Object.?

This transformation takes place by, for every generic parameter, scanning all
subsequent parameters (including the required recursion into types containing
generic parameters, as discussed above) for types of the same name, and then
calling the helper function find_common_parent (discussed below) on each pair
in order to find the end type. After this has been accomplished, the type record
of the generic parameter is filled in with the final type.

5.3.4 Helper functions

The type checker contains several helper functions used during the traversal of
the class tree. In general, these helper functions simply follow rules previously

discussed, and thus their implementation is obvious.

makeTYPE_RECORDx*

TYPE_RECORDs need to be constructed in several contexts, and several construc-
tion routines are provided for those purposes. Each of makeTYPE_RECORD{type,
generic, class} recursively traverses the data of the appropriate value to

5Since all classes eventually inherit from Object, it is always possible to eventually find a
common parent.
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build up the TYPE_RECORD, including all the required parent links, and the en-
tries for nested generic parameters.

In addition, makeTYPE_RECORDclone and makeTYPE_RECORDcloneDeep re-
spectively produce a shallow and deep copy of a source TYPE_RECORD. This is
required in order to ensure that resolving one generic parameter does not pre-
clude it being resolved to another type in a separate circumstance. By cloning
the structure, the modified version can then be ‘chained’ without affecting other

users.

get_resolved

Due to the chaining discussed above, it is necessary to obtain the end result
of this mechanism. This routine simply traverses the list until it reaches the
end. Since the majority of the other routines are only interested in this final

resolution, they are frequent callers.

type_is_equal

This takes two TYPE_RECORDs, and determines if they are the same type, ac-
cording to the rules given in section 3.1.

type_is_assignable

This routine takes two parameters, dst and src, and determines, using the
rules given in section 3.1, whether a variable of type src may be assigned to a
variable of type dst.

find_common_parent

Using the previously discussed rules, this routine finds a common parent between
two types passed in as parameters. It is also used for finding a common type
for the branches of an if expression.

class_is_concrete

This method determines if a class is concrete, and thus may be used in a con-
struction statement to create an instance of that class.
type_check_constraints

This is used to determine if a type matches the constraints for a generic variable.
Before resolving a generic to a type, this method is called to ensure that it is

valid to do so.
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fill_generics

This routine takes two TYPE_RECORDs, dst and src, and resolves all the generic
parameters which are in src and also appear in dst. This is mainly used for

constructor calls, as discussed above.

resolve_generics

The type checker uses this routine primarily for method calls. Attempts are
made to resolve all the generics from one TYPE_RECORD to those in another. The
main difference between this routine and the above fill_generics method
is that whilst this method may potentially have partially resolved types on
either side, fi11_generics blindly fills in the data without checking for conflicts

between two partially resolved types.

getTypeName

When an error occurs, this routine is used to stringify the TYPE_RECORD into a
readable form. This method includes all the steps in the chaining; it represents a
type such as seq[X (as T (as Integer))] to mean a seq[X] which eventually
has a generic type of Integer. This hopefully allows the programmer to see

what generics were involved in the end error messages.’

5.4 Code generation

Code generation is obviously an important part of a compiler. The Nonpareil
compiler takes a single source class, and compiles it (and any classes it brings
in by reference, as discussed earlier) into a single C program, called a.in.c.
This file must be linked with the Nonpareil library, which contains the builtin
classes’ implementations, as well as the runtime functions defined in section 5.5.
A wrapper script, build. sh, is provided to compile the program with Nonpareil,
then with the C compiler, producing a resulting program.

C requires that the programmer have declared types and data before using
them. For this reason, the code generator traverse the list of classes three times

in order to produce the final program.

Declarations Firstly, forward declarations for all classes, class features, and
type of data in the vtable, using the rules described in chapter 4.

Data Layout Second, the data layout for non-builtin classes is given, and the

constructor is forward declared. By having this after the first pass, a

6Tt’s also really useful for calling from gdb when debugging!
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class may contain variables of any other class. This allows for circular

referencing within class variables.

Code Finally, the code for the classes are generated, as described in subsequent
sections. Having this pass last allows features to call constructors and ac-
cess class data from within any other class. This stage involves the actual
generation of the vtable, containing pointers to the previously declared
features. After this, any features which have associated expressions are

generated.

5.4.1 Features

All features take a single void** argument, and return a void*. This method
of parameter passing allows parameters to be built up at runtime, as required
for currying (described below).

Firstly, the ‘real’ parameters (including self) are removed from this array
and assigned to the appropriate variables. Then, any ‘extra’ variables are de-
clared.” These are used for temporaries, such as in if and let expressions.
Since, as described below, the compiler does not generate any blocks in the C
code, all of these must be declared at this point.

Finally, the code generator returns the result of evaluating the feature’s

expression.

5.4.2 Expressions

Like the previous passes, the code generator traverses the tree structure in order
to generate code for expressions. The code generated naturally depends on the

type of the expression.

Literals

String, Integer, and Boolean constants are translated into calls to the appropri-
ate builtin constructor, using their values as the argument. For example, a con-
stant string ““S”’ becomes the C code np_construct8_builtin6String(¢S’’),

using the mangling previously discussed in section 4.2.

If expressions

Unlike C, Nonpareil allows for nested if (and let) expressions. Because of this,
the code generator cannot use the if construct provided by C. Instead, we are
required to use the ternary 7: operator. This is used in a nested fashion - the
statement

"The list of extra variables is generated by the type checker as it traverses the tree.
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if if <A> then <A1> else <a2> then
<B>

else
<C>

end
is generated as
((<A> 7 <A1> : <A2>) 7 <B> : <C>)

The additional feature of the if statement, which allows for run time type
checking to occur, simply wraps the condition in a call to the run time np_cast
function defined later. It is also possible for a variable to be assigned to this

value; this is done by preallocating the variable as described above.

Let expressions

Let expressions are handled using the C comma operator.

Given the C statement (a, b, c),a C compiler first evaluates the expression
a, then the expression b, and then the expression c. Finally, the entire bracketed
expression evaluates to c. Using this, the Nonpareil code

let a := <x>, b := <y> in <expr> end
becomes
(a = <x>, b = <y>, <expr>)

Since the order of evaluation of this expression is well defined in C8, it is guar-
anteed that <expr> will be able to use a and b after they have been bound to
the correct values. In addition, this gives the evaluation of <y> access to the

value of a, as required by the Nonpareil specifications.

5.4.3 Calling Functions

In order to support currying, the implementation of the FUN type must allow
for parameters to be added in bits, rather than all at once.

At first glance, it may appear that each parameter of the FUN[T,U] could
have its own representation, with the destination function being called when
U is not a FUN. However, this method does not support the case of functions

returning another function. Consider:

8The comma operator is a C sequence point.

42



class funRet is

features:
f(a : Integer, b : Integer) : Integer
getCurried(i : Integer) : Integer->Integer := f(i)

a := £(1)(2)
b := getCurried(1) (2)
end

From the typechecker’s perspective, there is no difference between a and b. How-
ever, the code generator must ensure that a calls £, whilst b calls getCurried
and then calls the function returned by getCurried. For this reason, the im-
plementation of calls keeps track of how many parameters have been used, and
how many are left; when there are no parameters left, the C function is called.

Nonpareil functions are represented using the following C structure:

typedef void* (*np_call_t) (void** args);
struct np_class8_builtin3FUN {
struct np_vt8_builtin3FUN *_vt;
np_call_t call;
int numParam;
int curPos;
void* params[1];

};

When created, the size of the params array is made large enough to hold all the
parameters; ANSI C does not permit flexible array members.

This structure has a virtual table pointer so that it may be casted to and
from its parent Object class identically to how other classes work.

This structure is created using the np_buildCall runtime function, and is

called using the np_call routine. Both of these methods are described below.

5.4.4 Features

One additional issue regards calling a feature. The expression
a.bQ

must convert the feature b to the structure previously defined, but then pass a

in as the first parameter. In other words, this statement must be converted to

np_call(np_buildCall(a->_vt->b, 1), 1, a))?

9The numbers refer to the number of parameters; for more detail, see section 5.5.
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with a defined twice. Since this may be a complex expression, the compiler uses
a macro to do this generation, pasting tokens to generate a->_vt->b from a and
b.

5.5 Runtime library

Nonpareil programs require several support facilities at runtime.

5.5.1 Builtins

Features and classes previously declared as builtin are not emitted in the code
generation phase described above. Instead, the Nonpareil library provides def-
initions for these. These methods are obvious in design, but, as previously
discussed, they cannot be written in Nonpareil due to the need to access in-
ternal variables. The classes which are marked as builtin can be seen in the

specifications in appendix B.

5.5.2 Method calling routines

struct np_class8 builtin3FUN* np buildCall(np _call t call, int numParam)
This method is basically a constructor for FUN objects. It creates a new structure

for a feature which will eventually have numParam parameters applied to it.

void* np call(struct np class8 builtin3FUN* fun, int numVals, ...)

This varadic function applies numVals values to the parameter list. As discussed

earlier, this then calls the function if enough parameters end up being passed.

5.5.3 Dynamic casting

The np_cast routine takes an object, and the name of a type which we wish to
cast to. This method traverses the type_info structure as discussed in section
4.7, returning either an object (appropriately adjusted) or NULL if the object
was not of the provided type.

44



Chapter 6

Evaluation

Whilst the implemented Nonpareil compiler works as described, several possible
enhancements may be worth considering in a future version. In addition, there

are a few known issues with some minor implementation details of the compilers.

6.1 Future enhancements

Due to time constraints, not all possible features have been implemented. Some

additional possible enhancements include:

Enhanced error checking Nonpareil’s current error checking and diagnostics
are not very informative. Additional state would need to be passed to other

functions in order for additional context to be given.

Access restrictions It should be possible for a Nonpareil class to define fea-
tures and variables as public, private, or protected. This would allow

implementation details to be hidden from a class’ user.

Extend constructor mechanism Inference of generic types should be possi-
ble for constructors, too, using the variables passed into the constructor.
Whilst this is obviously not possible in all cases, it should be permitted

when the set of variables contains all of the class’ generic types.

Function caching Since Nonpareil types are immutable, calling a function
multiple times with the same parameters must produce two objects which
are the same. The results of these functions could be cached to return
the identical objects. This would provide for added speed when repeated
actions take places, such as undo/redo in a document. Care would have to
be taken not to run out of memory, possibly involving garbage collection

of some sort.
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6.2 Known issues

No program is perfect, and Nonpareil is not without its bugs. The majority of
these issues are minor, but are documented for the sake of completeness. They
do not indicate design flaws in the software, but rather issues which were not

discovered until it was too late for them to be sufficiently corrected.

Passing the null type as a parameter has incorrect interactions with

multiple inheritance

When converting a type which uses multiple inheritance, an offset must be
added or subtracted to convert the class to the layout expected by the recipient
of the variable (see section 4.3). If this is done to the null type, which does
not have any defined variables, the offset will cause the pointer to be pointing
to an invalid memory location, and it will thus not be detected as the null type
in the future. In this case, isNull will return the wrong results, and may even

crash.

Expression Nesting Limitations

The macro method discussed in section 5.4.3 has some limitation. Due to nest-
ing, it is possible that some of the arguments to the CALLON macro are themselves

function calls. For the expression

a.b().c()

b must be applied to a, whilst ¢ must be applied to a.b(), giving
CALLON(CALLON(a, b, 1, 0), ¢, 1, 0)

However, macro expansion in C is not recursive, so the inner macro is not
expanded by the preprocessor. Nonpareil thus appends a suffix to this macro,
using CALLON1, CALLON2, and so on.The library only defines a certain number of
these, however, and thus an error occurs when too many chained function calls
occur.

One solution would be to use the comma operator in a matter similar to the

code generated for let expressions, producing

(temp = (temp = a,
np_call(np_buildCall(temp->_vt->b, 1), 1, temp)
),

np_call(np_buildCall (temp->_vt->c, 1), 1, temp)

)
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However, this fails on expressions like a.b(c()), where temp would be used
twice in the same expression.
The full solution is to use multiple temp values, with an array of the appro-

priate size being created at the start of the feature.

Multiple inheritance has problems The compiler does not always carry
out the conversion always discussed (mainly when combining the return values
from if statements into a common parent, as discussed.

As well, thunks are not generated (or used), leading to possible incorrect

results when calling methods on an object with variables and virtual methods.
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Appendix A

Nonpareil grammar

class

class ) identifier

( ®

y )
features: f
imports

T‘(impor@—»{ identifier }—T
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formalGenerics
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N
type
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letExpr

@ identifier
©
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expr then

denitor ()

{elsif )

ifExpr
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Appendix B

Builtin classes

Nonpareil comes with several builtin classes, which are part of the _builtin
package.

B.1 FUNIT,U]

The FUN type is a builtin type. For more information, see section 2.8.

B.2 Object

class Object is

features:
null[NULL_T] : NULL_T := builtin
toString : String := builtin
equals(o : Object) : Boolean := builtin

end

B.3 Boolean

class builtin Boolean is
features:
toString : String := builtin

end

B.4 String

class builtin String is
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features:
concat(o: String) : String := builtin
equals(o: Object) : Boolean := builtin
toInt : Integer := builtin
toString := self

end

B.5 Comparable

class Comparable is
features:
1t(o : Object) : Boolean

end

B.6 Integer

class builtin Integer inherit Comparable is
features:
toString : String := builtin
add(o: Integer) : Integer := builtin
equals(o: Object) : Boolean := builtin
1t(o : Object) : Boolean := builtin

end
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Appendix C

Type checking functionality

One of the major parts of the Nonpareil language is its type system. The
following classes give some examples of what is and is not permitted. Most of
these classes contain intentional errors in order to demonstrate these rules; they
are not valid Nonpareil programs.

This is by no means an exhaustive sampling of Nonpareil’s type checking
functionality. Additional examples may be found (with discussion) in earlier

seconds of this paper.

C.1 Type inference

class f is
features:
x[Ul(a : U, b :U) : U
z(b : Boolean) : Integer := self.null()
y := self.x(1) // y has return type Integer->Integer

works := self.x(self.z(true), “X’°)
// has return type of “Object’, which
// is the common parent type of both parameters
// for U (in X)

end

C.2 Function types as parameters
This example uses the seq classes defined in appendix D.2.

class seqtest is
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s : seq[Integer]
features:
sum (a : Integer, b : Integer) : Integer
:= a.add(b)
getTotal : Integer := s.reduce(self.sum(), 0)

end
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Appendix D

Example classes

The following are some sample classes which the compiler successfully parses,

type checks, and compiles.

D.1 Binary Tree

class BTree[KEY is Comparable, VALUE] is
key : KEY
value : VALUE
left : BTree[KEY, VALUE]
right : BTree[KEY, VALUE]
features:
find(k: KEY) : VALUE :=
if k.equals(key) then
value
elsif k.1lt(key) then
if isNull(left) then
self.null()
else
left.find (k)
end
else
if isNull(right) then
self.null()
else
right.find (k)
end

end
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enter (k: KEY, v: VALUE)
BTree[KEY, VALUE] :=
if k.equals(key) then
BTree[KEY, VALUE] (key := k,
value := v,
left := left,

right := right
)
elsif k.1lt(key) then
if isNull(left) then
BTree[KEY, VALUE] (key := k,

value := v,
left := null(),
right := self

)

else

BTree[KEY, VALUE] (key := k,
value := v,
left := left.enter(k,v),
right := nullQ)
)
end
else

if isNull(right) then
BTree[KEY, VALUE] (key := k,

value := v,
left := self,
right := null()
)

else

BTree[KEY, VALUE] (key := k,

value := v,
left := null(),
right := right.enter(k,v)
)

end

end

end
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D.2 Sequence

The sequence class consists of an abstract parent class, seq[X], and then two
concrete child classes, eseq[X] and nseq[X], representing empty sequences and
non-empty sequences respectively. These classes are present in the seq package,

which must thus be imported in order to be used.

D.2.1 seq[X]

class seq[X] is
features:
isEmpty : Boolean
length : Integer
cons(val : X) : seq[X]
concat (other : seq[X]) : seq[X]
reduce (f: FUN[X,FUN[X,X]], id:X) : X

end

D.2.2 eseq[X]

class eseq[X] inherit seq[X] is
features:

isEmpty := true

length := 0
cons (val : X) : seqlX]
:= nseq[X](
elem := val,
tail := self
)

concat (other : seq[X]) : seqlX]
:= other
reduce(f: X->X->X, id: X) := id

end

D.2.3 nseq[X]

class nseq[X] inherit seq[X] is
elem : X
tail : seql[X]
features:
isEmpty:= false
length : Integer
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:= tail.length().add (1)
cons(val : X) : seq[X]
:= tail.cons(val)
concat (other: seq[X]) : seql[X]
:= nseq[X] (elem := elem,
tail := tail.concat(other)
)
reduce(f: X->X->X, id: X)
:= f(elem, tail.reduce(f,id))

end
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