
Nonpareil - A Strongly Typed Objet Oriented

Funtional Programming Language

Honours Thesis

Bradley Baetz, <bbaetz�s.usyd.edu.au>

November 2002

Abstrat

Nonpareil is a strongly typed, objet oriented funtional programming language.

It allows funtion overriding, Whilst it is intended to be a general purpose

language, its main target is in the area of doument formatting.

Contents

1 Introdution 4

1.1 Motivation . 4

1.2 Nonpareil language . 4

1.3 Nonpareil ompiler . 5

1.4 Other doument formatting systems 5

1.4.1 T

E

X . 5

1.4.2 L

A

T

E

X . 5

1.4.3 Lout . 6

1.4.4 WYSIWYG formatters 6

1.5 Programming languages . 7

1.5.1 C++ . 7

1.5.2 Oaml . 8

2 Nonpareil Language Features 10

2.1 Identi�ers . 10

2.2 Literals . 10

2.3 Classes . 11

2.4 Pakages . 11

2.5 Expressions . 12

2.5.1 if expressions . 12

2.5.2 let expressions . 13

2.6 Variables . 13

2.7 Features . 13

2.8 Funtions . 14

2.9 Inheritane . 14

2.10 Generis . 15

2.11 Currying . 16

2.12 Constrution . 17

2.13 Program exeution . 17

2.14 Builtins . 17

1

2.14.1 Funtion type . 18

2.14.2 Objet . 18

2.14.3 Comparable . 18

2.14.4 Integer . 19

2.14.5 Boolean . 19

2.14.6 String . 19

3 Type system 20

3.1 Compatible types . 20

3.2 The self variable . 21

3.3 Type resolution . 21

3.4 Generi parameters . 22

3.4.1 Type inferene . 22

3.4.2 Currying . 22

3.5 Polymorphi null . 24

3.6 Builtin types . 24

4 Appliation Binary Interfae 25

4.1 Overview . 25

4.2 Name mangling . 25

4.3 Class layout . 26

4.4 Virtual table . 27

4.5 Calling onvention . 30

4.6 Funtion parameters . 31

4.7 type_info struture . 31

4.8 Construtors . 32

5 Implementation 33

5.1 Parser . 33

5.1.1 Pretty Printer . 34

5.2 Symbol table . 34

5.2.1 Data struture . 34

5.2.2 Constrution . 35

5.3 Type heker . 35

5.3.1 Overview . 35

5.3.2 TYPE_RECORD data struture 36

5.3.3 Generi type resolution 37

5.3.4 Helper funtions . 38

5.4 Code generation . 40

5.4.1 Features . 41

5.4.2 Expressions . 41

2

5.4.3 Calling Funtions . 42

5.4.4 Features . 43

5.5 Runtime library . 44

5.5.1 Builtins . 44

5.5.2 Method alling routines 44

5.5.3 Dynami asting . 44

6 Evaluation 45

6.1 Future enhanements . 45

6.2 Known issues . 46

A Nonpareil grammar 50

B Builtin lasses 54

B.1 FUN[T,U℄ . 54

B.2 Objet . 54

B.3 Boolean . 54

B.4 String . 54

B.5 Comparable . 55

B.6 Integer . 55

C Type heking funtionality 56

C.1 Type inferene . 56

C.2 Funtion types as parameters . 56

D Example lasses 58

D.1 Binary Tree . 58

D.2 Sequene . 60

D.2.1 seq[X℄ . 60

D.2.2 eseq[X℄ . 60

D.2.3 nseq[X℄ . 60

3

Chapter 1

Introdution

1.1 Motivation

The goal of this projet is to produe a ompiler for Nonpareil, whih an then

be used as a ompiler for a doument formatting language.

Nonpareil is intended to be the language behind a dynamially updating

doument editor. The immutability of objets will allow for fast undo/redo

funtionality, whilst the pakage funtionality and dynami lass loading makes

the language easily extendable. It is intended for use by non programmers, who

will use the existing features to reate and edit omplex douments.

One of the major reasons why Nonpareil is a strongly typed language is that

it is intended for use by non programmers, it is better for errors to our at

ompile time, rather than mysteriously our at runtime when trying to modify

an existing doument, rashing the program in the middle.

1.2 Nonpareil language

Nonpareil is an objet-oriented funtional programming language. It is strongly

typed, and features multiple inheritane, generi lasses and funtions (alled

features in Nonpareil). It also allows overriding of features in hild lasses.

As a funtional programming language, Nonpareil allows for variables of

funtion types, and supports urrying. Classes are loaded on demand, when

referened in soure ode.

Nonpareil objets are stritly immutable; one reated an objet annot be

modi�ed.

4

1.3 Nonpareil ompiler

The Nonpareil ompiler is written in ANSI C, using lex and ya for parsing.

The ompiler takes Nonpareil ode, and generates orresponding C ode, whih

an then be ompiled by a C ompiler in order to generate a runnable program.

1.4 Other doument formatting systems

Doument formatting programs suh as T

E

X [11℄ and lout [15℄ are bath dou-

ment formatters. They involve a writer using the appropriate language features

in order to produe their doument. This soure doument is then ompiled

(sometimes with multiple runs of the program) into an output format suh as

DVI (a DeVie Independent �le format) or PostSript.

1.4.1 T

E

X

T

E

X (and L

A

T

E

X) are probably the most ommonly used doument formatting

languages.

T

E

X [11℄ was originally reated by Professor Donald Knuth in 1978 for the

preparation of his book series �The Art of Computer Programming� in order to

provide �beautiful� typesetting. The ode was then subsequently released freely

to the publi in 1982.

T

E

X is primarily a maro proessor; it ontains several primitive operators

whih allow for preise layout of the doument right down to the pixel level,

whilst providing the ability to de�ne maros to build up omplex operation.

Although this does give the user an immense amount of ontrol over their do-

ument, this very detail makes it somewhat unwieldy to use generally.

It has spawned users groups [12℄, books [11℄ and a omprehensive arhive

of support material [14℄, whih inludes doumentation, sample ode, and fully

funtional pakages intended for use by the publi. The most popular of these

pakages is L

A

T

E

X.

1.4.2 L

A

T

E

X

L

A

T

E

X (and its urrent version, L

A

T

E

X2

"

[13℄) is probably the most widely used

maro pakage for T

E

X. It allows markup to desribe the struture of a dou-

ment, rather than the presentation. In this way, authors an avoid `reinventing

the wheel' for eah doument, and instead onentrate on the ontent of the

doument. To take a modi�ed example from the L

A

T

E

X projet [13℄, the user

an say:

5

\doumentlass{artile}

\title{Nonpareil, LaTeX, and the prie of eggs}

\author{Jane Doe}

\date{September 1994}

\begin{doument}

\maketitle

Hello world!

\end{doument}

and then the existing prede�ned style for an artile will be applied, with head-

ers for the author, title, and date applied to the plaes in the doument where

they would be appropriate. The underlying maro pakages take are of how this

text is translated into the end doument without the expliit intervention of the

doument author. L

A

T

E

X maro pakages also tend to provide options for users

to ustomise the underlying style of a doument, allowing the in-depth ontrol

if required. In addition, sine L

A

T

E

X is built upon T

E

X, the basi T

E

X primitives

may still be used in a L

A

T

E

X doument if �ne grained ontrol is required.

Beause of L

A

T

E

X's higher level overview of the doument, a large number of

maro pakages are themselves based on L

A

T

E

X. For example, the syntax dia-

grams in appendix A were produed using the rail pakage (based on L

A

T

E

X2

"

)

provided on CTAN [14℄.

1.4.3 Lout

Lout is a high level language for doument formatting [15℄. It was designed and

implemented by Dr Je�rey Kingston of the University of Sydney.

Lout is based around four key onepts - objets, de�nitions, galleys, and

ross referenes. Objets are abstrations whih may be ombined and linked in

order to produe a Lout expression, whih an then be rendered to the printed

page. De�nitions are simply routines whih may be used in the doument to

add funtionality to the ore language. Galleys and ross referenes are part of

the typesetting part of Lout, and so they need not onern us here.

In Lout, most of the funtionality is provided by additional pakages of

de�nitions, rather than being built into the ore language. This provides for

added �exibility, a well as less `speial-asing' in the language. This philosophy

has been followed in Nonpareil's design.

1.4.4 WYSIWYG formatters

One ommon feature of all of the above languages is that the editing environment

is separate to the �nal doument layout. The author must write his or her

6

doument, and then run a separate program in order to see the result.

WSYIWYG (or �What You See Is What You Get�) formatting systems allow

this updating to happen dynamially, with the underlying formatting system

operating transparently to the user. Some WYSIWYG viewers simply provide

a rough overview of the resulting output, using the provided input to generate

another format.

For example, L

Y

X is a GUI front end to L

A

T

E

X. Its GUI does not show

pagination, or olumns, but does show basi styling suh as bold, underline,

and so on, and allows the user to set these options via the graphial interfae.

Heading styles are also shown, and it does keep an up to date table of ontents.

T

E

X ommands may be inserted diretly into the doument. These are passed

onto T

E

X when generating the �nal doument, although they are obviously not

rendered in the L

Y

X user interfae. This allows a user to use the powerful

features of T

E

X when required without having to learn or use the T

E

X syntax

for simple douments.

Other WYSIWYG formatters (suh as Mirosoft Word) are not designed as a

programming language. Whilst some ontain maro languages, these are usually

�taked on�, rather than being an integral part of the design of the software.

Also, the maros are not generally usable diretly for dynamially produing

doument output, but rather provide shortuts for the initial generation of the

doument's ontent. This means that the majority of features must be built

into the software pakage, whih is then not diretly extensible or ustomisable.

1.5 Programming languages

Inspiration for Nonpareil's programming language features ame from several

soures.

1.5.1 C++

C++ [4℄ was originally designed by Bjarne Stroustrup as an objet oriented

version of C

1

. In its urrent iteration, C++ is an ANSI/ISO standard, with

many implementations [2℄. Whilst C++ is a fundamentally di�erent language to

Nonpareil, it nevertheless ontains several onepts whih have been onsidered

in the Nonpareil design.

Nonpareil ontains support for generi parameters (see setion 2.10). C++

provides muh of the same funtionality with templates. In C++, a lass (or

feature) may have some of its values parameterised. Similarly to Nonpareil, this

1

The original implementation was in fat alled �C with lasses�, and operated as a prepro-

essor for a soure program whih was then transformed into C for ompilation by a standard

C ompiler.

7

provides type safety whilst still allowing �exibility. However, there are several

important di�erenes in the implementation.

In C++, a opy of the templated objet is reated every time it is used (or,

in C++ terms, instantiated) with a value for these template parameters. This

is beause rather than restriting generi parameters like Nonpareil does, when

a template is instantiated the ompiler heks that all of the required attributes

are present. For example,

template<typename T>

int fun(T p) {

return p.x;

}

fun(myVal);

will ompile if and only if myVal has a member variable alled x whih an be

onverted to int.

2

In fat, if this funtion were part of a templated lass, then

T would not neessarily have to ontain a member variable alled x at all! Only

if the funtion were used would this be required.

Beause of this, eah use of the template results in a a similar, but slightly

di�erent, version in the resulting binary. The requirements on generi param-

eters must also form part of the doumentation of the lass, rather than being

expliitly listed in the soure ode.

Whilst this does allow the designer of a templated lass some �exibility,

in that a strit inheritane hierarhy is not required, this an be seen as a

disadvantage, due to the lak of strit type heking and the orresponding

rypti error messages.

As well, due to the separate output for eah template funtion instantiation,

C++ does not permit member template funtions to be overridden in a hild

lass; one would need a virtual table of in�nite size to output loations for every

possible instantiation) Nonpareil does not have this restrition, beause it only

outputs one version of the funtion.

For these reasons, Nonpareil's implementation of generi parameters di�ers

signi�antly to that of C++.

1.5.2 Oaml

Oaml is �a fast modern type-inferring funtional programming language de-

sended from the ML (Meta Language) family� [17℄. It is probably the language

whih has had the greatest in�uene on the development of Nonpareil.

2

In this example, C++ will infer that T has the type of myVal. However, this inferene

is not as involved as that in Nonpareil - if the funtion took two parameters of type T, the

inferene would only work if both parameters had exatly the same dynami type - C++ does

not traverse the inheritane hain (or look for onversion operators) to �nd a ommon parent.

8

Similarly to Nonpareil, Oaml is an objet oriented strongly typed program-

ming language. However, unlike Nonpareil, Oaml allows for an imperative style

of programming, whilst Nonpareil is stritly a funtional language.

Oaml's use of type inferene has also a�eted Nonpareil development. Non-

pareil also infers types as part if its expressions (see setion 3.4.1), using muh

the same logi as Oaml. Generi types are also a feature of Oaml.

One major di�erene is that Oaml does type resolution globally, over the

entire program. This often leads to unexpeted results, and bugs whih are

hard to trak down. Nonpareil only does suh resolution loally, giving the

programmer the opportunity to speify a less spei� type in ases where this

would make sense.

9

Chapter 2

Nonpareil Language Features

This hapter introdues the Nonpareil language. As previously disussed,

The Nonpareil ore language is deliberately simple. Rather than embedding

spei� funtionality into the language, it is antiipated that alternate pakages

will provided, allowing for the spei� needs of doument formatting.

1

This setion provides only an overview of the Nonpareil funtionality. A full

syntax diagram for Nonpareil's grammar appears in appendix A.

2.1 Identi�ers

Identi�ers onsist of a letter, followed by zero or more ASCII

2

letters, under-

sores, or integers.

Nonpareil identi�ers are ase sensitive - ident and IdEnT are two distint

(and unrelated) identi�ers.

2.2 Literals

Integer, String, and Boolean literals are automatially onverted by the om-

piler into objets of the appropriate type (see setion 2.14). This is the only

way to onstrut objets of those built-in types.

The automati onversion means that the expression 1.add(2) is syntati-

ally valid, beause 1 is an instane of lass Integer, and Integers ontain an

add feature.

1

For example, an equation pakage would allow mathematial equations to be represented,

a data strutures pakage may provide more advaned data strutures, and so on.

2

Whilst C99 does support non-ASCII haraters, this support is not widespread enough to

rely on (g does not support this feature, for example) Its also a pain to support portably in

the ompiler itself.

10

2.3 Classes

Nonpareil programs onsist of lasses. A lass is a set of zero or more variables

(2.6), and zero or more features (2.7). Classes may inherit (2.9) from zero or

more lasses. They may also have generi parameters (2.10).

A lass may be delared as builtin, in whih ase the ompiler will not gen-

erate data for the variables during the ode generation phase. This is used

for lasses suh as Integer, where the value of the lass annot be represented

in Nonpareil. A user spei�ed lass may not inherit from a builtin lass, and

similarly a builtin lass may not expliitly be onstruted.

Classes are dynamially loaded from �les by the ompiler when required.

When enountering an unknown type, the ompiler searhes all of the delared

pakages for a �le with the same name as the lass.

3

The following is a simple example of a lass.

lass is

var : Integer

features:

getVar := var

end

It has the name , and ontains a single variable, var, and a single feature,

getVar, whih returns that variable as its result.

4

2.4 Pakages

A pakage is simply a group of lasses. This allows lasses to be grouped,

reduing the hanes of naming on�its between lasses in di�erent modules of

funtionality.

Nonpareil omes with several lasses, whih are part of the _builtin pak-

age. These are desribed in setion 2.14.

Other pakages may be available for lass lookup through the use of an

import statement at lass sope. When loading a type, the ompiler �rst tries

the path for the diretory of the lass requiring the type, then any import

statements from that lass, and �nally the _builtin pakage is tried.

For simpliity, examples in this paper omit the import diretive when ex-

ample lasses suh as seq are used.

3

All Nonpareil lasses must have the same name as their �le they are ontained in, minus

a `.n' extension whih must be present on the �lename.

4

This is just for demonstration purposes - any user of this lass an of ourse aess the

variable diretly.

11

2.5 Expressions

Nonpareil inludes support for several di�erent types of expressions. At its

simplest level, it permits the use of literals for Boolean, Integer, and String

values. It also allows expressions to be braketed, to allow the user to override

preedene. Expressions whih result in a funtion being returned may be alled

- see setion 2.8.

These features operate in a similar manner to most programming languages.

However, Nonpareil also inludes support for expressions whih di�er.

2.5.1 if expressions

Like other languages, Nonpareil provides support for onditional evaluation us-

ing if statements. This formulation, spei�ed in appendix A has several di�er-

enes from onventional languages.

Firstly, the onditions may themselves be expressions. Whilst this behaviour

is ommon to most funtional languages, this allows nested onditional state-

ments in a manner not diretly permitted by `regular' languages suh as C or

C++.

5

For example

if if <trueExpression> then false else true end then

1

elsif 2.gt(1) then

2

else

3

end

will produe the result 2, sine the nested if expression ends up returning false

(and the number 2 is of ourse greater than the number 1).

In addition, the if operation allows the programmer to attempt to down-

ast a variable to a di�erent type. This is useful if the programmer wants to

determine the real type of a variable, and base behaviour on this result. Whilst

the need for this may indiate a problem with the objet hierarhy of lasses in

the program, Nonpareil still permits the programmer to do this if they want.

Consider

if var is i : Integer then

i

5

It is possible to approximate this behaviour through the use of the ?: ternary operator;

this is in fat how Nonpareil generates the ode. Nevertheless, this requires large amounts of

braketing, and tends to produe ugly ode whih is hard to follow.

12

else

0

end

If var is an instane of Integer, then within the expression, i has the type of

Integer, with the value var. (The �i :� portion of this is optional, for ases

where the program does not wish to use the variable, only hek its type)

2.5.2 let expressions

Nonpareil also supports let expressions. This binds the result of an expression

to an identi�er temporarily, for use within a nested expression. As well, the

values set in the binding expressions are aessible to subsequent binding ex-

pressions in the same let expression, whih allows omplex expressions to be

built up in a legible manner. As an example, given

let x := 1,

y := 2,

z := x.add(y)

in

x.add(z)

end

z is set to 1 + 2 = 3, and the ompiler then adds x to z in the body of the

expression, returning the Integer value 4.

2.6 Variables

Classes may ontain variables. A variable has a type, whih is either given in

the delaration, or inferred from the expression (see 3.4.1).

The variable may be given an expression. If it is, then that serves as the

default value for the variable when the lass is onstruted. If an expression is

not given, then one must be given at onstrution time.

In the lass example in setion 2.3, sine a value is not provided for var, it

must be inluded in a onstrutor for this lass.

2.7 Features

A lass may also have features. Features are funtions (see setion 2.8) whih

an be alled on a variable of the lass' type. That variable is then passed into

the feature as a hidden �rst parameter, with a name of self. They may inlude

generis (see setion 2.10), and may require zero or more parameters.

13

A feature may have a return type delared, or it may be inferred from the

provided expression. If an expression is not provided, then the lass is onsidered

to be abstrat, and annot be instantiated. Instead, another lass may inherit

from the lass, de�ning an implementation for the feature, and then that lass

may be onstruted.

Additionally, a feature may be delared as not having a Nonpareil imple-

mentation, but instead being implemented by the ompiler. This is done by

using the keyword builtin in plae of an expression, in the delaration.

2.8 Funtions

Funtions are �rst lass objets in Nonpareil. A funtion is de�ned internally

as an instane of an objet FUN[A,B℄, whih takes an instane of lass A and

onverts it into an instane of lass B through the appliation of the funtion.

To allow urrying, funtions whih take more than one variable as a parameter

are de�ned as FUN[A,FUN[B,C℄℄

6

, and so on.

Syntatially, the above may also be spei�ed as A->B->C. This notation is

simply syntati sugar for the alternate, more verbose form, and is translated

to the more preise form by the parser.

For example, in the feature:

feat(f : Integer->String, i : Integer) : String

:= f(i)

the feature feat takes a funtion f whih has type FUN[Integer, String℄ (in

other words, it maps an Integer to a String), and then applies that funtion

to the provided variable.

2.9 Inheritane

A lass may delare itself as inheriting from zero or more other lasses. If

it laims to inherit from no other lasses, then it impliitly inherits from the

Objet lass.

There are several restritions on inheritane:

� A lass may not inherit (diretly or indiretly) from itself. In other words,

inheritane loops are not permitted in Nonpareil.

� Any overridden funtions must have exatly the same signature as the

original funtion.

7

6

This e�etively de�nes a funtion taking two variables, one of type A and the other of

type B, returning a variable of type C.

7

Adding support for ovariant return types may be a future enhanement; see setion 6.1.

14

� Any feature must be unambiguously resolvable. That is, if a lass has a

feature f aessible to it, then, from all the parents whih also have that

feature, the implementation must eventually end up at a ommon base

lass. This requirement is needed to ensure that the result of allig suh

a method is well de�ned.

� Variables annot be overridden; a variable delared in a lass annot be

delared in any of its parent lasses. Allowing this to our would pro-

vide ambiguity problems when the lass was onverted to the parent lass

de�ning the original variable, where the variables have di�erent types.

Whilst the hild lass ould allow the parent variable to be `hidden', this

is ounter-intuitive and would lead to onfusion.

� A lass may not inherit from a builtin lass. Sine builtin lasses will

ontain elements not representable in Nonpareil, there would be no way

for the hild lass to onstrut its parent, thus the resulting lass would

be unusable.

These requirements ensure that a lass an be orretly used in any funtion

without ambiguity as to what funtion or variable to use when aess is re-

quested.

2.10 Generis

A generi type is one whih is not onretely spei�ed on the signature for a

lass or a feature. Instead, the type itself is a parameter to the lass (or feature).

Generi parameters are permitted for both funtion parameters and return

types, as well as parameters to lasses.

A generi parameter may be given onstraints, in whih ase only lasses

whih are instanes (or inherit from instanes) of all of the onstraints may

be used in plae of that parameter. Within a lass or feature, values (either

variables or parameters) of a generi type may only be used in ases where any

of the onstraint types may be used

For example, an instane of generi type X may have the toString method

alled on it, sine that method is ommon to all Objets. However, it may not,

for example, have the toInt feature applied to it unless X is onstrained to be

of type String (or another funtion whih implements a toInt feature).

At ompile time, a generi type may be being used in a situation where the

atual type an be inferred. For example:

lass [T℄ is

15

var : x[T℄

end

In this example, an entity having a type of [Integer℄ has a var variable with

a type x[Integer℄. For more details, see setion 3.4.1.

In addition, a generi type may be onstrained to inherit from one of more

other lasses. For example:

lass x[T is Integer℄ is

var : X

features:

add1 := var.add(1)

end

Sine X must be an Integer, opreations from the Integer lass may be applied

to the variable var. The BTree lass (setion D.1) uses this mehanism to ensure

that its keys are Comparable.

The use of a variable with a generi type is type heked at ompile time to

ensure that it is restrited to those uses valid for the type(s) given to it in the

delaration. This di�ers from 4 [4℄, whih instantiates an funtion with ompile

time, and then performs its type heks with respet to the instantiated type of

the generi parameter.

2.11 Currying

Nonpareil supports funtion urrying. This means that a funtion may be alled

with fewer than the required variables.

For example:

lass test is

features:

f(a : Integer, b : Integer) : Integer

f2(urried : Integer->Integer, val : Integer)

:= urried(val)

a := f(1,2)

b := f(1)(2)

 := f2(fun(1), 2)

end

In this example, the expressions generated for a, b, and will all produe an

indistinguishable result.

16

2.12 Constrution

In order for a program to be useful, it must be possible to onstrut a lass, and

provide values for the variables in that lass.

A variable (de�ned at the beginning of a lass de�nition) may be given a

default value. However, a user of a lass may wish to modify these default values.

As objets are immutable after reation, onstrution is the only opportunity

for this to take plae.

For a lass C, setting variable v to 1 and w to 2, the syntax is:

C(v := 1, w := 2)

The order of the variables within this statement is unimportant.

In order for onstrution to sueed, the onstrution statement must satisfy

several requirements:

� The lass being onstruted must have implementations for all de�ned

features;

� All the variables in the onstrution statement must exist in the lass, and

the expression used to initialise them must be the orret type; and

� All variables not mentioned in the onstrution statement must have a

default expression in the lass where they were delared.

2.13 Program exeution

The Nonpareil ompiler is given the name of the lass on the ommand line.

It ompiles that lass and its dependanies, and then runs the main method in

that lass. In order to be used as the initial lass, the lass must ontain a main

method whih takes no parameters, and it must additionally be a onrete lass,

as de�ned in hapter 3.

2.14 Builtins

Nonpareil inludes several builtin types whih are part of the language's ore.

8

Eah of these types is present in the _builtin pakage. With the exeption

of the FUN type desribed below, the ompiler reads these de�nitions at run-

time. This provides added �exibility, and also avoids having to hard ode the

knowledge of these library funtions into the ompiler's ore.

8

The Nonpareil ode for these lasses is given in Appendix B.

17

2.14.1 Funtion type

The funtion type FUN represents Nonpareil funtions. It is a builtin type,

expressed internally in C (sine it annot be written diretly in Nonpareil).

This lass ats as desribed in setion 2.8.

2.14.2 Objet

The Objet type is the base lass for all Nonpareil lasses. A lass whih does

not expliitly mention extending from any lass is onsidered to impliitly extend

from Objet.

This lass has no variables, but does have several features:

null[NULL_T℄ : NULL_T

This method is for the polymorphi null type, whih is desribed in more detail

in setion 3.5.

toString : String

This method returns a string representation of the objet. The default (builtin)

implementation prints the stati type of the lass (by traversing the type_info

data; see setion 4.7). However, lasses may override this to provide a more

aurate stringi�ation for the lass.

equals(o : Objet) : Boolean

This method determines if two objets are equal. The default implementation

omputes whether two objets are the same.

isNull(o : Objet) : Boolean

This method determines whether the Objet o is null. For more details on the

need for this method, see setion 3.5.

2.14.3 Comparable

This lass is simply an interfae for allowing omparisons. Sine this implemen-

tation of Nonpareil does not support operators, a lass whih inherits from this

lass an be used where omparisons are required. For example, the KEY for the

binary tree example given in appendix D.1 must be of a type implementing this

lass, so that the keys may be ompared.

This lass onsists of two features, with no default implementation for either

feature.

18

lt(o : Objet) : Boolean

Returns true if self is less than o.

gt(o : Objet) : Boolean

Returns true if self is greater than o.

2.14.4 Integer

This lass is used to represent integers. It inherits from the Comparable lass,

and also overrides the equals and toString methods from the Objet lass.

As well, it ontains an additional feature:

add(o : Integer) : Integer

Returns the result of adding self and o.

2.14.5 Boolean

This lass is used to represent the boolean values true and false. There are

no extra features provided, but toString is overridden.

2.14.6 String

String onstants are represented using this lass. As well as overriding equals

and toString, this lass provides one extra feature:

onat(o : String) : String

This feature onatenates self with o, returning the result.

19

Chapter 3

Type system

This hapter explains the logi behind Nonpareil's typing rules. Nonpareil is a

strongly typed language, and the typing rules are designed logially to produe

a �exible language whih still restrits potentially questionable type onversion

operations.

The type heker ensures that all of the below type requirements are met by

all the omponents of a Nonpareil program.

3.1 Compatible types

Type B is able to be used in a situation where type A is required if and only if:

� A and B are the same type; or

� A is an anestor lass for B

The de�nition of `same type' used in Nonpareil means that all generi pa-

rameters must be idential. For example, seq[Integer℄ is not onvertible to

seq[Objet℄, even though Integer is onvertible to Objet.

This restrition on parameterised types applies to other languages suh as

C++. The reasoning behind this is that whilst any program requiring an Objet

would be happy with an Integer, the same logi does not follow for sequenes of

these objet. For example, appending an Objet to a seq[Objet℄ by reating

a new seq[Objet℄ with an extra element has well de�ned results, but the

same does not apply to a seq[Integer℄, sine that gives the opportunity for

someone to try to obtain an Integer from the sequene and only get an Objet,

an ation whih does not make sense.

1

1

It ould be argued that, sine the aller whih onverts the sequene in this manner will

then end up returning a seq[Objet℄, and the original objet is immutable (thus ausing no

20

3.2 The self variable

All features are passed an impliit �rst parameter, with the identi�er self. For

a feature de�ned on a lass , this variable has a type of .

2

. This variable may

be used to aess variables or features on that partiular instane of the lass,

or it may be passed as a parameter to another funtion.

It is worth noting that sine self always refers to the urrent lass, it is

impossible for self to ever be null.

3.3 Type resolution

Nonpareil allows the programmer to leave the type of a feature (or a type bound

within a let expression) unspei�ed. In this ase, the ompiler will attempt to

ompute the type of the expression, and then use that type.

However, this is not possible in some ases, for example:

reursive := self.reursive()

The ompiler annot determine the type of the feature in this ase. Whilst it

ould assume a type of Objet, this is likely to lead to unexpeted and undesired

behaviour.

For this spei� ase, we ould use a dummy generi type for the return

value, but that would not work all the time:

lass reursive is

features:

a := self.b()

b := self.a()

end

For this example, a and b would need to be given the same generi parameter.

This would then have to be dynamially added as a generi parameter to the

lass, whih would mean that the return types of these features would be �xed

when the lass is onstruted

3

, whih is unlikely to be what was intended.

For this reason, Nonpareil will not infer the type here, but instead require

the programmer to speify a type in suh a situation.

problems to any other user of this original objet) this operation is safe.

Whilst this may be something for a future language extension to onsider, it must be noted

that this upasting may require additional objet manipulation by the ompiler in the ase of

multiple inheritane (see setion 4.3), whih may not be possible to do in a generi ase.

2

In the ase of an inherited method, this may not be the same type as the method was

alled on. Similarly to other parameters, self may be onverted via the if operation to an

instane of the atual lass.

3

It would also require a generi type whih is not delared on the lass to be spei�ed in

ases (suh as inheritane), whih is even more onfusing.

21

3.4 Generi parameters

Nonpareilpermits the use generi type parameters, for both lasses and methods.

3.4.1 Type inferene

In some ases, Nonpareil allows the programmer to leave the type of a vari-

able unspei�ed. The ompiler then determines the type based on the given

expression.

For example, onsider the feature:

test[U℄ (param : U) : U

Within an implementation for test, param may only be used as a variable of

type Objet, sine nothing further is known about U. However, a aller whih

passes an Integer into test as the parameter an be assured that the return

value of the feature will also be an Integer. This means that

foo : Integer := self.test(1)

and

bar : String := self.test(�A�)

are both orretly typed, whilst

baz : String := self.test(1)

does not.

More examples an be found in appendix C.1.

3.4.2 Currying

Given the parameterised representation for funtions, the type heking for ur-

ried funtions beomes trivial. A lass whih has had one parameter �xed simply

loses the �outer� FUN for the parameter, by applying a variable of the �rst FUN

generi parameter, and produing a value with the type of the seond generi

parameter.

When urrying ours, any generi types used in the expression are imme-

diately �lled in; type resolution is not deferred until all of the parameters have

been �lled in.

For example:

22

lass test is:

features:

x[U℄ (a : U, b : U) : String

...

y := x(1) // y has return type Integer->String

wrong := y()(�S�)

// invalid, sine �S� is not

// an Integer

orret := y(2) // 2 is an Integer

alsoRight := x(1, �S�)

// U is inferred to be the

// ommon parent of Integer

// and String, and thus alsoRight

// has return type Objet. See setion

// 3.4.1 for more information

end

As another example, onsider the following lass, whih tests the funtionality

of the sequene lass (Appendix D.2).

lass seqtest is

s : seq[Integer℄

features:

sum(a: Integer, b: Integer) : Integer := a.add(b)

total : s.redue(self.sum(), 0)

altTotal : s.redue(self.sum())(0)

end

In this example, the feature sum is alled on an instane of seqtest, takes

two Integer parameters, and returns a value of type Integer. It thus has

a type of FUN[seqtest, FUN[Integer, FUN[Integer, Integer℄℄℄

4

. When

alling self.sum(), this binds the type of the lass, leaving a variable of type

FUN[Integer, FUN[Integer, Integer℄℄℄.

The feature redue (delared in the seq lass) takes an initial parameter of

X->X->X, where X is the generi name for the type held in the sequene. Sine s

is a sequene of Integers, this means that for this funtion all X is an Integer.

This thus means that the types of the variables are the same, so this expression

orretly type heks.

Had sum taken a di�erent type as a parameter (or return value), then the

4

This is perhaps learer to follow when the feature's type is written in the alternate form

seqtest->Integer->Integer->Integer.

23

types would not have mathed, and ompilation of the lass would have failed

at the type heking stage.

3.5 Polymorphi null

Nonpareil onsists of a type whih is polymorphi in that it an be onverted to

a value of any other lass.

This variable may be aessed via the nullmethod on the Objet lass. The

de�nition of this method (null[NULL_T℄ : NULL_T := builtin) uses generi

parameters, whih means that it may be used in plae of any other lass, due

to inferene form the generi type, as disussed in setion 5.3.3. This is done

without requiring the type heker to have speial knowledge of this null type,

due to this type inferene.

Note that it is impossible to all a method (or obtain a variable) using a null

value for the lass, whih implies that the self variable an never be equal to this

polymorphi value. The rationale for this is simple - even if the method being

alled will not aess the self variable diretly (it may just return a onstant,

for example), the ompiler has no way of knowing this. Beause of inheritane,

the omplier must use the variable to obtain the orret method to be alled,

and if the variable has no spei�ed type, this aess is impossible.

5

This is the rationale behind the isNull method - for a given variable var,

one annot all var.equals(null()), sine if var is null (whih is the point of

the exerise) then that statement would be erroneous.

3.6 Builtin types

Nonpareil has several builtin types, whih are present as part of the _builtin

pakage. Their spei�ations is given in Appendix B and they are also disussed

in setion 2.14.

5

Additionally, this error must be a runtime error, sine a null value an be used as a

parameter without problems.

24

Chapter 4

Appliation Binary Interfae

4.1 Overview

Nonpareil's Appliation Binary Interfae

1

has been designed to ope with the

requirements of the language. As Nonpareil objets have both variables and

methods, a need to aessing these at runtime is required. The dynami typing

present in Nonpareil means that an ABI apable of handling inheritane in suh

ases is needed. The resulting ABI is a subset of the existing C++ ABI for

Itanium [1℄, as used by G++ [2℄ in its latest release.

The sheme used by the nonpareil ompiler is simpler than that ABI, due

to the simpler feature set. For example, virtual inheritane is not supported in

nonpareil, and an entire lass must be desribed in a single �le.

Other issues, suh as alignment of data, is handled by the underlying C

ompiler, and Nonpareil defers to its ABI for those issues.

4.2 Name mangling

For a lass in pakage p, with lass name , ontaining a feature f, a unique way

of representing this feature is required.

2

The solution used is name mangling,

ie the various names are mangled into an identi�er whih will be unique for the

given triple.

For Nonpareil, the name onsists of:

1

This term inludes the alling onventions, lass layout, handling of method overloading,

and so on.

2

Sine all funtion alls our via the virtual table method desribed below, stritly speak-

ing the only requirement is that the names be unique - no alling ode will ever use them

diretly. Nevertheless, providing a onsistent reversible mapping between the feature name

and the mangled name makes both implementation and ross referening between the various

generated items easier.

25

1. The pre�x np_. This pre�x avoids on�it with existing identi�ers from

the standard C library.

2. The pakage name (if any), enoded as the length of the name, followed

by the name itself.

3. The lass name for the lass the feature is de�ned in, enoded as the length

of the name, followed by the name itself.

4. The feature name, enoded as the length of the name, followed by the

name itself.

Sine Nonpareil does not support funtion overloading based on parameters,

this information severs to uniquely identify the feature.

Given this enoding, the above example is mangled as np_1p11f. Sine

identi�ers annot begin with a number, this avoids ambiguities. This sheme is

similar in onept to that used in [1℄.

Some items, suh as virtual tables and lass strutures, are also generated by

the ompiler. The naming for those follows the above steps, exept that there

is no feature omponent, and after the np_ pre�x an additional omponent is

adding, representing the type of item being reated. This additional omponent

is lass for a lass layout, vt for a virtual table, onstrut for a onstrutor,

and so on.

4.3 Class layout

Every instane of a lass is a C strut whih onsists of a virtual table pointer

(see 4.4), as well as the data members for both itself and its parents. The

algorithm used to determine the values of C, (again based loosely on [1℄) is

reursive:

1. For eah base lass B of C, apply this algorithm to B. For the multiple

inheritane ase, selet B in delaration order (ie left-to-right)

2. Plae a virtual table pointer (see below) if C has no base lass

3

.

3. For eah lass variable (in delaration order) plae a pointer to that vari-

able.

Step 2 (in ombination with the virtual table layout optimisation desribed

below) allows for only one virtual table pointer to be required for the single

inheritane ase, whih saves spae.

3

For Nonpareil, this implies that C must be the Objet lass, sine all lasses impliitly

inherit from that.

26

4.4 Virtual table

A virtual table is a lookup mehanism whih allows for polymorphism at runtime.

The goal here is to provide a mehanism to ensure that:

� The orret (overloaded) method is alled, regardless of the stati type of

the lass at the plae of invoation;

� It is possible to �nd out the dynami type of any given lass; and

� A lass an be passed to a funtion expeting any of its anestors lasses,

and that funtion an then use the lass without needing to know its

dynami type.

The �rst goal is ahieved through the use of funtion pointers, where every

funtion allable from any lass maps to a pointer, whih ends up alling the

orret instane of the funtion, with the orret type of the self pointer.

4

The seond method involves eah virtual table ontaining a pointer to a

struture desribing the run time type of the lass. As the virtual table depends

on the stati type of the objet, not the dynami type, this ensures that the if

expression an determine the orret result.

Single inheritane

First we onsider the single inheritane ase, and then extend the solution to

handle multiple inheritane.

For the single inheritane ase, the virtual table is simple. We plae:

1. 0, the o�set from this virtual table in the lass layout to the virtual table

at the `top' of the objet's lass layout

5

(see 4.3). This �eld is required to

handle multiple inheritane, and is desribed in more detail below.

2. A pointer to the type_info struture, de�ned below.

3. Then, for eah method de�ned, we start with the anestor lass, and for

eah funtion whih has not already been plaed

6

, plae a funtion pointer

pointing to the orret (ie most-derived) implementation.

For example, onsider the nonpareil program

7

:

4

From an implementation point of view, however, to support urrying this funtion pointer

is wrapped in a wrapper objet �rst. See setion 5.4.3 for details.

5

This di�ers from [1℄, where the vtable o�set is at this[-1℄ and the o�set is the distane

from the vtable to the �rst data member.

6

This means that where a funtion in lass B overrides a funtion delared in lass A, the

funtion pointer is only plaed for the A ase, where it points to B's implementation.

7

These examples ignore the fat that the lasses will be inheriting from Objet. The theory

is the same, but the addition of this to these examples just makes them harder to follow.

27

lass A is

features:

f := ...

g := ...

end

lass B inherit A is

features:

f := ...

h := ...

end

The virtual table for lass A is then:

� 0

� Pointer to type_info for A

� Pointer to A::f

� Pointer to A::g

whilst the virtual table for lass B is:

� 0

� Pointer to type_info for B

� Pointer to B::f

� Pointer to A::g

� Pointer to B::h

Whilst detailed disussion of the alling onvention is disussed in 4.5, it should

be immediately lear that a B objet an be used whenever an A objet is ex-

peted without any problems, sine a user of the B-as-A objet will ignore the

remaining �elds present in the vtable.

8

Multiple inheritane

The multiple inheritane ase is slightly more ompliated.

We need to ensure that we have a way of moving from any lass to any other

lass in the hierarhy, in a way that the data for the lass an be suessfully

used as required.

8

This also explains the advantages of the lass layout mehanism desribed in 4.3.

28

Firstly, we hoose the �rst base lass listed, and lay it out as for the single

inheritane ase.

9

Then, for eah subsequent base lass, that lass is laid out following the

above instrutions, exept that:

� The offset �eld ontains the number of bytes required to move from the

data for the objet of this base lass to that of the hild lass. This is used

to onvert a value of type Base to one of type hild;

� The type_info pointer points to the orret lass; and

� Pointers to funtions in the base lass whih are overridden by the hild

lass must instead go via an intermediate thunk funtion. This allows the

self pointer to be adjusted. This mehanism is disussed in more detail

in 4.5.

For example, in the following program:

lass A is

a: Integer

features:

f := ...

g := ...

end

lass B is

b: Integer

features:

h := ...

i := ...

end

lass C inherit A+B is

: Integer

features:

f := ...

h := ...

end

Using the rules given in 4.3, lass C has a layout of:

9

This is an optimisation, both in terms of the spae required for eah objet (here and in

the data layout), and also in terms of runtime overhead, disussed earlier.

29

O�set Value

0 Virtual Table for A and C

4 a: Integer

8 : Integer

12 Virtual Table for B-in-C

16 b: Integer

There are then two virtual tables, one for A/C:

� 0

� Pointer to type_info for C

� C::f

� A::g

� C::h

and one for B-in-C:

� 12� 0 = 12

� Pointer to type_info for C

� B::h

� C::thunk_to_C::i

Note that it is possible to ombine these two virtual tables into one struture,

by inserting the o�set and type_info pointer before the h all, and the having

the addition entries at the end. This has the advantage of saving spae, but

when generating C ode it is simpler to use two separate tables, rather than

having to refer to the seondary table as the �rst table plus an o�set, ast to

the appropriate type.

4.5 Calling onvention

Given the above layout, determining the orret implementation of a funtion

requires two steps:

1. Work out whih funtion to all

2. Convert the self pointer to the orret type

30

For step 1, any lass whih has an implementation of that funtion will do.

This is beause the virtual table, as de�ned above, will ensure that the all is

forwarded to the orret funtion.

Step 2 is neessary so that the data �elds are at the o�set expeted by

the end funtion. This simply involves adding the number in the o�set �eld

of the virtual table, as desribed above. Due to the optimisation for the single

inheritane ase (disussed above), no onversion will be required when multiple

inheritane is not present in the lass' hierarhy.

For the multiple inheritane ase, this explains the earlier need for the for-

warding thunk. Sine the destination funtion is expeting a value of type C,

the alling funtion's B value must be onverted. However, this annot be done

at the alling site, beause this an only happen at runtime due to the poly-

morphism.

The internals of the thunk are simple - it only needs to subtrat the required

value from the self pointer, and then all the �nal destination funtion.

4.6 Funtion parameters

Funtion parameters must also be onverted to the expeted type. For onrete

types, this is simply a matter of applying the onversions desribed earlier.

However, for generi types, there is an addition ompliation.

At the time of the all, the ompiler knows the exat type of all generi

parameters being passed into the funtion. However, the funtion itself does

not - all it knows is a set of onstraints for the generi type. At runtime, it

needs to know how to obtain the required generi types (and their parents).

The ABI hosen is for these parameters to be passed in with the aller

having onverted them to the �rst onstraint listed. The allee an then use the

type_info information desribed below to onvert the parameter to any other

required type.

This sheme has the advantage that in most ases the potentially expensive

dynami type resolution will not be required, sine the majority of generi types

in programs will probably only have at most one onstraint.

4.7 type_info struture

Nonpareil only requires type_info data for the purposes of the if operator

(where a type is spei�ed). Sine the virtual table layout allows aess to the

real lass's type_info struture, regardless of the dynami type of the variable,

the following struture an be used:

31

1. A har*, pointing to the type's name

2. An int, n, representing the number of parent lasses

3. n pointers to the type_info strutures for the parent lasses.

The algorithm for if then simply needs to traverse this tree, looking for the

required lass name.

10

4.8 Construtors

A onstrutor for a lass is responsible for setting up all the variables. Eah

possible variable is a parameter to the onstrution funtion, ordered in a depth

�rst, post order traversal of the lass graph. Values passed in as the C NULL

type represent those values not spei�ed in the onstrution statement. These

use the default values given in the lass de�nition (the type heker ensures that

these exist).

The virtual table pointers in the lass are also set up to point to the appro-

priate virtual table implementations, so that the method dispath previously

disussed may our.

10

A possible enhanement would be to ompare the address of the type_info strut with

that of the required lass, rather than using the name.

32

Chapter 5

Implementation

This hapter desribes the implementation of the Nonpareil ompiler, following

the above rules, and generating to the previously disussed ABI. The ompiler

is written in ANSI C [3℄, additionally using lex [9℄ and ya [10℄.

This projet is the �rst implementation of Nonpareil. It di�ers from previ-

ous designs [8℄ in several ways. As well as minor syntatial hanges (for ex-

ample, using [℄ instead of <> for generi parameters), and provides additional

funtionality (suh as multiple inheritane, and overriding of lass funtions) is

supported.

It onsists of several passes, desribed below. Eah pass adds to various data

strutures, but the passes themselves are generally independent.

5.1 Parser

The parser is written using ya [10℄, with lex [9℄ for the lexer. The translation

from the grammar in appendix A to the ya syntax is straightforward, with

one exeption.

The syntax for method alls and onstrutors are idential when no param-

eters are being passed. For example, onsider the expression f().

Is this a onstrutor for a lass with the name f, with no variables, or is it a

method all for a feature (or variable of type FUN) whih takes no arguments?

The parser does not have enough information to resolve this on�it. Instead,

this is tentatively identi�ed as a method all, and then the symbol table pass

onverts this to a onstrutor all if the `feature' does not exist.

The parser builds up a tree struture, with eah type of Nonpareil element

being represented with a separate strut. For example, strut CLASS ontains

an element for the name of the lass, a pointer to any types it inherits from, a

pointer to its features, and so on.

33

Eah item is reated via a helper makeFOO routine, whih takes as argu-

ments the various options, and returns a new strut FOO* with the elements

appropriately �lled out. For example, the ya rule for a variable is:

variable : name optional_type optional_expr

{ $$ = makeVAR($1, $2, $3); }

;

This allows for the lass tree to be built in a `bottom-up' fashion, whih mathes

the onstrutions used by ya.

Items suh as strut FEATURE whih usually our as part of a list also have

a next pointer, allowing for easy traversal of the data struture.

5.1.1 Pretty Printer

The Nonpareil ompiler also inludes a pretty printer. This was mainly useful

when debugging the parser. It is only run on the lass spei�ed on the ommand

line, not any of the dependent lasses found during the proessing of that �le.

5.2 Symbol table

The ompiler uses a symbol table in order to ontain a reord of the available

variables and types.

5.2.1 Data struture

After parsing, the ompiler then builds up a symbol table. In the Nonpareil

ompiler, the symbol table is a hash table, indexed by an identi�er and a type

argument. The key for the hash table is internally a void *, with the exat

type being dependent on the type of the objet being stored.

While the identi�er is simply the name of the element being used, the type

argument may take several di�erent values:

SYM_CLASS The value is a lass in the program. This value has type

strut CLASS*.

SYM_FEATURE The value is a feature, with type strut FEATURE*.

SYM_TYPE This value is a onstant, indiating whether the given name for

the type is a lass or a generi parameter. This is required to support

variables whih may have a onrete type or a generi type.

1

1

In retrospet, a new type (as a union for strut CLASS* and strut GENERIC* with an

additional tag �eld) would probably have been more appropriate.

34

SYM_VAR This value represents a variable, either on the lass, or a param-

eter to the urrent feature.

SYM_GENERIC This value represents a generi type.

Eah symbol table may have a parent. The symbol tables are thus used in

order to enfore sope. The ompiler uses a funtion alled sym_get, whih �rst

attempts to look up data in the urrent symbol table, then reursively traverses

the parent symbol table. For example, alling this funtion from within an

expression will a type argument of SYM_VAR will �rst look for the variable on

that expression, then any ontaining expressions, then as arguments to the

feature, as so on. This is useful for the let and if onstruts in Nonpareil,

whih may end up delaring a new variable whih is valid for the sope of their

appropriate expressions.

5.2.2 Constrution

The tree built up by the parser is reursively traversed using two passes. In

the �rst pass, inheritane is heked, and lasses are sanned for variables and

features. Erroneous onstrutions suh as reuse of variables and types are re-

jeted at this stage. Any new types whih are seen are then loaded by the parser

(following the pakage lookup rules given in setion 2.4), in order to provide the

programmer with dynami loading of required �les. During this step, the paths

of all the pakages are searhed, attempting to �nd the requested �le. If the �le

annot be found, an error is produed. Eah of these new lasses has this �rst

pass applied to it.

In the seond pass, eah expression is traversed, and the data strutures

de�ned above are built. Identi�ers are heked for validity, and referenes to

unde�ned entities generate errors whih then stop the ompilation at this stage.

This is largely a mehanial proess. This stage also handles reating a self

variable for features, as previously disussed.

5.3 Type heker

5.3.1 Overview

The type heking pass is probably the most omplex part of the ompiler.

It needs to deal with all of the funtionality desribed in hapter 3, inluding

inferred types, generi parameters and funtion urrying, as well as the more

typial task of heking type orretness of the expressions.

35

Similarly to the other passes, this pass reursively traverses the lass's tree.

It annotates appropriate items (suh as features and expressions) with informa-

tion stored in a TYPE_RECORD struture, whih desribes the resulting type.

5.3.2 TYPE_RECORD data struture

Every type whih the type heker disovers is stored in a strut TYPE_RECORD

data struture. This strut has a de�nition of:

typedef strut TYPE_RECORD {

int isGeneri;

har* id;

union {

strut CLASS* lass;

strut {

strut GENERIC* generi;

strut TYPE_RECORD* resolved;

} gen;

} val;

strut TYPE_RECORD* generis;

strut TYPE_RECORD* next;

int numParent;

strut TYPE_RECORD* parent[1℄;

} TYPE_RECORD;

The �rst item, isGeneri is set to true if this type represents a generi type,

rather than a onrete type. This is used as a �ag for the other parts of the

type heker, notifying them that they may need to behave di�erently. It also

serves as a toggle, identifying whih part of the val union should be used.

The seond item, id, is simply the name of the type.

For onrete types, the val union ontains a pointer bak to the lass whih

it is representing. This allows aess bak to the original lass, for example in

determining whether or not the type is a onrete lass.

For generi types, this union provides two members. The �rst, generi, is

a simple pointer bak to the generi type's de�nition.

2

The seond provides

a pointer to another TYPE_RECORD struture, whih is used in resolving types.

This use of this �eld is disussed in setion 5.3.3.

A type may, of ourse, have generi parameters, whih are themselves may

be generi. The generis member of the TYPE_RECORD struture is used to

2

This data is not required by the urrent version of the type heker, although an earlier

version of it did use this information.

36

aess those parameters. These an then be resolved individually, if required.

The next member is used in order to hain the type data into a list. This is

mainly useful for lasses with multiple generi parameters, where the generis

member then points to a list, with the end of the list signi�ed by a NULL next

value.

In addition, type heking for the parents of a lass is a requirement of

Nonpareil. The numParent variable indiates the number of parents for the

lass, whilst the parent array points to those variables

3

. In the ase of a generi

parameter, these variables instead refer to the onstraints plaed upon the lass.

This representation allows the type omparison routines to at independently

of whether or not the reord is referring to a generi type.

5.3.3 Generi type resolution

The type heker must resolve the types of generi parameters in aordane

with the rules desribed in setion 3.4.1. To support this, as a type beomes

onstrained, the TYPE_RECORD member resolved is made to point to the addi-

tional type. This reates a hain of types, whih eventually reahes a onrete

type. Consider the following lass:

lass resolve[X℄ is

var : X

end

The type of var must be the same as the generi type X. The type heker takes

the TYPE used for X for var, and makes its TYPE_RECORD point to that of the

lass' X. Later on, when X is resolved to a spei� type, a new type reord is

added to the end of its hain, and anyone following the hain from var will also

end up at this resolved type.

4

There are two ases in whih this resolution an our.

Generis given by a onstrutor

Construtors may inlude types whih are used to �ll in the generi types. The

ompiler then uses those in order to infer the onstruted lasses type, and the

type of any variables or features whih use that generi parameter. This is

3

The array has a size of 1 beause zero sized arrays are not legal ANSI C; they are a GCC

extension. C99 provides for �exible array types, whih is exatly what is required here - an

array at the end of a struture whih has indeterminate size. This feature is, however, fairly

reent, and so not supported by most ompilers, although it is supported by g.

4

Atually, the haining ours from a TYPE_RECORD referened from the TYPE strut. This is

an implementation detail whih is only important as it interats with the loning desribed in

a subsequent setion, ensuring that the same TYPE instane an be resolved to di�erent values

in di�erent ontexts, without interferene.

37

trivially aomplished by �lling in the types on the lass, and then letting the

haining desribed above take are of the var. This happens reursively - were

var to have the type BTree[X, X℄, then the X in the BTree would be resolved

to the type of X. Similarly, if the type used for X was itself a generi parameter

used in the alling lass, there would merely be an extra link in the hain to go

from X to the true �nal type.

Generis inferred from a parameter

As previously disussed, the type of a generi parameter may also be inferred

from a parameter to a funtion. In this ase, however, there is an additional

ompliation.

For a funtion taking two parameters, eah having the same generi type, we

want to resolve that parameter to the ommon parent of the two values passed

in, following the rules disussed earlier. In other words, given:

lass ommon is

features:

f[T℄ (a : T, b : T) := ...

end

Given f(1,1), T is Integer, but for f(1,true), T is Objet.

5

This transformation takes plae by, for every generi parameter, sanning all

subsequent parameters (inluding the required reursion into types ontaining

generi parameters, as disussed above) for types of the same name, and then

alling the helper funtion find_ommon_parent (disussed below) on eah pair

in order to �nd the end type. After this has been aomplished, the type reord

of the generi parameter is �lled in with the �nal type.

5.3.4 Helper funtions

The type heker ontains several helper funtions used during the traversal of

the lass tree. In general, these helper funtions simply follow rules previously

disussed, and thus their implementation is obvious.

makeTYPE_RECORD*

TYPE_RECORDs need to be onstruted in several ontexts, and several onstru-

tion routines are provided for those purposes. Eah of makeTYPE_RECORD{type,

generi, lass} reursively traverses the data of the appropriate value to

5

Sine all lasses eventually inherit from Objet, it is always possible to eventually �nd a

ommon parent.

38

build up the TYPE_RECORD, inluding all the required parent links, and the en-

tries for nested generi parameters.

In addition, makeTYPE_RECORDlone and makeTYPE_RECORDloneDeep re-

spetively produe a shallow and deep opy of a soure TYPE_RECORD. This is

required in order to ensure that resolving one generi parameter does not pre-

lude it being resolved to another type in a separate irumstane. By loning

the struture, the modi�ed version an then be `hained' without a�eting other

users.

get_resolved

Due to the haining disussed above, it is neessary to obtain the end result

of this mehanism. This routine simply traverses the list until it reahes the

end. Sine the majority of the other routines are only interested in this �nal

resolution, they are frequent allers.

type_is_equal

This takes two TYPE_RECORDs, and determines if they are the same type, a-

ording to the rules given in setion 3.1.

type_is_assignable

This routine takes two parameters, dst and sr, and determines, using the

rules given in setion 3.1, whether a variable of type sr may be assigned to a

variable of type dst.

find_ommon_parent

Using the previously disussed rules, this routine �nds a ommon parent between

two types passed in as parameters. It is also used for �nding a ommon type

for the branhes of an if expression.

lass_is_onrete

This method determines if a lass is onrete, and thus may be used in a on-

strution statement to reate an instane of that lass.

type_hek_onstraints

This is used to determine if a type mathes the onstraints for a generi variable.

Before resolving a generi to a type, this method is alled to ensure that it is

valid to do so.

39

fill_generis

This routine takes two TYPE_RECORDs, dst and sr, and resolves all the generi

parameters whih are in sr and also appear in dst. This is mainly used for

onstrutor alls, as disussed above.

resolve_generis

The type heker uses this routine primarily for method alls. Attempts are

made to resolve all the generis from one TYPE_RECORD to those in another. The

main di�erene between this routine and the above fill_generis method

is that whilst this method may potentially have partially resolved types on

either side, fill_generis blindly �lls in the data without heking for on�its

between two partially resolved types.

getTypeName

When an error ours, this routine is used to stringify the TYPE_RECORD into a

readable form. This method inludes all the steps in the haining; it represents a

type suh as seq[X (as T (as Integer))℄ to mean a seq[X℄ whih eventually

has a generi type of Integer. This hopefully allows the programmer to see

what generis were involved in the end error messages.

6

5.4 Code generation

Code generation is obviously an important part of a ompiler. The Nonpareil

ompiler takes a single soure lass, and ompiles it (and any lasses it brings

in by referene, as disussed earlier) into a single C program, alled a.in..

This �le must be linked with the Nonpareil library, whih ontains the builtin

lasses' implementations, as well as the runtime funtions de�ned in setion 5.5.

A wrapper sript, build.sh, is provided to ompile the program with Nonpareil,

then with the C ompiler, produing a resulting program.

C requires that the programmer have delared types and data before using

them. For this reason, the ode generator traverse the list of lasses three times

in order to produe the �nal program.

Delarations Firstly, forward delarations for all lasses, lass features, and

type of data in the vtable, using the rules desribed in hapter 4.

Data Layout Seond, the data layout for non-builtin lasses is given, and the

onstrutor is forward delared. By having this after the �rst pass, a

6

It's also really useful for alling from gdb when debugging!

40

lass may ontain variables of any other lass. This allows for irular

referening within lass variables.

Code Finally, the ode for the lasses are generated, as desribed in subsequent

setions. Having this pass last allows features to all onstrutors and a-

ess lass data from within any other lass. This stage involves the atual

generation of the vtable, ontaining pointers to the previously delared

features. After this, any features whih have assoiated expressions are

generated.

5.4.1 Features

All features take a single void** argument, and return a void*. This method

of parameter passing allows parameters to be built up at runtime, as required

for urrying (desribed below).

Firstly, the `real' parameters (inluding self) are removed from this array

and assigned to the appropriate variables. Then, any `extra' variables are de-

lared.

7

These are used for temporaries, suh as in if and let expressions.

Sine, as desribed below, the ompiler does not generate any bloks in the C

ode, all of these must be delared at this point.

Finally, the ode generator returns the result of evaluating the feature's

expression.

5.4.2 Expressions

Like the previous passes, the ode generator traverses the tree struture in order

to generate ode for expressions. The ode generated naturally depends on the

type of the expression.

Literals

String, Integer, and Boolean onstants are translated into alls to the appropri-

ate builtin onstrutor, using their values as the argument. For example, a on-

stant string �S� beomes the C ode np_onstrut8_builtin6String(�S�),

using the mangling previously disussed in setion 4.2.

If expressions

Unlike C, Nonpareil allows for nested if (and let) expressions. Beause of this,

the ode generator annot use the if onstrut provided by C. Instead, we are

required to use the ternary ?: operator. This is used in a nested fashion - the

statement

7

The list of extra variables is generated by the type heker as it traverses the tree.

41

if if <A> then <A1> else <a2> then

else

<C>

end

is generated as

((<A> ? <A1> : <A2>) ? : <C>)

The additional feature of the if statement, whih allows for run time type

heking to our, simply wraps the ondition in a all to the run time np_ast

funtion de�ned later. It is also possible for a variable to be assigned to this

value; this is done by prealloating the variable as desribed above.

Let expressions

Let expressions are handled using the C omma operator.

Given the C statement (a, b,), a C ompiler �rst evaluates the expression

a, then the expression b, and then the expression . Finally, the entire braketed

expression evaluates to . Using this, the Nonpareil ode

let a := <x>, b := <y> in <expr> end

beomes

(a = <x>, b = <y>, <expr>)

Sine the order of evaluation of this expression is well de�ned in C

8

, it is guar-

anteed that <expr> will be able to use a and b after they have been bound to

the orret values. In addition, this gives the evaluation of <y> aess to the

value of a, as required by the Nonpareil spei�ations.

5.4.3 Calling Funtions

In order to support urrying, the implementation of the FUN type must allow

for parameters to be added in bits, rather than all at one.

At �rst glane, it may appear that eah parameter of the FUN[T,U℄ ould

have its own representation, with the destination funtion being alled when

U is not a FUN. However, this method does not support the ase of funtions

returning another funtion. Consider:

8

The omma operator is a C sequene point.

42

lass funRet is

features:

f(a : Integer, b : Integer) : Integer

getCurried(i : Integer) : Integer->Integer := f(i)

...

a := f(1)(2)

b := getCurried(1)(2)

end

From the typeheker's perspetive, there is no di�erene between a and b. How-

ever, the ode generator must ensure that a alls f, whilst b alls getCurried

and then alls the funtion returned by getCurried. For this reason, the im-

plementation of alls keeps trak of how many parameters have been used, and

how many are left; when there are no parameters left, the C funtion is alled.

Nonpareil funtions are represented using the following C struture:

typedef void* (*np_all_t)(void** args);

strut np_lass8_builtin3FUN {

strut np_vt8_builtin3FUN *_vt;

np_all_t all;

int numParam;

int urPos;

void* params[1℄;

};

When reated, the size of the params array is made large enough to hold all the

parameters; ANSI C does not permit �exible array members.

This struture has a virtual table pointer so that it may be asted to and

from its parent Objet lass identially to how other lasses work.

This struture is reated using the np_buildCall runtime funtion, and is

alled using the np_all routine. Both of these methods are desribed below.

5.4.4 Features

One additional issue regards alling a feature. The expression

a.b()

must onvert the feature b to the struture previously de�ned, but then pass a

in as the �rst parameter. In other words, this statement must be onverted to

np_all(np_buildCall(a->_vt->b, 1), 1, a))

9

9

The numbers refer to the number of parameters; for more detail, see setion 5.5.

43

with a de�ned twie. Sine this may be a omplex expression, the ompiler uses

a maro to do this generation, pasting tokens to generate a->_vt->b from a and

b.

5.5 Runtime library

Nonpareil programs require several support failities at runtime.

5.5.1 Builtins

Features and lasses previously delared as builtin are not emitted in the ode

generation phase desribed above. Instead, the Nonpareil library provides def-

initions for these. These methods are obvious in design, but, as previously

disussed, they annot be written in Nonpareil due to the need to aess in-

ternal variables. The lasses whih are marked as builtin an be seen in the

spei�ations in appendix B.

5.5.2 Method alling routines

strut np_lass8_builtin3FUN* np_buildCall(np_all_t all, int numParam)

This method is basially a onstrutor for FUN objets. It reates a new struture

for a feature whih will eventually have numParam parameters applied to it.

void* np_all(strut np_lass8_builtin3FUN* fun, int numVals, ...)

This varadi funtion applies numVals values to the parameter list. As disussed

earlier, this then alls the funtion if enough parameters end up being passed.

5.5.3 Dynami asting

The np_ast routine takes an objet, and the name of a type whih we wish to

ast to. This method traverses the type_info struture as disussed in setion

4.7, returning either an objet (appropriately adjusted) or NULL if the objet

was not of the provided type.

44

Chapter 6

Evaluation

Whilst the implemented Nonpareil ompiler works as desribed, several possible

enhanements may be worth onsidering in a future version. In addition, there

are a few known issues with some minor implementation details of the ompilers.

6.1 Future enhanements

Due to time onstraints, not all possible features have been implemented. Some

additional possible enhanements inlude:

Enhaned error heking Nonpareil's urrent error heking and diagnostis

are not very informative. Additional state would need to be passed to other

funtions in order for additional ontext to be given.

Aess restritions It should be possible for a Nonpareil lass to de�ne fea-

tures and variables as publi, private, or proteted. This would allow

implementation details to be hidden from a lass' user.

Extend onstrutor mehanism Inferene of generi types should be possi-

ble for onstrutors, too, using the variables passed into the onstrutor.

Whilst this is obviously not possible in all ases, it should be permitted

when the set of variables ontains all of the lass' generi types.

Funtion ahing Sine Nonpareil types are immutable, alling a funtion

multiple times with the same parameters must produe two objets whih

are the same. The results of these funtions ould be ahed to return

the idential objets. This would provide for added speed when repeated

ations take plaes, suh as undo/redo in a doument. Care would have to

be taken not to run out of memory, possibly involving garbage olletion

of some sort.

45

6.2 Known issues

No program is perfet, and Nonpareil is not without its bugs. The majority of

these issues are minor, but are doumented for the sake of ompleteness. They

do not indiate design �aws in the software, but rather issues whih were not

disovered until it was too late for them to be su�iently orreted.

Passing the null type as a parameter has inorret interations with

multiple inheritane

When onverting a type whih uses multiple inheritane, an o�set must be

added or subtrated to onvert the lass to the layout expeted by the reipient

of the variable (see setion 4.3). If this is done to the null type, whih does

not have any de�ned variables, the o�set will ause the pointer to be pointing

to an invalid memory loation, and it will thus not be deteted as the null type

in the future. In this ase, isNull will return the wrong results, and may even

rash.

Expression Nesting Limitations

The maro method disussed in setion 5.4.3 has some limitation. Due to nest-

ing, it is possible that some of the arguments to the CALLONmaro are themselves

funtion alls. For the expression

a.b().()

b must be applied to a, whilst must be applied to a.b(), giving

CALLON(CALLON(a, b, 1, 0), , 1, 0)

However, maro expansion in C is not reursive, so the inner maro is not

expanded by the preproessor. Nonpareil thus appends a su�x to this maro,

using CALLON1, CALLON2, and so on.The library only de�nes a ertain number of

these, however, and thus an error ours when too many hained funtion alls

our.

One solution would be to use the omma operator in a matter similar to the

ode generated for let expressions, produing

(temp = (temp = a,

np_all(np_buildCall(temp->_vt->b, 1), 1, temp)

),

np_all(np_buildCall(temp->_vt->, 1), 1, temp)

)

46

However, this fails on expressions like a.b(()), where temp would be used

twie in the same expression.

The full solution is to use multiple temp values, with an array of the appro-

priate size being reated at the start of the feature.

Multiple inheritane has problems The ompiler does not always arry

out the onversion always disussed (mainly when ombining the return values

from if statements into a ommon parent, as disussed.

As well, thunks are not generated (or used), leading to possible inorret

results when alling methods on an objet with variables and virtual methods.

47

Bibliography

[1℄ C++ ABI for Itanium (Draft), last viewed at 19 Ot 2002, http://www.

odesourery.om/xx-abi/abi.html

[2℄ The GNU Compiler Colletion, http://g.gnu.org/

[3℄ C programming language, ISO standard ISO/IEC 9899

[4℄ C++, ISO standard ISO/IEC 14882

[5℄ Stroustrup, Bjarne, �The C++ Programming Language�, Speial Edition,

Addison Wesley, 2000

[6℄ Bird, Rihard, and Wadler, Philip, �Introdution to Funtional Program-

ming�, Prentie Hall International Series in Computer Siene, 1988

[7℄ Thompson, Simon, �Haskell - The Craft of Funtional Programming�, Ad-

dison Wesley, 1996

[8℄ Wotton, Mark, �Nonpareil: a referentially pure objet oriented language for

typesetting�, November 2001

[9℄ lex (aka �ex), available from http://www.gnu.org/software/flex/

[10℄ ya (aka bison), available from http://www.gnu.org/software/bison/

bison.html

[11℄ Knuth, Donald E., �The T

E

Xbook�, Addison Wesley, 1984

[12℄ Tex Users Group, http://www.tug.org/

[13℄ The L

A

T

E

X projet, http://www.latex-projet.org/

[14℄ The Comprehensive T

E

X Arhive Network, http://www.tan.org/ (and

mirrors)

[15℄ Kingston, Je�rey H., The Design and Implementation of the Lout Doument

Formatting Language, January 1993

48

[16℄ Kingston, Je�rey H., A New Approah to Doument Formatting, Deember

1992

[17℄ The OCaml Language, http://www.oaml.org/

49

Appendix A

Nonpareil grammar

lass

�

Æ

-

imports

�

-

lass

�

Æ

�

�

Æ

-

builtin

�

Æ

�

�

-

identi�er

�

Æ

-

formalGeneris

�

�

�

Æ�

Æ

-

inherit

�

Æ

�

-

type

�

Æ

+

�

Æ

�

�

�

�

-

is

�

Æ

�

�

Æ

variable

�

�

�

�

Æ�

Æ

-

features:

�

Æ

�

�

Æ

feature

�

�

�

-

end

�

Æ

�

-

imports

-

import

�

Æ

�

-

identi�er

�

Æ

�

-

50

formalGeneris

-

[

�

Æ

�

-

identi�er

�

Æ

-

is

�

Æ

�

-

type

�

Æ

+

�

Æ

�

�

�

�

�

Æ

,

�

Æ

�

�

�

-

℄

�

Æ

�

-

type

-

identi�er

�

Æ

-

atualGeneris

�

�

Æ

-

->

�

Æ

�

-

type

�

-

atualGeneris

-

[

�

Æ

�

�

Æ

-

type

�

Æ

,

�

Æ

�

�

�

�

-

℄

�

Æ

�

-

variable

-

name

�

Æ

-

:

�

Æ

�

-

type

�

�

Æ

-

:=

�

Æ

�

-

expr

�

-

feature

-

name

�

Æ

-

formalGeneris

�

�

Æ

-

parameters

�

�

Æ

-

:

�

Æ

�

-

type

�

�

�

Æ�

Æ

-

:=

�

Æ

�

-

expr

�

Æ

-

builtin

�

Æ

�

�

�

-

name

-

identi�er

-

51

parameters

-

(

�

Æ

�

�

Æ

-

identi�er

-

:

�

Æ

�

-

type

�

Æ

,

�

Æ

�

�

�

�

-

)

�

Æ

�

-

expr

-

fator

�

Æ

-

.

�

Æ

�

-

identi�er

Æ

-

(

�

Æ

�

�

Æ

-

expr

�

Æ

,

�

Æ

�

�

�

�

-

)

�

Æ

�

Æ�

Æ

-

atualGeneris

�

�

�

Æ

-

(

�

Æ

�

�

Æ

-

identi�er

-

:=

�

Æ

�

-

expr

�

Æ

,

�

Æ

�

�

�

�

-

)

�

Æ

�

�

�

Æ

�

-

fator

-

identi�er

�

Æ

-

literal

Æ

-

(

�

Æ

�

-

expr

-

)

�

Æ

�

Æ

-

letExpr

Æ

-

ifExpr

�

-

52

letExpr

-

let

�

Æ

�

-

identi�er

�

Æ

-

:

�

Æ

�

-

type

�

-

:=

�

Æ

�

-

expr

�

Æ

,

�

Æ

�

�

�

-

in

�

Æ

�

-

expr

-

end

�

Æ

�

-

ifExpr

-

if

�

Æ

�

-

expr

�

Æ

-

is

�

Æ

�

�

Æ

-

identi�er

-

:

�

Æ

�

�

-

type

�

-

then

�

Æ

�

-

expr

�

Æ

elsif

�

Æ

�

�

�

�

�

Æ

-

else

�

Æ

�

-

expr

-

end

�

Æ

�

-

53

Appendix B

Builtin lasses

Nonpareil omes with several builtin lasses, whih are part of the _builtin

pakage.

B.1 FUN[T,U℄

The FUN type is a builtin type. For more information, see setion 2.8.

B.2 Objet

lass Objet is

features:

null[NULL_T℄ : NULL_T := builtin

toString : String := builtin

equals(o : Objet) : Boolean := builtin

end

B.3 Boolean

lass builtin Boolean is

features:

toString : String := builtin

end

B.4 String

lass builtin String is

54

features:

onat(o: String) : String := builtin

equals(o: Objet) : Boolean := builtin

toInt : Integer := builtin

toString := self

end

B.5 Comparable

lass Comparable is

features:

lt(o : Objet) : Boolean

end

B.6 Integer

lass builtin Integer inherit Comparable is

features:

toString : String := builtin

add(o: Integer) : Integer := builtin

equals(o: Objet) : Boolean := builtin

lt(o : Objet) : Boolean := builtin

end

55

Appendix C

Type heking funtionality

One of the major parts of the Nonpareil language is its type system. The

following lasses give some examples of what is and is not permitted. Most of

these lasses ontain intentional errors in order to demonstrate these rules; they

are not valid Nonpareil programs.

This is by no means an exhaustive sampling of Nonpareil's type heking

funtionality. Additional examples may be found (with disussion) in earlier

seonds of this paper.

C.1 Type inferene

lass f is

features:

x[U℄(a : U, b : U) : U

z(b : Boolean) : Integer := self.null()

y := self.x(1) // y has return type Integer->Integer

works := self.x(self.z(true), �X�)

// has return type of �Objet�, whih

// is the ommon parent type of both parameters

// for U (in X)

end

C.2 Funtion types as parameters

This example uses the seq lasses de�ned in appendix D.2.

lass seqtest is

56

s : seq[Integer℄

features:

sum (a : Integer, b : Integer) : Integer

:= a.add(b)

getTotal : Integer := s.redue(self.sum(), 0)

end

57

Appendix D

Example lasses

The following are some sample lasses whih the ompiler suessfully parses,

type heks, and ompiles.

D.1 Binary Tree

lass BTree[KEY is Comparable, VALUE℄ is

key : KEY

value : VALUE

left : BTree[KEY, VALUE℄

right : BTree[KEY, VALUE℄

features:

find(k: KEY) : VALUE :=

if k.equals(key) then

value

elsif k.lt(key) then

if isNull(left) then

self.null()

else

left.find(k)

end

else

if isNull(right) then

self.null()

else

right.find(k)

end

end

58

enter(k: KEY, v: VALUE) :

BTree[KEY, VALUE℄ :=

if k.equals(key) then

BTree[KEY, VALUE℄(key := k,

value := v,

left := left,

right := right

)

elsif k.lt(key) then

if isNull(left) then

BTree[KEY, VALUE℄(key := k,

value := v,

left := null(),

right := self

)

else

BTree[KEY, VALUE℄(key := k,

value := v,

left := left.enter(k,v),

right := null()

)

end

else

if isNull(right) then

BTree[KEY, VALUE℄(key := k,

value := v,

left := self,

right := null()

)

else

BTree[KEY, VALUE℄(key := k,

value := v,

left := null(),

right := right.enter(k,v)

)

end

end

end

59

D.2 Sequene

The sequene lass onsists of an abstrat parent lass, seq[X℄, and then two

onrete hild lasses, eseq[X℄ and nseq[X℄, representing empty sequenes and

non-empty sequenes respetively. These lasses are present in the seq pakage,

whih must thus be imported in order to be used.

D.2.1 seq[X℄

lass seq[X℄ is

features:

isEmpty : Boolean

length : Integer

ons(val : X) : seq[X℄

onat(other : seq[X℄) : seq[X℄

redue (f: FUN[X,FUN[X,X℄℄, id:X) : X

end

D.2.2 eseq[X℄

lass eseq[X℄ inherit seq[X℄ is

features:

isEmpty := true

length := 0

ons (val : X) : seq[X℄

:= nseq[X℄(

elem := val,

tail := self

)

onat (other : seq[X℄) : seq[X℄

:= other

redue(f: X->X->X, id: X) := id

end

D.2.3 nseq[X℄

lass nseq[X℄ inherit seq[X℄ is

elem : X

tail : seq[X℄

features:

isEmpty:= false

length : Integer

60

:= tail.length().add(1)

ons(val : X) : seq[X℄

:= tail.ons(val)

onat(other: seq[X℄) : seq[X℄

:= nseq[X℄(elem := elem,

tail := tail.onat(other)

)

redue(f: X->X->X, id: X)

:= f(elem, tail.redue(f,id))

end

61

