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Abstract

Document formattingsystemshave reached a plateau. Although existing systems
are being steadily enhanced, the next major step forward will require a union
of the best features of batch formatters, interactive document editors, and page
description languages. Thispaper drawson itsauthor’s twelveyearsof experience
designing, implementing, and enhancing the Lout document formatting system
to identify the remaining problems in document formatting and explore some
possible solutions.
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1. Introduction

Document formatting is one of the most widespread applications of computers. Improve-
ments in document formatting software and the hardware on which it is based have revolutionized
the production of documents and enlarged our conception of what a document might be.

Any attempt at thispoint to define ‘document’would run a risk of being overtaken by events;
already documents commonly include hyperlinks, moving images, sound, and dynamic updating
as their sources of information change in real time. It is perhaps safe to say that a document is
information arranged for presentation to a person; the information may be called thecontent, and
the arrangement itslayout. Document formatting is essentially about mapping content to layout,
although functions that do not exactly fit this definition, such as spelling and grammar checking,
or even creation and editing of content, are often found in document formatting systems.

Document formattingsystemsfall into two camps. In one campare the interactivedocument
editors, ranging from word processing systems such as Microsoft Word [19] up to desktop
publishing systems such as FrameMaker [2] and Interleaf [10]. These offer an editable screen
image of the document layout. In the other camp are the batch formatters, such as troff [20],
Scribe [22], TEX [16], and Lout [14], which process text files with embedded markup to produce
non-editable layout. In this paper the above names will stand for the entire software family;
TEX includes LATEX [18], FrameMaker includes FrameMaker+SGML, and so on. Somewhere in
between are the hypertext [8]net browsers,based on HTML,which are primitive batch formatters
offering limited interactivity such as the ability to click on a hyperlink or fill in a form.

All of these systems are being actively enhanced by their developers, with new versions
appearing regularly. For example,FrameMaker and Interleaf have responded to the World-Wide
Web phenomenon by adding support for SGML [7] and HTML. Nevertheless, viewed from
a wider perspective, they all appear to have reached a plateau, in the sense that each has
fundamental limitations that are not likely to be overcome. For example, troff, TEX and Lout are
batch formatters and are not likely to become interactive; FrameMaker and Interleaf are not as
extendable as the batch formatters and, again, are not likely to become so.

One frequently hears arguments for or against these systems, but the truth is that none of
them is ideal yet all have something to offer to the future of document formatting. What isneeded
now is a synthesis of the best features of all of these systems.

Papers which reflect on document formatting seem to be very rare. The survey paper by
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Furuta, Scofield and Shaw [6] is still well worth reading; Kernighan [12] reflects on the troff
family; this author has described the design and implementation of Lout [13]. But for the most
part one has to infer principles from the systems themselves, and to look among the specialized
applicationssuch as music formatting [5],graph drawing [11,23,17],or non-European languages
for requirements.

This paper draws on its author’s twelve years of experience in designing, implementing,and
enhancing the Lout document formatting system,plus his more limited experience of the systems
mentioned above, to identify a set of requirements for a document formatting system that would
be a significant advance on all current systems, and to explore their interactions.

2. Requirements

This section identifies the most significant requirements for a document formatting system.
Efficiency in space will cease to be a requirement in the next few years. Efficiency in time
is of course essential, as are other requirements that apply to any large software system, such
as robustness, openness, and an interface that permits users of varying levels of expertise to
work productively.

The other requirements are editability, extendability, generality, and optimality. Each of
these requirements is discussed in turn in the sections that follow, together with problems that it
presents either alone or in conjunction with previous requirements.

It is not possible to prove that this list of requirements is complete, but the author has care-
fully compared it against the features of most of the document formatting systems listed earli-
er. The only major omission has been the convenience features commonly found in interactive
systems, such as spelling and grammar checkers, input and output in a variety of data formats,
version control, and so on. These are valuable features, but they have little to do with document
formatting in the core sense of mapping content to layout.

2.1. Editability

Editability, the ability to edit content while viewing layout, is the strong suit of word
processing and desktop publishing systems. Fairly or not fairly,many users will not accept batch
formatting. Also, the batch formatting edit-format-view cycle is too slow when the layout rule
is ‘what pleases the eye,’ such as in diagrams, or when content must be altered to achieve good
layout, for example in paragraphs containing long unbreakable inline equations.

Interactive interfaces also have an advantage when the logical structure does not follow
a tree pattern. A good example is the editing of graphs (the combinatorial kind). Users of an
interactive system can click on any pair of nodes to indicate that they are to be joined by an edge.
In a batch system,because the structure is not tree-like, it is necessary for the user to invent names
for the nodes and use the names when creating edges, which is considerably more error-prone.
By contrast, equations do follow a tree pattern and so there is never any need to attach names
to subexpressions.

Critics of interactive systems typically complain about the lack of content structure in
interactive editors, and also about their weakness as editors compared with good text editors.
Neither problem would seem to be inherent, and in fact recent versions of high-end document
editors (FrameMaker+SGML for example) are addressing the content structure problem.
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Openness to such auxiliary applications as free-text search and retrieval and creation of
documents by computer programs requires that an archive format based on marked-up text be
included in any interactive system. It only takes a little care to make such a format readable by
humans. Thus an interactive system is automatically also a batch system.

2.2. Extendability

Extendability in a document formatting system means the easy addition of new features.
It is the strong suit of batch formatters. For example, this author’s Lout system has no built-in
knowledge of equations, tables, or page layout (not even the concept of a page is built-in);
these are all added by means of packages of definitions written in the Lout language, which is
sufficiently high-level to make them fairly easy to produce.

Extendability implies some initial kernel of primitive features upon which the extensions
are built. These would include horizontal and vertical stacking, rotation, and so on. The most
interesting such feature is the mechanism for getting floating figures and footnotes into their
places: diversions and traps in troff, floating insertions in TEX, galleys in Lout. There must also
be ways of combining and packaging the primitives into features useful to the end user.

Although a system not built on such a kernel is conceivable, it seems scarcely possible to
this author that such a system could supply all the features demanded by end users. The list is
so vast – equations, tables, graphs, chemical molecules, music, and so on – that some kind of
high-level kernel language seems essential to achieving them in any reasonable time and with any
consistency, just as high-level programming languages are essential to large software projects.

Ideally, the kernel language would be defined formally,so that it would behave aspredictably
as a good modern programming language; lack of predictability is a fequently-heard complaint
about existing systems. An example of a highly predictable layout system exists for the simpler
problem of pretty-printing of tree-structured data such as computer programs [9].

Typography generates requirements for many features, such as hyphenation, spacing and
kerning, ligatures, and so on. A document formatting system must produce good typography,
because end users cannot be expected to do it themselves. Many of these features are dependent
on the current language,and many English or European-oriented systems have failed to extend to
the typography of languagesoutside that sphere. A good source of featuresneeded in world-wide
typography is Apple Computer’s QuickDraw GX [3], although its approach of implementing the
features in C is relatively non-extendable since it requires recompilation.

When an interactive system is extended with a new feature, it must be possible to continue
editing in the vicinity of the new feature.

Ultimately, the layout of a document is a function of its content, so we may identify features
with functions. In extreme cases,such as optimal layout,a function may take the entire document
as its parameter; but usually it has small, clearly delimited parameters as in

built_up_fraction(numerator, denominator)

There may also be implicit parameters inherited from the context, such as the current font size.

It is quite reasonable to insist that within any editing session the collection of features be
immutable. Thus it is not essential to be able to edit the definition of any function while viewing
any layout. In some cases, such as simple abbreviations,editing of definitions is quite simple and
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could easily be supported. But more complex functions, such as optimal layout or graph layout,
are defined by computer programs and so are not amenable to editing in this way.

Similarly it is correct to insist that those parts of the layout originating within definitions
be immutable. For example, the bar in a built-up fraction should not be editable. This does not
preclude the addition of parameters tobuilt_up_fractionto control the appearance of the bar if
desired, but to allow the user to arbitrarily change the bar would produce a layout whose origin
as a built-up fraction must be lost.

Thus, editability of features really only means editability of their parameters.

The most favourable case occurs when a function displays a parameter in a form similar
to that which it would have taken if it had been entered outside the function. For example,
built_up_fractiondisplays both its parameters, changing their appearance only slightly (by
squeezing vertical spacing within them, and possibly changing the font size). The user can edit
such a parameter as though it was not a parameter at all, and so (inductively) can edit parameters
of parametersand so on without limit. This isessentiallyhow equation editorswork,and the Lilac
system [4] has demonstrated it in an extendable framework, although using a kernel language
too incomplete to support the full range of features required by users. A function may display a
parameter more than once, in which case editing one display must change them all.

Preserving editability of displayed parameters is a difficult problem when the function is
implemented externally to the document editing system. For example, if an external graph layout
program [17] is employed, the result cannot be returned as a bitmap or PostScript file; rather a
set of coordinate pairs or something similar is required so that the document formatter can place
the nodes itself and hence understand where they ended up.

It has been suggested that a non-editable result is acceptable in such cases if a mouse click
in the region it occupies signals the opening of a separate editor that does undertand what is
going on in that region. This is the interactive equivalent of the preprocessor approach used by
troff, and it has the same drawbacks of lack of consistency, duplication of features, and loss of
generality (since even if every editor may invoke every other editor, the communication channels
between them typically cannot convey such information as the current font, paragraph breaking
style, available space, and so on). An architecture based on a single master editor with slave
non-interactive formatting programs is preferable.

Parameters which are not displayed are a nightmare, and are responsible for much of what
is ad-hoc in existing interactive systems. Two main approaches are in use. The first is the ‘style
sheet’ or ‘dialogue box’ approach, in which the user who selects a feature with non-displayed
parameters is presented with a box listing them and asked to supply values: a font name, a
location to place a figure, a style of numbering, or whatever. This is the most general method,
easily adapted for use in an extendable system. It works particularly well when the parameters
have sensible default values, for then use of the box is optional, and when they have only a small
range of possible values, for then the values may be displayed in a menu.

Second is the ‘inference’ method. Every parameter has some effect on layout, otherwise
it would be useless. So the user is offered a means of manipulating layout, and the parameter’s
value is inferred from it. For example, most editors permit an included graphic to be clipped by
clicking on its boundary and moving the mouse; scaling and even rotation may be set by such
means. Drawingprogramsallownodestobe dragged about in thedrawingarea. ‘Master pages’or
‘template pages,’which allow the user to specify entire page layouts involving many parameters
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simultaneously, demonstrate the value of the inference method.

The great drawback of the inference method is that an inference interface has to be invented
for every non-displayed parameter, and this is difficult in an extendable system. However, it
should at least be possible to implement an inference interface for all suitable non-displayed
parameters of kernel features, such as theboundaryparameter ofclip(), and in cases such as

define user_level_feature(…, boundary, …) =
      … clip(…, boundary, …) …

to propagate this interface upwards from kernel features to user level features. Then every user
level feature that offers clipping as a parameter, for example, will do so in the same way.

2.3. Generality

By generality we will mean the absence of illogical restrictions on the use of features,
either in the contexts in which they may be used, or in the values that may be assigned to their
parameters. (These are formally the same thing, but the distinction is useful.)

Examples of illogical context restrictions are extremely common in document formatting
systems. FrameMaker permits objects to be rotated in certain contexts (when they are table
entries, for example) but not others. In troff it is very easy to include an equation within a table,
but very much harder to include a table in an equation. Not all context restrictions are illogical,
of course: a chapter should not begin within a figure, for example.

Lack of context generality takes a severe toll, because it means that implementation code,
possibly highly sophisticated and with a great deal to offer, is locked into a few limited contexts.
For example, most word processing systems now have interactive equation editors, but there
seems to be no hope that their code can be re-used for such tasks as editing tree diagrams or
diagrams of chemical molecules, despite the technical similarities among these tasks.

Examples of illogical domain restrictions are particularly common among geometrical
functions. For example, LATEX formerly produced lines only at certain fixed angles, and most
systems only really understand rectangular shapes. The PostScript page description language
[1] is far ahead of everything else in geometrical generality: in PostScript, arbitrary curves (even
disconnected ones) made of lines, arcs, and Bezier curves may be drawn and filled, and arbitrary
combinationsof rotation,scaling and translation may be applied to arbitrarily complex fragments
of documents lying within one page.

The abandonment of rectangles in favour of arbitrary shapes would have widespread
beneficial effects if done in full generality. Text could fill arbitrary shapes and run around
arbitrary graphics. Fonts could be defined (as they are in PostScript) as collections of arbitrary
shapes,permitting kerning of arbitrary pairs of glyphs,not just glyphs of equal font and font size,
thus solving the subscript kerning problem. Line spacing could reflect the true appearance of
lines, not be crudely based on the highest ascender and lowest descender. Optimizations based
on bounding boxes and caching should be able to solve the efficiency problems.

2.4. Optimality

By optimality is meant the ability to find the best possible layout for the given content. An
optimal layout is not necessarily a good layout, because some documents have no good layout.
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Optimal layout thus cannot remove the burden of rewriting content to achieve good layout, but
in practice it does greatly reduce that burden, and this is why it is has been included.

The idea that layout could be optimal seemsto be due to Knuth and Plass [15],who presented
an algorithm for the optimal breaking of a paragraph into lines which is used in Knuth’s TEX
system. Research work was done on more general optimality as well [21], although this author
is unsure how much of this work was incorporated into TEX.

Suitably generalized, their paragraph breaking algorithm is as follows. The first step is to
deduce from the content a sequence of atomic formatting steps. For example, the content

The cat sat on the mat

might have sequence

create_empty_paragraph
add_word_to_paragraph(The)
add_word_to_paragraph(cat)
…

Every prefix of this sequence should define a legal document in its own right; the whole
sequence defines the document we wish to format. The question as to what constitutes an atomic
operation is not of fundamental importance; one could choose to add one letter at a time, or an
entire paragraph.

Define abadnessfunction from layouts to integers. Small values indicategood layouts, large
values indicate poor ones. There are no restrictions on how this function is defined, except the
practical one of being computable in a reasonable time. Ideally, this function would be expressed
entirely in the kernel language, and hence would be editable by the expert user.

Now there will be several ways in which each atomic step may be performed. For example,
add_word_to_paragraphcould add its word to the end of the current line, or it could start a new
line, or it could even start a new page or column. This leads to a tree structure:

The

The cat

The
cat

The     |    cat

Each node is a layout of a partial document, each edge is one atomic operation.

The next atomic operation is applied to each leaf node,creating more partial documents,and
so on until the sequence ends and the leaf nodes represent all layouts of the document of interest.
The leaf node of minimum badness is the optimal layout.

This model can incorporate diverging operation sequences caused by layout dependencies.
For example, suppose the wordabacushas an index entry attached to it, and that along one path
in the tree this word appears on page 99, while along another it appears on page 100. Then, in
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the sequence of operations defining the index, we will find

…
add_word_to_paragraph(abacus)
add_word_to_paragraph(99)
…

along one path, and

…
add_word_to_paragraph(abacus)
add_word_to_paragraph(100)
…

along the other. However, forward references create cyclic dependencies which cannot be
handled in this way. For them, it seems to be necessary to add operations which change the value
of words that have already been laid out, and to propagate the resulting changes until they die out.
In rare cases this method will cycle forever, but in practice it is probably not difficult to avoid this
problem using tricks such as refusing to allow a revision to reduce the number of lines allocated
to a paragraph.

The algorithm as expressed has exponential time complexity. In practice, however, the num-
ber of different layouts of a document that are close enough to optimal to deserve examination
is likely to be quite small. The challenge, then, is to find ways to prune the layout tree severely
while retaining enough of it to discover, for example, that setting a sequence of paragraphs tight
or loose will avoid a bad page break further on. This is an area needing detailed research;we can
only glance at a few obvious possibilities here.

If the badness function is monotone increasing along every operation sequence, then a bad
node can only have worse successors, and this justifies pruning its entire subtree. Monotonicity
is not guaranteed (for example, adding one word to a paragraph which has a widow word will
reduce its badness) but it is probable that tricks such as ignoring widow words in incomplete
paragraphs can bring us near enough to monotonicity to justify pruning bad nodes.

One immediate application is to prune nodes whose layouts are obviously terrible, such as
nodes containing clearly premature line endings or page endings. Indeed, it should be possible
to avoid even generating such nodes.

When it can be established that two nodes are equivalent, in the sense that they lay out the
same subsequence and their layouts occupy the same space, their future careers must be identical
and the worst of the two may be pruned. The tree structure becomes a graph, and the optimal
layout algorithm may be viewed as a shortest path algorithm, as described by Knuth [16].

Establishing the equivalence of two nodes may not be easy. There certainly is not time
for complex comparisons of all pairs of layouts of a given subsequence. Knuth and Plass’s
algorithm recognises that two nodes are equivalent when they lay out the same subsequence and
the most recent choice on the path to each was to start a new line. This same idea may be used
to equivalence all paths into one at the new-page operation preceding a new chapter.

Another useful idea is to group operations together, find optimal layouts for the group
separately, then introduce an atomic operation at a higher level which represents the entire group.
Grouping the operations that define one paragraph in this way is very beneficial, for example. In
isolation, optimal pragraph breaking explores many options, but in the end it is likely to return
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only at most two reasonable distinct results,ofnandn+ 1lines respectively for somen, and these
become the only choices for the atomicadd_paragraphoperation that represents the whole group
at the higher level. Furthermore, these two results may be cached and used without recalculation
on every path containing that particularadd_paragraphoperation whenever the margins have
the same width.

With care,suppressing tiny variations introduced by ascendersand descenderson letters, the
layout tree might be induced to contain only as many paths as the difference in the total number
of lines between the loosest and tightest settings of the paragraphs inserted so far, and over the
course of one chapter this might be a manageable number. For safety, a fixed upper limit could
be placed on the number of nodes kept, producing a beam search [24] which would definitely
bound the time complexity to a fixed multiple of the cost of non-optimal layout,while sacrificing
guaranteed optimality.

There do not seem to be any extra problems in incorporating optimality into an extendable
system. Users would certainly welcome options to user-level features such as ‘insert this figure
either following the current line, or at the top of the next page, whichever looks best.’ Whether
an editable system can offer optimal layout without exceeding response time bounds is a matter
for further research. There should be time to maintain optimality of the current paragraph at
least, and if the current chapter is set within constant-width margins, it should be no more
time-consuming to maintain optimal layout in a twenty page chapter than it is in a twenty line
paragraph, provided the two alternative paragraph breaks of each non-current paragraph of the
chapter are cached. If the cost does prove too great, optimality could be relegated to a button that
the user can press just before going for coffee.

3. Conclusion

This paper has demonstrated that a next-generation document formatting system, incorpo-
rating the best features of current systems in full generality, is neither logically inconsistent nor
likely to be infeasibily slow.

The major design problem is the identification of a suitable kernel of primitive features.
Given the massive superstructure that this kernel will support, its design quality must be of
the highest. This design was not attempted in this paper, but the author believes that the kernel
of the Lout document formatting system would make a good starting point, although it is too
incomplete, insufficiently general, too large, and occasionally too imprecisely defined to serve as
the kernel of a next-generation system as it stands.

The major implementation problem is to find optimizations that preserve generality yet
achieve the required response time. This paper has pointed out optimizations that seem quite
likely to be adequate on hardware that will be widely available in a few years.
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