
The Complexity of Timetable Construction Problems

Tim B. Cooper and Jeffrey H. Kingston

Basser Department of Computer Science
The University of Sydney

Australia

Abstract

This paper shows that timetable construction is NP-complete in a number of quite different
ways that arise in practice, and discusses the prospects of overcoming these problems. A formal
specification of the problem based on TTL, a timetable specification language, is given.

Specificially, we show that NP-completeness arises whenever students have a wide subject
choice, or meetings vary in duration, or simple conditions are imposed on the choice of times for
meetings, such as requirements for double times or an even spread through the week. In realistic
cases, the assignment of meetings to just one teacher (after their times are fixed) is NP-complete.
And although suitable times can be assigned to all the meetings involving one student group
simultaneously, the corresponding problem for two student groups is NP-complete.

Keywords: timetable construction, specification, complexity.

1. Introduction

The timetable construction problem is to assign times, teachers, students and rooms to a
collection of meetings so that none of the participants has to attend two meetings simultaneously.
This basic requirement is often augmented with others concerning limits on the workload of
teachers, constraints on the way a meeting’s times are spread through the week, and so on.

Many different techniques have been applied to the timetable construction problem.
Previous work by the authors and others has attempted to break it into subproblems, in the hope
that each will be efficiently solvable. In such work a detailed understanding of the inherent
complexity of timetable construction is needed; a broad statement that the overall problem is
NP-complete gives no guidance on the prospects of solving any particular subproblem. This
paper fills in some of these details by identifying five independent NP-complete subproblems,
and discussing the prospects of solving each in practice.

2. Specification of the timetable construction problem

In this section we present a specification of the timetable construction problem based on
a timetable specification languagecalled TTL. This language is formal yet flexible enough to
specify instances encountered in practice. An earlier version of TTL appeared in [1].

A TTL instance consists of atime group, someresource groups, and somemeetings.A
formal grammar appears in Figure 1. Here is a typical time group:

- 2 -

timegroup Timesis

Mon1; Mon2; Mon3; Mon4; Mon5; Mon6; Mon7; Mon8;
Tue1; Tue2; Tue3; Tue4; Tue5; Tue6; Tue7; Tue8;
Wed1; Wed2; Wed3; Wed4; Wed5; Wed6; Wed7; Wed8;
Thu1; Thu2; Thu3; Thu4; Thu5; Thu6; Thu7; Thu8;
Fri1; Fri2; Fri3; Fri4; Fri5; Fri6; Fri7; Fri8;

conditions(omitted)

endTimes;

It lists the names of the times available for meetings, followed byconditions(see below). Here
is a typical resource group:

group Teachersis

subgroupsEnglish, Science, Computing;

Smithin English, Computing;
Jonesin Science, Computing;
Robinsonin English;

endTeachers;

This group containsresources(Smith, Jones, and Robinson) which are available to attend
meetings, andsubgroupswhich are subsets of the set of resources defining functions that the
resources are qualified to perform: teach English, etc. A resource may be in any number of
subgroups. Typical instances haveTeachers, Rooms, andStudentsresource groups.

After the groups come the meetings, which are collections ofslotswhich are to be assigned
elements of the various groups, subject to certain restrictions. For example, here is a typical
meeting expressing five Science classes which meet simultaneously for six times per week:

meeting10-Scienceis
Year10;
5Science;
5ScienceLab;
6 Times: TwoDouble;

end10-Science;

There is one slot which must contain theYear10 resource from theStudentsgroup; five slots
which must contain resources from theSciencesubgroup; five resources from theScienceLab
subgroup of theRoomsgroup, and six times from theTimesgroup, which must satisfy the
TwoDoublecondition, defined as follows: there must be at least two double times (i.e. two pairs
of adjacent times), the times must be spread over as many days of the week as possible, and
all but one of the times must be nice (i.e. not last on any day). These conditions are defined in
the time group, but lack of space prevents us from explaining them in detail here. Formally, the

- 3 -

instance → timegroup{ resourcegroup} { meeting}
timegroup → timegroup timegroupnameis

{ timename; }
end timegroupname;

resourcegroup → group resourcegroupnameis
[subgroupssubgrouplist;]
{ resourcename[in subgrouplist] ; }

end resourcegroupname;
subgrouplist → resourcegroupname{ , resourcegroupname}
meeting → meetingmeetingnameis

{ timeselect| resourceselect}
endmeetingname;

timeselect → number timegroupname[: timeconditionlist] ;
→ timename;

resourceselect → number resourcegroupname;
→ resourcename;

number → integer|all

Figure 1. Grammar of the TTL language. { ... } means zero or more of, [...] means optional.
Time conditions and some unimportant extensions required in practice have been omitted.

meaning is that the eleven selected resources will all be occupied together for the six times; in
fact, it is clear that the Year 10 students will be split into five groups.

Although most meetings are similar to 10-Science, there are some exceptions, for example
Faculty meetings:

meetingEnglishFacultyis
all English;
1Times;

endEnglishFaculty;

and meetings which ensure that each teacher teaches at most 30 out of the 40 possible times each
week (say):

meetingSmithFreeis
Smith;
10Times: TeacherFree;

endSmithFree;

The TeacherFreecondition is defined to mean that at least one time from each day must be
included. Real instances may have two hundred or more meetings altogether.

This completes the presentation of the TTL language. It has been used successfully by
the authors, with some unimportant extensions, to specify high school instances [1, 2], and it can
easily be extended to accommodate the multiple sections needed in university timetabling, and

- 4 -

to express preferences in selections. Requirements that do not seem amenable to expression in
TTL include relations between meetings (must not be consecutive, etc.), and conditions on the
set of meetings assigned to some resource (at most two Senior courses per teacher, minimize
walking distance, etc.).

We will denote by TIMETABLE CONSTRUCTION (TTC) the decision problem of
determining whether an assignment of times and resources to all the slots exists which satisfies
the various conditionsand is such that no resource is assigned to two meetingswhich share a time.
This is polynomial-time equivalent to the problem of actually producing such an assignment:
given TTC, one can construct a solution if it exists by trying each possible assignment to the first
slot until TTC indicates that a solution exists, then repeating on the other slots in turn.

3. NP-completeness results

In determining the complexity of the TTC problem defined in Section 2, formally it
is sufficient to prove TTC∈ NP (obvious) and to demonstrate one transformation from any
known NP-complete problem to TTC. But we wish to show that TTC is NP-complete in several
independent ways, all of which arise in practice. For this it is necessary to find transformations
which construct TTC instances that resemble special cases of the TTC problem that arise in real
instances.

The well-known formulation of the timetable construction problem given by Gotlieb [6]
assumes that each meeting containsexactly one nominated student group,one nominated teacher,
and any number of times which may be freely chosen. Csima [3] showed that Gotlieb’s problem
is in P if the teachers are initially available at all times, and Even, Itai, and Shamir [4] showed
that it is NP-complete if each teacher may be assumed initially unavailable at an arbitrary subset
of the times.

More relevant in practice was the work of Karp [7] showing that graph colouring is
NP-complete. At that time the connection between graph colouring and timetable construction
(revisited below) was already well known [8, 9].

3.1. Intractability owing to student choice

We begin with a well-known result relating timetable construction to graph colouring. It
showsNP-completenesswhen each student isgranted a free choice from a wide range of subjects,
as is characteristic of university timetable construction.

Theorem 1. GRAPH K-COLOURABILITY ∝ TTC.

Proof. Recall that the NP-complete GRAPH K-COLOURABILITY problem asks whether
it is possible to assign a colour to each vertex of a graphG in such a way that no two adjacent
vertices have the same colour; at mostK ≤ |V|distinct colours are allowed. LetG = (V,E) with
V = {v1,… ,vn} andE = {e1,… ,em} . Construct the TTC instance

timegroup T is
t1;…; tK;

endT;

- 5 -

group R is
r1;…; rm;

endR;

meetingM1 is
1T;
c1,1;…;c1,k1

;
endM1;

...

meetingMn is
1T;
cn,1;…;cn,kn

;
endMn;

where the resourcesci,1,… ,ci,ki
selected by meetingMi are exactly those resourcesr j such thatej

is adjacent tovi in G.

Suppose aK-colouring f : V → {1,… , K} exists forG. Assigntk wherek = f (vi) to Mi for
all i. The conditionf (vi) ≠ f (vj) whenever{vi,vj} ∈ E guarantees that meetings which share any
resource receive different times, so the TTC instance is solved. Conversely, a successful time
assignment defines a successful graph colouring.

Taking eachr i to represent one student, this transformation shows that assigning times to
university classes such that all students can attend their choices is NP-complete even when each
meeting occupies only one time, each student chooses just two meetings, and teacher and room
constraints are ignored. It also demonstrates that university examination timetable construction
is NP-complete.

Universities avoid this problem by publishing the timetable in advance and requiring
students to choose only combinations of subjects permitted by the timetable. Large classes are
divided intosections(alternative offerings of the same subject) which run at different times.
Choosing appropriate sections for just one student after times are fixed is NP-complete (Section
3.3), but sections provide sufficient freedom in practice to make solutions fairly easy to find.

In high schools known to the author, student choice is limited by deciding in advance that
certain groupsof meetingswill occur simultaneously,and invitingstudents to choose one meeting
from each group. The decision as to which meetings to group in this way is often influenced by
a preliminary survey of student preferences,which of course makes it into an NP-complete graph
colouring problem too.

3.2. Intractability owing to varying meeting size

Meetings occupy more than one time each. A typical pattern in high schools might be six
times for English and Mathematics, five for Science, three for Sport, and so on. When meetings
of such varying sizes are assigned to teachers, it can be difficult to assign exactly the 30 (say)
times that comprise each teacher’s workload. Overloading is forbidden by industrial agreement,
and underloading one teacher implies overloading another. This leads to NP-completeness even
disregarding restrictions imposed by teachers’qualifications and the need to avoid clashes:

- 6 -

Theorem 2. BIN PACKING (with unary encoding)∝ TTC.

Proof. Recall that the NP-complete BIN PACKING problem asks whether a set of itemsU =
{u1,… ,un} , each with a positive integer sizes(ui), can be packed intoBbins each of capacityC in
such a way that no bin is overfull. We assume that these numbers are encoded in unary rather than
binary; since BIN PACKING is NP-complete in the strong sense [5], this version is NP-complete.
We transform to the TTC instance

timegroup T is
t1;…; tC;

endT;

group R is
r1;…; rB;

endR;

meetingM1 is
s(u1) T;
1R;

endM1;

...

meetingMn is
s(un) T;
1R;

endMn;

Given the initial unary encoding, this transformation clearly has polynomial complexity.

Suppose that the BIN PACKING instance has solutionf : U → {1,… ,B} . Assignrk where
k = f (ui) to meetingMi for all i; then, for eachr j in R, the total time requirements of all meetings
containing resourcer j will be at mostC, and we may assign any disjoint sets of times to these
meetings. Conversely, from any solution to the TTC instance we may deduce a bin packing by
assigningf (ui) = k whereMi containsrk.

In high schools known to the author, some meetings in the junior years are split into two in the
following way in order to create small fragments to fill the bins:

meetingM1
i is

(s(ui) − k) T;
1R;

endM1
i ;

meetingM2
i is

k T;
1R;

endM2
i ;

for somek, allowing two teachers to share the meeting. This is called asplit assignment, and it

- 7 -

is the major form of compromise permitted in high school timetable construction. Universities
are not subject to this problem, because face-to-face workloads are lighter and more flexible.

3.3. Intractability owing to time-incoherence

The bin packing NP-completeness just explained would vanish if all meetings were of equal
size, they were aligned in time, and each teacher’s workload were a multiple of the meeting size.
Meeting sizes and workloads are not under the control of timetable construction programs, but
the alignment of meetings in time is. It was calledtime-coherence, and shown to be a powerful
heuristic in practice, in [1]; and so the question naturally arises, is it possible to guarantee a
time-coherent solution when meeting sizes vary? We now show that the answer is no.

There are several ways to define time-coherence formally. One simple way is to define
the time-incoherencei(M) of a set of meetingsM to be the number of pairs of meetings from
M that share at least one time. We can then define the decision problem TTC-TC to be TTC
augmented with the requirement thati(M) not exceed a given boundK. Unfortunately, TTC-TC
is NP-complete even when the underlying TTC instance is trivial:

Theorem 3. BIN PACKING (with unary encoding)∝ TTC-TC.

Proof. We remind the reader that the purpose of this theorem is not just to prove the result
(we have already done so in Theorem 2) but to construct a TTC instance which establishes an
independent source of NP-completeness.

As previously described, the NP-complete BIN PACKING problem asks whether a set of
itemsU = {u1, … ,un} , each with a positive integer sizes(ui), can be packed intoB bins each of
capacityC so that no bin is overfull. Transform to a TTC-TC instance whose groups are

timegroup T is
t1;…; tBC;

endT;

group R is
r;

endR;

and whose meetings areX1,… ,Xn andY1,… ,YB where theXi are

meetingXi is
r;
s(ui) T;

endXi;

and theYj are

meetingYj is
t(j−1)C+1;…; tjC;

endYj;

and the bound oni(M) is K = n.

- 8 -

Suppose that the BIN PACKING instance has solutionf : U → {1, … , B} . For each
meetingXi, choose anys(ui) times (not already chosen) from the setSk = {t(k−1)C+1,… ,tkC} where
k = f (ui). This is possible becausef guarantees that at mostC times will be chosen fromSk. All
requirements are satisfied, and eachXi overlaps with exactly oneYj, soi(M) = n.

Conversely, suppose that the TTC-TC instance has a solution withi(M) ≤ n. We must have
i(M) ≥ n since eachXi must overlap at least oneYj, soi(M) = n and eachXi overlaps exactly one
Yj. Settingf (ui) = j then defines a bin packing for theui.

Any reasonable definition of time-coherence would permit the same transformation. In practice
then, when meeting sizes vary we cannot expect to maintain time-coherence.

This inevitable loss of time-coherence causes severe problems in practice. To illustrate this,
we present a transformation which shows that, in the absence of time-coherence, the problem of
assigning meetings to just one teacher is NP-complete:

Theorem 4. EXACT COVER BY 3-SETS∝ TTC.

Proof. Recall that the NP-complete EXACT COVER BY 3-SETS problem is as follows. We
are given a setX = {x1,… ,x3q} , and a collection of 3-subsets ofX calledC = {C1,… ,Cn} with
n ≥ q. The problem asks for an exact cover ofX, that is, a subcollectionC′ ⊆ C such that every
element ofX occurs in exactly one element ofC′.

Let Cj = {cj,1,cj,2,cj,3} for 1 ≤ j ≤ n, where eachcj,k = xi for somei such that1 ≤ i ≤ 3q. We
transform an instance of EXACT COVER BY 3-SETS to a TTC instance whose groups are

timegroup T is
x1;…;x3q;

endT;

group R is
r1;…; rn−q;z;

endR;

and whose meetings areA1,… ,An−q andB1,… ,Bn where theAi are

meetingAi is
(3q − 3)T;
r i;

endAi;

and theBj are

meetingBj is
cj,1;cj,2;cj,3;
1R;

endBj;

Now supposeX has exact coverC′. Assignz to eachBj such thatCj ∈ C′. This is feasible since
no timexi appears in two elements ofC′, and it takes care ofq of then meetingsBj. To each of

- 9 -

the remainingn − q meetingsBk assign one of ther j. This leavesr j free at all times exceptck,1,
ck,2, andck,3, so we may assign the3q − 3 timesT − {ck,1,ck,2,ck,3} to Aj. The converse is similar:
in any solution to the TTC instance,zmust be assigned to exactlyq of theBj, and these define an
exact cover forX.

The constructed instance amounts to assigning meetings to a resourcez (after their times have
been fixed) so as to maximize the number of times thatz is used. The importance of this was
discussed in relation to bin packing (Section 3.2), but now we find that time-incoherence makes
the problem NP-complete even when bin packing problems are absent.

3.4. Intractability owing to conditions on times

As explained in Section 2, the choice of a meeting’s times is often constrained by
requirements for double times, an even spread of times through the week, and so on. The
authors have experimented with a method of specifying these time conditions in TTL that is
sufficiently general that it permits a transformation from the archetypal NP-complete problem,
SATISIFIABILITY, containing exactly one meeting with no resources but with a complex
condition on the choice of times. At present, however, we use a simpler method which
provides a fixed finite list of allowed time conditions. In any case, in real instances the difficulty
arises not from complex time conditions, but rather from the need to satisfy the simple time
conditions of several meetings simultaneously. The following transformation establishes this
NP-completeness:

Theorem 5. EXACT COVER BY 3-SETS∝ TTC.

Proof. Once again we remind the reader that the purpose is to construct independent
NP-complete instances of TTC, not merely to prove the result (which has been done before in
Theorem 4). As previously described, the NP-complete EXACT COVER BY 3-SETS problem
is as follows. We are given a setX = {x1,… ,x3q} , and a collection of 3-subsets ofX called
C = {C1,… ,Cn} with n ≥ q. The problem asks for an exact cover ofX, that is, a subcollection
C′ ⊆ C such that every element ofX occurs in exactly one element ofC′.

Let eachCj = {cj,1, cj,2, cj,3} where eachcj,k = xi for somei. We transform an instance of
EXACT COVER BY 3-SETS to a TTC instance whose groups are

timegroup T is
x1;…;x3q;

endT;

group R is
r;

endR;

and whose meetings areM1,… ,Mq where eachMj is

meetingMj is
3T;
r;

endMj;

- 10 -

In addition, we impose on eachMj the time condition that the three times chosen must be
{ck,1,ck,2,ck,3} for somek such that1 ≤ k ≤ n.

First suppose that the initial instance of EXACT COVER BY 3-SETS has a solution
C′ = {C1′,… ,Cq′} . C′ must have exactlyq elements. For allj, assign the times ofCj′ to meeting
Mj. The collection of all these sets of times is pairwise disjoint, as required by the presence of
r in each meeting, and each meeting’s times satisfy the time condition.

Conversely, any solution to the TTC instance defines a collection of disjoint sets of times,
each of which satisfies the time condition, and from this we obtain a solution to the EXACT
COVER BY 3-SETS instance.

The TTL instance constructed here has small meetings, all with the same time condition, which
is a simple list of alternative time patterns as often occurs, for example, in university timetabling.
This is good evidence of intractability in practice.

Nevertheless there are special cases which can be solved efficiently. If theCj are pairwise
disjoint the problem is obviously trivial. More generally, EXACT COVER BY 3-SETS is
solvable in polynomial time if eachxi appears in at most two of theCj [5].

We can identify a second easy special case based on the concept of asimple time selection,
which we define as a time selection with a time condition requiring only that the times be chosen
from a given arbitrary subset of the set of all times. The problem of assigning times to any
number of time-disjoint meetings, each containing any number of simple time selections, can
be solved by bipartite matching in a graph whose edges connect nodes representing time slots to
nodes representing times.

Based on these two special cases and the observation that heuristic methods usually succeed
on this problem, it seems likely that a restricted version exists which encompasses most of the
cases encountered in practice, and which is solvable in polynomial time for sets of time-disjoint
meetings. Heuristics are certainly adequate if occasional violations of the conditions are
acceptable.

Incidentally, we can reinterpret the assignment of times{ck,1,ck,2,ck,3} to meetingMj as the
assignment of studentr to sectionk of meetingMj. This shows that the assignment of sections
of university courses to even a single student (as discussed in Section 3.1) is NP-complete.

3.5. Intractability of assigning two forms simultaneously

One useful line of attack is to discover large subproblems that can be solved efficiently. One
such is the matching subproblem introduced by de Werra [10]and generalized to ‘meta-matching’
by Cooper and Kingston [1], which assigns times to all the meetings of oneform (all meetings
having a nominated student group in common) simultaneously, in such a way that the demand
for the various types of teachers and rooms does not exceed their supply at any time.

The question naturally arises as to whether it is possible to assign suitable times to two forms
simultaneously in polynomial time. In the following proof of NP-completeness,MX1,… ,MXq
stand for the meetings assigned previously, andMY1,… ,MYq andMZ1,… ,MZq for the meetings
of the two forms to which we wish to assign times.

Theorem 6. THREE DIMENSIONAL MATCHING ∝ TTC.

Proof: Recall that in the NP-complete THREE DIMENSIONAL MATCHING problem we are

- 11 -

given three setsX, Y, andZ, each containingq elements, and a setM ⊆ X × Y × Z. The problem
is to determine whetherM contains a matching, that is, a subsetM′ ⊆ M such that|M′| = q and
every element ofX, Y, andZ occurs exactly once inM′. We transform this to a TTC instance
whose groups are

timegroup T is
t1;…; tq;

endT;

group R is
rX; rY; rZ;

endR;

and whose meetings areMX1, … ,MXq, MY1, … ,MYq, andMZ1, … ,MZq. These meetings all
have the same form, typified by

meetingMXi is
1T;
rX;

endMXi;

where theMXi selectrX, theMYi selectrY, and theMZi selectrZ.

But now, for each triplemj = (xa,yb,zc) in
−
M, the complement ofM in X × Y × Z, we create

two new resourcesαj andβj
and a resource subgroupRj whose members areαj andβj

, and we
add the selection 1Rj to MXa, MYb, andMZc. This completes the transformation.

Suppose first thatM contains a matchingM′. For each triplemk′ = (xa,yb,zc) in M′, where
1 ≤ k ≤ q, assign timetk to MXa, MYb, andMZc. SinceM′ contains eachxi exactly once, each
MXi is assigned exactly one time, and these times are distinct, as required by the presence ofrX
in each one. Similar remarks apply to theMYi and theMZi.

It remains to check that all the1 Rj selections are satisfied. SinceRj has two elements, the
only possible violation would be if all three meetingsMXa, MYb, andMZc scheduled for time
tk contained1 Rj for some particularj. But by construction this would imply(xa, yb, zc) ∈ −

M,
contradicting(xa,yb,zc) ∈ M′.

Conversely, if the TTC instance has a solution, the presence ofrX ensures that theMXi
are assigned different times, and similarly for theMYi and theMZi. It follows that the solution
can be expressed as a set ofq triples(MXa, MYb, MZc) of meetings that occur simultaneously.
By replacing each meeting by the corresponding element ofX, Y, or Z, we arrive at a matching
S ⊆ X × Y × Z. SinceMXa, MYb, andMZc occur simultaneously, they cannot all contain the
selection1 Rj for any particularj, so by construction the corresponding(xa,yb,zc) cannot be an
element of

−
M. HenceS ⊆ M.

The complexity of the set
−
M is easily achievable in real instances, owing to ‘elective’ meetings

which select a number of teachers and rooms of arbitrary types. This would seem to rule out all
hope of assigning two forms simultaneously.

- 12 -

4. Conclusion

This paper has demonstrated that the timetable construction problem is NP-complete in five
quite independent ways. This explains why timetable construction is so difficult.

The instances constructed in our transformationsare such as actually occur in practice. This
is important, because it ensures that the intractability is real, not merely an artifact of the method
of specification. Where known we have indicated special cases and compromises which may be
used to work around the problems.

Against these negative resultswe can set the limited size of timetable construction instances.
High schools with more than 100 teachers are rare; a week of more than 40 times is also rare.
Universityproblemsare larger but seem tobe easier. As ingenuityand computingpower increase,
timetable construction will become feasible in practice.

References

[1] Tim B. Cooper and Jeffrey H. Kingston. The solution of real instances of the timetabling
problem.The Computer Journal36, 645–653 (1993).

[2] Tim B. Cooper and Jeffrey H. Kingston. A program for constructing high
school timetables. InFirst International Conference on the Practice and The-
ory of Automated Timetabling. Napier University, Edinburgh, UK, 1995. Also URL
ftp://ftp.cs.su.oz.au/pub/tr/TR95_496.ps.Z.

[3] J.Csima.Investigationson a Time-TableProblem. Ph.D.thesis,Schoolof GraduateStudies,
University of Toronto, 1965.

[4] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow
problems.SIAM Journal on Computing5, 691–703 (1976).

[5] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[6] C. C. Gotlieb. The construction of class-teacher timetables. InProc. IFIP Congress, pages
73–77, 1962.

[7] R.M.Karp. Reducibility among combinatorial problems. In R.E.Miller and J.W.Thatcher
(eds.),Complexity of Computer Computations, pages 85–103. Plenum Press, New York,
1972.

[8] G. Schmidt and T. Ströhlein. Timetable construction—an annotated bibliography.The
Computer Journal23, 307–316 (1980).

[9] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and
its application to timetabling problems.The Computer Journal10, 85–86 (1967).

[10] D. de Werra. Construction of school timetables by flow methods.INFOR – Canadian
Journal of Operations Research and Information Processing9, 12–22 (1971).

