
A Tiling Algorithm for High School Timetabling

Jeffrey H. Kingston

School of Information Technologies
The University of Sydney 2006 Australia

jeff@it.usyd.edu.au

Abstract. This paper presents a tiling algorithm for high school timetabling.
The meetings are grouped into small, regular clusters called tiles, each of which
is thereafter treated as a unit. Experiments with three actual instances show
that tiling, coupled with an alternating path algorithm for assigning resources to
meetings after times are fixed, produces good, comprehensible timetables in about
ten seconds.

1 Introduction

As a recent survey makes clear [1], the problem of automatically constructing timetables
for high schools remains far from solved. This paper offers a new approach based on
grouping meetings together into small clusters calledtiles. Although there are some
drawbacks in doing this, there are significant advantages: the resulting timetable is
comprehensible to the timetable planner; assignment of teachers to classes is simplified;
and run times are reduced to about ten seconds, freeing the timetable planner to explore
alternative scenarios quickly.

After a description of the high school timetabling problem (Section 2), this paper
offers an overview of tiles and the tiling algorithm (Section 3). Sections describing the
phases of the algorithm follow. Results are presented for three instances taken from a
high school in Sydney, Australia (Section 8).

2 Specification

High school timetabling problems vary from place to place. The problem described here
is the one occurring in Australian high schools.

In high school timetabling problems, the meetings are timetabled on a weekly or
fortnightlycycle. Time is partitioned intoperiodsof equal length. One common pattern
is a week of 40 periods, each 40 minutes in length, spread over five days. Adjacent
periods may be adjacent in time, or separated by a meal break or by the end of a day.

Unlike university timetabling, where each student follows an individual timetable,

high school students are grouped together intostudent groups(often calledclasses, but
that word can also mean the meetings they attend, and is so used here). The members of
one student group (typically 30 students) follow the same timetable and may be treated
as a unit. Four or five student groups, containing all the students of a certain age group,
make oneform (also called ayear). Australian high schools have six forms, called Year
7, Year 8, and so on to Year 12.

A typical high school has 50 or more teachers. They are partitioned intofaculties:
subject areas,such asEnglish,History,Mathematics,and soon. Some teachershave qual-
ifications spanning more than one faculty, and some meetings (such as Sport) are taught
by teachers in several faculties. Within faculties the teachers have further specialties,
and our model allows any number ofcapabilities(such as Drama, or Senior History) to
be defined and granted to arbitrary subsets of the teachers. A teacher may have many
capabilities, not just one. Teachers havequotasspecifying their workload. A common
example would be a teacher whose quota is 30 periods per week (out of the maximum
of 40), with a preference for at most 7 periods on any one day (out of the maximum 8).
Head teachers or teachers with other duties have smaller quotas, and there are part-time
teachers who are available only on nominated days.

Although most rooms are ordinary classrooms, there are specialised rooms such
as Science laboratories (possibly also usable as ordinary classrooms) and Computer
laboratories. Again, our model allows any number of these capabilities to be defined
and granted to arbitrary subsets of the rooms. Rooms could also have quotas or be
unavailable at certain times, for example for maintenance, although there are no cases of
this in our data.

Student groups, teachers,and rooms(collectively,resources)play fundamentally the
same role in timetabling: each must be assigned to meetings,avoiding clashes. However,
there are differences in detail. Student group resources attend something at every period
of the week,and are always preassigned to meetings – there is never a request tochoosea
student group, as there is with teachers and rooms. Teachers differ from rooms in that it
is important for the same teacher to attend all of the periods allocated to each class meet-
ing. One does not want Ms. Smith to take some English class for three of its six periods,
and Mr. Brown to take it for the other three. That would be asplit assignment, and it is
permissible but undesirable.

A meetingis an entity in which a set of resources meet together at a set of times.
The times and resources may bepreassigned, meaning fixed in advance to particular val-
ues, or they may be left open to the solver to choose. Meetings may request any number
of times, and may request blocks of adjacent times not separated by breaks (these are
calleddouble periods, triple periods, etc.). It is preferred for these times to be spread
evenly through the week, and that undesirable times (such as the last period on any day,
when the students are tired and restless) should not be concentrated in one meeting. Stu-
dent group resources are always preassigned. In our data, teachers and rooms are usually
not preassigned. Instead, meetings request resources with given capabilities: a History
teacher, a Science laboratory, or whatever.

In traditional class-teacher timetabling [6], each meeting contains one teacher and
one student group, but our meetings typically request more resources than this. For ex-
ample, in the junior years the students in each form may be grouped by ability for Math-

ematics, meaning that the Mathematics classes of that form must run simultaneously,
leading to one large meeting requesting four or five student groups, Mathematics teach-
ers, and rooms. In the higher years there areelectives: sets of meetings planned to run
simultaneously so that students can choose one. There may be seven or eight teachers,
with varying capabilities, plus rooms in such meetings.

Occasionally there arecomposite classes, in which students from different forms
study a specialised subject together. Although the students follow different curricula, the
common subject matter makes such a class feasible. Composite classesare created when
the school wants to offer some subject as an elective, but there are too few interested
students in any one form to justify it. Their effect on timetabling is to cause two electives
from different forms (those containing the specialised option) to be merged.

Our data also contain several kinds of staff meetings, requesting various preas-
signed subsetsof the teachers,but no student groupsor rooms. These meetingsare equiv-
alent to free time for the purposes of calculating teachers’daily and weekly quotas, but
they can be involved in clashes like other meetings.

The objective is to assign times, teachers and rooms with the desired capabilities
to the slots, avoiding clashes and not overloading any teachers. These two requirements
are hard constraints and they dominate the problem. If necessary,a resource assignment
may be split between two teachers as described above, and as a last resort the smaller of
the two fragments may be occupied by a teacher not qualified for the requested capabil-
ity. Meetings must receive the number of times they request, but the block structure and
spread through the week of these times are soft constraints.

3 Overview

In this section we define tiles and present an overview of our algorithm. Following
sections then explain its phases in more detail.

Consider a typical meeting, such as the English class of student group 7C in the
bghs98instance. This meeting requests 6 times including two double periods, student
group resource 7C, one English teacher, and one ordinary classroom. We can think of
this meeting as a3 × 6rectangle:

7C

1EnglishTeacher

1OrdinaryClassroom

Its width is the number of times requested, although sometimes we give a sequence of
numbers for the width, defining the required block structure. For example, width 2 2 1 1
requests six times including exactly two double periods. Itsheight is the number of
resources required, although again we often give more detail – a list of the resources
required – and call that the height.

Several meetings may be grouped together into a larger entity of a specific width
and height, which we call atile. For example, suppose we decide to run the English
classes of the five Year 7 student groups simultaneously. This produces a tile of width 6

and height 15, containing the five Year 7 student group resources, five English teachers,
and five ordinary classrooms.

Figure 1 contains two other examples of tiles. The students are grouped by ability
for Mathematics, so the five Mathematics classes must run simultaneously and are
combined into one large meeting in the input data. The adjacent History classes do not
have to run simultaneously, but fitting them neatly alongside Mathematics forces them
to. The second tile illustrates a construction, well known to manual timetablers, called
the runaround. There are only two Music teachers and two Music rooms, so the five
Music classes cannot run simultaneously. By interleaving them among other meetings
as shown, the tile demands only one of each at any one time.

Our recipe for producing comprehensible timetables may now be stated: first place
all of the meetings neatly into tiles, then timetable the tiles so as to ensure that for each
pair of timetabled tilesTi andTj, Ti andTj either contain exactly the same set of times,
or else have no times in common. In our test instances there are 40 times in the week,
and the timetable is planned around an ideal pattern of six classes each 6 periods wide,
plus four periods of Sport and optional religious instruction, so it is natural to build six
6-period tiles and one 4-period tile in each form. This common set of widths, ormajor
columns, could be inferred, but it forms such a basic part of the timetable planner’s
thinking that we have chosen instead to require it to be given as part of the input data.
When timetabled, the 4-period tiles must all contain the same set of four times, if the rule
laid down just above is to be satisfied;but the six-period ones may be timetabled together
in whatever way utilizes resources best. The reader might care to look ahead to Figure
3, which shows a timetable following this pattern.

Our algorithm proceeds in four phases, each the subject of a following section.
First, specific timesduring the week are assigned to the major columns (Section 4). Next,
tiles are created and meetings inserted into them and timetabled within them (Section 5).
Third, the tiles are timetabled against each other by placing them into the major columns
(Section 6), using an algorithm that first timetables the Year 12 tiles, then the Year 11
tiles, and so on, building up layers until the timetable is complete. Finally, specific
resources are allocated to the meetings’ resource slots (Section 7).

4 Column Layout

The first step in our algorithm is to assign times to each of the major columns. Figure 2
gives a typical example of what is wanted: each column spread evenly through the week,
with its blocks of times not interrupted by meal breaks.

This is an easy problem in practice so we will be brief. A tree search is used which
first attempts to give each column one period on each of a set of days that is spread evenly
through the week. Once this is achieved the search continues downwards, with columns
making requests to days for their single periods to be exchanged for larger blocks, until
every column has the block structure it requires. Each day maintains a small bin packing
of the blocks it has promised to columns into the intervals between meal breaks, solved
exhaustively as each request arrives.

Columns may have preassigned times, propagated from classes. For example, if
some class requests Mon1 and Mon2, then a preassignment of these times to some col-

Column 0 Column 1 Column 2 Column 3 Column 4 Column 5

8CKOAS-Maths 8C-History

8K-History

8O-History

8A-History

8S-History

Column 0 Column 1 Column 2 Column 3 Column 4 Column 5

8C-English

8K-English 8K-English

8O-English 8O-English

8A-English 8A-English

8S-English 8S-English

8C-Music

8K-Music

8O-Music

8A-Music

8S-Music

Fig 1. Two examples of tiles from thebghs98instance. Each has width 2 2 1 1, as marked by
the wedges. Each smaller rectangle represents one meeting, including appropriate resources
(not shown)

Day 1 Day 2 Day 3 Day 4 Day 5

Period 1 Column 1 Column 4 Column 5 Column 5 Column 3

Period 2 Column 1 Column 4 Column 5 Column 5 Column 3

Period 3 Column 0 Column 3 Column 1 Column 4 Column 0

Period 4 Column 0 Column 3 Column 1 Column 4 Column 1

Period 5 Column 2 Column 2 Column 0 Column 2 Column 2

Period 6 Column 3 Column 2 Column 0 Column 2 Column 6

Period 7 Column 4 Column 5 Column 3 Column 0 Column 6

Period 8 Column 5 Column 6 Column 4 Column 1 Column 6

Fig 2. A typical layout of a week of 40 times into six columns of width 2 2 1 1 plus one of width
3 1. Double lines indicate meal breaks

umn will occur. Time preassignments are rare and we assume that they do not overcon-
strain this problem.

In practice this algorithm finds layouts like the one in Figure 2 with virtually no
backtracking. It has produced larger (two-week) layouts with ease. At present it does
not try to equalize the number of morning and afternoon times granted to each column (a
common soft requirement),but this could easily be added in a final stage which permutes
blocks of times within days.

5 Tile Layout

The second phase of our algorithm builds, for each form, a set of tiles holding the
meetings of that form. This task is usually trivial in the senior forms, where the set of
widths of all meetings equals, or almost equals, the set of tile widths, but non-trivial in
the junior years, which typically contain many small meetings. For example, the Year 8
meetings from thebghs98instance have widths

2 2 1 English 2 2 1 Mathematics 2 2 1 Science
2 2 Languages 2 2 Health 1 1 1 Geography
1 1 1 History 2 Art 2 Sport
2 Technology 2 Design 1 1 Music

and must be packed into the usual six tiles of width 2 2 1 1 and one of width 3 1. We
wish to minimize the number of meetings split across two tiles, creating a bin packing
problem.

Some of these entries represent single meetings (e.g. Mathematics) while others
represent a set of five meetings, one for each student group (e.g. English). For compre-
hensibility, even in this second case we prefer to place all the meetings for one subject
into the same tile.

Our current algorithm uses a tree search which first searches for a packing that
does not split any meetings over two tiles. If that fails, it splits the smallest meeting in
two in all possible ways and tries again. If that fails it splits the two smallest meetings
in two in all possible ways, and so on. It usually works quite well (Section 8) but during
development has occasionally entered on a long, fruitless search. We plan to replace
it with a heuristic method which we believe will do just as well in practice, so instead
of describing our current algorithm further we now present some considerations of
importance to any tile layout algorithm.

Although we place all the meetings for a single subject within one tile, it is not al-
ways possible for them to run simultaneously there, because resources may not be suffi-
cient, and this leads to the runarounds already mentioned (Section 3). The key quantity
is theminimum runaround width, the minimum number of times that a set of meetings
must spread through if its demands are to be satisfied. For example, five one-period Mu-
sic classes must spread through at least three times if two Music teachers are all that are
available. In general, the minimum runaround width is the maximum, over all resource
demands made by the meetings, of

Width of one meeting× Number of occurrences of demand
Number of resources available to satisfy demand

Each set of meetings is classified asvertical(meaning that the meetings must run simul-
taneously, as in the case of Mathematics where the input data demands it),runaround
(meaning requiring a runaround, because the minimum runaround width is greater than
each meeting’s width), oreasy, meaning that either layout will work. For example, in
Figure 1, Mathematics is vertical, Music is runaround, and the others are easy.

For a set of meetings to be timetabled within one tile it is of course necessary, to

begin with, that the total width of all meetings containing any one student group resource
should not exceed the tile width. Beyond this, there must be room for the runaround
meetings to spread out in. When several sets of runaround meetings lie in the same tile,
they interleave with each other but still occupy width equal to their total width, so this
total must be at least as large as every minimum runaround width. Easy meetings may
be co-opted into the runaround, as English is in Figure 1, to help achieve thisrunaround
condition, which is sufficient as well as necessary for a timetable to exist, provided that
the resource demands of the different sets of meetings do not interact.

Some tiles contain meetings from several forms, and consequently when a tile
layout algorithm begins it may find that some of the tiles it is given are not empty. It
must check for each of its sets of meetings whether resources are sufficient to permit
them to enter such tiles. In particular, when some major column’s width is unique, as is
the case for the width 4 column of thebghs98instance, we only ever create one tile for
that column, and that tile holds meetings from every form.

There is an artificialfixed formof fixed tilesholding meetings with preassigned
times. Each fixed tile is permanently assigned to a particular major column,and since the
times assigned to columns are known at this point, any meetings with preassigned times
can find their way via the columns to the fixed tiles they belong in. These fixed tiles also
record resource unavailabilities at particular times, converted in the usual manner into
artificial meetingsoccupying those resourcesat those times. If a form containsa meeting
with one or more preassigned times, that meeting will have already been assigned to the
corresponding fixed tile when the form’s tile layout begins, and that fixed tile will be one
of the tiles handed to the tile layout algorithm.

To summarize, the aim of a tile layout algorithm is to assign its sets of meetings to
tiles, avoiding violations of the runaround condition and resource sufficiency problems,
minimizing the number of meetings that are split in two, and paying attention to block
structure. Some of the meetings it is given may have already been assigned to some of its
tiles, and these preassignments must be respected. We believe that a heuristic algorithm
that assigns the widest meetings first, keeping vertical and runaround meetings apart
as far as possible, looking ahead to avoid resource sufficiency traps, and splitting one
meeting in a best-fit manner whenever it gets stuck, will do all this very well.

After meetings are allocated to tiles, they are timetabled within them so as to satisfy
resource limits and time block structure requests as far as possible. For single-form tiles
this is a small search problem easily solved to optimality; for large multi-form tiles, see
the remarks at the end of Section 6.

Although it has not occurred yet in our data, it is quite possible for the minimum
runaround width of some set of meetings to exceed the tile width. In that case the
runaround must spread over more than one tile, or perhaps it could triggerpart-form
tiling, where the student group resources of one form are partitioned into two parts, each
of which is then treated as a separate form. At present our algorithm always partitions
the Year 7 and Year 8 forms into two part-forms, using a simple clustering algorithm
to decide which student groups to place in each partition. These decisions could be
automated, or optionally taken from the timetable planner. Most of the meetings in the
higher forms are vertical, so there is nothing to gain from part-form tiling those forms.

6 The Main Timetabling Phase

After all the meetings have been allocated to tiles, and timetabled within them, the next
step is to timetable the tiles against each other; that is, to assign the tiles to columns. We
call this themain timetablingphase.

Underlying any main timetabling algorithm will be a test, probably called many
times, for determining whether a given set of tiles iscompatible: able to run simultane-
ously without exceeding resource limits. We consider this compatibility testing prob-
lem first.

The simplest way to test a set of tiles for compatibility is to merge their meetings
into one large tile of the same width and timetable it. This is likely to be too slow when
many calls on the test are made.

Three faster compatibility tests have been tried. Each gives an upper bound on
the number of unassignable tixels (atixel is one resource at one time) that will result
from placing the tiles into the same major column. All three methods assume that the
individual tiles have been timetabled, and never redo these individual timetables.

The simplest method uses a worst-case measure of the demand for resources made
by each tile. If demand varies at different columns of the tile, we take for each type of
demand the maximum over the columns. For example, if the five classesdo Mathematics
simultaneously for some of the tile’s times, and History simultaneously for the rest, then
the tile’s demand will include five Mathematics teachersand five History teachers, but
only five rooms.

Now form a bipartite graph with one left-hand node for each resource of the in-
stance, and one right-hand node for each resource demand made by each tile in the set
being tested. Edges join demand nodes to all resources qualified to satisfy that demand.
Find a maximum matching in this graph. The desired upper bound is the number of un-
matched demand nodes, multiplied by the common tile width to give a result in tixels.

The second method is a refinement of the first, in which the demand nodes are
weighted by the number of tixels that would be deficient if the node remained un-
matched. For example, suppose a tile requires two Computer laboratories at two of its
times, one Computer laboratory at two of its times, and no Computer laboratories at the
other two times – a total of six tixels altogether. This would be represented by two Com-
puter laboratory demand nodes, the first weighted 4 and the second 2. The maximum
matching is now required to minimize the weight of the unmatched nodes. For example,
if one of our two Computer laboratory nodes was unmatched, it would be the weight 2
one, reflecting the fact that withholding one laboratory from this tile would cost 2 unas-
signed tixels. If both were unassigned the cost would be 6 tixels. The total weight of
unmatched nodesgivesa more refined measureof incompatibility,and finding maximum
node-weighted matchings is not much harder than finding unweighted ones.

The test we currently use is a yet further refinement. It is considerably slower than
the first two, but still fast enough for our purposes. Each tile is assumed as before to
be timetabled in one fixed way. The test works by combining the tiles one by one into
a larger tile, so let us suppose thatk tiles have been taken and we now wish to add in
the(k + 1)st.

For each column (individual time) of the combined tile, find the demands made on

resources by that column. Do the same for each column of the tile to be added. Take
the first column of the combined tile and the first column of the tile to be added, merge
their demands together into one bipartite graph, find a maximum matching, and count
the number of unmatched nodes. This is the number of unallocated tixels that would
result if these columns were aligned. Do this for every combination of one column
from the combined tile and one from the incoming tile – if the tile width isW, a total of

2W tests.
Now build a complete bipartite graph whose left-hand nodes are the columns of the

combined tile, and whose right-hand nodes are the columns of the incoming tile. Weight
the edge connecting a pair of nodes by the outcome of the test on the corresponding
columns. Find a maximum matching of minimum cost in this graph, giving a permuta-
tion of the columns of the incoming tile that minimizes the number of unallocated tixels.
Permute the timetable of the incoming tile according to this matching, and merge the tile
into the combined tile. Repeat until all tiles are merged. The total weight of the last min-
cost matching will then be an upper bound on the number of unallocatable tixels if these
tiles are timetabled together.

This last test has the advantage when tiles with tall, thin demands meet. For exam-
ple, in thebghs98instance there is a Year 9 tile that requires (among other things) five
Physical Education teachers simultaneously for two of its six times, and a Year 10 tile
that also requires five Physical Education teachers for two simultaneous times. There are
five Physical Education teachers altogether. The first test would rate the incompatibility
of these two tiles at 30 tixels (five teachers times six times), the second at 10 tixels (five
teacher nodes of weight two each), while the third recognizes that there are no unallocat-
able tixels at all.

Several algorithms for the main timetabling phase have been implemented and
tested, including a set covering algorithm (which generates many sets of compatible
tiles and then tries to select some sets which contain every tile exactly once), various
tree search algorithms, and an augmenting path algorithm inspired by the algorithm of
Section 7. In no case did any of these other algorithms outperform the algorithm about
to be described.

Take each form in turn and assign its tiles to suitable columns, beginning with the
fixed form and ending with the part-form forms, which have small height and so make
good fillers of cracks. Suppose thatk forms have been allocated to columns in this way
and we now wish to allocate the(k + 1)st form. Test each tile in the(k + 1)st form for
compatibility with each column. To be considered even minimally compatible the tile
must have the same width as the column and not have been previously assigned to any
other column (a tile may be in multiple forms, in which case it will be assigned a column
along with the first of its forms that is timetabled, and must not be assigned to some
other column afterwards). Build a bipartite graph in which the left-hand nodes are the
columns and the right-hand nodes are the tiles of the current form. Edges join tiles to
those columns with which they are minimally compatible. These edges are weighted by
the number emerging from the compatibility test of this tile with this column. Find a
minimum cost maximum matching in this graph; its cost will be an upper bound on the
number of unassignable tixels created by adding in these tiles. Make the assignments of
tiles to columns indicated by this matching and proceed to the next form. An example

Mon3 Mon4 Wed5 Wed6 Thu7 Fri3

11-2/12-1

10-English

9-Maths

8AS-Art12-D&8A-Spo 8A-Spo

8S-Spo 8S-Spo

8A-Geo 8A-Geo

8S-Geo 8S-Geo

8C-Science 8C-Science

8K-Science 8K-Sci

8O-Science

8C-Mus

8K-Mus

8O-Mus

7A-Science 7A-Science

7S-Science 7S-Science

7A-Lan

7S-Lan

7C-HPP-Sport

7K-HPP-Sport

7O-HPP-Sport

60

Mon1 Mon2 Wed3 Wed4 Thu8 Fri4

11-3-Maths/12-3

11-3-Maths/12-3

11-3-Maths/12-3

11-3/1 11-3/1 11-3/1

11-3/1 11-3/1 11-3/111-3/1 11-3/1 11-3/1

E10-6 E10-6 E10-6E10-4 E10-4

9-Science-1

9-Science-2
9-Scie 9-Science-3

9-Science-4 9-Scie

9-Science-5 9-Science-5

9-Musi

9-Musi

9-Musi

9-Musi

9-Musi

8-LPD-5678 8-LPD-56788CKO-A 8CKO-A

8AS-D& 8AS-D&

7A-English

7S-English

7C-His 7C-His 7C-His

7K-His 7K-His 7K-His

7O-His 7O-His 7O-His

7C-Geo 7C-Geo 7C-Geo

7K-Geo 7K-Geo 7K-Geo

7O-Geo 7O-Geo 7O-Geo

61

Tue5 Tue6 Thu5 Thu6 Mon5 Fri5

11-4/12-4-Maths

11-4/12-4-Maths

11-4/12-4-Maths

11-4/1 11-4/1 11-4/1

11-4/1 11-4/1 11-4/1

11-4/1 11-4/1 11-4/1

11-4/1 11-4/1 11-4/1

10-Science

E9-6 E9-6E9-4 E9-4

8A-English

8S-English 8S-Eng

8A-Mus

8S-Mus

8CKO-D 8CKO-D8C-Spo 8C-Spo

8K-Spo 8K-Spo

8O-Spo 8O-Spo

8C-Geo 8C-Geo

8K-Geo 8K-Geo

8O-Geo 8O-Geo

7A-Mus 7A-Mus

7S-Mus 7S-Mus

7A-His 7A-History
7S-His 7S-His 7S-His

7A-Lan

7S-Lan

7C-English

7K-English

7O-English

62

Tue3 Tue4 Fri1 Fri2 Mon6 Wed7

11-5/12-5

11-5/12-5

11-5/1 11-5/1 11-5/1

11-5/1 11-5/1 11-5/1

11-5/1 11-5/1 11-5/1

11-5/1 11-5/1 11-5/1

10-Maths

9-English-1

9-English-2

9-English-3

9-English-4

9-English-5

8-LPD- 8-LPD-12348CKO-D 8CKO-D

8AS-D& 8AS-D&

7A-Maths

7S-Maths

7CKO-A 7CKO-A7CKO-D 7CKO-D7CKO-D 7CKO-D

63

Tue1 Tue2 Thu3 Thu4 Mon7 Wed8

12-6

11-6

E10-710-PD

E9-7 E9-79-PD-1 9-PD-1

9-PD-2 9-PD-2

9-PD-3 9-PD-3

9-PD-4 9-PD-4

9-PD-5 9-PD-5

8CKOAS 8CKOAS-Maths8C-Geo

8K-Geo

8O-Geo

8A-Geo

8S-Geo

7AS-Art12-D&7AS-D& 7AS-D&7AS-D& 7AS-D&

7C-Science

7K-Science 7K-Science

7O-Science 7O-Science

7C-Lan

7K-Lan

7O-Lan

64

Wed1 Wed2 Thu1 Thu2 Mon8 Tue7

12-2

12-2

12-2-O 12-2-O 12-2-O12-2-O 12-2-O 12-2-O

11-1

E10-5E10-4

E9-5 E9-5E9-4 E9-4

8A-Science 8A-Science

8S-Science

8A-Mus

8S-Mus

8C-English 8C-English

8K-English 8K-Eng

8O-English

8C-Mus

8K-Mus

8O-Mus

7A-HPP-Sport

7S-HPP-Sport

7C-Maths

7K-Maths

7O-Maths

65

Fri6 Fri7 Fri8 Tue8
7-Opti

8-Opti

9-Sport 9-Opti

10-Sport 10-Opt

11-Sport 11-Opt

12-7 12-Opt

7C-Music

7K-Music
7O-Mus 7O-Mus

7C-Lan

7K-Lan

7O-Lan

7A-Geography

7S-Geography

8C-History

8K-History

8O-History

8A-History

8S-History

0

Fig 3. A timetable for thebghs98instance described in Section 8, created by the algorithm of
Section 6. Each row contains the meetings attended by one student group. Each narrow column
represents one of the 40 times of the week; these are grouped into 7 major columns, within which
traces of the tiles that were placed in those columns are clearly visible. The tile at bottom left is an
example of a multi-form tile; it spans Years 11and 12. One can also see part-form tiles for Year 7
at the top, one set for student groups 7C, 7K, and 7O, the other for 7A and 7S

of a timetable created by this algorithm appears in Figure 3.
The algorithms for testing tiles for compatibility and for the main timetabling are

essentially the same, only operating at different scales. Both algorithms are weight-
ed versions of the meta-matching algorithm of [2], without the look-ahead tests em-
ployed there.

Should some kind of tree search seem indicated in future, one interesting one we
have tried is based on finding an alternating cycle of minimum cost in the min-cost flow
at each level. Applying this cycle gives the maximum matching of second-minimum
cost, giving two matchings of each form so that a small binary tree of alternative
assignments may be searched.

After the tiles’ columns are fixed, each column receives a final timetabling which
attempts to give its meetings the block structures they require, while minimizing unal-
located tixels. This is a general timetabling problem, and despite being limited to one
column it can still be challenging. Our current algorithm embarks on a long tree search
which is terminated early to keep running time down. It is slow and unreliable and needs
to be replaced by an algorithm based on (but not limited to) the matchings found when
constructing the column, so we will say no more about it here. Instead we offer a method
of reducing the problem size which should be useful to any algorithm for timetabling
multiple forms within one column.

Consider a meeting that happens to stretch the full column width. Its resource

demands naturally affect the feasibility of timetabling the column, but because they are
constant at every position, they cannot influence any meeting in the column to choose
one position over another.

Next consider the set of all meetings in a column containing a given student group
resource, and suppose that together they stretch to the full column width (as is almost
always the case). A resource demand common to all these meetings is effectively a full-
width demand with the properties just outlined. For example, if student group 7C attends
English for one part of a tile and Geography for the rest, and both classes require an or-
dinary classroom, then that requirement might as well lie in a single full-width meeting.

When such requirements are subtracted out it is often possible to recognize that the
timetabling problem for some forms is independent of other forms. For example, if Year
7 is attending English and Geography while Year 10 is attending Science and Music, then
the two forms may be timetabled independently. We frequently find that the number of
forms that must be timetabled together is reduced to three or four using this analysis.

7 Resource Allocation

After times are assigned to meetings, the last major phase of our algorithm is to assign
resources. The method to be used here could be applied to any situation in which
resources are to be assigned after the times of meetings have been fixed, although, as we
will see, it relies to some extent on the coherence provided by tiling.

At first sight resource allocation may seem trivial, since time assignment is
supposed to guarantee that for each time, resources are sufficient to cover all the slots of
all the meetings running at that time. However, merely using the resources provided by
that guarantee would produce large numbers of split assignments.

A tree search algorithm was tried for this problem. The teachers were taken one
facultyat a timeand assigned in all possibleways. Despite full propagationof constraints
and grouping of equivalent resource slots to avoid searching symmetrical situations, this
method was never able to search the full tree, and often the best solution it could find in
a reasonable time (several minutes) was easily improved by a small chain of exchanges.

This experience suggested a switch to an alternating path algorithm, as used in
bipartite matching. Choose a currently unfilled slot of maximum width. See if there is
a teacher able to fill this slot (the teacher must be free at its times, and adding the slot to
the teacher’s current load must not overload the teacher). If so, assign that teacher and
move on to the next widest unfilled slot. If not, see if there is a teacher who would be able
to fill this slot if only some one of the slots that teacher is currently teaching was taken
away and given to some other teacher able to fill it. If so,make the indicated chain of two
assignments and one deassignment,and move on. If not, look for a longer chain of three
assignments and two deassignments, and so on. In searching for these chains, possible
assignments and deassignments are markedvisitedwhen they are first considered. No
already visited assignment or deassignment may be revisited in the course of one search.
This prevents loops, and ensures that only a limited amount of time is spent assigning
any one slot. If the search fails, then the slot is left unassigned for the time being.

The chain of assignmentsand deassignments isactuallycarried out by the algorithm
as the search proceeds. At any moment where the state isfeasible(where no teacher is

overloaded), the total weight of the assignments in that state is compared with the total
weight of the best solution found so far, and the best solution is replaced with the current
one if the current weight is greater. The weight of an assignment is the number of times
in the slot being assigned (so that large slots are favoured over small ones). If quota
overflows are allowed the amount of any overflow is subtracted from the weight, to dis-
courage overflowing even though it is permitted. Split assignments (see below) are also
discouraged by being given smaller weights.

A few failed slots can be retrieved by a second pass, attempting again to assign slots
that failed the first time around. This achieves nothing in the traditional applications of
the alternating path method, where the first pass produces an optimal result, but in our
more complex situation it does produce an occasional extra assignment. After that, a
third pass is made in which split assignments and partial assignments are permitted, as
we now describe.

Enhancing the basic algorithm to include split assignments is quite straightforward:
a split assignment merely affects the quotasof two teachersrather than one. The problem
with split assignments is not one of definition, it is their large number. Consider a slot
occupyingT times, and for which there areR qualified resources. Then there areR
possible ordinary assignments (one for each qualified resource), but T−1R(R − 1)(2 − 1)
split assignments: choose an arbitrary non-trivial subset of the times, assign an arbitrary
qualified resource to that subset, assign some other qualified resource to the remaining
times, and divide by two to correct for counting every assignment twice. For typical
values such asR = 10 andT = 6 this is already in the thousands and growing rapidly.
Introducing thousands of objects in order to model something that we would rather not
use anyway does not seem cost-effective; we have not tried it.

As mentioned earlier, we choose not to introduce split assignments at all initially,
to give the algorithm a chance to show what it can do without them. When they are
eventually introduced, they are in the form ofassignment factoriesrather than the
assignments themselves. These factories are lists of qualified resources and subsets of
times, from which assignments can be generated. When a factory for some meeting is
present, it will be asked to produce a single assignment which would terminate the search
at that meeting. It then searches its lists for a pair of resources that can split the current
slot between them whilebothremaining not overloaded. Any such assignment is added
to the pool of assignments and competes with them. If not used it is removed again.
Partial assignments are handled in the same way.

This algorithm has proved to be fast and almost perfect (Section 8). It does not need
to assign the teachers faculty by faculty as the tree search method did. Some detailed
examples of its results appear in Figures 4 and 5. We offer the following explanation for
its success in a context where the guarantees it usually operates under are absent.

The literature contains occasional references to an exact network flow algorithm
for resource allocation (for example, [1] cites [4] on this point). It is easy to find such
a network for our problem in the special case where all meetings require the same
number of times, each pair of meetings either clashes completely or not at all, and no
split assignments are allowed. Then limits on the number oftimesa teacher may teach
may be converted into limits on the number ofclassesa teacher may teach, by dividing
by the common meeting length and rounding down. Each path in the network begins

Mo1 Mo2Mo3 Mo4 Mo5 Tu3 Tu4Tu5 Tu6We3 We4We5 We6 Th5 Th6Th7 Th8 Fr1Fr3 Fr4 Fr5

Power (0)

Macfarlane (1)

Tregonning (0)

Wyver (4)

MsX (8)

7C-HPP-Sport

7K-HPP-Sport

7O-HPP-Sport

8-LPD

8-LPD

8-LPD-5678 8-LPD-5678

8-LPD-5678 8-LPD-5678

8-LPD-5678 8-LPD-5678

8C-Sp 8C-Sp8K-Sp 8K-Sp

8O-Sp 8O-Sp

8A-Sp 8A-Sp8S-Sp 8S-Sp

12-1-LifeManagement

11-4-LifeManagement

11-5-LifeManagem

9-6-I 9-6-IPAT

11-5B 11-5B

11-5B 11-5B

10-4- 10-4-

Mo6 Mo7 Mo8Tu1 Tu2 Tu7 Tu8We1 We2We7 We8 Th1 Th2Th3 Th4Fr2 Fr6 Fr7 Fr8

Power (0)

Macfarlane (1)

Tregonning (0)

Wyver (4)

MsX (8)

7A-HPP-Sport

7S-HPP-Sport

8-LPD-1234-5

8-LPD-1234-6

9-PD- 9-PD-

9-PD- 9-PD-

9-PD- 9-PD-

9-PD- 9-PD-

9-PD- 9-PD-

10-PD-1

10-PD-2

10-PD-3

10-PD-4

10-PD-5

12-2-LifeManagement

11-5-LifeManagem

11-5B

11-5B

10-4-HLS

StaffExecutiveMeeting

StaffExecutiveMeeting

StaffSport

StaffSport

StaffSport

Fig 4. Part of the teacher allocation for instancebghs98, showing the teachersand classes for Phys-
ical Education. This allocation is perfect: all classes are covered, there are no split assignments,
and as many teachersas possible are teaching Sport outside the faculty. The number in parentheses
after each teacher is the remaining unused portion of the teacher’s quota. This faculty is lightly
loaded

Mo1 Mo2Mo3 Mo4 Mo5 Tu3 Tu4Tu5 Tu6We3 We4We5 We6 Th5 Th6Th7 Th8 Fr1Fr3 Fr4 Fr5

Diamond (1)

Leeon (2)

MsY (0)

Unallocated 1

Unallocated 2

Unallocated 3

12-3A 12-3A 12-3A 7CKO1 7CKO1

7CKO2 7CKO2

7CKO3

7CKO48CKO1 8CKO1

8CKO2 8CKO2 8CKO3 8CKO3

8CKO4 8CKO4

8AS1-1

8AS2-1

8AS3- 8AS3-

9-4Ar 9-4Ar

10-4- 10-4-12-1-Visua 12-1-Visua

12-1-Visua

11-4-VisualArt

12-4B 12-4B 12-4B11-3A 11-3A 11-3A

MsYFree MsYFree MsYFr

Mo6 Mo7 Mo8Tu1 Tu2 Tu7 Tu8We1 We2We7 We8 Th1 Th2Th3 Th4Fr2 Fr6 Fr7 Fr8

Diamond (1)

Leeon (2)

MsY (0)

Unallocated 1

Unallocated 2

Unallocated 3

12-2-Photography-2U11-6-Photography7CKO3

7CKO4 7AS1-1

7AS2-1

7AS3- 7AS3-

9-4Ar 9-4Ar

10-4-Art

MsYFr MsYFr MsYFr

StaffSport

StaffSport

StaffSport

Fig 5. Another part of the teacher allocation for instancebghs98, showing the teachersand classes
for Art. This allocation is much less perfect: there is one split assignment, shown in italics, partly
unallocated, for which a correcting alternating path exists that the algorithm has failed to find; plus
two other unallocated classes, caused by assigning four simultaneous Art classes when there are
only three Art teachers. If these meetings’ times were moved, the Art teachers would need to be
assigned less Sport in order to take them, since the total remaining unused teachers’quota is only
3 times. This suggests that it would have been better if some Art classes had been timetabled over
Sport, rather than classes from some other subject in which the teachers are more lightly loaded

with an edge from the source to a node representing one teacher, of capacity equal to the
number of classes that teacher may teach, then proceeds via an edge of capacity 1 to a
node representing that teacher’s availability at a particular set of times, thence to each
node representing a class at that set of times that the teacher is qualified for, and from
there to the sink with capacity 1.

It is easy to verify that the usual max-flow algorithm on this network is equivalent to
our algorithm above. There isalso a matroid intersection formulation whose equivalence
is even more intuitive. Thus, in this special case, our algorithm is optimal.

When we move to the general problem, two sources of NP-completeness appear:
when meetings vary in length, fitting them into teachers’quotas is a bin packing problem;
and when they clash in arbitrary ways, the clash graph (in which nodes are meetings
and edges join pairs of clashing meetings) changes from a set of disjoint cliques to
an arbitrary graph, producing a node colouring problem [3]. Thus the alternating path
method cannot be optimal in the general case,but we argue now that it standsan excellent
chance of doing well nevertheless.

The algorithm sorts the meetings by decreasing number of times, assigning the
meetings with the most times first. In bin packing terms this is the ‘first fit decreasing’
heuristic, for which there are quite good performance guarantees [5]. In the common
situation where the largest meeting size is equal to the column width, and no meetings
of that size are split across two columns, the algorithm will be optimal while assigning
these large meetings.

The node colouring intractability is mitigated by the use of tiles. Most meetings
occupy a single tile, so the clash graph is close to the set of disjoint cliques of the
tractable special case. Meetings split across two tiles spoil the disconnectedness, and
meetings that occupy less than the full column width may not clash with other short
meetings in their column; but these cases are in the minority.

8 Results

This section analyses the performance of our algorithm on three instances taken from
a high school in Sydney, Australia. A statistical description of these instances appears
in Table 1. These instances contain staff meetings, which are not yet included in our
solutions except when their times are preassigned. Staff meetings do not affect teacher
quotas, they merely make the teachers involved unavailable when they are running.

Run times for the four phases and in total are given in Table 2. Total times were
checked against wristwatch time. Both the tile layout and main timetabling phases
include laying out meetings within the tiles created by those phases, and this operation
in its current defective state (Section 6) dominates the cost of both these phases, so speed
improvements can be expected here in future. The times given for resource allocation
include a stopgap attempt at room allocation using the teacher allocation algorithm.
When a dedicated room allocation algorithm is installed, resource allocation time should
decrease by two to three seconds.

The quality of the solutions found for the three instances is summarized in Table
3. The algorithm always assigns the correct number of times to each meeting, never
introduces student group clashes, and prefers to leave teacher and room slots unassigned

Table 1. Statistical description of the three instances tested, showing the number of times in
the week, meetings, teachers, rooms, and student groups. The last three lines show, for each of
the three resource groups, the number of tixels of demand for that resource group as an absolute
number and as a percentage of the number of tixels of supply for that resource group. (A
tixel is one resource at one time.) For students and rooms the tixel supply is just the number of
resources times the number of times in the week, but for teachers it is less owing to teachers’quota
limits. The demand for student groups is less than 100% because a few final year students attend
marginally less than full time

Instance description bghs93 bghs95 bghs98
Times in the week 40 40 40
Meetings 148 146 152
Teachers 53 52 56
Rooms 46 48 45
Student groups 23 27 30
Teacher demand (tixels) 1489 (95.3%) 1378 (95.4%) 1408 (96.6%)
Room demand (tixels) 1295 (70.4%) 1306 (68.0%) 1357 (75.4%)
Student group demand (tixels) 872 (98.0%) 1041 (99.3%) 1197 (99.8%)

Table 2. Run times in seconds for the three instances tested. The tests used a 1.2GHz Pentium
IV running Redhat Linux 5.1. Run times are as reported by the Linuxtimecommand, which is
accurate to one second

Run time (seconds) bghs93 bghs95 bghs98
Column layout 0.0 0.0 0.0
Tile layout 2.0 7.0 1.0
Main timetabling 2.0 6.0 5.0
Resource allocation 6.0 6.0 6.0
 Total time 10.0 19.0 12.0

Table 3. Solution quality for the three instances tested. The table shows both the absolute number
of each possible kind of defect, and the number as a percentage of the number of meetings, room
tixels, teacher slots, or teacher tixels as appropriate

Solution quality bghs93 bghs95 bghs98
Meetings with at least one time layout problem 19 (13.8%) 63 (43.2%) 63 (41.4%)
Room tixels unassigned during time assignment 33 (2.5%) 12 (0.9%) 26 (1.9%)
Teacher slots split by resource assignment 13 (2.9%) 31 (6.7%) 21 (4.8%)
Teacher tixels unassigned during time assignment 4 (0.3%) 12 (0.9%) 10 (0.7%)
Teacher tixels unassigned during resource assignment 11 (0.7%) 25 (1.8%) 20 (1.4%)
 Total teacher tixels unassigned 15 (1.0%) 37 (2.7%) 30 (2.1%)

rather than introducing teacher and room clashes. So the possible defectsare time layout
problems (wrong number of double periods, meeting spread over too few days, etc.),
missing teacher and room assignments, and split teacher assignments.

The number of meetings with some kind of time layout problem is quite high at
present (over 40% in two instances), but this is less serious that it may seem. Most of
the problems concern assigning one more or less double period than was requested, and

often there would not be a strong preference about this in any case. We hope to capture
better data concerning time layout preferences in future, including optional alternatives
and priorities, and this plus the planned new algorithm for distributing meetings to tiles
(Section 5) should reduce the number of time layout problems to an acceptable level.

We have not yet written a dedicated room assignment algorithm, so the table only
reports the number of tixels for which rooms are not available after the main timetabling
phase. Since room constancy is not required this is probably the exact number of unas-
signed rooms that will occur in the end (the only possible problem being the need for
room constancy in double periods). These unassignable room demands are for spe-
cialised laboratories whose demand is very tight. This problem is quite common in high
schools and is not of major concern, since, given its low relative frequency, it is not diffi-
cult to ensure that no class meets in an inappropriate room for more than one of its times,
and the teacher would organize the classroom material accordingly. Our remarks below
about reducing unallocated teacher tixels also apply to rooms.

The number of split teacher assignments seems to be close to optimal now. In other
experiments, not reported in detail here, in which teachers were allowed to take just one
more period than their quota, but with a penalty if this occurred, the number of teachers
who exceeded their quota was quite modest (between 10 and 20), and the number of split
assignments typically halved. This, along with hand analysis, provides good evidence
that split assignments are mainly needed to pack classes into teachers’ quotas, and thus
are inevitable.

This leaves the problem of assigning qualified teachers to classes. Although as a
last resort an unqualified teacher may be assigned, this is considered much worse than
assigning an inappropriate room, and our absolute numbers of unassigned slots are at
present too high for our timetables to be usable.

Unassigned teacher tixels are created in two ways. First, during the main
timetabling, a decision may be made to run tiles simultaneously that results in the de-
mand for teachers with a certain capability at some time exceeding the number of teach-
ers qualified for that capability available at that time. The number of tixels affected by
defective main timetabling in our instances is quite small (4, 12, and 10), and close ex-
amination shows that some of them are caused by defective layout of meetings within
large tiles. Our new algorithm (Section 6) should correct that problem. Beyond that, it
will be necessary to break open the tile structure to swap fragments of classes containing
unassignable teachers to other times where teachers are available. Hand analysis of our
current solutions indicates that this will succeed most of the time. Any of the meetings
contributing to the excessive demand may be moved, and we would naturally choose to
try to move small classes rather than large electives.

The second chance to create unassigned teacher tixels comes during resource
assignment, when the resource allocation algorithm is unable to assign a teacher or split
teacher to a slot, even if there are teachers free. Examination of the data suggests that
many of these problems arise from various imbalances in the supply of teachers.

For example, some faculties are lightly loaded, so their teachers should take some
classes from outside the faculty. But the number of such outside classes is very limited
(in our instances,essentiallyonly Sport), so care must be taken to ensure that the faculty’s
own classes are not scheduled at the same time as these other classes. Our algorithm is

currently quite blind to the need for this, although we can diagnose the situation well by
comparing supply with demand for each faculty. On occasions during development we
have observed solutions in which the right decisions were made fortuitously, and these
contained significantly fewer unassigned tixels than reported in our formal results.

9 Conclusion

The work reported in this paper is ongoing, and our results at the time of writing are not
perfect. Nevertheless, they show that it is possible to construct high school timetables
of high quality in about ten seconds. Our key innovations are tiling and an effective
resource allocation algorithm based on alternating paths. The alternating path algorithm
might find application in other resource allocation tasks, although it does rely on tiling
to ensure that the graph colouring problems it faces are not too severe.

Things to do immediately include getting staff meetings into tiles, replacing the
tile layout algorithm, replacing the algorithm for timetabling the meetings within a
single tile, writing a room allocator, and writing code for breaking open the tile structure
and swapping small parts of meetings that failed to receive their needed resources to
better times. Ideas for detecting and correcting resource supply imbalances could be
developed further.

When all this is done our timetables should be good enough to show to high
schools. Australian high schools are just now receiving broadband Internet connections,
so exciting prospects are opening up for delivering timetabling across the Internet. Fast
response time will be important.

References

1. M. W. Carter and Gilbert Laporte. Recent developments in practical course timetabling. In
Edmund Burke and Michael Carter (eds.),Practice and Theory of Automated Timetabling II
(Second International Conference, PATAT’97, University of Toronto, August 1997, Selected
Papers), pages 3–19. Springer Lecture Notes in Computer Science 1408, 1998.

2. Tim B. Cooper and Jeffrey H. Kingston. The solution of real instances of the timetabling
problem.The Computer Journal36, 645–653 (1993).

3. Tim B. Cooper and Jeffrey H. Kingston. The complexity of timetable construction prob-
lems. InPractice and Theory of Automated Timetabling (First International Conference,
PATAT’95, Edinburgh, August 1995, Selected Papers), pages 283–295. Springer Lecture
Notes in Computer Science 1153, 1995.

4. J. S. Dyer and J. M. Mulvey. Computerized scheduling and planning.New Directions for
Institutional Research13, 67–86 (1977).

5. Garey M. R. and Johnson D. S..Computers and Intractability: a Guide to the Theory of
NP-completeness. Freeman, San Francisco, 1979.

6. D. de Werra. An introduction to timetabling.European Journal of Operational Research
19, 151–162 (1985).

