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Abstract One strand of current research into automated timetabling is the
development of standard data formats—formats that researchers can use to
exchange data and verify each others’ solutions. Nurse rostering is lagging in
this respect: each step forward seems to bring a new format. Standardization
requires clarity in the underlying model, and this paper is a contribution to
clarity in the area of history: how solutions to previous instances affect the
current instance. The paper addresses several issues, including avoiding double
counting of penalties, constraining consecutive busy times, and completeness.
The work is implemented within the XESTT model of nurse rostering.
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1 Introduction

One strand of current research into automated timetabling is the development
of standard data formats—formats that researchers can use to exchange data
and verify each others’ solutions. Nurse rostering is lagging in this respect:
each step forward seems to bring a new format.

Standardization requires clarity in the underlying model. This is largely
present in nurse rostering: concepts such as shifts, nurses, and constraints are
clear, and consistent through the literature. There is one area, however, which
is less clear, although good progress has been made recently: history, or how
solutions to previous instances affect the current instance.

History has been discussed for over 15 years [1], but this paper mainly
draws on two strong recent works. The Second International Nurse Rostering
Competition [2,3], referred to here as ‘the competition’, brought history to a
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wide audience in a concrete form. The other work [13] adjusts the usual integer
programming formulation of nurse rostering to define history precisely.

The main contribution of this paper is as follows. All previous work known
to the author has treated each constraint, or each class of similar constraints
(counters, patterns, etc.), as a separate problem for history, needing a separate
analysis. Because there are many constraints, there is no criterion for deciding
when the work is complete. This is noticeable in [13], for example, where no
claim of completeness is made, even though the work is thorough and there is
little doubt that it is, for all practical purposes, complete.

This paper, in contrast, defines and implements history in the framework
of the XESTT nurse rostering data format [9,10]. All relevant constraints are
formulated using just two kinds of constraints, the cluster busy times constraint

and the limit active intervals constraint. Although the universality of these
constraints is only a hypothesis, good evidence for it exists. By applying history
to these two constraints, this paper does all the analysis at once; there is less
analysis to do, and good evidence that it is complete.

Section 2 describes XESTT and the cluster busy times and limit active
intervals constraints. Section 3 defines the history problem and applies the
well-known method of counter start and counter remainder values to cluster
busy times constraints. Later sections address other issues related to history:
avoiding double counting of costs (Section 4), understanding heuristically de-
rived constraints (Section 5), optimizing sequence constraints (Section 6), and
using preassigned events to represent history (Section 7). An appendix presents
the formulas that form the basis of the author’s implementation (Section 9).

2 XESTT

This section introduces the XESTT nurse rostering data format and its clus-
ter busy times and limit active intervals constraints, in enough detail for the
purposes of this paper. For more detail, see [9]; and for the complete story, see
the specification pages of [7].

XESTT is an extension of the well-known XHSTT high school timetabling
data format [7]. Its name reflects this origin, with ‘ES’ for ‘employee scheduling’
replacing ‘HS’ for ‘high school’.

An XESTT instance of the nurse rostering problem contains four main
kinds of entities: times, resources, events, and constraints.

A time represents an indivisible interval of time in which events may occur.

A resource represents something that attends an event. In nurse rostering,
all resources are nurses.

An event represents an indivisible piece of work, and contains a starting
time, an integer duration (number of times), and any number of resources,
which are considered to be busy attending the event from the starting time
for the duration. The duration is a fixed constant, but the starting time and
the resources may either be preassigned or left open for the solver to assign.
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Each shift is represented by an event with its own unique, preassigned
starting time, and duration 1. This is artificial, but it works well in practice,
because nurse rostering constraints tend to limit the number of shifts worked,
whereas in high school timetabling, where XESTT originated, they limit the
number of busy times. Giving each shift duration 1 unifies the two models.
For example, the requirement that a nurse work at most one shift per day is
expressed by requiring the nurse to be busy for at most one time on each day.

A shift’s resources represent the demands for nurses for that shift. They
are usually left open for the solver to assign, although XESTT does allow any
subset of them to be preassigned. Constraints, given separately, may be used
to specify that some or all of the nurses should have particular skills.

For definiteness, examples will assume that there are three shifts, and hence
three times, per day. Time names consist of a week number, a short weekday
name, and an index within the day. For example, the three times of the Monday
of the first week are 1Mon1, 1Mon2, and 1Mon3. Their associated events may
be named E-1Mon1, E-1Mon2, and E-1Mon3.

Finally come the constraints, hard and soft, which are rules that solutions
should obey. Violations of hard constraints are usually interpreted to mean
that a solution is infeasible. In XESTT they contribute a penalty to a hard
cost total. Soft constraint violations contribute a penalty to a soft cost total.

Nurse rostering constraints fall into two classes. Cover constraints are the
demands of shifts for certain numbers of nurses, often with nominated skills.
XESTT offers assign resource constraints, prefer resources constraints, and
limit resources constraints for them. Cover constraints are always independent
of history, so nothing further is said of them here.

Resource constraints are constraints on nurses’ timetables: limits on their
total workload, on consecutive night shifts, and so on. It turns out that all the
problems created by history arise from its interaction with resource constraints.

The key insight that this paper takes from XESTT is that many resource
constraints, very likely all that arise in practice, have a common structure,
which is embodied in the XESTT cluster busy times and limit active intervals

constraints. The rest of this section is devoted to these important constraints.

One of these constraints may apply independently to many resources (for
example, to all nurses who share a given contract). However, for simplicity of
presentation, it is assumed here that one constraint applies to one resource.

A cluster busy times constraint contains any number of time groups, which
are arbitrary sets of times. Associated with each time group is a polarity, whose
value may be either positive or negative. A time group is said to be positive
or negative depending on its associated polarity. When presenting constraints,
an asterisk will be used to indicate negative polarity. For example,

{1Mon1, 1Mon2, 1Mon3}
{1Tue1, 1Tue2, 1Tue3}*
{1Wed1, 1Wed2, 1Wed3}

represents three time groups, the second of which is negative.
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A time is busy for a resource when the resource attends an event at that
time, and free for the resource otherwise. A time group is busy for a resource
when it contains at least one busy time for the resource, and free for the
resource otherwise. Within a cluster busy times constraint, a time group is
active when either it is busy for the constraint’s resource and positive, or free
for the constraint’s resource and negative. Otherwise it is inactive.

A cluster busy times constraint also contains a Boolean required attribute,
saying whether the constraint is hard or soft, a non-negative integer weight
attribute, and non-negative integer minimum and maximum attributes called its
limits. The constraint is violated when the number of its time groups which
are active is above the maximum limit or below the minimum limit. The cost
of a violation is the amount by which the number of active time groups exceeds
the maximum or falls short of the minimum (or occasionally the square of that
number), multiplied by the weight.

Here are a few examples of how typical constraints may be formulated as
cluster busy times constraints. To say that a resource may work at most one
shift on day 1Mon, define a cluster busy times constraint with time groups

{1Mon1}
{1Mon2}
{1Mon3}

and maximum limit 1. To impose this constraint each day, add one constraint
for each day. To require a resource to work between 16 and 20 days in four
weeks, define a cluster busy times constraint with time groups

{1Mon1, 1Mon2, 1Mon3}
{1Tue1, 1Tue2, 1Tue3}
...

{4Sun1, 4Sun2, 4Sun3}

and limits 16 and 20. To limit the number of busy weekends, use time groups

{1Sat1, 1Sat2, 1Sat3, 1Sun1, 1Sun2, 1Sun3}
{2Sat1, 2Sat2, 2Sat3, 2Sun1, 2Sun2, 1Sun3}
{3Sat1, 3Sat2, 3Sat3, 3Sun1, 3Sun2, 3Sun3}

and so on.
Negative time groups help with unwanted patterns. For example, to say

that free days must occur in sequences of at least 2 is to say that the pattern
‘busy day, then free day, then busy day’ is unwanted. This is done for the first
three days by a constraint with time groups

{1Mon1, 1Mon2, 1Mon3}
{1Tue1, 1Tue2, 1Tue3}*
{1Wed1, 1Wed2, 1Wed3}

and maximum limit 2, then replicated for each day the pattern could begin.
More examples may be found in [9], including constraints prohibiting or

penalizing arbitrary unwanted patterns, and all the constraints from the two
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competitions [5,6,2,3]. This suggests that every resource constraint needed in
practice can be formulated using the cluster busy times constraint. Of course,
it is easy to define complex constraints that cannot be handled, such as the
RosterBooster [4] constraints containing Boolean conditions, but the consensus
of the literature seems to be that such constraints are not needed in practice.

The limit active intervals constraint contains the same attributes as the
cluster busy times constraint, but its limits apply to the lengths of sequences
of consecutive active time groups, rather than to their total number. We defer
further discussion to Section 6.

One small gap in the present work concerns constraints which limit total
workload (measured in minutes, say) rather than busy shifts. XESTT allows
shifts to be assigned a workload, and it offers a limit workload constraint

which limits total workload over a set of times. Incorporating history into this
constraint is future work; it is not likely to present any difficulties.

There is a close affinity between the cluster busy times constraint and
the integer programming formulations of the resource constraints [11,12], as
is only natural. XESTT has two advantages over integer programming for
present purposes. First, if our two key constraints can be extended to handle
history, then, assuming that they really can support all resource constraints,
this will completely solve the history problem. It is not clear how such a
claim of completeness could be made for integer programming formulations
without restricting them to something like the cluster busy times constraint,
in which case the difference is merely one of notation. Second, the limit active
intervals constraint is introduced just because the cases it handles are not
handled efficiently by the cluster busy times constraint, as will be seen. Integer
programming does not lend itself to this optimization.

3 Global and local instances

For any timetabling problem, a basic decision is the choice of the interval
of time for which requirements are to be gathered and a solution sought. In
a dynamic environment like a hospital ward, one can only hope to fix the
timetable for a week, or a few weeks, ahead. So instances must be defined over
short intervals of time. But some constraints span longer intervals, for example
limits on monthly or even yearly workloads, while others routinely cross the
boundaries of short intervals, for example limits on consecutive night shifts.

A global instance I is an instance covering a long interval of time called
the cycle (a term from high school timetabling), which could be as long as one
year. It is not practicable to solve I, or even to specify it, all at once, but it is
a useful conceptual aid because constraints are defined naturally within I.

Divide the cycle into a sequence of contiguous time intervals w1, . . . , wn,
called the weeks. Of course, they do not have to be seven days long. For each
week wi, the aim is to derive a local instance Ii which represents the part of I
concerned with wi. This will be called the projection of I into Ii. It is assumed
that solutions S1, . . . , Si−1 are available for all previous weeks w1, . . . , wi−1,
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as is usually the case, because Ii is only created shortly before wi begins.
Although I must contain everything relevant to Ii when the projection is made,
it will usually be incomplete, missing the cover requirements for wi+1, . . . , wn.

All nurses of I are projected into each Ii. Times and events are projected by
copying those lying within each wi into the corresponding Ii. Many constraints
can be projected in the same way. All cover constraints can be, as can some
resource constraints. For example, a global constraint requiring a nurse to
work at most one shift on each day of the cycle projects to a local constraint
requiring the nurse to work at most one shift on each day of wi; a global
constraint requiring a nurse to work at most 5 shifts per week projects to a
local constraint requiring the nurse to work at most 5 shifts in wi.

So the only hard cases for projection are constraints which, even taking
advantage of opportunities of division into smaller parts, depend on a nurse’s
timetable across more than one week. These can be handled by the method
of counter start values and counter remainder values, credited by [13] to [1].
This method will be applied now to cluster busy times constraints.

Consider projecting global constraint C into local instance Ii for week wi,
producing local constraint Ci. Since projection of cover constraints is trivial,
it may be assumed that C is a resource constraint; and then, by Section 2,
C may be assumed to be a cluster busy times constraint (or a limit active
intervals constraint, which will be considered in Section 6).

Although the constraint may cross week boundaries, it will be assumed
that none of its individual time groups do so. For example, if the constraint
concerns weekends and so contains time groups such as

{1Sat1, 1Sat2, 1Sat3, 1Sun1, 1Sun2, 1Sun3}
{2Sat1, 2Sat2, 2Sat3, 2Sun1, 2Sun2, 1Sun3}
{3Sat1, 3Sat2, 3Sat3, 3Sun1, 3Sun2, 3Sun3}

then the week boundary cannot fall between Saturday and Sunday. The method
presented here could be extended to cover such cases, but that would only add
complexity that never seems to be needed in practice.

Many constraints monitor only one or two weeks, and do not give rise to a
Ci in every week. But, for uniformity, a special case will not be made of them.
The following constructions work for them, but produce trivial constraints in
the irrelevant weeks which would be omitted in practice.

Consider the time groups of C. Those within wi can be represented within
Ii, and are copied into Ci. The rest must be omitted, because the times they
refer to do not exist in Ii.

What matters about the omitted time groups is whether they are active or
not. This can be determined for each time group before wi, by seeing whether
any of its times is a busy time in the solution for its week, and consulting its
polarity. So let xi be the number of C’s time groups preceding wi which are
known to be active. This is the counter start value of [1,13].

On the other hand, the activity of the time groups following wi is not
known, because no timetable exists for those weeks. Let ci be the number of
C’s time groups following wi. This is the counter remainder value of [1,13].
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There are cases where the activity of some time groups following wi is
known in advance—when the resource is going on holiday, for example. In
practice it may well be worth taking account of such information. However, to
limit the complexity of what follows, that will not be attempted here.

If C’s minimum limit is L and its maximum limit is U , then Ci’s limits
should be L − xi − ci and U − xi [13]. The xi omitted active time groups
are compensated for by subtracting xi from both limits. The ci omitted time
groups of unknown activity could turn out to be active too, so the minimum
limit must be reduced by ci to ensure that it is not violated in that case. But
they could also be inactive, so the maximum limit cannot be reduced as well.

The XESTT cluster busy times constraint optionally accepts xi and ci
values for its resources. It increases the number of active time groups by xi

when comparing with a maximum limit, and by xi + ci when comparing with
a minimum limit. This has several advantages: it is more concise when one
constraint handles many resources identically except for their xi and ci values;
it makes xi and ci available for another use (Section 4); and it gives the desired
result when the cost function is quadratic. Full details appear in Section 9.

For any global solution containing local solutions S1, . . . , Si−1, if C is not
violated then neither is Ci. Conversely, for any global solution containing
S1, . . . , Sn−1, if Cn is not violated then neither is C. So the Ii taken together
are the same as I: they have the same times, resources, events, and constraints.

4 Avoiding double counting of constraint penalties

The argument just given, showing that the projections Ii taken together are the
same as the global instance I, has a flaw. The Ii enforce the same constraints,
but some violations may be penalized more than once.

For example, suppose I has four weeks, and a constraint C with weight 1
limits the total number of busy times to at most 20. Suppose C’s resource is
busy for 7 times in each of the 4 weeks. The penalty in the global instance is
(4 ∗ 7)− 20 = 8; but C3 attracts a penalty of (3 ∗ 7)− 20 = 1, and C4 attracts
a penalty of (4 ∗ 7)− 20 = 8, making a total penalty of 9. The problem is that
Ci in fact constrains I1, . . . , Ii, so it includes Ci−1 within itself.

This double counting issue was addressed by the competition. Its solution
is not ideal: it varies from one constraint to another, and involves long case
analyses [2]. Our other main source [13] does not mention the issue.

There are at least four ways to handle the double counting issue.
Ignore it. When solving Ii, any double counting depends on the solutions

to I1, . . . , Ii−1, which are fixed and equal for every solution to Ii. So a solver
cannot be led astray by double counting, and ignoring it is a real option.

Make Ii cumulative. Redefine Ii to be a cumulative instance, defined over
w1, . . . , wi rather than just wi (Section 7). Then double counting is natural,
since Ii includes Ii−1. The problem here is that users do not want cumulative
instances, because they include data that are not currently relevant, such as
the coverage constraints from two months ago.
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Redefine projection. Project each constraint C onto just one Ii, which must
be the Ii containing C’s last time group, since ci = 0 there. The competition
does this for two constraints. It is simple, but weak: in the example, one would
want to include C3 in I3, but this approach omits it.

Adjust costs. Adjust the cost of Ci by subtracting any cost already reported
by Ci−1. The competition mostly does this, although it expresses the idea in
its own way. It is this paper’s preferred method.

One way to implement this approach is to give each cluster busy times
constraint a cost adjustment to subtract from its cost before reporting it.
Instead, XESTT calculates a cost adjustment, based on xi and ci. The details
appear in Section 9. It is intricate to implement, but it limits the user’s task to
supplying xi and ci, which is easy to do, and it applies to sequence constraints
(Section 6), for which a simple subtraction of a cost is not sufficient.

However the cost adjustment is determined, it is a constant and needs to
be calculated only once. It is subtracted from the cost before reporting it, each
time the cost changes, taking a negligible amount of running time.

5 Heuristic constraints

Consider again the example from the previous section, in which C constrains
its resource to work between 16 and 20 shifts over four weeks. Notice that C1,
to take the extreme example, cannot constrain the resource at all during w1,
because whatever happens then it is always possible to assign a workload in
later weeks that satisfies C in the end. This slackness gradually reduces until,
by the time Cn is reached, it has vanished altogether.

It is natural to want to add constraints in early weeks which guide solvers to
good global outcomes. In the example, one would want between 4i and 5i shifts
worked by the end of wi. Such constraints will be called heuristic constraints,
because they are heuristic in nature, not derived by projection. For example,
they probably should not be hard constraints, even if the constraints whose
satisfaction they are trying to promote are hard.

In the example, ci is 7 multiplied by the number of weeks following wi.
But if some other constraint limits a resource to at most 5 shifts per week, ci
can be reduced to 5 times the number of following weeks, making for a tighter
constraint. Still, even these cases are classified here as heuristic constraints, in
view of the non-trivial, opportunistic analyses required to derive them.

This paper mentions heuristic constraints for completeness, but there seems
to be little to say about them in general.

The cost adjustment method could be applied to heuristic constraints, since
the basic idea of a later constraint subsuming an earlier one is still present.
However, the adjusted costs can be negative. For example, if Ci limits its
resource to a total workload (including history) of between 4i and 5i shifts,
then it is easy to find cases where C1 is violated but C2 is not.
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6 Optimizing sequence constraints

This paper does not classify resource constraints. Still, there are some that
limit the number of consecutive occurrences of something, rather than the
total number of that thing: the number of consecutive days worked, consecutive
weekends worked, and so on. These will be called sequence constraints.

Cluster busy times constraints implement sequence constraints in the same
way that integer programming formulations do, using time windows. Suppose
there is a constraint limiting a resource to at most 5 consecutive busy days.
This is formulated using one cluster busy times constraint for each day of the
cycle except for the last 5 days. The first constraint has time groups

{1Mon1, 1Mon2, 1Mon3}
{1Tue1, 1Tue2, 1Tue3}
{1Wed1, 1Wed2, 1Wed3}
{1Thu1, 1Thu2, 1Thu3}
{1Fri1, 1Fri2, 1Fri3}
{1Sat1, 1Sat2, 1Sat3}

and maximum limit 5. The second constraint follows the same pattern, only
starting on 1Tue, and so on. The days of one constraint make one time window.

There is inefficiency here, because these constraints monitor much the same
time groups. Time groups not near the ends of the cycle appear in 6 constraints.
Sequence constraints with minimum limits can be even worse. Requiring free
days to come in sequences of at least 3, for example, requires time windows
of length 3 to prohibit patterns of the form ‘busy day, then free day, then
busy day’, overlapping with time windows of length 4 to prohibit patterns
of the form ‘busy day, then free day, then free day, then busy day’. It is
lucky that sequential minimum limits tend to be small, otherwise time window
formulations would be swamped by myriads of interrelated constraints.

It would be simpler to limit the number of consecutive active time groups
directly. This does not seem to suit integer programming, but it is done by the
XESTT limit active intervals constraint, which is like the cluster busy times
constraint except that its limits apply to the lengths of maximal sequences of
active time groups, not to their number. (The author learned of this design
from Gerhard Post.) For example, to limit the number of consecutive busy
days to at most 5, use a limit active intervals constraint with one time group
for each day, in chronological order, and maximum limit 5.

The limit active intervals constraint would have little value if it could only
be projected by expanding it into cluster busy times constraints first, so the
counter start values and counter remainder values method needs to be adapted
to apply to it directly. When projecting limit active intervals constraint C onto
Ci, what is needed is not the total number of active time groups from before
wi, but rather the number of active time groups immediately adjacent to wi

on the left, called xi as before. The definition of ci is as before. Full details of
the cost calculations appear in Section 9.
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7 An alternative approach to history

This section describes an alternative approach to history, based on including
preassigned events representing the solutions to all previous instances. This
approach can be used with XESTT, since it supports preassignments.

The idea is to add to Ii all times and events from all previous instances, with
their resource demands preassigned, based on previous solutions. Constraints
are projected onto Ii as before, except that time groups from weeks w1, . . . , wi

are included, and xi is not used. However, ci is used as before.
It is simplest to interpret this Ii as a cumulative instance, incorporating

previous instances within itself (Section 3). So double counting is normal.
Two objections are raised when this is proposed. First, a large amount of

historical data must be retained. In this era of big data, this cannot carry
much weight. Some data must be kept anyway: each resource’s total workload
and total weekends worked, perhaps, as in the competition. This data might
as well be complete as partial. However, as remarked in Section 3, users do
not want cumulative instances, and this is the real point of this objection.

The second objection is that this increases the size of instances, causing
problems for solvers. If this means that the search space for (say) a simulated
annealing solver is increased, that is easily fixed by making the solver recognize
the preassigned areas and exclude them from its search. If it means that the
underlying solve platform has to evaluate many more constraints, that is not
true of an incremental platform, which only evaluates changes. The author’s
KHE platform [8] would evaluate the parts of the constraints that monitor pre-
assignments just once, as the preassignments are loaded. In effect, it calculates
the xi values for itself, just once, then carries on as before.

The preassignment approach is merely a different and conceptually simpler
way to give xi values to the constraints of Ii. The xi values which stand in for
omitted time groups are replaced by evaluations of the time groups themselves.

8 Conclusion

The ideas in this paper have been implemented by the author. The XESTT
format accepts xi and ci values for its cluster busy times and limit active in-
tervals constraints. The NRConv program [9,10], which converts instances and
solutions in several formats into XESTT, adds history when converting weekly
instances from the competition. History can also be added when constructing
new instances. The KHE solve platform [8] reads XESTT and implements his-
tory in full, including cost adjustment to avoid double counting. The HSEval
web service [7] evaluates solutions. It is based on KHE, so history is included.
Altogether this is a comprehensive implementation of history which is arguably
complete, except that knowledge of a resource’s future timetable is not utilized.

Successful standards require consensus, which this author is not well placed
to create. But a standard is imperative, it will come, and it will include history.
This paper shows what such a standard could be.
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9 Appendix: Cost calculations in detail

This section presents detailed cost formulas. It is the basis of the implemen-
tation of history in the author’s KHE platform [8].

9.1 General formulas

Let I be a global instance with projections I1, . . . , In, where n ≥ 1, and let C
be a constraint with projections C1, . . . , Cn. Let the instance currently being
solved be Ii, so that solutions S1, . . . , Si are available, with S1, . . . , Si−1 fixed.

Let c(Ci), the cumulative cost of Ci, be the minimum, over all solutions S
of I containing S1, . . . , Si, of c(C), the cost of C in S. In other words, c(Ci) is
the largest cost assignable to Ci without risk of exceeding c(C).

As i grows, the set of solutions S containing S1, . . . , Si shrinks, so c(Ci)
increases:

c(C1) ≤ c(C2) ≤ · · · ≤ c(Cn) = c(C)

When cost adjustment is used to avoid double counting, the cost actually
contributed to the solution cost, called the reported cost, is c(C1) when i = 1,
and c(Ci)− c(Ci−1) when i > 1. The total reported cost is then

c(C1) + (c(C2)− c(C1)) + · · ·+ (c(Cn)− c(Cn−1)) = c(Cn) = c(C)

as required. All reported costs are non-negative, since c(Ci) ≥ c(Ci−1).
It is usual to calculate cost in two stages. First, information specific to each

constraint is used to calculate the deviation, also called the degree of violation.
This is usually the amount by which some quantity exceeds a maximum limit
or falls short of a minimum limit. Then a non-negative, non-decreasing cost

function f(x) is applied to the deviation to produce the cost. Examples are
f(x) = wx and f(x) = wx2, where w is a non-negative constant weight.

When cost is calculated in this way, one can define d(Ci), the cumulative

deviation of Ci, as the minimum, over all solutions S of I containing Si, . . . , Si,
of d(C), the deviation of C in S. Then c(Ci) = f(d(Ci)) and c(C) = f(d(C)).

9.2 Cluster busy times constraints

Suppose now that C is a cluster busy times constraint with minimum limit L
and maximum limit U , where 0 ≤ L ≤ U .

Suppose these quantities are available to Ci for calculating costs with:

ai The number of C’s time groups in C1, . . . , Ci−1

bi The number of C’s time groups in Ci

ci The number of C’s time groups in Ci+1, . . . , Cn

xi The number of C’s time groups which are active in S1, . . . , Si−1

yi The number of C’s time groups which are active in Si
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with 0 ≤ xi ≤ ai, 0 ≤ yi ≤ bi, and 0 ≤ ci. There is no zi because solutions are
available only for the past and present, not for the future.

The cluster busy times constraint has an AllowZero option, which when
true causes zero active time groups to produce cost 0, whatever the limits. As
an aid to expressing this in algebra, introduce the low-precedence operator

a :: b

Its value is 0 when AllowZero is true and a = 0, and b otherwise.
The number of active time groups of C in any solution S of I containing

S1, . . . , Si is at least xi + yi and at most xi + yi + ci, so

d(Ci) = xi + yi :: max(0, L− xi − yi − ci, xi + yi − U)

L ≤ U implies that L− xi − yi − ci and xi + yi − U cannot both be positive.
If cost adjustment is desired, Ci also needs to know whether there is a Ci−1

and what its cumulative cost is if so, so that it can subtract it away. There is
a Ci−1 when ai > 0, and, by the previous formula, its cumulative deviation is

d(Ci−1) = xi−1 + yi−1 :: max(0, L− xi−1 − yi−1 − ci−1, xi−1 + yi−1 − U)

But xi−1 + yi−1 = xi and ci−1 = bi + ci, so

d(Ci−1) = xi :: max(0, L− xi − bi − ci, xi − U)

and in this form d(Ci−1), and hence c(Ci−1), is easy for Ci to calculate. It
should do this just once, since the value is constant. When ai = 0, there is no
Ci−1, but we define d(Ci−1) to be 0 then, since it is faster to always subtract
something than to test whether a subtraction is required and then do it if so.

It would be convenient if ai = 0 implied d(Ci−1) = 0, since then ai = 0
would not be a special case and ai itself would not be needed. But although
ai = 0 implies xi = 0, which eliminates the xi − U term, the L− xi − bi − ci
term can be positive when ai = 0.

This leads to a point of interest to implementers: when there is no lower
limit (when L = 0), ai and ci do not influence the values of these formulas.
Also of interest is the fact that when ai, xi and ci are all 0, the formulas reduce
to what they would be without history: the formula for d(Ci) becomes

d(Ci) = yi :: max(0, L− yi, yi − U)

and d(Ci−1) = 0 since ai = 0. So 0 is a suitable default value for ai, xi and ci.
It is not impossible to extend this work to incorporate information about a

resource’s future timetable. This would involve redefining xi to be the number
of C’s time groups outside wi which are known to be active, and redefining ci to
be the number of C’s time groups outside wi whose activity is undetermined.
The problem is that the formulas xi−1 + yi−1 = xi and ci−1 = bi + ci need
detailed adjustment under the new definitions, leading to more complexity.
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9.3 Limit active intervals constraints

Suppose now that C is a limit active intervals constraint with minimum limit
L and maximum limit U , where 0 ≤ L ≤ U .

An active interval is a sequence of active time groups; its length is what
the constraint constrains. Let the length of active interval ∆ be l(∆), and let
the deviation contributed by ∆ be d(∆). Then

d(∆) = max(0, L− l(∆), l(∆)− U)

L ≤ U implies that the second and third terms cannot both be positive.
Let C’s active intervals in S be ∆1, . . . , ∆m. One way to define c(C) is

c(C) = f(

m∑

j=1

d(∆j))

A total deviation is found and the cost function is applied once, giving a cost.
Conventional though it may be, this definition interacts badly with history:

when f(x) is non-linear, Ci needs to know the total deviation of all past active
intervals. This is not surprising; after all, the value xi given to cluster busy
times constraints concerns all past time groups. But when constraining total
workload it is natural to use total past workload, whereas when constraining
the lengths of active intervals it is not natural to use the deviations of active
intervals from the distant past. The competition doesn’t, for example.

So a different definition of c(C) is made, which interacts better with history:

c(C) =

m∑

j=1

f(d(∆j))

This applies the cost function multiple times; but still it is reasonable.
Suppose these quantities are available to Ci for calculating costs with:

bi The number of C’s time groups in Ci

ci The number of C’s time groups in Ci+1, . . . , Cn

xi The number of consecutive active time groups immediately
preceding wi

δp, . . . , δq The active intervals of Ci’s time groups taken in isolation

Cumulative cost cannot be calculated from these values. The adjusted cost is

c(Ci)− c(Ci−1) =

q∑

j=p

f(d(δj))

although this must be tweaked to take account of active intervals at the ends
of wi which could extend into adjacent weeks. The entire week may be active,
giving a single active interval potentially extending in both directions.

First suppose that Ci includes at least one inactive time group, so that its
two ends are independent.
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Suppose there is an active interval δq which includes the last time group of
Ci. This interval could extend into wi+1 and beyond. Its full length is at least
l(δq) and at most l(δq) + ci, so it contributes

f(max(0, L− l(δq)− ci, l(δq)− U))

to c(Ci), and the last term of the sum above, f(d(δq)), must be replaced by
this. If there is no such active interval, then no adjustment is required.

Now suppose that xi > 0. This is the length of an active interval which
includes the last time group of Ci−1. As just explained, it will have contributed

f(max(0, L− xi − ci−1, xi − U))

to c(Ci−1), with ci−1 = bi+ci as usual. This contribution is obsolete and must
be subtracted away. Then if the first time group of Ci is not active, the regular
cost of an active interval with length xi must be added:

f(max(0, L− xi, xi − U))

If the first time group of Ci is active, then xi abuts δp, the first active interval
of Ci, and their joint contribution to c(Ci) is

f(max(0, L− l(δp)− xi, l(δp) + xi − U))

That ends the xi > 0 case. None of this is needed when xi = 0.
Finally, suppose that Ci has no inactive time groups, so that there is a

single active interval δq which includes both the first and last time groups of
Ci. The analyses for both ends of the week apply to δq. If xi > 0, then xi’s
obsolete contribution must be subtracted away, and cost

f(max(0, L− l(δq)− xi − ci, l(δq) + xi − U))

added. If xi = 0, there is nothing to subtract away, but

f(max(0, L− l(δq)− ci, l(δq)− U))

must be added.
An implementation of the limit active intervals constraint that does not

handle history may be extended to handle history in three steps. First, always
subtract a cost from the reported cost:

f(max(0, L− xi − bi − ci, xi − U))

when xi > 0, and 0 otherwise. Second, extend the data structure for holding
active intervals, and merging and splitting them as time groups become active
and inactive, to include an active interval of length xi (when xi > 0) lying just
to the left of the first time group, which participates in interval merges and
splits like real intervals do, except that its own (virtual) time groups never
become inactive. Third, when comparing an interval length with a lower limit,
add ci to the length when the interval includes the last time group. These
three extensions cover everything in the formulas above.
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Once again, when L = 0, ai and ci do not influence the values of these
formulas. In fact, ai has no influence even when L > 0, although it is worth
recording, since it is an upper limit for xi. And when ai, xi, and ci are all 0,
the formulas reduce to what they would be without history.

Existing models vary in their treatment of sequences of free and busy days
at the ends of the cycle. When mimicking such models, artificial values for
history may be useful. For example, in [4], minimum limits do not apply to
sequences of busy or free days that include the first or last day. This can
be handled by assigning value L to ai, xi, and ci in XESTT constraints that
impose minimum (but not maximum) limits on the lengths of these sequences.

Again, incorporation of information about a resource’s future timetable is
not impossible. If a future time group is known to be inactive, the future is
irrelevant from there, so ci may be reduced. Active time groups immediately
following wi may allow l(δq) to increase. Once again, the details are complex.
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