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Abstract Nurse rostering represents an interesting timetabling problem which
is well known to be challenging from an optimisation perspective. Academic
nurse rostering, however, lacks a generally accepted model, and therefore lacks
a generally accepted format for sharing data. This paper presents XESTT, a
unified model for expressing nurse rostering instances and solutions. Instances
and solutions from several repositories have been converted to XESTT. The
new model is based on the XHSTT high school timetabling model, and this
connection gives access to some useful software, including a web server for
evaluating solutions, and a free, open source solve platform.
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1 Introduction

A long-standing obstacle to progress in automated timetabling has been a lack
of data sharing, arising from the difficulty of modelling real-world instances of
the problems. This paper addresses this issue in the area of nurse rostering.
It would be wrong to assert that modelling in nurse rostering is in crisis. On
the contrary, the nurse rostering research community has produced several sets
of real-world nurse rostering instances, and organized two competitions. But
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the situation is not ideal either. There is no widely accepted model; indeed,
each step forward seems to bring a new one. Some of these models are reviewed
in Section 6 of this paper; for the full background, consult the surveys [8,26].

This paper presents a new model that is flexible enough to express all, or
nearly all, existing instances. It is based on the XHSTT high school timetabling
format (Section 3), so it has been named XESTT, with ‘ES’ for ‘Employee
Scheduling’ replacing ‘HS’ for ‘High School’. A program called NRConv is
available for converting instances and solutions from other models to XESTT,
and many converted instances and solutions are available [13]. Two pieces of
open source high school timetabling software, the HSEval web server [11] and
the KHE solve platform [12], have been extended to accept the XESTT format.

2 Nurse rostering and employee scheduling

Nurse rostering is the problem of assigning shifts to the nurses of a hospital
ward. Hospitals operate 24 hours a day, so there are usually at least three
types of shifts: morning, afternoon, and night. Each shift demands a certain
number of nurses, often with specific skills. There may be some flexibility in
how many nurses to assign, and the number typically changes from day to day.

A characteristic feature is the complex array of requirements that each
nurse’s timetable must satisfy. In addition to limits on total workload, rules
such as ‘a nurse must have at least two days off after a sequence of night shifts’
and ‘a nurse may work at most four days in a row’ are very common.

A hospital ward is a dynamic environment, and one can only hope to fix
a schedule for a short distance into the future, perhaps between a week and
six weeks ahead. However, rules like those just cited cannot be confined to
one planning period. That could lead to cases, for example, where a nurse
works the last four days of one planning period and the first four days of the
next, which is acceptable separately but unacceptable as a whole. So real-world
instances include history: information about earlier planning periods [2,3,24].
XESTT supports history, but it is not discussed further here, since it is the
subject of a companion paper [15].

Nurse rostering is one kind of employee scheduling: the assignment of duties
in workplaces generally [26]. A precise definition is not attempted here. XESTT
has been named in anticipation of these wider applications, but so far it has
been used almost entirely for nurse rostering. Due to its many constraints,
nurse rostering includes most shift rostering problems [7]. Still, a substantial
effort, going well beyond the scope of this paper, would be needed to justify a
claim that XESTT is a suitable model for employee scheduling.

3 A brief introduction to XHSTT

This section presents XHSTT [18], the XML-based high school timetabling
format that is the basis for our nurse rostering model. A complete specification
may be found online [11]; further details are given as needed later in this paper.
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Table 1 XHSTT’s constraints, with informal definitions, grouped by what they apply to.

FEvent constraints

Split Events constraint Split event into limited number of sub-events
Distribute Split Events constraint Split event into sub-events of limited durations
Assign Time constraint Assign time to event
Prefer Times constraint Assign time from given set
Spread Events constraint Spread events evenly through the cycle
Link Events constraint Assign same time to several events
Order Events constraint Assign times in chronological order
Event resource constraints
Assign Resource constraint Assign resource to event resource
Prefer Resources constraint Assign resource from given set

Avoid Split Assignments constraint Assign same resource to several event resources
Resource constraints

Avoid Clashes constraint Avoid clashes involving resource
Avoid Unavailable Times constraint ~ Make resource free at given times
Limit Idle Times constraint Limit resource’s idle times

Cluster Busy Times constraint Limit resource’s busy days

Limit Busy Times constraint Limit resource’s busy times each day
Limit Workload constraint Limit resource’s total workload

XHSTT is a complex format intended for precisely specifying real-world
instances and solutions of high school timetabling problems in a form suitable
for input to solvers and solution evaluators. It is not intended for specifying
simplified instances, or for supporting management tools for end users.

XHSTT was used by the Third International Timetabling Competition [19],
the only competition so far to tackle high school timetabling. Since then the
competition instances and the XHSTT-2014 data set derived from them have
been the subject of continuous study [17].

An XHSTT instance contains four parts: the chronological sequence of
times that may be assigned to events, called the cycle; a set of resources,
which are entities that attend events; a set of events, which are meetings, each
of fixed duration (number of times), and containing any number of named
event resources, each specifying one resource that attends the event; and a set
of constraints, which specify conditions that solutions should satisfy, and the
penalty costs to impose when they don’t.

Arbitrary sets of times, resources, and events may be defined, called time
groups, resource groups and event groups. Each resource has one resource type,
usually Teacher, Room, Student, or Class, saying what type of resource it is.

XHSTT currently offers 16 constraint types (Table 1), specifying preferred
times for events, unavailable times for resources, and so on. Whatever its
type, each constraint has a non-negative integer weight. When the constraint
is violated, its amount of violation, a positive integer called the deviation, is
multiplied by the weight to produce a cost. Alternatively, the deviation may
be squared before multiplying by the weight. Each constraint may be marked
required, making it a required or hard constraint, whose cost is added to a total
called the infeasibility value or hard cost. Otherwise it is non-required or soft,
and its cost is added to another total called the objective value or soft cost.
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In many applications, including nurse rostering, a solution with non-zero
hard cost is considered to be infeasible, that is, useless. High school timetablers
have traditionally accepted a few violations of constraints they call hard (such
as teacher clashes), reasoning that a timetable with a few major problems is
better than no timetable at all. XHSTT leaves such interpretation to the user.

A solver assigns starting times to events, except for preassigned events
(events whose starting time is given by the instance), trying to minimize firstly
hard cost and secondly soft cost. It may also split events of long duration into
shorter events. And it may assign resources to unpreassigned event resources:
often rooms, occasionally teachers, never (in practice) classes or students.

XHSTT also defines a solution format: just a list of assignments of times
to events (and durations for split events), and resources to event resources.

There are practical reasons for basing XESTT on XHSTT: it is precisely
specified; it handles real-world instances; and it comes with HSEval [11], a web
server which evaluates solutions, and KHE [12], an open source solve platform.
Beyond those reasons, XHSTT offers at least two valuable design features.

First, anything that could produce a cost is explicitly given as a constraint,
with attributes saying whether it is hard or soft and what its weight is. This
improves on some existing nurse rostering models, where some constraints have
a hard-wired hardness or weight, and finding the weights can be a treasure hunt
through the instance file and the accompanying documentation.

Second, XHSTT allows arbitrary sets of times to be defined, and used in
constraints. This has major advantages, as explained in Section 5.5.

The main disadvantages of XHSTT are its verbosity, arising from the use
of XML, and its complexity, which can be daunting. However, the designers
of XHSTT took a conservative approach, adding features only as required by
actual instances, so the complexity is essentially unavoidable. The reader can
judge these issues by studying the examples in Section 5.

4 XESTT: extending XHSTT to support nurse rostering

This section describes XESTT, our extension of XHSTT, focusing on three
constraints that are central to nurse rostering: the limit busy times constraint,
the cluster busy times constraint, and the limit active intervals constraint. The
need for each extension will be justified by examples, showing that XESTT is
a parsimonious extension of XHSTT.

Since our extensions concern employee scheduling, our first change is to
replace HighSchoolTimetableArchive, the XML tag beginning each XHSTT
file, by EmployeeScheduleArchive. Except for this one change, every legal
XHSTT file is also a legal XESTT file with the same meaning. The KHE
platform and the HSEval web site accept either tag, as well as the XESTT
extensions when the tag is EmployeeScheduleArchive.
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4.1 The limit busy times constraint

A limit busy times constraint contains a resource, a time group, an integer
minimum limit, and an integer maximum limit. It is violated when less than
the minimum or more than the maximum number of times of the time group
are busy times for the resource (times when it attends events). The amount
by which the number of busy times falls short of the minimum or exceeds the
maximum is multiplied by the constraint’s weight to produce the cost.

Many nurse rostering constraints can be expressed as limit busy times
constraints. For example, to say that some nurse can take at most one shift
on some day, add a limit busy times constraint containing the nurse, a time
group containing the times of the day, and maximum limit 1. This assumes
that each shift occupies one time, a non-trivial point that will be discussed
fully in Section 5.1. The constraint is then replicated for every nurse on every
day. (One limit busy times constraint can accept many time groups and entire
resource groups, saving much file space.)

Here are some more examples. If a nurse works between 18 and 24 shifts,
the time group is the set of all times, with minimum limit 18 and maximum
limit 24. If the limit is on the number of night shifts, the time group is the set
of all night times. If the limit is on the number of shifts per week, there is one
constraint per week, whose time group is the times of that week. And so on.

The XHSTT specification states that a limit busy times constraint is not
violated when the number of busy times is 0, regardless of the limits. In nurse
rostering, this is usually wrong. For example, when the constraint defines a
minimum workload limit, it is not acceptable for the workload to be 0. Making
it optional is our first extension to XHSTT. The phrase ‘or else 0’ is used in
this paper to say that 0 is allowed even when the limits do not include it.

Like many constraints, the limit busy times constraint evaluates an integer-
valued function of the current solution and compares its value with minimum
and maximum limits. The ‘or else 0’ feature disrupts this simple arrangement.
Although its evaluation is trivial, it complicates analytical solvers (solvers that
try to improve solutions by analysing their defects): cost can be reduced, not
just by moving the function value closer to the limits, but also by reducing it
to 0. It would be rash to introduce further extensions along the path marked
out by ‘or else 0, nor do any seem to be needed.

4.2 The cluster busy times constraint

The XHSTT cluster busy times constraint is a kind of generalization of the
limit busy times constraint, in which each time is replaced by a time group.
It contains a resource, a set of time groups, an integer minimum limit, and an
integer maximum limit. It is violated when less than the minimum or more
than the maximum number of its time groups are busy for the resource. A
time group is busy for a resource when it contains at least one busy time for
the resource. Costs are calculated as for limit busy times constraints.
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For example, to limit a nurse to working on at most two weekends, define,
for each weekend, one time group holding that weekend’s times, and add a
cluster busy times constraint with those time groups and maximum limit 2.

The XHSTT specification states that the case of 0 busy time groups is not
special: it is a violation if 0 falls outside the limits. Again, for nurse rostering,
this needs to be optional, and this is our second extension. The leading example
of the need for it is the ‘complete weekends’ constraint, which requires a nurse
to either work all days of the weekend or else 0.

To see the need for our third extension, consider requiring a nurse’s days
off to occur in blocks of at least two days—prohibiting the pattern ‘busy day,
then day off, then busy day’. Take Monday, Tuesday, and Wednesday. Clearly,
we need a constraint involving three time groups, for the times of Monday,
Tuesday, and Wednesday. But it is not clear whether the constraint can be
expressed using minimum and maximum limits on the number of busy days,
because what counts about Tuesday is whether it is not busy.

Some patterns, such as the one just given, cannot be expressed in XHSTT,
or can only be expressed in an artificial way (Section 5.5). Artificiality is a
problem for solvers: it acts as a barrier to analysing a violation and finding
ways to remove it. Accordingly, we introduce another extension to the cluster
busy times constraint which allows these cases to be modelled naturally.

Instead of calling a time group busy, we call it active, and apply the min-
imum and maximum limits to the number of active time groups. Each time
group is given a polarity: some are positive, which means they are considered
to be active when they are busy, while others (and this is the extension) are
negative: they are considered to be active when they are not busy.

The solution to the example above is now straightforward: positive Monday
and Wednesday time groups, a negative Tuesday time group, and maximum
limit 2. If a maximum is exceeded, an analytical solver would aim to reduce
the number of active time groups, by making positive time groups non-busy
and negative time groups busy. Minimum limits need the opposite treatment.

Without polarity, the cluster busy times constraint is very simple: just a set
of time groups with limits on how many may be busy. Polarity is less intuitive,
and it is fair to ask whether there are better alternatives.

Negative time groups can often be replaced by positive ones. For example,
requiring a resource to be free for at least two days each week is equivalent
to requiring it to be busy for at most five. The example above, prohibiting
an isolated free day, would in practice be handled by the limit active intervals
constraint, introduced below. But there are examples where some extension
seems unavoidable. A reviewer of this paper suggested one: ensuring that five
consecutive busy days are followed by at least two free days. Also, it is trivial
to find examples for the limit active intervals constraint: using it to restrict
the number of consecutive free days, free weekends, and so on, cannot be done
by limiting busy days; it demands something new. Negative time groups also
make conversion of arbitrary unwanted pattern constraints easy (Section 5.5).
So although we cannot prove that polarity is the best approach, we can say
that something is needed, and that polarity is effective and parsimonious.
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4.3 The limit active intervals constraint

The limit active intervals constraint is new in XESTT. Similarly to the cluster
busy times constraint, it has maximum and minimum limits and a sequence
of time groups with polarities. The meaning is the same except that the limits
apply to the lengths of subsequences of consecutive active time groups, rather
than to the total number of active time groups. It is used to impose limits
on the number of consecutive busy or free days, weekends, and so on. This
could be done by using multiple cluster busy times constraints in a way that
is familiar from integer programming formulations of nurse rostering, but the
limit active intervals constraint is much more natural and concise, especially
when expressing minimum limits.

For example, consider a constraint requiring busy days to come in sequences
of at least 3 consecutive days. This can be expressed very naturally using a
single limit active intervals constraint containing one time group for each day
and minimum limit 3. To do it using cluster busy times constraints takes one
constraint prohibiting the pattern ‘free day, then busy day, then free day’ for
each day that the pattern could begin, and one prohibiting the pattern ‘free
day, then busy day, then busy day, then free day’ for each day that that pattern
could begin. These short sequences of time groups are called time windows.
Conventional integer programming models also use time windows [20,22]. They
are clumsy: a day not near the start or end of the cycle appears once in each
position of these constraints (seven times in our example); it appears only once
in the limit active intervals constraint. The clumsiness increases when these
constraints need to be adjusted to take account of history (Section 2).

Most constraints are very easy to evaluate incrementally during solving.
When the timetable of a resource changes, the affected times report themselves
to the constraints concerned, which update themselves in a straightforward
manner and report any change in cost to the solution, taking a small constant
amount of time per change. The limit active intervals constraint is the sole
exception. Active intervals must be split and merged as time groups become
active and inactive. (The coding, too, is longer: in KHE, 2851 lines, compared
with 1513 lines for the cluster busy times constraint.) Still, the implementation
is much faster than updating the multiple constraints needed by time windows.

4.4 Other extensions

There are other extensions which we just mention here ([11] has the details).
One allows a constraint to be repeated at intervals along the cycle, typically
daily or weekly. Another allows a constraint to be adjusted for each resource,
to take account of history (Section 2). The limit workload constraint may limit
a resource’s workload (measured in minutes, for example) over a subset of the
cycle, not just over the whole cycle as in XHSTT. And there is a second new
constraint, the limit resources constraint, described in Section 5.4.
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5 Defining nurse rostering instances in XESTT

This section shows how XESTT is used in practice. It follows the four-part
division of XESTT instances into times, resources, events, and constraints,
further dividing constraints into cover constraints, specifying the number and
skills of the nurses staffing each shift, and resource constraints, specifying rules
that individual nurses’ timetables should obey. The focus is on general issues.
For specific issues raised by conversions from other models, see Section 6.

As a running example we use COI-GPost, the XESTT version of instance
GPost from the Curtois original instances (Section 6.2). Here it is in outline:

<Instance Id="COI-GPost">
<MetaData>
<Name>COI-GPost</Name>
<Date>No date</Date>
<Country>No country</Country>
<Description>No description</Description>

</MetaData>

<Times> ... </Times>

<Resources> ... </Resources>

<Events> ... </Events>

<Constraints> ... </Constraints>

</Instance>

Here ‘...’ stands for missing material that will be presented below.
5.1 Times

In high school timetabling, only the first week or fortnight is timetabled, since
after that the timetable repeats. Each day of that week or fortnight typically
contains between six and ten times, each representing one interval of time.
The intervals are indivisible, non-overlapping, and follow chronologically after
each other. The full sequence of times, over all days, is called the cycle.

A nurse rostering timetable does not repeat; nevertheless, we still refer to
the full sequence of its times as the cycle. It consists of a sequence of days,
possibly extending over several weeks. So far the two models are compatible,
but when we consider the times of one day, they diverge. In nurse rostering the
individual, indivisible pieces of work, called shifts, can occupy 8 hours or more
of the day, and can overlap in time. For example, the morning shift might run
from 8am to 5pm, overlapping an early shift running from 7am to 4pm.

Real time comes in intervals that need to be discretized for solving. What
one time really represents, then, is an interval of time (in university course
timetabling, a set of intervals) that may be assigned to an event, making the
event’s resources busy for that interval. So it makes sense in nurse rostering to
have one time for each interval that could be assigned to a shift. It does not
matter that these intervals are long, or that they overlap.
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In XESTT, the names of times are arbitrary. NRConv, our converter, uses
a simple convention for them: a week number, then a short day name, then
a number representing a shift (1 for early, 2 for morning, and so on). For
example, the early shift on the Monday of Week 1 occurs at time 1Mon1, the
morning shift that day occurs at time 1Mon2, and so on. Time groups are used
to define useful sets of times: the weekend times, the 1Mon times, and so on.

Here is the times part of instance COI-GPost. There are two shifts per day,
so the times are named 1Mon1, 1Mon2, 1Tuel, 1Tue2, and so on. Time groups
are declared at the start, then each time says which time groups it belongs
to. Week and Day are synonyms for TimeGroup. Each named entity has an Id
attribute for reference within the instance, and a Name attribute for displays.

<Times>
<TimeGroups>
<Week Id="1Mon-Sun"><Name>1Mon-Sun</Name></Week>
<Week Id="2Mon-Sun"><Name>2Mon-Sun</Name></Week>
<Week Id="3Mon-Sun"><Name>3Mon-Sun</Name></Week>
<Week Id="4Mon-Sun"><Name>4Mon-Sun</Name></Week>
<Day Id="1Mon"><Name>1Mon</Name></Day>

<Day Id="4Sun"><Name>4Sun</Name></Day>
</TimeGroups>
<Time Id="1Mon1">

<Name>1Mon1</Name>

<Week Reference="1Mon-Sun"/>

<Day Reference="1Mon"/>
</Time>

<Time Id="4Sun2">
<Name>4Sun2</Name>
<Week Reference="4Mon-Sun"/>
<Day Reference="4Sun"/>
</Time>
</Times>

There are 41 other time groups, for weekends etc., that have been omitted.

The time declarations do not say which time intervals the times represent.
This omission is compensated for in various ways. Events have a workload
attribute that can be used to store a duration in minutes, if needed to support
constraints that limit workload in minutes. If two shifts overlap, a limit busy
times constraint can prevent a nurse from taking both. The usual case of a
nurse taking at most one shift per day calls for one limit busy times constraint
each day, containing the times of the day and maximum limit 1.

A few existing models include time intervals, but our judgment is against
that. It only makes sense if they are used, presumably by constraints like those
of the UniTime university course timetabling model [21,25]. That would be a
major extension, going well beyond the needs of the instances known to us.
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5.2 Resources

High school timetabling usually has several types of resources: teachers, rooms,
students, and so on. In nurse rostering, there are only nurses. So there is just
one resource type, Nurse, and one resource for each nurse.

Resource groups are used to model nurses’ skills. An example would be
a resource group containing the senior nurses. They are also used to model
nurses’ contracts. Examples here are resource groups containing the full-time
nurses, and containing the part-time nurses. Any number of resource groups
may be defined, and a resource may lie in any number of resource groups.

Resource groups save space when defining constraints. For example, if the
full-time nurses have a maximum workload limit of 20, only one constraint,
referencing the resource group of full-time nurses, is needed to say so.

Here is the resources part of instance COI-GPost:

<Resources>
<ResourceTypes>
<ResourceType Id="Nurse">
<Name>Nurse</Name>
</ResourceType>
</ResourceTypes>
<ResourceGroups>
<ResourceGroup Id="Contract-FullTime">
<Name>Contract-FullTime</Name>
<ResourceType Reference="Nurse"/>
</ResourceGroup>
<ResourceGroup Id="Contract-PartTime">
<Name>Contract-PartTime</Name>
<ResourceType Reference="Nurse"/>
</ResourceGroup>
</ResourceGroups>
<Resource Id="A">
<Name>A</Name>
<ResourceType Reference="Nurse"/>
<ResourceGroups>
<ResourceGroup Reference="Contract-FullTime"/>
</ResourceGroups>
</Resource>

<Resource Id="H">
<Name>H</Name>
<ResourceType Reference="Nurse'"/>
<ResourceGroups>

<ResourceGroup Reference="Contract-PartTime"/>

</ResourceGroups>

</Resource>

</Resources>
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As for time groups, resource groups are declared at the start, and each resource
says which resource groups it belongs to. Two resource groups, RG: A11 defining
the set of all nurses, and RG:Empty defining the empty set of nurses, have been
omitted, as have 6 of the 8 resources. Resource groups Contract-FullTime
and Contract-PartTime are used in constraints that apply to full-time and
part-time nurses; RG: A1l is used in constraints that apply to all nurses.

5.3 Events

An event represents one piece of work done together by some resources. It
contains a starting time, a duration (the number of times the event is to run),
an optional workload (measured in arbitrary units, for example minutes), and
any number of resources, which are required to attend the event for its full
duration. The starting time and resources may be preassigned, or left to the
solver to assign; the duration and workload are fixed constants.

In our model of nurse rostering, there is one event of duration 1 for each
time, preassigned that time, representing the shift that runs at that time. The
term ‘duration’ is carried across from high school timetabling and is not really
appropriate for nurse rostering. Following the discussion in Section 5.1, the
meaning is merely that a single time, representing one time interval, is to be
assigned. The fact that this time is preassigned expresses a basic truth about
nurse rostering: the times of the shifts are fixed in advance, unlike lessons in
high school timetabling, whose times are chosen by a solver.

When all events have preassigned times and duration 1, as here, the seven
event constraints shown in Table 1 offer nothing useful and are not used.

An event only specifies the type of each resource it requests (always Nurse
here). Constraints are used to request particular skills, as described below.

Event groups may be defined, like time groups and resource groups. Event
groups are used in nurse rostering for defining the sets of events that cover
constraints apply to.

Sometimes there is no definite upper limit to the number of nurses required
for a shift, merely a minimum and perhaps a preferred number. This can be
handled by placing sufficiently many event resources into each event. Strictly
speaking, this alters the instance by imposing an unbreakable upper limit on
the number of resources that may be assigned, but if that limit is generous
(say, twice the preferred number) the inexactness is not significant.

An alternative design would allow more than one resource to be assigned
to an event resource, with cover constraints constraining their number. This
would change the model substantially, but it might well be worthwhile for
reasons other than eliminating an unimportant inexactness. When many nurses
are requested it would save a significant amount of file space. And without
it, solvers have to analyse constraints in order to determine whether event
resources are equivalent. With it, equivalence is evident.

Here is the events part of instance COI-GPost, showing the event group
declarations at the start, and the first event:
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<Events>
<EventGroups>
<EventGroup Id="EG:All"><Name>EG:Al1l</Name></EventGroup>
<EventGroup Id="EG:X"><Name>EG:X</Name></EventGroup>
<EventGroup Id="EG:A=s1000">
<Name>EG:A=s1000</Name>
</EventGroup>
<EventGroup Id="EG:U=s1000">
<Name>EG:U=s1000</Name>
</EventGroup>
</EventGroups>
<Event Id="1Mon:D">
<Name>1Mon :D</Name>
<Duration>1</Duration>
<Time Reference="1Monl"/>
<Resources>
<R>A=s1000:1</R>
<R>A=s1000:2</R>
<R>A=s1000:3</R>
<R>U=s1000:1</R>
<R>U=s1000:2</R>
<R>U=s1000:3</R>
<R>U=s1000:4</R>
</Resources>
<EventGroups>
<EventGroup Reference="EG:All"/>
<EventGroup Reference="EG:A=s1000"/>
<EventGroup Reference="EG:U=s1000"/>
</EventGroups>
</Event>

</Events>
The event groups other than EG:All are sets of events that contain event
resources subject to certain cover constraints. Their names are arbitrary as
usual; these ones have been chosen by NRConv to reflect the cover constraints.
For example, EG:A=s1000 is the set of all events that contain at least one
event resource requesting a nurse such that a soft cost of 1000 is incurred if
the request is not met.

The event shown, 1Mon:D, represents the day shift on the first day of the
cycle. As explained above, it has duration 1 and is preassigned its own time,
1Mon1. Each <R> entry within the <Resources> part is one event resource—a
request for one resource. The name of each event resource (‘A=s1000:1’ and
so on) has been chosen by NRConv in a similar manner to the names of the

event groups. Cover constraints given later in the instance (and appearing as
examples below) say that this event wants 3 nurses, but will accept up to 7.
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5.4 Cover constraints

Cover constraints limit the number of nurses (or nurses with certain skills)
assigned to each shift. Many cover constraints can be expressed as XESTT
assign resource and prefer resources constraints. Instance COI-GPost has 7
cover constraints; here are two of them:

<AssignResourceConstraint Id="ARC:A=s1000:1">
<Name>Assign resource</Name>
<Required>false</Required>
<Weight>1000</Weight>
<CostFunction>Linear</CostFunction>
<AppliesTo>
<EventGroups>
<EventGroup Reference="EG:A=s1000"/>
</EventGroups>
</AppliesTo>
<Role>A=s1000:1</Role>
</AssignResourceConstraint>

<PreferResourcesConstraint Id="PRC:U=s1000:1">
<Name>Do not assign resource</Name>
<Required>false</Required>
<Weight>1000</Weight>
<CostFunction>Linear</CostFunction>
<AppliesTo>
<EventGroups>
<EventGroup Reference="EG:U=s1000"/>
</EventGroups>
</AppliesTo>
<ResourceGroups>
<ResourceGroup Reference="RG:Empty"/>
</ResourceGroups>
<Role>U=s1000:1</Role>
</PreferResourcesConstraint>

The assign resource constraint says that event resources named A=s1000:1
within the events of event group EG: A=s1000 should be assigned a resource, or
else a soft cost of 1000 applies. The prefer resources constraint says that event
resources named U=s1000:1 within the events of event group EG:U=s1000
should be assigned resources from resource group RG:Empty or nothing, or else
a soft cost of 1000 applies. Since RG:Empty contains no resources, this amounts
to a preference for leaving the event resource unassigned.

Constraints on nurses’ skills map to prefer resources constraints with non-
empty resource groups. If a senior nurse is wanted, say, a prefer resources
constraint with resource group SeniorNurses is applied to the event resource.
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Some models offer cover constraints that apply to particular intervals of
time. For example, such a constraint might require at least one nurse with a
particular skill to be on duty during the afternoons. If several shifts are running
then, the constraint cannot be expressed by constraints on individual event
resources, since the nurse in question could be assigned to any of those shifts.
So XESTT introduces the limit resources constraint, which places maximum
and minimum limits on the number of resources, or on the number of resources
from a given resource group, that may be assigned to an arbitrary set of event
resources. This models these kinds of constraints directly.

The XESTT cover constraints are effective, but they are not a significant
advance over previous models. There is some new generality in allowing the
limit resources constraint to apply to an arbitrary set of event resources, but
that generality is not much used. Both the assign resource constraint and the
prefer resources constraint are special cases of the limit resources constraint.

5.5 Resource constraints

Resource constraints constrain resources’ timetables. They may be roughly
classified into counter constraints and sequence constraints.

Counter constraints limit the number of something that may appear in a
nurse’s timetable. They are implemented by cluster busy times constraints,
or in simple cases by limit busy times constraints. Here is an example from
COI-GPost that requires part-time nurses to work 2 or 3 days of Week 1:

<ClusterBusyTimesConstraint Id="Constraint:6">
<Name>Shifts per week</Name>
<Required>false</Required>
<Weight>1</Weight>
<CostFunction>Quadratic</CostFunction>
<AppliesTo>
<ResourceGroups>
<ResourceGroup Reference="Contract-PartTime"/>
</ResourceGroups>
</AppliesTo>
<TimeGroups>
<TimeGroup Reference="1Mon"/>
<TimeGroup Reference="1Tue"/>
<TimeGroup Reference="1Wed"/>
<TimeGroup Reference="1Thu"/>
<TimeGroup Reference="1Fri"/>
<TimeGroup Reference="1Sat"/>
<TimeGroup Reference="1Sun"/>
</TimeGroups>
<Minimum>2</Minimum>
<Maximum>3</Maximum>
</ClusterBusyTimesConstraint>
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There is one positive time group for each day of that week.

A Dbasic requirement of virtually all nurse rostering instances is that a
nurse should work at most one shift per day. This is a counter constraint,
easily implemented as mentioned earlier by one limit busy times constraint for
each day. Its times are the times of its day, and it has maximum limit 1.

The limit busy times and cluster busy times constraints are only concerned
with whether a resource is busy at each time or not. If the resource has a
clash at some time, in XHSTT that still only counts as one busy time. So all
resources need avoid clashes constraints to forbid clashes at each time, even if
a constraint is present to forbid more than one shift per day. This is clumsy
from the perspective of nurse rostering; it is essentially a penalty paid for
preserving compatibility with XHSTT.

Sequence constraints limit the number of consecutive appearances of things
in a nurse’s timetable. They can be implemented by sets of counter constraints,
one for each time window (Section 4) where the sequence could begin. This
example prohibits a day shift following a night shift:

<LimitBusyTimesConstraint Id="Constraint:4">
<Name>Unwanted pattern</Name>
<Required>false</Required>
<Weight>1000</Weight>
<CostFunction>Linear</CostFunction>
<AppliesTo>
<ResourceGroups>
<ResourceGroup Reference="RG:All"/>
</ResourceGroups>
</AppliesTo>
<AppliesToTimeGroup Reference="1-3Mon-Sunl:4Mon-Satl"/>
<TimeGroups>
<TimeGroup Reference="1Mon2:1Tuel"/>
</TimeGroups>
<Minimum>0</Minimum>
<Maximum>1</Maximum>
</LimitBusyTimesConstraint>

It limits to 1 the number of busy times in {1Mon2, 1Tuel}, the times of time
group 1Mon2:1Tuel, defined in the COI-GPost times part. It is repeated for
each day by the <AppliesToTimeGroup> attribute, whose details we omit.

When the time groups in adjacent windows are compatible, in a sense that
we will not pause to define, a limit active intervals constraint may replace the
sets of limit busy times or cluster busy times constraints. Forbidding three
consecutive busy weekends can be done this way, for example, but forbidding
a morning shift following a night shift cannot. As explained in Section 4, limit
active intervals constraints are likely to be significantly more efficient when
solving. NRConv makes these replacements.

Here is an example from the COI-GPost instance which requires sequences
of busy weekends to have length at most 2:
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<LimitActiveIntervalsConstraint Id="Constraint:17">
<Name>At most 2 consecutive busy weekends (recoded)</Name>
<Required>false</Required>
<Weight>1000</Weight>
<CostFunction>Linear</CostFunction>
<AppliesTo>
<ResourceGroups>
<ResourceGroup Reference="RG:All"/>
</ResourceGroups>
</AppliesTo>
<TimeGroups>
<TimeGroup Reference="1Sat-Sun"/>
<TimeGroup Reference="2Sat-Sun"/>
<TimeGroup Reference="3Sat-Sun"/>
<TimeGroup Reference="4Sat-Sun"/>
</TimeGroups>
<Minimum>0</Minimum>
<Maximum>2</Maximum>
</LimitActivelIntervalsConstraint>

For each weekend it contains one time group holding that weekend’s times.

Unwanted pattern constraints are sequence constraints, used to express the
idea that some sequences of shifts—a morning shift on the day after a night
shift, for example—are undesirable. Some of the examples given earlier fit this
description. We will now model arbitrary unwanted pattern constraints.

Suppose there are three shifts per day: morning, day, and night, denoted
1, 2, and 3. The presentation generalizes trivially to any number of shifts.

If a nurse takes at most one shift per day, the choices on each day are one
of its shifts or nothing. Let 0 denote the absence of a shift (a free day). Using
regular expression notation, an arbitrary subset of these choices is represented
by enclosing them in brackets. For example, [02] means ‘shift 2 or nothing.’
A pattern is a sequence of these terms, representing the choices on consecutive
days. For example, [3] [1] means ‘an early shift following a night shift’.

A pattern matches a nurse’s timetable at any day where the nurse has a
sequence of shifts or days off, each of which lies in the corresponding term of
the pattern. For example, if a nurse’s timetable contains a 3 on day 1Wed and
a 1 on day 1Thu, then pattern [3] [12] matches that timetable at 1Wed.

A pattern can also specify that a match is only allowed to start on certain
days. For example, the pattern Sat: [123] [123] matches a nurse’s timetable
at every point where the nurse works for both days on a weekend.

Constraints may use patterns in several ways. Here we model unwanted
pattern constraints: constraints containing patterns, of any length and starting
at any subset of the days of the cycle, which are to be forbidden or penalized.

Arbitrary subsets of the days of the cycle are easy: just use time windows.
In each time window, an arbitrary pattern can be modelled by a cluster busy
times constraint with one time group for each term of the pattern. If the term
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does not contain 0, the time group is a positive time group containing the
times of the term. If the term contains 0, the time group is a negative time
group containing the complement (within the day) of the non-zero times of
the term. There is a maximum limit, equal to the number of terms minus 1.

It seems impossible to model arbitrary unwanted patterns in unextended
XHSTT. Patterns with one or more [0] terms and two or more other terms
are the problem; we omit the details. If there is a way, it must be very artificial.

We conclude this section with a brief evaluation of XESTT’s handling of
resource constraints. It is in this area, more than anywhere else, that XESTT
advances over other models. Following XHSTT, XESTT allows arbitrary sets
of times to be defined, and used in constraints. This is the key to unifying
the many resource constraints found in nurse rostering: constraints on night
shifts, on weekends, and so on. As we have just seen, because the constraints
can reference different time groups, just three types of constraints implement
all these constraints. (In fact, just two would do, because a limit busy times
constraint can be replaced by a cluster busy times constraint with one time
group for each time.) So XESTT has a fixed list of types of constraints, whereas
in other models the list is long and in principle open-ended.

Having a fixed list of types of constraints matters for several reasons. A
comparison of other models will reveal that one reason why a unified nurse
rostering model has not emerged already is because of the variations between
the resource constraints they offer. Also, the fixed list obviously reduces the
implementation burden. Furthermore, it allows the history issue (Section 2) to
receive a complete analysis [15], something that is not possible when the list
of types of constraints is open-ended.

6 Converting existing instances and solutions to XESTT

We have converted instances and solutions in several formats to XESTT using
a program called NRConv. NRConv and its results are available (open source)
at [12] and [13]. All conversions are carried out entirely by NRConv; there are
no hand adjustments. This section describes every significant issue that arose
during each conversion. The NRConv documentation [14] has more details.

NRConv has two layers. The lower layer defines a familiar intermediate
model of nurse rostering: shift types, days, shifts, workers, history, and so on.
The higher layer contains converters, each of which builds an instance in the
intermediate model (easily done owing to the familiarity of that model), and
then, in one function call, converts the intermediate instance into an XESTT
instance and writes it. This simplifies the addition of new converters.

XESTT inherits from XHSTT a minor but useful feature not found in the
nurse rostering world: the archive, a file holding any number of instances plus
any number of sets of solutions to those instances. The converted instances
and solutions are grouped into archives. Each archive has a name, and the
name of each instance is adjusted to begin with its archive’s name. Some long
instance names have been shortened.
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6.1 The BCV instances

The BCV instances are the ones with names starting with BCV, available, with
documentation, from [6]. Their format is the oldest mentioned here, dating
to about 2000, but it is also the most elaborate. The format of the First
International Nurse Rostering Competition is a simplified version of it.

The BCV instances have not been converted, because the time it would
take to implement their many detailed requirements is more than the authors
can give. The only problem is the Partnerships feature, which requires some
pairs of resources to attend the same events (or to not attend the same events,
but that is convertible, using a limit resources constraint). So all 19 BCV
instances except the two that use this feature are convertible. Even they could
be converted if an ‘or else 0’ option was added to the limit resources constraint.

6.2 The Curtois original instances

Curtois pioneered the assembly of nurse rostering instances from around the
world, and their expression in a common format. Published at [6] under the
heading ‘Original instances’, there are 28 instances, with 66 solutions. As in [1],
we omit instance HEDO1b (it is very similar to instance HEDO1) and its solution,
so we convert 27 instances and 65 solutions, to archive COI. For every solution,
the cost reported by HSEval agrees with the cost reported by Curtois.

Four instances use the TimePeriod feature, which gives cover requirements
for periods of the day rather than for each shift. Several other instances have
complex overlapping cover requirements. Accordingly, NRConv produces a
generous number of extra event resources, and where necessary it constrains
them using the limit resources constraint instead of assign resource and prefer
resources constraints, as described in Section 5.4.

In most instances known to us, a day off is represented by not assigning any
shift on that day. One of the Curtois original instances, COI-QMC-1, contains
a special shift type, such that assigning a shift of that type represents a day
off. This allows negative time groups to be avoided in many cases, possibly all;
but it is not common in our experience, and it can feel artificial. In any case
XESTT accommodates it, as our conversion of COI-QMC-1 shows.

Two instances have conditional constraints, which require one pattern to
match if another does, and all have pattern constraints, which limit the number
of occurrences of the elements of a set of patterns (a more complex constraint
than simply making the patterns unwanted, as in Section 5.5). These cannot
be converted in general, but those in the instances can be and have been [14].

The pattern constraint is the only resource constraint we know of (outside
XESTT) claimed to be general-purpose [1]. We discuss this claim now.

Clearly, the pattern constraint is more general than resource constraints
often are: it can prohibit a day shift following a night shift, more than three
night shifts in a row, and so on. On the other hand (using XESTT terminology)
the time groups of pattern constraints are limited to subsets of the times of
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one day, which is awkward for other time groups. Limiting the total number
of busy weekends, for example, takes 2" — 1 patterns, where n is the number
of days in one weekend. Limiting the number of consecutive busy weekends is
simple and natural with the limit active intervals constraint (Section 5.5), but
it is impossible, practically speaking, with the pattern constraint.

6.3 The First International Nurse Rostering Competition

The instances of the First International Nurse Rostering Competition [9,10]
have been converted into two XESTT archives, INRC1-Long-And-Medium and
INRC1-Sprint. These hold the 15 long, 15 medium, and 30 sprint instances.
Also included are the 60 solutions published by the GOAL group [22,23]. The
competition’s model is widely known, and it makes a good mean between the
unrealistically simple and the tediously complex, so its conversion is described
fully in this section, as a case study. It proceeds very smoothly and naturally.

Cover constraints appear as numbers of nurses wanted for each shift, for
each skill. These are easily handled, as in Section 5.4.

The SingleAssignmentPerDay constraint limits each nurse to at most one
shift per day. It is converted to, for each day, one limit busy times constraint
with maximum limit 1 whose time group contains the times of that day. Avoid
clashes constraints are also needed, as explained in Section 5.5.

MaxNumAssignments places a maximum limit on the number of shifts that a
nurse can work over the cycle. It is converted to one limit busy times constraint
with the given maximum limit whose times are the full set of times of the cycle.

MinNumAssignments is like MaxNumAssignments, but with a minimum limit.

MaxConsecutiveWorkingDays requires busy days to occur in blocks of at
most a given length. It is converted to a single limit active intervals constraint.

MinConsecutiveWorkingDays is like MaxConsecutiveWorkingDays, but
with a minimum limit.

MaxConsecutiveFreeDays requires free days to occur in blocks of at most
a given length. It is MaxConsecutiveWorkingDays with ‘busy’ and ‘non-busy’
swapped, which is done by making all the time groups negative.

MinConsecutiveFreeDays is like MaxConsecutiveFreeDays, but with a
minimum limit.

MaxConsecutiveWorkingWeekends and MinConsecutiveWorkingWeekends
place limits on the number of consecutive busy weekends (weekends when a
nurse works at least one shift). These are like MaxConsecutiveWorkingDays
and MinConsecutiveWorkingDays, except that instead of time groups holding
the times of days they use time groups holding the times of weekends.

MaxWorkingWeekendsInFourWeeks places a maximum limit on the number
of weekends worked in any four-week period. For each set of four consecutive
weekends, make a cluster busy times constraint, with time groups containing
the times of those weekends, and the given maximum limit.

AlternativeSkillCategory defines the penalty to apply when a nurse is
assigned to a shift without having the required skill. This allows each nurse
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to have a different penalty, which is a problem for XESTT, since its prefer re-
sources constraint (the obvious target when converting) associates the penalty
with the shift, giving all unqualified nurses the same penalty.

This problem is solved as follows. For each skill s; and each distinct non-
zero weight w; for AlternativeSkillCategory, let S(s;,w;) be the set of all
nurses n such that the assignment of n to a place requiring skill s; should
attract penalty w;. Let N be the set of all nurses. For each place requiring
skill s;, define one prefer resources constraint for each non-zero weight w; such
that S(s;,w;) is non-empty, with weight w; and set of nurses N — S(s;, w;).
In practice this produces just one or two prefer resources constraints per skill.

CompleteWeekends requires a nurse to work both weekend days or neither.
It is converted into, for each weekend W, one cluster busy times constraint
with one time group for each day of W, and minimum limit 2 or else 0.

When weekends have three or more days, it is possible to work on the first
and last days and be free in between them. The competition assigns a higher
cost for such cases than for other cases of incomplete weekends. Although
some of the competition instances do contain three-day weekends, we have
not implemented this refinement. It can be done using unwanted patterns.

IdenticalShiftTypesDuringWeekend requires a nurse to either work the
same shift on both days of the weekend, or to be free both days. Violations
of CompleteWeekends also violate this constraint. It is converted, for each
weekend w and shift s, to one limit busy times constraint whose time group
contains the times of s on the days of w, with minimum limit 2 or else 0.

The next two constraints concern night shifts (shifts that span midnight).
Night shifts are denoted 3 here, and non-night shifts are denoted 12, although
NRConv allows an arbitrary subset of the shifts to be night shifts.

NoNightShiftBeforeFreeWeekend requires a nurse to not work the night
shift just before a free weekend. In the notation introduced in Section 5.5 it is
equivalent to unwanted pattern Fri: [3] [0] [0] and is converted accordingly.

TwoFreeDaysAfterNightShifts requires that on the two days after a night
shift, a nurse should either have the day off or else work another night shift.
Our solution makes patterns [3][12][12], [3]1[12][03], and [3][0][12]
unwanted. On the second-last day of the cycle, only [3] [12] is unwanted.

A violation on both days should cost more than a violation on one, so
[31[12] [12] should get double weight. However, the competition evaluator
does not do this, so we assign the same weight to all patterns. We can then
merge the first two, producing unwanted patterns [3] [12] and [3] [0] [12].

UnwantedPatterns defines unwanted patterns, converted as in Section 5.5.

A day-on request asks for work on a given day, and is modelled by a limit
busy times constraint whose time group holds the day’s times, with minimum
limit 1. Shift-on requests are similar, with singleton time groups. Day-off and
shift-off requests become avoid unavailable times constraints.

HSEval’s evaluations of the 60 solutions published by the GOAL group
agree with GOAL’s. At first there were 7 discrepancies (6 GOAL mistakes and
1 NRConv mistake), but these have all been corrected.
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6.4 The Second International Nurse Rostering Competition

The Second International Nurse Rostering Competition [2,3] has much that is
familiar. We will discuss only the one significant difference here.

This is that the competition reflects the way nurse rosters are often made
in reality: week by week, not all at once. A weekly instance is an instance
covering one week; a global instance covers several weeks. A global instance is
solved by solving a sequence of weekly instances for consecutive weeks. Each
weekly instance is hidden from the solver until it has solved the previous weekly
instances, and includes history (Section 2).

No file format can model all this: it involves a whole process of making
instances available only after solutions to previous instances are received, with
history added based on those solutions. Global instances could be generated, or
sequences of weekly instances stored together in one archive (without history),
but solvers would have to be trusted to solve each week without looking ahead.

NRConv produces an XESTT representation of one weekly instance, based
on files in the competition format giving the general scenario, the week in ques-
tion, and history. History is handled using XESTT’s history features. These
are not described here, since they are the subject of a companion paper [15].

We have chosen not to build archives of weekly instances. Weekly instances
after the first depend on history derived from solutions of previous weeks, so
cannot be made in advance. And weekly instances need heuristic constraints:
constraints that encourage the solutions of weekly instances to work towards
satisfying the two global constraints, on the total number of shifts worked and
the total number of weekends worked; but opinions may differ about what
heuristic constraints to add. For more on heuristic constraints, see [15].

Two recent papers test some 4-week and 8-week instances derived from
the competition [4,16]. These are global instances, unaffected by the issues
just described. They have been converted into XESTT archives INRC2-4 and
INRC2-8, together with solutions received from an author of one of the papers.

6.5 The 2014 Curtois and Qu instances

In 2014, Curtois and Qu produced a new set of 24 instances [5], and these,
with solutions posted by Curtois at [6], have been converted into archive CQ14.
Again, much is familiar, and we discuss only the significant differences here.

Minimum limits on consecutive busy or free days do not apply to sequences
that include the first or last day. This is modelled using XESTT’s history
features in a somewhat artificial manner.

The solutions to these instances available at [6] are not the full set reported
in [5]. Accordingly we requested and received a larger set from Curtois.

As in the Curtois original instances, more nurses may be assigned to a shift
than the specified optimum, and NRConv creates extra event resources to allow
for this. A complication is that some of the solutions received from Curtois,
especially for the larger instances, overload shifts this way to an unreasonable
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degree. The worst cases occur in Instance22.Solution.516686.roster and
Instance22.Solution.516686_1.roster, which assign 25 nurses to shift di
on day 140, when the instance specifies an optimum cover of 1.

We have chosen to generate shifts with maximum cover 2c¢ + 5, where c is
the optimum cover, making solutions that overload shifts beyond that point
invalid. Of the 372 solutions received from Curtois, 42 were rejected for this
reason. The rest were classified using metadata in the solution files into four
solution groups, one for each algorithm in Table 2 of [5]. The best solution
for each instance in each group was included in archive CQ14 (67 solutions
in total). HSEval’s and Curtois’ evaluations of these solutions agree, although
HSEval’s table differs from Table 2 of [5], owing to the different solutions used.

7 Conclusion

This paper has introduced a unified nurse rostering data model: XESTT, an
extension of the XHSTT high school timetabling model. XESTT has several
advantages which, we hope, are enough to justify its use: flexibility, consistency
of design, and efficient open source software support. While we cannot assert
that our design is the best possible, we can say that it is clearly and precisely
specified, that it expresses existing instances exactly and naturally, and that
it is parsimonious, in that very little was added to XHSTT to get to XESTT.

Four formats have been converted to XESTT, and 111 instances and 192
solutions are available at [13]. The work has been done carefully, and the
total agreement on solution cost suggests that remaining bugs are few. More
conversions may be undertaken in future, depending on the level of interest.

Some of the converted instances, notably the Curtois original instances,
are not easy to interpret in their native format. XESTT may be the best hope
for ensuring that they continue to receive attention into the future.
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