Additional Experiments with the KHE20 Nurse Rostering Solver

Jeffrey H. Kingston

20January 2020

Abstract This paper is a supplement to 'KHE20: an improved solver for nurse rostering' [2]. It reports on additional experiments, which aim to show how helpful the various aspects of KHE20 are, and also whether some of KHE20's poorer results could be improved by allowing it to run for longer.

Keywords Nurse rostering \cdot Time sweep \cdot Ejection chains \cdot XESTT

1 Introduction

This paper is a supplement to 'KHE20: an improved solver for nurse rostering' [2]. It reports on additional experiments, which aim to show how helpful the various aspects of KHE20 are, and also whether some of KHE20's poorer results could be improved by allowing it to run for longer.

2 Aspects of KHE20

This section investigates eleven aspects of KHE20, to see whether they make useful contributions. For each aspect, the results of running KHE20x8 with and without the aspect are compared. Only the Curtois original instances are tested, but they are very varied instances, so that if some aspect benefits the algorithm significantly, the results on them should make that clear.

If an omitted aspect consumes a significant amount of running time, the question arises as to whether its time should be reallocated to other aspects. There are arguments both ways. The tests are not consistent in this regard, and running time as well as cost must be considered when assessing the results.

J. Kingston (http://jeffreykingston.id.au)

School of Information Technologies, The University of Sydney, Australia E-mail: jeff@it.usyd.edu.au

Each aspect tested is labelled in [2] by a two-character code. The algorithm variants are named using these codes. For example, aspect R2 is tested by comparing KHE20x8 with KHE20x8-R2, which is KHE20x8 with R2 omitted.

As explained in [2], the many small time limits cause otherwise identical runs to end at slightly different points, producing different results. However, the KHE20x8 columns in these tables are all the same. This is because, to save time, these experiments all start from an archive file containing the results of the experiment, reported on in the main paper, which runs KHE20x8 on the COI instances. The other columns contain fresh results.

The results appear in Tables 1-7. Each table has a two-paragraph caption. The first paragraph is the caption proper; the second evaluates the results.

At the foot of each table is a row of averages. The average costs can be misleading, when they are unduly affected by large constraint weights. So we have added a row showing the number of best solutions in each column. This provides an alternative basis for comparison which can be quite illuminating.

To summarize the results. Several of the aspects have turned out to be not useful. Testing all aspects on all archives might prove definitively that some of them could be removed. On the other hand, all aspects seem to be doing no harm, and, given the wide variation among instances, most of them probably do good sometimes. 'Biodiversity' produces robustness in algorithms as it does in the natural world, so the author is in no hurry to remove any aspects.

3 Running time

This section shows what KHE20 can do when its running time limits are doubled, from 2 seconds per day during construction, 2 minutes for the first repair phase, and 1 minute for the second repair phase, to 4 seconds, 4 minutes, and 2 minutes. Archive files COI.xml, INRC2-8.xml, and CQ14.xml are tested. The results appear in Tables 8-10.

To summarize the results. Doubling the running time does produce better solutions on some large instances. For example, the improvement in cost on instance COI-MER from 9282 to 8254 is almost half the distance to optimality. More often, however, the improvement is only slight.

In any case, the author does not advocate longer running times, because KHE20 is intended to run quickly. The real purpose of these experiments is to see what the current repertoire of ejection chain repair operations is capable of, when more time is available.

References

Jeffrey H. Kingston, XESTT web site, http://jeffreykingston.id.au/xestt (2017)
Jeffrey H. Kingston, KHE20: an improved solver for nurse rostering. Submitted to PATAT

^{2020,} also at http://jeffreykingston.id.au/tt_papers/ (2020) 3 A Legrain I Omer and S Bosat A rotation-based b

^{3.} A. Legrain, J. Omer, and S. Rosat, A rotation-based branch-and-price approach for the nurse scheduling problem (2017). Working paper, available at https://hal.archives-ouvertes.fr/hal-01545421.

Table 1 Evaluation of aspects of the KHE20 construction phase. The KHE20x8 column shows the results of KHE20x8 on the Curtois original instances; the KHE20x8-GR column shows the results of omitting task grouping; and the KHE20x8-CS column shows the results of omitting suppression of spurious costs during time sweep. This table is derived from XESTT archive file KHE20-2020-01-20-COI-aspects1.xml, available at [1].

The differences are small. Omitting GR never produces a lower cost solution. Omitting CS produces a lower cost solution in six instances, but overall, KHE20x8 produces more best solutions. The effect of GR and CS was larger earlier in this project; as the ejection chain algorithm has improved, the need for them has diminished.

Instances (27)	KHE20x8		KHE2	20x8-GR	KHE20x8-CS	
	$\overline{\mathrm{Cost}}$	Time	$\overline{\mathrm{Cost}}$	Time	$\overline{\mathrm{Cost}}$	Time
COI-Ozkarahan	0	0.1	0	0.1	0	0.0
COI-Musa	175	1.1	175	0.8	175	0.8
COI-Millar-2.1	0	0.1	0	0.1	0	0.1
COI-Millar-2.1.1	0	0.1	0	0.0	0	0.0
COI-LLR	302	3.1	302	3.1	301	4.0
COI-Azaiez	0	0.8	0	0.8	0	0.9
COI-GPost	12	0.9	12	0.8	9	1.6
COI-GPost-B	5	1.0	5	1.0	5	0.7
COI-QMC-1	16	2.7	16	2.8	18	2.5
COI-QMC-2	29	5.3	29	5.3	29	5.1
COI-WHPP	3000	16.7	3000	13.4	3002	17.1
COI-BCV-3.46.2	894	15.9	894	18.0	894	16.5
COI-BCV-4.13.1	10	1.0	10	1.0	10	1.2
COI-SINTEF	0	0.5	0	0.7	0	0.4
COI-ORTEC01	330	5.1	330	6.4	315	4.8
COI-ORTEC02	300	7.2	300	7.5	280	10.5
COI-ERMGH	779	598.1	817	597.1	865	612.6
COI-CHILD	149	494.8	151	499.0	151	539.8
COI-ERRVH	2144	598.1	2250	598.1	2283	605.8
COI-HED01	151	7.6	151	8.5	138	10.6
COI-Valouxis-1	80	1.2	80	1.1	180	1.5
COI-Ikegami-2.1	0	13.5	0	11.5	0	18.9
COI-Ikegami-3.1	8	21.8	8	22.0	13	30.8
COI-Ikegami-3.1.1	8	26.2	8	25.4	14	36.1
COI-Ikegami-3.1.2	7	26.1	7	25.8	16	34.9
COI-BCDT-Sep	230	5.8	230	5.2	250	6.4
COI-MER	9347	577.6	9455	569.1	8971	567.6
Average	666	90.1	675	89.8	664	93.7
No. of best costs	21		18		17	

Table 2 Evaluation of aspects of the KHE20 construction phase. The KHE20x8-CE column show the results of omitting ejection chain repair of limit resources defects after assigning each day; the KHE20x8-CR column shows the results of omitting resource rematching after assigning each day; and the KHE20x8-CI column shows the results of omitting resource rematching of each day individually at the end. This table is derived from XESTT archive file KHE20-2020-01-20-COI-aspects2.xml, available at [1].

The averages are skewed by a lucky result for KHE20x8-CR on instance COI-WHPP (the difference is just one defect, but with cost 1000); adjusting for that, the results are similar.

Instances (27)	KHE20x8		KHE20x8-CE		KHE2	0x8-CR	KHE20x8-CI	
	$\overline{\mathrm{Cost}}$	Time	\mathbf{Cost}	Time	$\overline{\mathrm{Cost}}$	Time	$\overline{\mathrm{Cost}}$	Time
COI-Ozkarahan	0	0.0	0	0.1	0	0.0	0	0.0
COI-Musa	175	0.8	175	1.4	175	0.9	175	0.8
COI-Millar-2.1	0	0.1	0	0.1	0	0.0	0	0.1
COI-Millar-2.1.1	0	0.1	0	0.1	0	0.0	0	0.0
COI-LLR	302	4.0	302	4.0	301	3.8	302	3.0
COI-Azaiez	0	0.8	0	0.8	0	0.7	0	0.7
COI-GPost	12	0.9	12	0.9	8	0.7	12	0.8
COI-GPost-B	5	1.0	5	1.0	8	0.7	5	1.0
COI-QMC-1	16	2.7	16	2.6	18	2.0	16	3.0
COI-QMC-2	29	4.3	29	3.9	29	3.9	29	4.2
COI-WHPP	3000	12.7	3000	12.5	2004	18.0	3000	12.5
COI-BCV-3.46.2	894	16.0	894	15.7	894	16.5	894	15.4
COI-BCV-4.13.1	10	1.3	10	1.0	10	0.9	10	1.0
COI-SINTEF	0	0.5	0	0.7	0	0.2	0	0.7
COI-ORTEC01	330	5.3	330	5.4	305	5.2	330	5.3
COI-ORTEC02	300	7.4	300	7.5	310	9.4	300	7.4
COI-ERMGH	808	598.0	779	597.1	779	594.0	779	514.3
COI-CHILD	149	494.1	149	499.6	151	474.0	151	491.3
COI-ERRVH	2148	597.2	2154	595.4	2155	587.4	2243	520.0
COI-HED01	151	10.6	151	9.2	153	9.8	151	11.4
COI-Valouxis-1	80	1.2	80	1.1	60	1.4	80	1.2
COI-Ikegami-2.1	0	11.7	0	11.5	0	9.0	0	11.6
COI-Ikegami-3.1	8	21.2	8	20.9	12	21.2	8	21.3
COI-Ikegami-3.1.1	8	31.9	8	24.7	14	23.1	10	28.0
COI-Ikegami-3.1.2	7	25.6	7	25.2	13	20.2	9	29.6
COI-BCDT-Sep	230	5.1	230	5.4	250	4.6	230	5.2
COI-MER	9282	566.4	9521	568.5	9357	559.2	8930	530.3
Average	665	89.7	673	89.5	630	87.7	654	82.2
No. of best costs	20		20		16		18	

4

Table 3 Evaluation of edge adjustment during time sweep. The KHE20x8-CW column shows the results of omitting to favour resources that have more available workload; the KHE20x8-CL column shows the results of omitting to favour assignments that bring fewer constraints from below their maximum limits to their maximum limits; and KHE20x8-CB shows the results of omitting to favour shorter runs of consecutive assignments. This table is derived from XESTT archive file KHE20-2020-01-20-COI-aspects3.xml, available at [1].

Although the differences are not large, KHE20x8 does have the lowest average cost and the largest number of best solutions.

Instances (27)	KHE20x8		KHE20x8-CW		KHE20x8-CL		KHE20x8-CB	
	$\overline{\mathbf{Cost}}$	Time	\mathbf{Cost}	Time	$\overline{\mathbf{Cost}}$	Time	$\overline{\mathrm{Cost}}$	Time
COI-Ozkarahan	0	0.0	0	0.1	0	0.1	0	0.1
COI-Musa	175	0.8	175	1.1	175	1.4	175	1.5
COI-Millar-2.1	0	0.1	0	0.1	0	0.1	0	0.1
COI-Millar-2.1.1	0	0.1	0	0.1	0	0.1	0	0.1
COI-LLR	302	4.0	302	5.3	301	4.1	302	3.3
COI-Azaiez	0	0.8	0	1.3	0	0.8	0	1.0
COI-GPost	12	0.9	8	1.0	10	1.0	12	0.8
COI-GPost-B	5	1.0	7	1.2	9	1.5	5	1.1
COI-QMC-1	16	2.7	15	2.4	17	1.8	16	2.1
COI-QMC-2	29	4.3	29	4.6	29	5.4	29	4.1
COI-WHPP	3000	12.7	3002	17.1	3001	15.9	3000	12.6
COI-BCV-3.46.2	894	16.0	894	23.2	894	16.1	894	21.0
COI-BCV-4.13.1	10	1.3	10	1.2	10	1.2	10	1.1
COI-SINTEF	0	0.5	0	0.7	0	0.6	0	0.5
COI-ORTEC01	330	5.3	305	4.5	325	4.6	330	5.1
COI-ORTEC02	300	7.4	295	6.3	300	9.4	300	7.1
COI-ERMGH	808	598.0	779	601.1	779	600.7	779	598.0
COI-CHILD	149	494.1	149	489.0	150	489.6	151	494.6
COI-ERRVH	2148	597.2	2172	594.6	2258	594.3	2255	598.0
COI-HED01	151	10.6	147	9.9	155	8.0	151	11.4
COI-Valouxis-1	80	1.2	160	1.8	160	0.9	80	1.1
COI-Ikegami-2.1	0	11.7	0	18.4	0	12.5	0	11.6
COI-Ikegami-3.1	8	21.2	8	23.5	7	23.9	8	21.2
COI-Ikegami-3.1.1	8	31.9	11	22.9	11	25.2	8	25.4
COI-Ikegami-3.1.2	7	25.6	10	22.9	9	31.3	7	25.9
COI-BCDT-Sep	230	5.1	240	5.6	230	4.1	230	5.2
COI-MER	9282	566.4	9653	563.5	9298	568.7	9408	567.4
Average	665	89.7	680	89.8	671	89.8	672	89.7
No. of best costs	19		17		14		17	

Table 4 Evaluation of aspects of the KHE20 repair phases. The KHE20x8-R2 column shows the results of omitting the second repair phase; KHE20x8-RM shows the results of omitting resource rematching from both repair phases; and KHE20x8-EE shows the results of omitting ejection chain repair from both repair phases. This table is derived from XESTT archive file KHE20-2020-01-20-C0I-aspects4.xml, available at [1].

This shows that ejection chains have a major impact, and that the second repair phase is also important on some instances (notably COI-BCDT-Sep, where the amount of time spent on repair is not an issue). A good result for XHE20x8-RM on one instance (COI-MER) is responsible for its low average cost. It may indicate that, for some instances, time spent on resource rematching might be better spent on ejection chains.

Instances (27)	KHE20x8		KHE20x8-R2		KHE20x8-RM		KHE20x8-EE	
	Cost	Time	Cost	Time	Cost	Time	Cost	Time
COI-Ozkarahan	0	0.0	0	0.0	0	0.0	0	0.1
COI-Musa	175	0.8	175	0.8	175	0.8	175	0.1
COI-Millar-2.1	0	0.1	0	0.1	0	0.0	300	0.1
COI-Millar-2.1.1	0	0.1	0	0.1	0	0.0	0	0.1
COI-LLR	302	4.0	302	3.0	301	4.1	343	0.2
COI-Azaiez	0	0.8	0	0.7	0	1.0	14135	1.1
COI-GPost	12	0.9	12	0.5	12	0.8	23	0.2
COI-GPost-B	5	1.0	5	0.8	7	1.0	56	0.2
COI-QMC-1	16	2.7	16	2.1	17	2.7	3039	0.7
COI-QMC-2	29	4.3	29	2.5	29	2.7	29	2.8
COI-WHPP	3000	12.7	3002	13.3	3001	12.8	5007	0.6
COI-BCV-3.46.2	894	16.0	894	6.7	894	17.1	898	2.8
COI-BCV-4.13.1	10	1.3	10	0.6	10	0.9	11	0.6
COI-SINTEF	0	0.5	0	0.6	0	0.4	6	0.4
COI-ORTEC01	330	5.3	330	3.4	320	4.4	426	0.7
COI-ORTEC02	300	7.4	300	5.9	300	5.4	450	0.9
COI-ERMGH	808	598.0	779	479.2	779	597.7	803	417.9
COI-CHILD	149	494.1	153	384.2	151	497.8	152	307.2
COI-ERRVH	2148	597.2	2365	476.8	2251	599.7	2352	417.2
COI-HED01	151	10.6	4287	7.6	151	7.3	163	3.5
COI-Valouxis-1	80	1.2	80	0.9	80	1.0	2120	0.9
COI-Ikegami-2.1	0	11.7	0	9.7	1	3.5	0	11.4
COI-Ikegami-3.1	8	21.2	8	12.1	8	6.8	8	20.6
COI-Ikegami-3.1.1	8	31.9	14	14.7	12	10.6	8	24.7
COI-Ikegami-3.1.2	7	25.6	7	18.6	14	8.8	7	24.4
COI-BCDT-Sep	230	5.1	650	1.5	250	5.8	380	1.7
COI-MER	9282	566.4	10163	451.4	8764	573.5	12164	392.7
Average	665	89.7	873	70.3	649	87.7	1595	60.5
No. of best costs	23		18		18		8	

6

Table 5 Evaluation of aspects of KHE20's ejection chain repair. The KHE20x8-EW column shows the results of omitting widening; KHE20x8-ER shows the results of omitting reversing; and KHE20x8-EB shows the results of omitting balancing. This table is derived from XESTT archive file KHE20-2020-01-20-COI-aspects5.xml, available at [1].

KHE20x8 is clearly best here, producing the lowest average cost and the largest number of best solutions. Omitting balancing speeds up the algorithm significantly and is beneficial in a few instances, but it is clearly inferior overall.

Instances (27)	KHE20x8		KHE20x8-EW		KHE20x8-ER		KHE20x8-EB	
	$\overline{\mathbf{Cost}}$	Time	$\overline{\mathbf{Cost}}$	Time	$\overline{\mathbf{Cost}}$	Time	$\overline{\mathrm{Cost}}$	Time
COI-Ozkarahan	0	0.0	0	0.0	0	0.0	0	0.1
COI-Musa	175	0.8	175	0.3	175	0.8	175	0.1
COI-Millar-2.1	0	0.1	0	0.1	0	0.1	300	0.1
COI-Millar-2.1.1	0	0.1	0	0.1	0	0.0	0	0.1
COI-LLR	302	4.0	302	3.0	301	1.7	302	2.1
COI-Azaiez	0	0.8	0	0.7	0	1.0	5	1.0
COI-GPost	12	0.9	11	0.4	9	0.7	18	0.5
COI-GPost-B	5	1.0	8	0.6	8	0.7	13	0.6
COI-QMC-1	16	2.7	18	0.9	23	1.6	18	1.3
COI-QMC-2	29	4.3	29	2.0	29	3.8	29	1.3
COI-WHPP	3000	12.7	3001	5.7	3001	16.0	3001	4.3
COI-BCV-3.46.2	894	16.0	896	7.5	894	14.1	895	5.4
COI-BCV-4.13.1	10	1.3	10	0.7	10	0.6	10	0.5
COI-SINTEF	0	0.5	0	0.4	0	0.4	2	0.4
COI-ORTEC01	330	5.3	350	2.1	345	4.6	370	1.2
COI-ORTEC02	300	7.4	330	3.9	345	8.4	360	2.5
COI-ERMGH	808	598.0	958	582.5	830	589.0	946	538.0
COI-CHILD	149	494.1	153	452.2	149	498.9	860	155.5
COI-ERRVH	2148	597.2	2479	570.0	2253	594.9	3203	337.5
COI-HED01	151	10.6	147	5.7	153	5.8	147	4.3
COI-Valouxis-1	80	1.2	60	0.6	80	1.2	60	1.1
COI-Ikegami-2.1	0	11.7	0	7.3	0	12.5	0	4.2
COI-Ikegami-3.1	8	21.2	7	13.8	13	26.9	7	8.2
COI-Ikegami-3.1.1	8	31.9	12	15.7	18	33.8	13	7.5
COI-Ikegami-3.1.2	7	25.6	6	15.3	17	32.6	8	10.8
COI-BCDT-Sep	230	5.1	220	2.8	270	3.4	260	2.8
COI-MER	9282	566.4	8855	556.5	9387	567.4	8655	569.1
Average	665	89.7	668	83.4	678	89.7	728	61.5
No. of best costs	19		14		13		10	

Table 6 Evaluation of widening during the KHE20 ejection chain repair algorithm. The KHE20x8-EW2 column shows the results of widening up to 2 tasks; KHE20x8-EW4 shows the results of widening up to 4 tasks (this is what KHE20x8 does); and so on. This table is derived from XESTT archive file KHE20-2020-01-20-C0I-apsects6.xml, available at [1].

A lucky result on instance COI-WHPP has skewed the average cost for KHE20x8-EW2. Adjusting for that, KHE20x8 seems to be doing about the right amount of widening.

Instances (27)	KHE20x8-EW2		KHE20x8-EW4		KHE20x8-EW6		KHE20x8-EW8	
	Cost	Time	Cost	Time	Cost	Time	Cost	Time
COI-Ozkarahan	0	0.0	0	0.1	0	0.1	0	0.1
COI-Musa	175	0.5	175	1.3	175	1.5	175	1.2
COI-Millar-2.1	0	0.1	0	0.1	0	0.1	0	0.1
COI-Millar-2.1.1	0	0.1	0	0.1	0	0.1	0	0.1
COI-LLR	302	3.1	302	4.4	302	4.1	302	4.3
COI-Azaiez	0	0.9	0	1.1	0	0.8	0	0.9
COI-GPost	9	0.8	12	0.8	12	0.8	12	0.9
COI-GPost-B	6	0.9	5	1.0	5	1.3	5	1.3
COI-QMC-1	16	1.3	16	3.4	16	4.1	16	6.5
COI-QMC-2	29	3.0	29	4.0	29	4.6	29	4.3
COI-WHPP	2002	11.8	3000	14.8	3000	13.2	3000	13.4
COI-BCV-3.46.2	894	14.0	894	20.8	894	18.3	894	19.3
COI-BCV-4.13.1	10	0.8	10	1.0	10	1.0	10	1.2
COI-SINTEF	0	0.4	0	0.8	0	0.7	0	0.5
COI-ORTEC01	335	4.9	330	6.2	310	5.4	310	5.1
COI-ORTEC02	310	5.4	300	9.2	300	7.4	300	7.2
COI-ERMGH	779	596.5	779	598.5	779	599.4	779	599.2
COI-CHILD	150	482.1	149	490.3	150	500.4	149	499.7
COI-ERRVH	2248	591.4	2140	595.3	2261	596.4	2155	599.0
COI-HED01	147	6.2	151	7.7	151	9.8	151	10.6
COI-Valouxis-1	60	0.9	80	1.2	80	1.3	80	1.2
COI-Ikegami-2.1	0	9.9	0	15.0	0	11.3	0	14.9
COI-Ikegami-3.1	7	18.3	8	20.5	8	22.6	8	21.8
COI-Ikegami-3.1.1	9	17.7	8	25.1	8	25.5	8	23.2
COI-Ikegami-3.1.2	7	21.3	7	25.1	7	26.1	7	26.1
COI-BCDT-Sep	230	4.3	230	5.4	230	5.2	230	5.2
COI-MER	9875	565.7	9431	570.5	9863	565.4	9874	575.4
Average	652	87.5	669	89.8	689	89.9	685	90.5
No. of best costs	20		21		19		20	

Table 7 Evaluation of balancing during the KHE20 ejection chain repair algorithm. The KHE20x8-EB3 column shows the results of trying 3 balancing repairs; KHE20x8-EB6 tries 6 balancing repairs: and so on (KHE20x8 tries 12). This table is derived from XESTT archive file KHE20-2020-01-20-C0I-apsects7.xml, available at [1].

There is some evidence here that KHE20x8 is doing too much balancing, although most of the difference in average cost between KHE20x8-EB3 and KHE20x8-EB12 is due to one instance (COI-MER). This area needs more study. Balancing is likely to be of more benefit to some instances—those whose workload limits are tight—than others. For solves that reach the time limit, balancing repairs lack variety compared with other repairs that could be tried in the limited time.

Instances (27)	KHE20x8-EB3		KHE20x8-EB6		KHE20x8-EB12		KHE20x8-EB24	
	Cost	Time	Cost	Time	\mathbf{Cost}	Time	Cost	Time
COI-Ozkarahan	0	0.1	0	0.0	0	0.1	0	0.1
COI-Musa	175	0.8	175	0.8	175	1.4	175	0.8
COI-Millar-2.1	0	0.1	0	0.1	0	0.1	0	0.1
COI-Millar-2.1.1	0	0.1	0	0.0	0	0.1	0	0.1
COI-LLR	302	3.9	302	3.9	302	4.9	302	3.3
COI-Azaiez	0	1.0	0	0.8	0	1.0	0	1.4
COI-GPost	9	0.6	9	0.8	12	1.0	12	0.8
COI-GPost-B	9	0.7	5	1.0	5	1.2	5	1.0
COI-QMC-1	16	1.7	17	2.3	16	4.3	16	2.7
COI-QMC-2	29	3.3	29	4.7	29	6.8	29	3.8
COI-WHPP	3000	14.4	3001	13.7	3000	15.6	3000	12.8
COI-BCV-3.46.2	894	12.6	894	18.6	894	21.3	894	19.0
COI-BCV-4.13.1	10	0.8	10	1.0	10	1.7	10	1.0
COI-SINTEF	0	0.6	0	0.5	0	0.8	0	0.5
COI-ORTEC01	330	4.1	320	3.9	330	7.5	330	5.0
COI-ORTEC02	290	7.2	310	6.6	300	10.2	300	7.2
COI-ERMGH	819	595.5	779	597.8	779	599.4	799	599.7
COI-CHILD	151	426.6	149	484.8	152	498.2	149	495.5
COI-ERRVH	2127	569.5	2149	601.2	2145	595.6	2239	594.8
COI-HED01	143	8.9	155	13.7	151	7.8	151	7.9
COI-Valouxis-1	40	0.9	80	1.5	80	1.3	80	1.4
COI-Ikegami-2.1	0	12.8	0	18.1	0	13.3	0	13.7
COI-Ikegami-3.1	10	19.8	6	28.6	8	20.9	8	20.9
COI-Ikegami-3.1.1	10	24.8	11	38.1	8	25.6	8	27.8
COI-Ikegami-3.1.2	10	25.1	10	38.9	7	25.8	7	24.7
COI-BCDT-Sep	260	3.4	230	5.6	230	5.5	230	5.3
COI-MER	8438	567.4	9836	572.7	9505	571.5	9657	575.5
Average	632	85.4	684	91.1	672	90.5	682	89.9
No. of best costs	19		18		18		18	

Table 8 Solving the Curtois original instances with double running time. The Misc column shows the solutions from Curtois' web site; the KHE20x8 column shows KHE20x8's results; and the KHE20x8-T2 column shows KHE20x8's results when its running time limits are doubled. This table is derived from XESTT archive file KHE20-2020-01-20-COI-time.xml, available at [1].

Only four of the COI instances are affected by the changed limits. Except for COI-CHILD, where KHE20x8's solution is already optimal, all four show a clear reduction in cost.

Instances (27)	Misc		KHE	E20x8	KHE20x8-T2	
	\mathbf{Cost}	Time	\mathbf{Cost}	Time	Cost	Time
COI-Ozkarahan	0	-	0	0.0	0	0.1
COI-Musa	175	-	175	0.8	175	0.8
COI-Millar-2.1	0	1.0	0	0.1	0	0.1
COI-Millar-2.1.1	0	-	0	0.1	0	0.1
COI-LLR	301	10.0	302	4.0	302	3.7
COI-Azaiez	0	600.0	0	0.8	0	1.1
COI-GPost	5	-	12	0.9	12	0.8
COI-GPost-B	3	-	5	1.0	5	1.0
COI-QMC-1	13	-	16	2.7	16	2.9
COI-QMC-2	29	-	29	4.3	29	3.9
COI-WHPP	5	-	3000	12.7	3000	12.6
COI-BCV-3.46.2	894	17840.0	894	16.0	894	16.1
COI-BCV-4.13.1	10	-	10	1.3	10	1.0
COI-SINTEF	0	-	0	0.5	0	0.4
COI-ORTEC01	270	105.0	330	5.3	330	5.2
COI-ORTEC02	270	-	300	7.4	300	7.5
COI-ERMGH	779	124.0	808	598.0	779	1189.5
COI-CHILD	149	-	149	494.1	149	952.5
COI-ERRVH	2001	-	2148	597.2	2123	1159.5
COI-HED01	136	-	151	10.6	151	7.8
COI-Valouxis-1	20	-	80	1.2	80	1.2
COI-Ikegami-2.1	0	13.0	0	11.7	0	12.4
COI-Ikegami-3.1	2	21600.0	8	21.2	8	21.7
COI-Ikegami-3.1.1	3	2820.0	8	31.9	8	25.8
COI-Ikegami-3.1.2	3	2820.0	7	25.6	7	26.0
COI-BCDT-Sep	100	-	230	5.1	230	5.4
COI-MER	7081	36002.7	9282	566.4	8254	1135.4
Average	454		665	89.7	625	170.2

Table 9 Solving the Second International Timetabling Competition 8-week instances with double running time. The LOR17 column shows the results from [3]; the KHE20x8 column shows KHE20x8's results; and the KHE20x8-T2 column shows KHE20x8's results when its running time limits are doubled. This table is derived from XESTT archive file KHE20-2020-01-20-INRC2-8-time.xml, available at [1].

There is some improvement in cost, but the results are still uncompetitive with those of [3]. It seems that running time is not the issue here. This area needs more study.

Instances (20)	LO	R17	KHE	20x8	KHE20x8-T2	
	\mathbf{Cost}	Time	\mathbf{Cost}	Time	Cost	Time
INRC2-8-030-1-27093606	2125	-	2695	140.4	2695	161.4
INRC2-8-030-1-67535629	1735	-	2255	121.1	2255	127.7
INRC2-8-035-0-62987798	2570	-	3745	178.3	3630	239.4
INRC2-8-035-1-08161720	2330	-	3505	180.7	3390	269.4
INRC2-8-040-0-06892664	2635	-	3700	197.6	3635	306.9
INRC2-8-040-2-50487172	2495	-	3605	197.1	3595	214.0
INRC2-8-050-1-17857418	4990	-	6110	338.6	6030	451.0
INRC2-8-050-1-97538831	5000	-	5865	307.3	5850	438.6
INRC2-8-060-0-62990813	2425	-	3670	328.6	3520	452.5
INRC2-8-060-2-10340391	2590	-	3920	364.3	3785	491.8
INRC2-8-070-0-33923752	4660	-	6010	394.2	5820	672.7
INRC2-8-070-0-93072110	4770	-	6175	393.7	6065	649.8
INRC2-8-080-1-44993605	4225	-	6020	547.4	5840	785.4
INRC2-8-080-2-04091962	4495	-	6400	546.5	6155	909.6
INRC2-8-100-0-01789154	2145	-	3900	490.3	3710	732.7
INRC2-8-100-1-24793928	2250	-	4240	517.8	4020	778.5
INRC2-8-110-0-21172647	4010	-	5290	495.7	5140	834.1
INRC2-8-110-0-32494137	3575	-	4805	470.0	4645	742.7
INRC2-8-120-0-09945103	2670	-	4455	476.3	4350	836.6
INRC2-8-120-1-72645202	3125	-	4890	515.1	4755	924.1
Average	3241		4563	360.0	4444	550.9

Table 10 Solving the Curtois and Qu (2014) instances with double running time. The CQ-GR column shows results obtained by Curtois using Gurobi; the KHE20x8 column shows KHE20x8's results; and the KHE20x8-T2 column shows KHE20x8's results when its running time limits are doubled. This table is derived from XESTT archive file KHE20-2020-01-20-CQ14-time.xml, available at [1].

Only seven of the instances for which KHE20x8 finds feasible solutions have been able to utilize the extra time (CQ14-13 to CQ14-19), and only two of them (CQ14-13 and CQ14-17) have benefited significantly from it.

Instances (24)	\mathbf{CQ} - \mathbf{GR}		KHE	E20x8	KHE20x8-T2	
	Cost	Time	$\overline{\mathrm{Cost}}$	Time	$\overline{\mathrm{Cost}}$	Time
CQ14-01	607	-	607	0.3	607	0.3
CQ14-02	828	-	828	2.5	828	2.5
CQ14-03	1001	-	1001	2.8	1001	2.9
CQ14-04	1716	-	1720	3.2	1720	3.1
CQ14-05	1143	-	1239	10.1	1239	8.2
CQ14-06	1950	-	2066	13.9	2066	12.7
CQ14-07	1056	-	1078	24.0	1078	23.7
CQ14-08	1323	-	1429	62.1	1429	72.1
CQ14-09	439	-	453	91.1	453	91.8
CQ14-10	4631	-	4665	103.2	4665	102.8
CQ14-11	3443	-	3457	130.7	3457	131.4
CQ14-12	4040	-	4081	147.1	4081	149.2
CQ14-13	1388	-	2205	385.4	1844	739.7
CQ14-14	1280	-	1414	294.8	1414	324.4
CQ14-15	4039	-	4649	360.9	4632	591.6
CQ14-16	3233	-	3766	316.3	3763	348.7
CQ14-17	5851	-	6410	360.9	6207	721.1
CQ14-18	4760	-	5503	360.7	5484	717.5
CQ14-19	3218	-	3461	361.8	3436	721.7
Average	2418		2633	159.6	2600	250.8
CQ14-20			inf.	369.9	inf.	727.3
CQ14-21			inf.	386.7	inf.	747.1
CQ14-22			inf.	378.2	inf.	734.5
CQ14-23	17428	-	inf.	420.5	inf.	780.6
CQ14-24	48777	-	inf.	578.5	inf.	929.3