Improving the Dynamic Programming Algorithm for
 Nurse Rostering

Jeffrey H. Kingston

The University of Sydney

Overview

Existing algorithm

- A dynamic programming algorithm for optimally timetabling one nurse
- Found in column generation algorithms for nurse rostering
- Runs in time polynomial in the number of days to be timetabled

This paper's contribution

- Generalize to multiple nurses, any subset of the days, all constraints
- \quad Speed up (essential for multiple nurses)

Aim is to use it as reconstruction operator in VLSN search (still to do).

Nurse rostering

Assign shifts (e.g. morning, afternoon, night) to the nurses of a hospital ward, over several weeks.

Cover constraints

- For each shift, limits on the number of nurses assigned
- Requests for nurses may specify skills (senior, trainee, etc.)

Resource constraints

- Each nurse takes at most one shift per day (hard)
- Counter constraints: limits on total shifts, busy weekends, etc.
- Sequence constraints: limits on consecutive busy days, night shifts, etc.

Simple tree search (single nurse)

Day 0 Day1 Day 2

The dynamic programming algorithm

Dominance testing

Complete extension of solution S
A solution that begins with S and carries on to the end.

Dominates $\left(S_{1}, S_{2}\right)$
True when for each complete extension of S_{2} there is a complete extension of S_{1} of equal or less cost.

If Dominates $\left(S_{1}, S_{2}\right)$ then we can delete S_{2}. Check this as each solution is created.

How solutions are represented

Solution objects (nodes of search tree)

Signatures

Constraint	$s_{1} s_{1} s_{1}$	$s_{2} s_{2} s_{2}$
At most 5 shifts	3	3
At most 3 consecutive s_{1} shifts	3	0
At most 2 consecutive s_{2} shifts	0	$3+\operatorname{cost} 10$ (say)

Basic dominance

S_{1} dominates S_{2} when

- $\quad \operatorname{cost}\left(S_{1}\right) \leq \operatorname{cost}\left(S_{2}\right)$ and
- for each constraint m in the signatures,
- if upper limit only, $\operatorname{sig}\left(m, S_{1}\right) \leq \operatorname{sig}\left(m, S_{2}\right)$
- if lower limit only, $\operatorname{sig}\left(m, S_{1}\right) \geq \operatorname{sig}\left(m, S_{2}\right)$
- if both, $\operatorname{sig}\left(m, S_{1}\right)=\operatorname{sig}\left(m, S_{2}\right)$

Seems to be the standard in the literature.

Tradeoff dominance

- Seems to be new to this paper
- Similar to basic dominance
- But can trade off a small violation against $\operatorname{cost}\left(S_{2}\right)-\operatorname{cost}\left(S_{1}\right)$

Uniform dominance

- Done since paper was written
- Similar to tradeoff dominance
- Handles awkward cases well (allow zero flag, quadratic cost functions)
- May be best possible dominance test in practice

Generalizing

Multiple nurses

One assignment for each nurse, and all nurses' constraints in the signature:

$$
\begin{aligned}
& \text { Prev: } \square \text { Asst: } r_{1}:=s_{2}, r_{2}:=s_{0} \\
& \text { Cost: } 0 \text { Sig: 2,0,2,2,2,0 }
\end{aligned}
$$

Any subset of the days
Search over selected days only; unselected days add constants to signatures.

All constraints

Support the XESTT format; its constraints cover all the well-known data sets.

Experiment 1 - Storing solutions in a trie data structure

Experiment 2 - Moving to tradeoff dominance

Experiment 3 - Four nurses not yet efficient

Conclusion

What has been done

- Algorithm generalized to arbitrary nurses, days, constraints
- And made to run much faster

What still needs to be done

- More speedup (5 nurses at least)
- Test algorithm as VLSN reconstruction operator

