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Abstract Nurse rostering—assigning nurses to the shifts of a hospital ward—
is one of the most studied timetabling problems. This paper describes ongoing
work on the KHE24 nurse rostering solver, an improved version of the KHE18
solver published previously. It uses a time sweep algorithm to find an initial
solution, followed by repair using two methods (ejection chains, and optimal
reassignment by dynamic programming). Results are presented for several well-
known data sets. They show that KHE24 is making progress towards success
in practice, taking running time and breadth of application into account as
well as solution cost.
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1 Introduction

Nurse rostering—assigning nurses to the shifts of a hospital ward—is one of
the most studied timetabling problems. It is an NP-complete problem, and
exact algorithms are out of reach in general, although many smaller instances
have been solved to optimality using integer programming [4,36].

Many inexact methods have been tried. Recent work covers a wide range,
including integer programming [15,29,32,36,40], weighted maxSAT [10,11],
simulated annealing [9,38], hyper-heuristics [2,16,33], variable neighbourhood
search [39], and constraint programming [34]. For older work, see [41].

The solver presented here, KHE24, is the 2024 version of the main solver
built by the author on his KHE solver platform [20]. It is an improved version of
the KHE18 solver described in [22]. It runs in polynomial time and aims to find
competitive but not optimal solutions quickly, across a wide range of instances.
It finds an initial solution using a time sweep algorithm (Section 3.1). This
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timetables the first day of the cycle, then the second, and so on. It then tries
two repair methods: ejection chains (Section 3.3) and optimal reassignment
using dynamic programming (Section 3.4).

The author’s intention is to test KHE24 on four well-known data sets, to
demonstrate its ability to solve a wide range of practical instances. At present,
however, only two data sets and half of a third have been tested (Section 4).
Although KHE24 has not found any new best solutions, on its own terms
(that is, considering running time and breadth of application as well as cost)
it promises to be successful. The work is ongoing.

2 The nurse rostering problem and its XESTT formulation

Nurse rostering is the problem of assigning shifts to the nurses of a hospital
ward. Hospitals operate 24 hours a day, so there are usually at least three
types of shifts: morning, afternoon, and night. Each shift demands a certain
number of nurses, often with specific skills. There may be some flexibility in
how many nurses to assign, and the number typically changes from day to day.

Perhaps the most characteristic feature of the problem is the large array of
requirements that each nurse’s timetable must satisfy. In addition to workload
limits, there are rules such as ‘a nurse must have a day off after a sequence of
night shifts’, ‘a nurse may work at most four days in a row’, and so on. These
requirements are different at different institutions.

Instead of the usual formulas, this paper’s formal definition of the nurse
rostering problem is supplied by the XESTT nurse rostering data format [23].
XESTT is an XML format which is capable of representing the instances
found in all the well-known data sets. It is based on the XHSTT high school
timetabling format [30,31]; the name ‘XESTT’ was chosen to be reminiscent
of ‘XHSTT’, with ‘employee scheduling’ replacing ‘high school’. Full details of
XESTT appear online [17] and will not be repeated here. Instead, this section
offers an overview, and explains the importance of XESTT to the present work.

An XESTT instance consists of the cycle (the sequence of times that events
may be assigned); a set of resources (entities that attend events); a set of events
(meetings); and a set of constraints, specifying conditions that solutions should
satisfy, and penalties to impose when they don’t.

Each event contains a starting time, which may either be preassigned a
time or left open for a solver to assign; a duration, which is a fixed positive
integer giving the number of consecutive times, starting at the starting time,
that the event is running; an optional workload, which is a fixed non-negative
integer representing the workload of the event in arbitrary units, for example
in minutes; and any number of event resources, each specifying one resource
which attends the event for the full duration, which may either be preassigned
a resource or left open for a solver to assign.

In nurse rostering instances, each event represents one shift. Each event
has duration 1; its actual duration in minutes can be expressed as a workload,
if needed. Its starting time is preassigned to a time unique to the shift. For
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example, if on each day there is a morning, afternoon, and night shift, then each
day will contain three times, one for each shift. This arrangement is somewhat
artificial, but, as [23] explains, most nurse rostering constraints concern shifts,
not workload in minutes, and this works well in practice. Within an event,
each event resource represents a demand for one nurse.

Sets of times, resources, and events may be defined, called time groups,
resource groups and event groups. Each resource has one resource type, saying
what type of resource it is. In nurse rostering there is just one type, Nurse.

XESTT offers 18 constraint types, but 9 are not used in nurse rostering,
mainly because all the events have preassigned times. Of the 9 types that
are used, 3 are cover constraints, specifying the number of resources that
should attend each event, and the skills those resources should have. The
other 6, called resource constraints here, constrain the timetables of individual
resources, specifying unavailable times, workload limits, unwanted patterns
(such as a day shift immediately following a night shift), and so on.

Each constraint contains a Boolean required flag indicating whether it is
hard or soft, and an integer weight. When a constraint is violated, the degree of
violation is multiplied by the weight to give a cost. Algorithms aim to minimize
firstly the total cost of hard constraints (the hard cost), and secondly the total
cost of soft constraints (the soft cost). In nurse rostering, solutions with non-
zero hard cost are usually considered to be infeasible, that is, useless.

XESTT is important here for two reasons. First, it makes it easy to test
KHE24 on a wide range of instances, because all these instances have been
converted from their original formats to XESTT.

Second, XESTT uses just 9 types of constraints to represent all of the
constraints found in other models. It can do this because its constraints accept
arbitrary time groups, allowing the same type of constraint to deal with days,
night shifts, weekends, and so on. Algorithms like the ejection chain algorithm
in this paper, which handle each constraint type explicitly, have only 9 types
to handle. Without XESTT or something like it, the number of constraint
types would be much larger, and such an approach would hardly be feasible.

3 The KHE24 solver

The KHE24 solver presented here is built on the author’s KHE solver platform
and is available from the KHE web site [20]. It is an improved version of
the KHE18 nurse rostering solver [22] which itself was descended from the
KHE14 high school timetabling solver [19]. Full details appear in the KHE
documentation [20]; this section covers the main points.

KHE24 is in fact a general timetabling solver, but in nurse rostering the
times of all events are preassigned, so KHE24’s time assignment part does
nothing during nurse rostering except convert the time preassignments in the
instances into time assignments in the solutions. This takes almost no time.

After time assignment comes resource assignment—the assignment of nurses
to shifts. KHE24 first carries out a construction phase which builds an initial
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assignment, then continues with a repair phase which tries several kinds of
repairs that improve that assignment. The repair phase is run twice, to enable
repairs of one kind to open the way to repairs of other kinds.

In the KHE platform, instances and solutions are distinct objects. Instances
are immutable after creation, whereas solutions change as solving proceeds. A
solution consists of a set of meets, each representing one event. Within each
meet there are tasks, one for each event resource of the meet’s event. Each task
is, in effect, a variable to which one resource may be assigned; it represents an
indivisible piece of work for one resource. We will use ‘task’ in the following
in preference to ‘shift’, because ‘shift’ can mean both ‘task’ and ‘meet’.

KHE24 has many parameters (called options), settable from the command
line, determining such things as how to divide up the available running time,
the maximum number of days to include when swapping the timetables of two
resources, and so on. However, in this paper, the default values of all these
options are used. There is no tuning of parameters for different instances,
or even different data sets. The only options passed to the calls to KHE24
reported on here are those that set its time limit, the number of solutions
to make for each instance, and the number of those solves to run in parallel;
and those options (except the time limit) are the same for all runs. This is an
important aspect of our claim that KHE24 could become a practical solver.

3.1 Construction using time sweep

Because of the high density of constraints in nurse rostering, it may be easier
to avoid introducing a problem than to remove it later. So it makes sense for
the construction phase to try hard to produce a very good solution [27].

Many nurse rostering constraints concern what happens over consecutive
days within nurses’ timetables. This suggests that the initial solution should
be constructed day by day—the tasks of the first day assigned first, then
the tasks of the second day, and so on. As each day is assigned, these kinds
of constraints can often be satisfied. KHE24 uses this time sweep method,
employing weighted bipartite matching to assign each day. This method was
presented in detail in the earlier paper [22], so we omit the details here.

The only other use of time sweep known to the author is [27], which finds
initial solutions one week at a time in chronological order. It cites an aircrew
scheduling paper [35] as its inspiration. The time sweep idea seems to be well
known, however. A referee mentioned a similar algorithm from vehicle routing,
which sweeps through drop-off points in order of their angle from the base.

3.2 Task grouping

The KHE platform allows tasks to be grouped. Assigning a resource to one
element of a group assigns it to all. This was included to support high school
timetabling: the lessons of one course should be assigned a common teacher.
It has also proved useful in nurse rostering.
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For example, in instance COI-GPost (Section 4.1), a nurse who takes a
Friday night task should also take the following Saturday and Sunday night
tasks, because constraints penalize Friday night tasks before free weekends,
incomplete weekends (working on Saturday or Sunday but not both), and day
tasks after night tasks. Then the Monday and Tuesday night tasks can be
grouped, as can the Wednesday and Thursday night tasks, owing to limits
(minimum 2 and maximum 3) on the number of consecutive night tasks.

KHE24 has a grouping phase which precedes time sweep. It runs quickly
but is general enough to be widely useful. For example, it groups the tasks of
solutions of instance COI-GPost following the line of argument just given. Full
details appear in the earlier paper [22].

A grouping will occasionally be inadvisable for some unexpected reason. So
KHE24 applies the groupings during the construction and first repair phases,
but then removes them, so that if something else is needed there is a chance
to find it during the second repair phase. The author has observed a few cases
where omitting to remove groupings led to infeasible solutions.

3.3 Repair using ejection chains

After constructing an initial solution using time sweep, KHE24 repairs it using
two methods. The most effective of these is ejection chain repair. Although
KHE18 also used ejection chain repair, the details were not settled and the
published description was quite sketchy. KHE24’s version is much more settled,
so this section presents it in detail.

A defect in a solution is one violation of a constraint. For example, if nurse
N2 should work at most two weekends but in fact works three, that is a defect.

A repair is a change to a solution which removes a defect. For example,
unassigning one of nurse N2’s busy weekends repairs the defect just described.

An ejection chain is like a path in a graph where each node represents one
defect and each edge represents one repair. Starting from some defect, the first
repair removes that defect but introduces one new defect. The second repair
removes that defect but introduces another new defect, and so on. If some
repair removes a defect without introducing a new defect, then the chain ends
successfully: the solution has been improved. Or if the repair of one defect
introduces two or more new defects, then the chain ends unsuccessfully: the
repair has to be undone, with no improvement. (More precisely, a chain ends
successfully whenever the current solution cost is less than it was at the start
of the chain; new defects are acceptable, if their cost is low. A chain may
be extended whenever a repair introduces a new defect whose removal would
make the current solution cost less than it was at the start of the chain.)

There are usually several ways to repair a defect. For example, nurse N2’s
defect can be repaired by unassigning any one of the three busy weekends. So
finding a successful chain involves a search tree: if the first repair does not
begin a successful chain, then the second is tried, and so on recursively.
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The main loop of the ejection chain repair algorithm visits each defect of
the current solution and attempts to remove it by searching a tree of ejection
chains, stopping at the first successful chain, if any. It cycles around the defects
until a complete cycle of attempts has failed, at which point it terminates.

There are several ways to limit the method to polynomial time. The usual
one, which KHE24 uses, is to refuse to visit the same part of the solution twice
while repairing a given defect [18,19]. There is also a time limit (Section 3.5).

Each type of constraint gives rise to one type of defect (or two: maximum
and minimum limit violations are repaired differently). For each defect, a set
of repairs suited to its type is tried, making the chains polymorphic.

At the lowest level, just one basic operation can change a solution: the task
move, which changes the assignment of task s from resource r1 to resource r2,
where r1 6= r2. Here r1 may be NULL, in which case the task move is also a
task assignment; or r2 may be NULL, making it also a task unassignment. One
repair is (can only be) a set of these basic operations.

Several authors (see below) use a swap of the timetables of two resources
over several consecutive days as their main repair operation. KHE24 also does
this; the maximum number of days is 16. It also tries assignments to a resource
r2 over several days, and unassignments of a resource r1 over several days. In
these cases, the maximum number of days is much smaller, just 4.

Unlike metaheuristics, which choose repairs at random, KHE24’s ejection
chain algorithm is quite focused. It finds all small repairs (typically extending
over one or two days) which would repair the current defect, and then for each
small repair it tries a set of alternative repairs by extending that small repair
over various sets of adjacent days. Simple checks ensure that the same large
repair is almost never tried twice when repairing a given defect.

It is not hard to find suitable small repairs, as was done above for nurse N2’s
busy weekends. If a resource r is overloaded during some set of times (one day,
weekend, or whatever), all small repairs are tried that either unassign r during
those times or swap its timetable on those times’ days with another resource
which is free then. If r is underloaded during some set of times, all small repairs
are tried that either assign r to some unassigned task during those times or
swap its timetable on the relevant days with some other resource which is busy
then. These two kinds of repairs handle all kinds of resource constraints. For
example, if r has too many consecutive night shifts, that is treated as r being
overloaded during the times of the two endpoints of the over-long sequence.

Cover defects are handled similarly. For example, a task needing assignment
is handled by finding all small repairs that assign a suitable resource to the
task, then expanding that assignment over adjacent days.

It is common for several tasks to be equivalent, in the sense that the effect
of assigning any given resource to any one of them is the same. For example, if
the Thursday night shift demands one senior nurse and three ordinary nurses,
there will be one task requiring a senior nurse which is not equivalent to
any other task, and three equivalent tasks demanding ordinary nurses. If the
demand is for two or three ordinary nurses, then the three tasks are still
equivalent but there is a preference to assign resources to the first two rather
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than to the third. In such cases the ejection chain solver will try one repair
per equivalence class, not one repair per task, saving time.

The author knows of three other papers that use ejection chains in nurse
rostering. The first two are fairly old and use data sets that are not in use
today, making their results hard to evaluate. One [12] includes a repair which
swaps the timetables of two resources over one week. The other [28] uses chains
of task moves in a tabu search framework. The chains are rather different from
those used here: each is generated at random in a way that preserves coverage,
but without checking other costs until the whole chain is generated. Reference
[28] cites [1] as a source for these chains—a very early use. The third previous
use of ejection chains [3,4,7] is much more recent. Its basic repair swaps the
timetables of two resources over a variable number of consecutive days.

3.4 Repair using optimal reassignment

There is a dynamic programming algorithm, well known to those who use
column generation to solve nurse rostering problems, for finding an optimal
assignment of tasks to a single nurse, given fixed timetables for the other
nurses. The author has recently generalized this algorithm to find an optimal
reassignment of an arbitrary subset of the nurses on an arbitrary subset of the
days of the cycle, leaving the other nurses and the other days fixed [25].

The algorithm reported on in [25] was deficient in one respect: it did not
support the XESTT limit workload constraint, which limits total workload
measured in arbitrary units, such as minutes. This deficiency is now fixed.

Analysis shows that this algorithm is polynomial in the number of days
it reassigns, but exponential in the number of resources it reassigns [25]. The
author’s practical experience with the algorithm bears this out: it costs very
little to reassign a few more days, but reassigning just one more resource can
increase the running time dramatically. Disappointingly, despite the author’s
best attempts at optimization, he has been able to reliably reassign up to only
three resources, although for a practically unlimited number of days.

Using this algorithm, the author has implemented a VLSN search which
chooses 3 resources and 28 consecutive days at random, optimally reassigns
those resources over those days, and then repeats using new random choices
until time runs out or 50 consecutive attempts produce no improvement. It is
nowhere near as effective as ejection chains, but it operates on quite different
principles and occasionally makes a contribution.

3.5 Making good use of available running time

Running time is a major issue for the larger instances, so it must be used
well. Each of KHE24’s phases yields diminishing returns as its running time
increases, so it would be a mistake to spend all of the available time on one
phase and have nothing left for the others.



8 Jeffrey H. Kingston

KHE24 limits each day during time sweep (including repairs associated
with that day) to 3 seconds. Two-thirds of the remaining time is then given
to the first repair phase, and one-third to the second. Within these phases,
the two repair methods (ejection chains and optimal reassignment) get equal
time. If ejection chains finish early, optimal reassignment gets the surplus.

The ejection chain algorithm of [7] imposes a time limit on each search for
a chain that repairs one defect. KHE24 imposes a limit of 120 on the number
of recursive calls when repairing one defect, which has a similar effect.

Actual running time need not match the time limit exactly. On the one
hand, a phase will often end of its own accord well before its time limit. On
the other, the time limits are soft: instead of being interrupted, each phase
consults wall clock time periodically and decides for itself whether to stop.
In practice, KHE24 never significantly overruns its time limit, as the actual
running times reported in the results tables of Section 4 will show.

3.6 Randomization

Randomization is not stressed in algorithmic solvers like it is in, for example,
metaheuristic ones. Still, including some randomization allows the algorithm
to be run multiple times with different seeds to obtain different results. Doing
this and keeping the best solution is a simple way to utilize multiple cores and
trade off solution quality and running time.

For example, ejection chain repair randomizes by trying alternative repairs
starting at a random point in the sequence of possible repairs. Such methods
are not deep, but they seem to work, judging from the spread of solution costs
they produce.

4 Results

This section presents the results of running KHE24 on several well-known
sets of instances, after conversion to XESTT by the NRConv program [21,23],
with comparisons with previous results. The converted instances and results
are available, in the form of XESTT archive files, at [21].

Our aim here is not to find new best solutions, but rather to achieve success
in practice, which means to find good solutions to a wide variety of real-world
instances quickly. This idea has been formalized by the author [26] as follows:

A solver is successful in practice if, on every instance that is likely to

be encountered in practice, it finds a solution whose cost is within 10%

of the best known when run for 5 minutes, and within 5% of the best

known when run for 60 minutes.

A detailed justification appears in [26], but just briefly, a solver satisfying
these conditions can be used by a practitioner for testing possible scenarios,
and also for finding solutions for actual use which are indistinguishable to
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casual inspection from the best known solutions. Our task, then, is to evaluate
the KHE24 solver against this standard. As a proxy for ‘every instance that
is likely to be encountered in practice’, we intend to test the solver on four
widely used data sets, although in this paper we only test on two data sets
and part of a third. And for ‘best known solutions’ we will use sets of solutions
from other authors which are either the best, or among the best known.

KHE24 (as described in Section 3) is run 24 times on each instance, with a
different random seed for each run, and the best of the 24 solutions is kept. We
call this version of the solver KHE24x24. Twelve threads are used, running on
the author’s 12-core Intel i7-12700 processor. (The Intel web site gives several
clock frequencies, from 1.6GHz to 4.9GHz, chosen depending on various factors
including temperature, so it’s hard to be definite about processor speed.) Each
individual solve is given a time limit which is half the overall time limit (half of
either 5 minutes or 60 minutes). For each instance, the reported running time
is the wall clock time in seconds from the start of the first solve to the end of
the last one. It does not include file read and write times; they are negligible.

Each result table was generated by the author’s HSEval program from an
XESTT archive file and included with no hand editing. A blank entry indicates
that there is no solution for the instance of its row in the solution group of
its column. If there are multiple solutions, one with minimum running time
among all solutions with minimum cost is shown. The minimum solution costs
in each row appear in bold. Any solutions with non-zero hard cost are shown
as ‘inf.’ (infeasible). No costs are reported on trust; all are calculated from the
solutions in the archive file, and hence verified, by HSEval.

Adjacent to each cost c, in the ‘Rel.’ column, is a relative cost: the value
of c divided by the best cost in the row, when the best cost is non-zero. When
KHE24x24 is run for 5 minutes, a relative cost of up to 1.10 represents success
in practice; when it is run for 60 minutes, 1.05 represents success in practice.

Running times are shown (in seconds) where present in the archive. HSEval
cannot verify them. KHE24x24 running times are as defined above.

Care is needed with the average costs at the foot of each table, since costs
are sensitive to the scale of the constraint weights. Constraints that measure
workload in minutes may produce costs in the thousands.

4.1 The Curtois original instances

The Curtois original instances are the instances available online at [8] under the
heading ‘Original instances.’ Their XESTT versions appear in XESTT archive
file COI.xml at [21], along with the solutions posted with the instances. Nearly
all of these solutions are optimal, according to Table 3 of [4].

Table 1 compares KHE24x24’s solutions with the solutions from [8]. It is
important to analyse what is happening, and not simply take these results at
face value. For example, KHE’s high relative costs for the Post and Ikegami
instances suggest that KHE is performing poorly on those instances, but the
actual costs tell a different story. Also, in every solution of COI-WHPP with cost
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Table 1 Results of running KHE24x24 on the Curtois original instances. Column Misc
shows the best solutions from XESTT archive file COI.xml, taken from Curtois’ web site [8].
The other columns show the results for KHE24x24, running for 5 minutes and 60 minutes.
Here and elsewhere, running times are in seconds. This table is derived from XESTT archive
file KHE24-2024-03-07-COI.xml, available at [21].

Instances (27) Misc KHE24x24-05 KHE24x24-60

Cost Rel. Time Cost Rel. Time Cost Rel. Time
COI-Ozkarahan 0 1.00 - 0 1.00 0.1 0 1.00 0.1
COI-Musa 175 1.00 - 175 1.00 15.9 175 1.00 16.9
COI-Millar-2.1 0 1.00 1.0 0 1.00 6.8 0 1.00 7.3
COI-Millar-2.1.1 0 1.00 - 0 1.00 0.0 0 1.00 0.0
COI-LLR 301 1.00 10.0 301 1.00 46.5 301 1.00 50.8
COI-Azaiez 0 1.00 600.0 0 1.00 300.1 0 1.00 1800.0
COI-GPost 5 1.00 - 8 1.60 143.5 8 1.60 139.4
COI-GPost-B 3 1.00 - 5 1.67 157.5 5 1.67 1800.0
COI-QMC-1 13 1.00 - 16 1.23 70.6 16 1.23 62.5
COI-QMC-2 29 1.00 - 30 1.03 44.1 30 1.03 43.5
COI-WHPP 5 1.00 - 2001 400.20 300.1 2001 400.20 3600.1
COI-BCV-3.46.2 894 1.00 17840.0 896 1.00 300.1 894 1.00 3600.1
COI-BCV-4.13.1 10 1.00 - 10 1.00 300.1 10 1.00 3600.1
COI-SINTEF 0 1.00 - 0 1.00 6.9 0 1.00 7.4
COI-ORTEC01 270 1.00 105.0 300 1.11 174.3 295 1.09 211.4
COI-ORTEC02 270 1.00 - 295 1.09 154.3 295 1.09 158.8
COI-ERMGH 779 1.00 124.0 1481 1.90 301.7 882 1.13 3600.4
COI-CHILD 149 1.00 - 2824 18.95 324.8 261 1.75 3600.3
COI-ERRVH 2001 1.00 - 6739 3.37 307.7 2219 1.11 3829.4
COI-HED01 136 1.00 - 138 1.01 254.3 136 1.00 1824.7
COI-Valouxis-1 20 1.00 - 100 5.00 300.0 100 5.00 866.1
COI-Ikegami-2.1 0 1.00 13.0 0 1.00 150.0 0 1.00 1800.1
COI-Ikegami-3.1 2 1.00 21600.0 10 5.00 300.1 9 4.50 3600.3
COI-Ikegami-3.1.1 3 1.00 2820.0 14 4.67 300.2 15 5.00 3600.5
COI-Ikegami-3.1.2 3 1.00 2820.0 15 5.00 300.1 10 3.33 3600.4
COI-BCDT-Sep 100 1.00 - 230 2.30 300.1 210 2.10 3600.3
COI-MER 7081 1.00 36002.7 56048 7.92 406.4 13840 1.95 3616.5
Average 454 1.00 2653 17.52 195.0 804 16.47 1801.4

below 1000, some nurses must take night shifts only, and the rest must take
non-night shifts only—hardly a real-world scenario.

In summary, KHE24 is successful or almost successful in practice on most of
the Curtois original instances, the main exceptions being the larger ones, such
as COI-ERMGH, COI-CHILD, COI-ERRVH, and COI-MER. The large differences in
cost between the 5-minute and 60-minute runs on these instances suggest that
their large size is overwhelming the solver, although further analysis is needed.
The Curtois original instances are rarely used for testing these days, which is
a pity, considering how interesting and varied they are.
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Table 2 Results for the Long and Medium instances of the First International Timetabling
Competition. The GOAL column shows the solutions from the GOAL research group web
site [37], which the GOAL group has shown to be virtually optimal. The other columns show
the results for KHE24x24, running for 5 minutes and 60 minutes. This table is derived from
XESTT archive file KHE24-2024-03-07-INRC1-Long-And-Medium.xml, available at [21].

Instances (30) GOAL KHE24x24-05 KHE24x24-60

Cost Rel. Cost Rel. Time Cost Rel. Time
INRC1-L01 197 1.00 199 1.01 222.4 199 1.01 405.5
INRC1-L02 219 1.00 227 1.04 219.9 225 1.03 775.3
INRC1-L03 240 1.00 240 1.00 226.0 240 1.00 480.4
INRC1-L04 303 1.00 305 1.01 219.1 304 1.00 740.4
INRC1-L05 284 1.00 285 1.00 218.4 285 1.00 686.9
INRC1-LH01 346 1.00 367 1.06 237.4 354 1.02 2471.2
INRC1-LH02 89 1.00 95 1.07 249.3 93 1.04 2192.8
INRC1-LH03 38 1.00 44 1.16 235.8 42 1.11 1779.7
INRC1-LH04 22 1.00 33 1.50 229.8 30 1.36 1741.4
INRC1-LH05 41 1.00 52 1.27 224.4 47 1.15 1957.4
INRC1-LL01 235 1.00 252 1.07 235.9 246 1.05 2451.3
INRC1-LL02 229 1.00 250 1.09 239.2 238 1.04 2455.2
INRC1-LL03 220 1.00 262 1.19 248.3 244 1.11 2445.9
INRC1-LL04 222 1.00 256 1.15 235.3 237 1.07 2443.1
INRC1-LL05 83 1.00 87 1.05 245.0 84 1.01 1908.4
INRC1-M01 240 1.00 243 1.01 179.2 243 1.01 186.1
INRC1-M02 240 1.00 244 1.02 182.2 244 1.02 214.9
INRC1-M03 236 1.00 239 1.01 180.2 239 1.01 197.4
INRC1-M04 237 1.00 240 1.01 182.3 240 1.01 198.8
INRC1-M05 303 1.00 308 1.02 209.3 308 1.02 285.8
INRC1-MH01 111 1.00 140 1.26 219.2 132 1.19 1471.3
INRC1-MH02 221 1.00 237 1.07 226.9 231 1.05 1040.9
INRC1-MH03 34 1.00 41 1.21 208.9 41 1.21 301.0
INRC1-MH04 78 1.00 85 1.09 218.8 85 1.09 458.2
INRC1-MH05 119 1.00 130 1.09 222.7 132 1.11 1102.9
INRC1-ML01 157 1.00 170 1.08 234.0 163 1.04 1079.7
INRC1-ML02 18 1.00 26 1.44 139.6 26 1.44 241.2
INRC1-ML03 29 1.00 35 1.21 125.7 35 1.21 141.5
INRC1-ML04 35 1.00 41 1.17 183.5 41 1.17 330.8
INRC1-ML05 107 1.00 114 1.07 217.6 114 1.07 1309.5
Average 164 1.00 175 1.11 213.9 171 1.09 1116.5

4.2 The First International Nurse Rostering Competition

The First International Nurse Rostering Competition [14] has published many
instances, still available from the competition web site [13]. XESTT versions
are available in files INRC1-Long-And-Medium.xml and INRC1-Sprint.xml

[21], along with the GOAL research group’s virtually optimal solutions [37].

Tables 2 and 3 show KHE24’s results. Running times are not given for the
GOAL solutions because the GOAL solution files do not contain any; but the
GOAL web site has a table of running times. About 10 instances, from the
Long and Medium sets, have running times of about 4 hours. Many others
have running times under one minute, often well under.
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Table 3 Results for the Sprint instances of the First International Timetabling Competi-
tion. This table is derived from XESTT archive file KHE24-2024-03-07-INRC1-Sprint.xml,
available at [21]. Other details as for Table 2.

Instances (30) GOAL KHE24x24-05 KHE24x24-60

Cost Rel. Cost Rel. Time Cost Rel. Time
INRC1-S01 56 1.00 56 1.00 42.0 56 1.00 48.1
INRC1-S02 58 1.00 58 1.00 38.5 58 1.00 38.1
INRC1-S03 51 1.00 51 1.00 50.2 51 1.00 50.4
INRC1-S04 59 1.00 59 1.00 44.1 59 1.00 44.9
INRC1-S05 58 1.00 58 1.00 49.7 58 1.00 50.4
INRC1-S06 54 1.00 54 1.00 52.0 54 1.00 50.5
INRC1-S07 56 1.00 56 1.00 46.9 56 1.00 45.3
INRC1-S08 56 1.00 56 1.00 40.4 56 1.00 40.4
INRC1-S09 55 1.00 55 1.00 59.1 55 1.00 61.5
INRC1-S10 52 1.00 52 1.00 46.8 52 1.00 46.7
INRC1-SH01 32 1.00 34 1.06 31.6 34 1.06 31.4
INRC1-SH02 32 1.00 32 1.00 30.0 32 1.00 29.8
INRC1-SH03 62 1.00 62 1.00 42.7 62 1.00 42.3
INRC1-SH04 66 1.00 67 1.02 58.6 67 1.02 58.1
INRC1-SH05 59 1.00 59 1.00 54.2 59 1.00 54.2
INRC1-SH06 130 1.00 134 1.03 59.8 134 1.03 58.7
INRC1-SH07 153 1.00 153 1.00 53.0 153 1.00 52.6
INRC1-SH08 204 1.00 206 1.01 124.2 206 1.01 127.4
INRC1-SH09 338 1.00 338 1.00 149.7 338 1.00 223.6
INRC1-SH10 306 1.00 306 1.00 72.3 306 1.00 70.0
INRC1-SL01 37 1.00 38 1.03 50.5 38 1.03 50.2
INRC1-SL02 42 1.00 43 1.02 37.4 43 1.02 36.8
INRC1-SL03 48 1.00 49 1.02 51.5 49 1.02 53.9
INRC1-SL04 73 1.00 73 1.00 139.8 73 1.00 231.6
INRC1-SL05 44 1.00 45 1.02 48.9 45 1.02 46.0
INRC1-SL06 42 1.00 42 1.00 20.2 42 1.00 20.0
INRC1-SL07 42 1.00 43 1.02 35.8 43 1.02 34.4
INRC1-SL08 17 1.00 17 1.00 19.4 17 1.00 19.8
INRC1-SL09 17 1.00 17 1.00 19.0 17 1.00 18.8
INRC1-SL10 43 1.00 43 1.00 31.0 43 1.00 32.5
Average 78 1.00 79 1.01 53.3 79 1.01 58.9

Another source of virtually optimal solutions to these instances is the
branch and price algorithm whose results are reported in Table 5 of [4]. The
author has not tried to obtain these solutions. Their reported running times
are better than the GOAL ones, never exceeding about 10 minutes.

KHE24 is generally successful in practice on these instances, although
once again there are some exceptions, including INRC1-LH04, INRC1-LH05,
INRC1-MH01, and INRC1-ML02. Analysis of these cases is needed. On the Sprint
instances, running for 60 minutes is never better than running for 5.

4.3 The Second International Nurse Rostering Competition

The Second International Nurse Rostering Competition [5,6] was notable for
requiring its instances to be solved week by week, as occurs in the real world.
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Table 4 Results for the Second International Timetabling Competition 4-week instances.
The LOR17 column shows the solutions obtained from the authors of [27]. This table is
derived from XESTT archive file KHE24-2024-03-07-INRC2-4.xml, available at [21].

Instances (20) LOR17 KHE24x24-05 KHE24x24-60

Cost Rel. Cost Rel. Time Cost Rel. Time
INRC2-4-030-1-6291 1695 1.00 2040 1.20 300.1 1865 1.10 3600.1
INRC2-4-030-1-6753 1890 1.00 2230 1.18 300.1 2005 1.06 3600.2
INRC2-4-035-0-1718 1425 1.00 1835 1.29 300.1 1590 1.12 3600.2
INRC2-4-035-2-8875 1155 1.00 1535 1.33 300.1 1360 1.18 3600.1
INRC2-4-040-0-2061 1685 1.00 2125 1.26 300.1 1875 1.11 3600.1
INRC2-4-040-2-6106 1890 1.00 2360 1.25 300.1 2020 1.07 3600.1
INRC2-4-050-0-0487 1505 1.00 2015 1.34 300.1 1745 1.16 3600.1
INRC2-4-050-0-7272 1500 1.00 1975 1.32 300.1 1690 1.13 3600.1
INRC2-4-060-1-6115 2505 1.00 3335 1.33 300.2 2840 1.13 3600.2
INRC2-4-060-1-9638 2750 1.00 3785 1.38 300.2 3165 1.15 3600.2
INRC2-4-070-0-3651 2435 1.00 3225 1.32 300.1 2850 1.17 3600.1
INRC2-4-070-0-4967 2175 1.00 3035 1.40 300.1 2565 1.18 3600.1
INRC2-4-080-2-4333 3340 1.00 4015 1.20 300.1 3775 1.13 3600.3
INRC2-4-080-2-6048 3260 1.00 4230 1.30 300.1 3750 1.15 3600.2
INRC2-4-100-0-1108 1245 1.00 2100 1.69 300.2 1670 1.34 3600.2
INRC2-4-100-2-0646 1950 1.00 2700 1.38 300.2 2275 1.17 3600.2
INRC2-4-110-0-1428 2440 1.00 3245 1.33 300.2 2755 1.13 3600.2
INRC2-4-110-0-1935 2560 1.00 3550 1.39 300.2 3015 1.18 3600.2
INRC2-4-120-1-4626 2170 1.00 3060 1.41 300.2 2600 1.20 3600.3
INRC2-4-120-1-5698 2220 1.00 3140 1.41 300.2 2650 1.19 3600.2
Average 2090 1.00 2777 1.34 300.1 2403 1.15 3600.2

However, here we focus on a set of conventional 4-week and 8-week instances
from the competition that have been tackled by several authors [27,38]. Their
converted versions appear in files INRC2-4.xml and INRC2-8.xml at [21], along
with some solutions produced by the authors of [27].

The results for the 4-week instances appear in Table 4. There is no running
time information in the solution files obtained from other authors. Reference
[27] gives a formula that was used to determine the running time limit; it
is about 20 minutes for the largest 4-week instances. Reference [38] used a
running time limit of 2750 seconds (about 45 minutes).

These results are disappointing, relative to the best known solutions and
to the author’s own testing. For example, the cost of the 5-minute solution
to instance INRC2-4-030-1-6291 reported here is 2040 (Table 4), but in other
5-minute tests the author has obtained solutions whose cost is as low as 1785.
This problem will probably be easy to fix, but the paper submission deadline
intervened before the the author had time to fix it.

Sadly, the publication deadline has prevented the author from tackling the
8-week instances with KHE24x24. A few preliminary tests have revealed that
KHE24x24’s solutions are not currently competitive. The author’s experience
with other data sets suggests that detailed analysis will reveal concrete areas
in which the algorithm is performing poorly, whose improvement will lead to
more competitive results. However this is speculation at present.
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4.4 The 2014 Curtois and Qu instances

The instances here are the 24 instances published in 2014 by Curtois and Qu
[7,8]. Converted versions appear in file CQ14.xml, which also holds four sets
of solutions received from Curtois via private correspondence.

Again, the publication deadline has prevented the author from presenting
results for this data set. He does not have even preliminary results to report.

There are more recent results for these instances [8,10,11]. Reference [8]
has slightly better results than the ones in file CQ14.xml, with lower bounds.
The bounds show that many of the results are optimal, although the last
five instances, which are much larger than the others, still have significant
optimality gaps. We regard those last five instances as not relevant to the
concerns of this paper, since they have cycles of 26 and 52 weeks, much longer
than is encountered in practice.

5 Conclusion

This paper has presented KHE24, a nurse rostering solver which aims to find
very good but not optimal solutions quickly across a wide range of instances.
Polynomial-time methods are used: time sweep for the initial assignment, and
ejection chains and optimal reassignment using dynamic programming for re-
pair. No parameter tuning is needed.

The results so far give hope that the solver will eventually be successful in
practice (that is, taking cost, running time, and breadth of application into
account). At the time of writing, however, many tests are missing and for
some of those the author’s preliminary results are uncompetitive. The author
is actively continuing this work.
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Edmund Burke, and Barry McCollum (eds.), PATAT 2014 (Tenth international conference
on the Practice and Theory of Automated Timetabling, York, UK, August 2014), 269–291

20. Jeffrey H. Kingston, KHE web site, http://jeffreykingston.id.au/khe (2014).

21. Jeffrey H. Kingston, XESTT web site, http://jeffreykingston.id.au/xestt (2017)

22. Jeffrey H. Kingston, KHE18: a solver for nurse rostering, PATAT 2018 (Twelfth interna-
tional conference on the Practice and Theory of Automated Timetabling, Vienna, August
2018)

23. Jeffrey H. Kingston, Gerhard Post, and Greet Vanden Berghe, A unified nurse rostering
model based on XHSTT, PATAT 2018 (Twelfth international conference on the Practice
and Theory of Automated Timetabling, Vienna, August 2018)

24. Jeffrey H. Kingston, Modelling history in nurse rostering, PATAT 2018 (Twelfth in-
ternational conference on the Practice and Theory of Automated Timetabling, Vienna,
August 2018). Also Annals of Operations Research, DOI 10.1007/s10479-019-03288-x

25. Jeffrey H. Kingston, Improving the dynamic programming algorithm for nurse rostering,
PATAT 2022 (Thirteenth International Conference on Practice and Theory of Automated
Timetabling, Leuven, Belgium, August 2022).

26. Jeffrey H. Kingston, Timetabling research: a progress report, PATAT 2022 (Interna-
tional Conference on the Practice and Theory of Automated Timetabling, Leuven, Bel-
gium, August 2022).

27. A. Legrain, J. Omer, and S. Rosat, A rotation-based branch-and-price ap-
proach for the nurse scheduling problem (2017). Working paper, available at
https://hal.archives-ouvertes.fr/hal-01545421.



16 Jeffrey H. Kingston

28. M. J. Louw, I. Nieuwoudt, and J. H. Van Vuuren, Finding good nursing duty sched-
ules: a case study. Technical report, Department of Applied Mathematics, Stellenbosch
University, South Africa (2005). Received from Tim Curtois and held by this author.
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McCollum (eds.), PATAT 2014 (Tenth international conference on the Practice and Theory
of Automated Timetabling, York, UK, August 2014), 527–532 (2014)

34. Erfan Rahimian, Kerem Akartunali, and John Levine, A Hybrid Constraint Integer
Programming Approach to Solve Nurse Scheduling Problems, MISTA 2015 (7th Multi-
disciplinary International Conference on Scheduling: Theory and Applications), Prague,
August 2015, 429–442

35. M. Saddoune, G. Desaulniers, and F. Soumis, Aircrew pairings with possible repetitions
of the same flight number, Computers and Operations Research 40, 3 (2013), 805–814.
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